14ead2cf7SAlex Zinenko //===- VectorToSCF.cpp - Conversion from Vector to mix of SCF and Std -----===//
24ead2cf7SAlex Zinenko //
34ead2cf7SAlex Zinenko // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
44ead2cf7SAlex Zinenko // See https://llvm.org/LICENSE.txt for license information.
54ead2cf7SAlex Zinenko // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
64ead2cf7SAlex Zinenko //
74ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===//
84ead2cf7SAlex Zinenko //
94ead2cf7SAlex Zinenko // This file implements target-dependent lowering of vector transfer operations.
104ead2cf7SAlex Zinenko //
114ead2cf7SAlex Zinenko //===----------------------------------------------------------------------===//
124ead2cf7SAlex Zinenko 
134ead2cf7SAlex Zinenko #include <type_traits>
144ead2cf7SAlex Zinenko 
154ead2cf7SAlex Zinenko #include "mlir/Conversion/VectorToSCF/VectorToSCF.h"
164ead2cf7SAlex Zinenko #include "mlir/Dialect/Affine/EDSC/Intrinsics.h"
174ead2cf7SAlex Zinenko #include "mlir/Dialect/SCF/EDSC/Builders.h"
184ead2cf7SAlex Zinenko #include "mlir/Dialect/SCF/EDSC/Intrinsics.h"
194ead2cf7SAlex Zinenko #include "mlir/Dialect/StandardOps/EDSC/Intrinsics.h"
204ead2cf7SAlex Zinenko #include "mlir/Dialect/Vector/EDSC/Intrinsics.h"
214ead2cf7SAlex Zinenko #include "mlir/Dialect/Vector/VectorOps.h"
224ead2cf7SAlex Zinenko #include "mlir/IR/AffineExpr.h"
234ead2cf7SAlex Zinenko #include "mlir/IR/AffineMap.h"
244ead2cf7SAlex Zinenko #include "mlir/IR/Attributes.h"
254ead2cf7SAlex Zinenko #include "mlir/IR/Builders.h"
264ead2cf7SAlex Zinenko #include "mlir/IR/Location.h"
274ead2cf7SAlex Zinenko #include "mlir/IR/Matchers.h"
284ead2cf7SAlex Zinenko #include "mlir/IR/OperationSupport.h"
294ead2cf7SAlex Zinenko #include "mlir/IR/PatternMatch.h"
304ead2cf7SAlex Zinenko #include "mlir/IR/Types.h"
314ead2cf7SAlex Zinenko 
324ead2cf7SAlex Zinenko using namespace mlir;
334ead2cf7SAlex Zinenko using namespace mlir::edsc;
344ead2cf7SAlex Zinenko using namespace mlir::edsc::intrinsics;
354ead2cf7SAlex Zinenko using vector::TransferReadOp;
364ead2cf7SAlex Zinenko using vector::TransferWriteOp;
374ead2cf7SAlex Zinenko 
384ead2cf7SAlex Zinenko /// Helper class captures the common information needed to lower N>1-D vector
394ead2cf7SAlex Zinenko /// transfer operations (read and write).
404ead2cf7SAlex Zinenko /// On construction, this class opens an edsc::ScopedContext for simpler IR
414ead2cf7SAlex Zinenko /// manipulation.
424ead2cf7SAlex Zinenko /// In pseudo-IR, for an n-D vector_transfer_read such as:
434ead2cf7SAlex Zinenko ///
444ead2cf7SAlex Zinenko /// ```
454ead2cf7SAlex Zinenko ///   vector_transfer_read(%m, %offsets, identity_map, %fill) :
464ead2cf7SAlex Zinenko ///     memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
474ead2cf7SAlex Zinenko ///     vector<(major_dims) x (minor_dims) x type>
484ead2cf7SAlex Zinenko /// ```
494ead2cf7SAlex Zinenko ///
504ead2cf7SAlex Zinenko /// where rank(minor_dims) is the lower-level vector rank (e.g. 1 for LLVM or
514ead2cf7SAlex Zinenko /// higher).
524ead2cf7SAlex Zinenko ///
534ead2cf7SAlex Zinenko /// This is the entry point to emitting pseudo-IR resembling:
544ead2cf7SAlex Zinenko ///
554ead2cf7SAlex Zinenko /// ```
564ead2cf7SAlex Zinenko ///   %tmp = alloc(): memref<(major_dims) x vector<minor_dim x type>>
574ead2cf7SAlex Zinenko ///   for (%ivs_major, {0}, {vector_shape}, {1}) { // (N-1)-D loop nest
584ead2cf7SAlex Zinenko ///     if (any_of(%ivs_major + %offsets, <, major_dims)) {
594ead2cf7SAlex Zinenko ///       %v = vector_transfer_read(
604ead2cf7SAlex Zinenko ///         {%offsets_leading, %ivs_major + %offsets_major, %offsets_minor},
614ead2cf7SAlex Zinenko ///          %ivs_minor):
624ead2cf7SAlex Zinenko ///         memref<(leading_dims) x (major_dims) x (minor_dims) x type>,
634ead2cf7SAlex Zinenko ///         vector<(minor_dims) x type>;
644ead2cf7SAlex Zinenko ///       store(%v, %tmp);
654ead2cf7SAlex Zinenko ///     } else {
664ead2cf7SAlex Zinenko ///       %v = splat(vector<(minor_dims) x type>, %fill)
674ead2cf7SAlex Zinenko ///       store(%v, %tmp, %ivs_major);
684ead2cf7SAlex Zinenko ///     }
694ead2cf7SAlex Zinenko ///   }
704ead2cf7SAlex Zinenko ///   %res = load(%tmp, %0): memref<(major_dims) x vector<minor_dim x type>>):
714ead2cf7SAlex Zinenko //      vector<(major_dims) x (minor_dims) x type>
724ead2cf7SAlex Zinenko /// ```
734ead2cf7SAlex Zinenko ///
744ead2cf7SAlex Zinenko template <typename ConcreteOp>
754ead2cf7SAlex Zinenko class NDTransferOpHelper {
764ead2cf7SAlex Zinenko public:
774ead2cf7SAlex Zinenko   NDTransferOpHelper(PatternRewriter &rewriter, ConcreteOp xferOp)
784ead2cf7SAlex Zinenko       : rewriter(rewriter), loc(xferOp.getLoc()),
794ead2cf7SAlex Zinenko         scope(std::make_unique<ScopedContext>(rewriter, loc)), xferOp(xferOp),
804ead2cf7SAlex Zinenko         op(xferOp.getOperation()) {
814ead2cf7SAlex Zinenko     vectorType = xferOp.getVectorType();
824ead2cf7SAlex Zinenko     // TODO(ntv, ajcbik): when we go to k > 1-D vectors adapt minorRank.
834ead2cf7SAlex Zinenko     minorRank = 1;
844ead2cf7SAlex Zinenko     majorRank = vectorType.getRank() - minorRank;
854ead2cf7SAlex Zinenko     leadingRank = xferOp.getMemRefType().getRank() - (majorRank + minorRank);
864ead2cf7SAlex Zinenko     majorVectorType =
874ead2cf7SAlex Zinenko         VectorType::get(vectorType.getShape().take_front(majorRank),
884ead2cf7SAlex Zinenko                         vectorType.getElementType());
894ead2cf7SAlex Zinenko     minorVectorType =
904ead2cf7SAlex Zinenko         VectorType::get(vectorType.getShape().take_back(minorRank),
914ead2cf7SAlex Zinenko                         vectorType.getElementType());
924ead2cf7SAlex Zinenko     /// Memref of minor vector type is used for individual transfers.
934ead2cf7SAlex Zinenko     memRefMinorVectorType =
944ead2cf7SAlex Zinenko         MemRefType::get(majorVectorType.getShape(), minorVectorType, {},
954ead2cf7SAlex Zinenko                         xferOp.getMemRefType().getMemorySpace());
964ead2cf7SAlex Zinenko   }
974ead2cf7SAlex Zinenko 
984ead2cf7SAlex Zinenko   LogicalResult doReplace();
994ead2cf7SAlex Zinenko 
1004ead2cf7SAlex Zinenko private:
1014ead2cf7SAlex Zinenko   /// Creates the loop nest on the "major" dimensions and calls the
1024ead2cf7SAlex Zinenko   /// `loopBodyBuilder` lambda in the context of the loop nest.
1034ead2cf7SAlex Zinenko   template <typename Lambda>
1044ead2cf7SAlex Zinenko   void emitLoops(Lambda loopBodyBuilder);
1054ead2cf7SAlex Zinenko 
1064ead2cf7SAlex Zinenko   /// Operate within the body of `emitLoops` to:
1074ead2cf7SAlex Zinenko   ///   1. Compute the indexings `majorIvs + majorOffsets`.
1084ead2cf7SAlex Zinenko   ///   2. Compute a boolean that determines whether the first `majorIvs.rank()`
1094ead2cf7SAlex Zinenko   ///      dimensions `majorIvs + majorOffsets` are all within `memrefBounds`.
1104ead2cf7SAlex Zinenko   ///   3. Create an IfOp conditioned on the boolean in step 2.
1114ead2cf7SAlex Zinenko   ///   4. Call a `thenBlockBuilder` and an `elseBlockBuilder` to append
1124ead2cf7SAlex Zinenko   ///      operations to the IfOp blocks as appropriate.
1134ead2cf7SAlex Zinenko   template <typename LambdaThen, typename LambdaElse>
1144ead2cf7SAlex Zinenko   void emitInBounds(ValueRange majorIvs, ValueRange majorOffsets,
1154ead2cf7SAlex Zinenko                     MemRefBoundsCapture &memrefBounds,
1164ead2cf7SAlex Zinenko                     LambdaThen thenBlockBuilder, LambdaElse elseBlockBuilder);
1174ead2cf7SAlex Zinenko 
1184ead2cf7SAlex Zinenko   /// Common state to lower vector transfer ops.
1194ead2cf7SAlex Zinenko   PatternRewriter &rewriter;
1204ead2cf7SAlex Zinenko   Location loc;
1214ead2cf7SAlex Zinenko   std::unique_ptr<ScopedContext> scope;
1224ead2cf7SAlex Zinenko   ConcreteOp xferOp;
1234ead2cf7SAlex Zinenko   Operation *op;
1244ead2cf7SAlex Zinenko   // A vector transfer copies data between:
1254ead2cf7SAlex Zinenko   //   - memref<(leading_dims) x (major_dims) x (minor_dims) x type>
1264ead2cf7SAlex Zinenko   //   - vector<(major_dims) x (minor_dims) x type>
1274ead2cf7SAlex Zinenko   unsigned minorRank;         // for now always 1
1284ead2cf7SAlex Zinenko   unsigned majorRank;         // vector rank - minorRank
1294ead2cf7SAlex Zinenko   unsigned leadingRank;       // memref rank - vector rank
1304ead2cf7SAlex Zinenko   VectorType vectorType;      // vector<(major_dims) x (minor_dims) x type>
1314ead2cf7SAlex Zinenko   VectorType majorVectorType; // vector<(major_dims) x type>
1324ead2cf7SAlex Zinenko   VectorType minorVectorType; // vector<(minor_dims) x type>
1334ead2cf7SAlex Zinenko   MemRefType memRefMinorVectorType; // memref<vector<(minor_dims) x type>>
1344ead2cf7SAlex Zinenko };
1354ead2cf7SAlex Zinenko 
1364ead2cf7SAlex Zinenko template <typename ConcreteOp>
1374ead2cf7SAlex Zinenko template <typename Lambda>
1384ead2cf7SAlex Zinenko void NDTransferOpHelper<ConcreteOp>::emitLoops(Lambda loopBodyBuilder) {
1394ead2cf7SAlex Zinenko   /// Loop nest operates on the major dimensions
1404ead2cf7SAlex Zinenko   MemRefBoundsCapture memrefBoundsCapture(xferOp.memref());
1414ead2cf7SAlex Zinenko   VectorBoundsCapture vectorBoundsCapture(majorVectorType);
1424ead2cf7SAlex Zinenko   auto majorLbs = vectorBoundsCapture.getLbs();
1434ead2cf7SAlex Zinenko   auto majorUbs = vectorBoundsCapture.getUbs();
1444ead2cf7SAlex Zinenko   auto majorSteps = vectorBoundsCapture.getSteps();
1454ead2cf7SAlex Zinenko   SmallVector<Value, 8> majorIvs(vectorBoundsCapture.rank());
1464ead2cf7SAlex Zinenko   AffineLoopNestBuilder(majorIvs, majorLbs, majorUbs, majorSteps)([&] {
1474ead2cf7SAlex Zinenko     ValueRange indices(xferOp.indices());
1484ead2cf7SAlex Zinenko     loopBodyBuilder(majorIvs, indices.take_front(leadingRank),
1494ead2cf7SAlex Zinenko                     indices.drop_front(leadingRank).take_front(majorRank),
1504ead2cf7SAlex Zinenko                     indices.take_back(minorRank), memrefBoundsCapture);
1514ead2cf7SAlex Zinenko   });
1524ead2cf7SAlex Zinenko }
1534ead2cf7SAlex Zinenko 
1544ead2cf7SAlex Zinenko template <typename ConcreteOp>
1554ead2cf7SAlex Zinenko template <typename LambdaThen, typename LambdaElse>
1564ead2cf7SAlex Zinenko void NDTransferOpHelper<ConcreteOp>::emitInBounds(
1574ead2cf7SAlex Zinenko     ValueRange majorIvs, ValueRange majorOffsets,
1584ead2cf7SAlex Zinenko     MemRefBoundsCapture &memrefBounds, LambdaThen thenBlockBuilder,
1594ead2cf7SAlex Zinenko     LambdaElse elseBlockBuilder) {
1604ead2cf7SAlex Zinenko   Value inBounds = std_constant_int(/*value=*/1, /*width=*/1);
1614ead2cf7SAlex Zinenko   SmallVector<Value, 4> majorIvsPlusOffsets;
1624ead2cf7SAlex Zinenko   majorIvsPlusOffsets.reserve(majorIvs.size());
1634ead2cf7SAlex Zinenko   for (auto it : llvm::zip(majorIvs, majorOffsets, memrefBounds.getUbs())) {
1644ead2cf7SAlex Zinenko     Value iv = std::get<0>(it), off = std::get<1>(it), ub = std::get<2>(it);
1654ead2cf7SAlex Zinenko     using namespace mlir::edsc::op;
1664ead2cf7SAlex Zinenko     majorIvsPlusOffsets.push_back(iv + off);
1674ead2cf7SAlex Zinenko     Value inBounds2 = majorIvsPlusOffsets.back() < ub;
1684ead2cf7SAlex Zinenko     inBounds = inBounds && inBounds2;
1694ead2cf7SAlex Zinenko   }
1704ead2cf7SAlex Zinenko 
1714ead2cf7SAlex Zinenko   auto ifOp = ScopedContext::getBuilderRef().create<scf::IfOp>(
1724ead2cf7SAlex Zinenko       ScopedContext::getLocation(), TypeRange{}, inBounds,
1734ead2cf7SAlex Zinenko       /*withElseRegion=*/std::is_same<ConcreteOp, TransferReadOp>());
1744ead2cf7SAlex Zinenko   BlockBuilder(&ifOp.thenRegion().front(),
1754ead2cf7SAlex Zinenko                Append())([&] { thenBlockBuilder(majorIvsPlusOffsets); });
1764ead2cf7SAlex Zinenko   if (std::is_same<ConcreteOp, TransferReadOp>())
1774ead2cf7SAlex Zinenko     BlockBuilder(&ifOp.elseRegion().front(),
1784ead2cf7SAlex Zinenko                  Append())([&] { elseBlockBuilder(majorIvsPlusOffsets); });
1794ead2cf7SAlex Zinenko }
1804ead2cf7SAlex Zinenko 
1814ead2cf7SAlex Zinenko template <>
1824ead2cf7SAlex Zinenko LogicalResult NDTransferOpHelper<TransferReadOp>::doReplace() {
1834ead2cf7SAlex Zinenko   Value alloc = std_alloc(memRefMinorVectorType);
1844ead2cf7SAlex Zinenko 
1854ead2cf7SAlex Zinenko   emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
1864ead2cf7SAlex Zinenko                 ValueRange majorOffsets, ValueRange minorOffsets,
1874ead2cf7SAlex Zinenko                 MemRefBoundsCapture &memrefBounds) {
1884ead2cf7SAlex Zinenko     // If in-bounds, index into memref and lower to 1-D transfer read.
1894ead2cf7SAlex Zinenko     auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {
1904ead2cf7SAlex Zinenko       SmallVector<Value, 8> indexing;
1914ead2cf7SAlex Zinenko       indexing.reserve(leadingRank + majorRank + minorRank);
1924ead2cf7SAlex Zinenko       indexing.append(leadingOffsets.begin(), leadingOffsets.end());
1934ead2cf7SAlex Zinenko       indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
1944ead2cf7SAlex Zinenko       indexing.append(minorOffsets.begin(), minorOffsets.end());
195*36cdc17fSNicolas Vasilache       // Lower to 1-D vector_transfer_read and let recursion handle it.
196*36cdc17fSNicolas Vasilache       Value memref = xferOp.memref();
197*36cdc17fSNicolas Vasilache       auto map = TransferReadOp::getTransferMinorIdentityMap(
198*36cdc17fSNicolas Vasilache           xferOp.getMemRefType(), minorVectorType);
1994ead2cf7SAlex Zinenko       auto loaded1D =
2004ead2cf7SAlex Zinenko           vector_transfer_read(minorVectorType, memref, indexing,
2014ead2cf7SAlex Zinenko                                AffineMapAttr::get(map), xferOp.padding());
2024ead2cf7SAlex Zinenko       // Store the 1-D vector.
2034ead2cf7SAlex Zinenko       std_store(loaded1D, alloc, majorIvs);
2044ead2cf7SAlex Zinenko     };
2054ead2cf7SAlex Zinenko     // If out-of-bounds, just store a splatted vector.
2064ead2cf7SAlex Zinenko     auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {
2074ead2cf7SAlex Zinenko       auto vector = std_splat(minorVectorType, xferOp.padding());
2084ead2cf7SAlex Zinenko       std_store(vector, alloc, majorIvs);
2094ead2cf7SAlex Zinenko     };
2104ead2cf7SAlex Zinenko     emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder,
2114ead2cf7SAlex Zinenko                  elseBlockBuilder);
2124ead2cf7SAlex Zinenko   });
2134ead2cf7SAlex Zinenko 
2144ead2cf7SAlex Zinenko   Value loaded =
2154ead2cf7SAlex Zinenko       std_load(vector_type_cast(MemRefType::get({}, vectorType), alloc));
2164ead2cf7SAlex Zinenko   rewriter.replaceOp(op, loaded);
2174ead2cf7SAlex Zinenko 
2184ead2cf7SAlex Zinenko   return success();
2194ead2cf7SAlex Zinenko }
2204ead2cf7SAlex Zinenko 
2214ead2cf7SAlex Zinenko template <>
2224ead2cf7SAlex Zinenko LogicalResult NDTransferOpHelper<TransferWriteOp>::doReplace() {
2234ead2cf7SAlex Zinenko   Value alloc = std_alloc(memRefMinorVectorType);
2244ead2cf7SAlex Zinenko 
2254ead2cf7SAlex Zinenko   std_store(xferOp.vector(),
2264ead2cf7SAlex Zinenko             vector_type_cast(MemRefType::get({}, vectorType), alloc));
2274ead2cf7SAlex Zinenko 
2284ead2cf7SAlex Zinenko   emitLoops([&](ValueRange majorIvs, ValueRange leadingOffsets,
2294ead2cf7SAlex Zinenko                 ValueRange majorOffsets, ValueRange minorOffsets,
2304ead2cf7SAlex Zinenko                 MemRefBoundsCapture &memrefBounds) {
2314ead2cf7SAlex Zinenko     auto thenBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {
2324ead2cf7SAlex Zinenko       // Lower to 1-D vector_transfer_write and let recursion handle it.
2334ead2cf7SAlex Zinenko       SmallVector<Value, 8> indexing;
2344ead2cf7SAlex Zinenko       indexing.reserve(leadingRank + majorRank + minorRank);
2354ead2cf7SAlex Zinenko       indexing.append(leadingOffsets.begin(), leadingOffsets.end());
2364ead2cf7SAlex Zinenko       indexing.append(majorIvsPlusOffsets.begin(), majorIvsPlusOffsets.end());
2374ead2cf7SAlex Zinenko       indexing.append(minorOffsets.begin(), minorOffsets.end());
238*36cdc17fSNicolas Vasilache       // Lower to 1-D vector_transfer_write and let recursion handle it.
239*36cdc17fSNicolas Vasilache       Value loaded1D = std_load(alloc, majorIvs);
240*36cdc17fSNicolas Vasilache       auto map = TransferWriteOp::getTransferMinorIdentityMap(
241*36cdc17fSNicolas Vasilache           xferOp.getMemRefType(), minorVectorType);
2424ead2cf7SAlex Zinenko       vector_transfer_write(loaded1D, xferOp.memref(), indexing,
2434ead2cf7SAlex Zinenko                             AffineMapAttr::get(map));
2444ead2cf7SAlex Zinenko     };
2454ead2cf7SAlex Zinenko     // Don't write anything when out of bounds.
2464ead2cf7SAlex Zinenko     auto elseBlockBuilder = [&](ValueRange majorIvsPlusOffsets) {};
2474ead2cf7SAlex Zinenko     emitInBounds(majorIvs, majorOffsets, memrefBounds, thenBlockBuilder,
2484ead2cf7SAlex Zinenko                  elseBlockBuilder);
2494ead2cf7SAlex Zinenko   });
2504ead2cf7SAlex Zinenko 
2514ead2cf7SAlex Zinenko   rewriter.eraseOp(op);
2524ead2cf7SAlex Zinenko 
2534ead2cf7SAlex Zinenko   return success();
2544ead2cf7SAlex Zinenko }
2554ead2cf7SAlex Zinenko 
2564ead2cf7SAlex Zinenko /// Analyzes the `transfer` to find an access dimension along the fastest remote
2574ead2cf7SAlex Zinenko /// MemRef dimension. If such a dimension with coalescing properties is found,
2584ead2cf7SAlex Zinenko /// `pivs` and `vectorBoundsCapture` are swapped so that the invocation of
2594ead2cf7SAlex Zinenko /// LoopNestBuilder captures it in the innermost loop.
2604ead2cf7SAlex Zinenko template <typename TransferOpTy>
2614ead2cf7SAlex Zinenko static int computeCoalescedIndex(TransferOpTy transfer) {
2624ead2cf7SAlex Zinenko   // rank of the remote memory access, coalescing behavior occurs on the
2634ead2cf7SAlex Zinenko   // innermost memory dimension.
2644ead2cf7SAlex Zinenko   auto remoteRank = transfer.getMemRefType().getRank();
2654ead2cf7SAlex Zinenko   // Iterate over the results expressions of the permutation map to determine
2664ead2cf7SAlex Zinenko   // the loop order for creating pointwise copies between remote and local
2674ead2cf7SAlex Zinenko   // memories.
2684ead2cf7SAlex Zinenko   int coalescedIdx = -1;
2694ead2cf7SAlex Zinenko   auto exprs = transfer.permutation_map().getResults();
2704ead2cf7SAlex Zinenko   for (auto en : llvm::enumerate(exprs)) {
2714ead2cf7SAlex Zinenko     auto dim = en.value().template dyn_cast<AffineDimExpr>();
2724ead2cf7SAlex Zinenko     if (!dim) {
2734ead2cf7SAlex Zinenko       continue;
2744ead2cf7SAlex Zinenko     }
2754ead2cf7SAlex Zinenko     auto memRefDim = dim.getPosition();
2764ead2cf7SAlex Zinenko     if (memRefDim == remoteRank - 1) {
2774ead2cf7SAlex Zinenko       // memRefDim has coalescing properties, it should be swapped in the last
2784ead2cf7SAlex Zinenko       // position.
2794ead2cf7SAlex Zinenko       assert(coalescedIdx == -1 && "Unexpected > 1 coalesced indices");
2804ead2cf7SAlex Zinenko       coalescedIdx = en.index();
2814ead2cf7SAlex Zinenko     }
2824ead2cf7SAlex Zinenko   }
2834ead2cf7SAlex Zinenko   return coalescedIdx;
2844ead2cf7SAlex Zinenko }
2854ead2cf7SAlex Zinenko 
2864ead2cf7SAlex Zinenko /// Emits remote memory accesses that are clipped to the boundaries of the
2874ead2cf7SAlex Zinenko /// MemRef.
2884ead2cf7SAlex Zinenko template <typename TransferOpTy>
2894ead2cf7SAlex Zinenko static SmallVector<Value, 8>
2904ead2cf7SAlex Zinenko clip(TransferOpTy transfer, MemRefBoundsCapture &bounds, ArrayRef<Value> ivs) {
2914ead2cf7SAlex Zinenko   using namespace mlir::edsc;
2924ead2cf7SAlex Zinenko 
2934ead2cf7SAlex Zinenko   Value zero(std_constant_index(0)), one(std_constant_index(1));
2944ead2cf7SAlex Zinenko   SmallVector<Value, 8> memRefAccess(transfer.indices());
2954ead2cf7SAlex Zinenko   SmallVector<Value, 8> clippedScalarAccessExprs(memRefAccess.size());
2964ead2cf7SAlex Zinenko   // Indices accessing to remote memory are clipped and their expressions are
2974ead2cf7SAlex Zinenko   // returned in clippedScalarAccessExprs.
2984ead2cf7SAlex Zinenko   for (unsigned memRefDim = 0; memRefDim < clippedScalarAccessExprs.size();
2994ead2cf7SAlex Zinenko        ++memRefDim) {
3004ead2cf7SAlex Zinenko     // Linear search on a small number of entries.
3014ead2cf7SAlex Zinenko     int loopIndex = -1;
3024ead2cf7SAlex Zinenko     auto exprs = transfer.permutation_map().getResults();
3034ead2cf7SAlex Zinenko     for (auto en : llvm::enumerate(exprs)) {
3044ead2cf7SAlex Zinenko       auto expr = en.value();
3054ead2cf7SAlex Zinenko       auto dim = expr.template dyn_cast<AffineDimExpr>();
3064ead2cf7SAlex Zinenko       // Sanity check.
3074ead2cf7SAlex Zinenko       assert(
3084ead2cf7SAlex Zinenko           (dim || expr.template cast<AffineConstantExpr>().getValue() == 0) &&
3094ead2cf7SAlex Zinenko           "Expected dim or 0 in permutationMap");
3104ead2cf7SAlex Zinenko       if (dim && memRefDim == dim.getPosition()) {
3114ead2cf7SAlex Zinenko         loopIndex = en.index();
3124ead2cf7SAlex Zinenko         break;
3134ead2cf7SAlex Zinenko       }
3144ead2cf7SAlex Zinenko     }
3154ead2cf7SAlex Zinenko 
3164ead2cf7SAlex Zinenko     // We cannot distinguish atm between unrolled dimensions that implement
3174ead2cf7SAlex Zinenko     // the "always full" tile abstraction and need clipping from the other
3184ead2cf7SAlex Zinenko     // ones. So we conservatively clip everything.
3194ead2cf7SAlex Zinenko     using namespace edsc::op;
3204ead2cf7SAlex Zinenko     auto N = bounds.ub(memRefDim);
3214ead2cf7SAlex Zinenko     auto i = memRefAccess[memRefDim];
3224ead2cf7SAlex Zinenko     if (loopIndex < 0) {
3234ead2cf7SAlex Zinenko       auto N_minus_1 = N - one;
3244ead2cf7SAlex Zinenko       auto select_1 = std_select(i < N, i, N_minus_1);
3254ead2cf7SAlex Zinenko       clippedScalarAccessExprs[memRefDim] =
3264ead2cf7SAlex Zinenko           std_select(i < zero, zero, select_1);
3274ead2cf7SAlex Zinenko     } else {
3284ead2cf7SAlex Zinenko       auto ii = ivs[loopIndex];
3294ead2cf7SAlex Zinenko       auto i_plus_ii = i + ii;
3304ead2cf7SAlex Zinenko       auto N_minus_1 = N - one;
3314ead2cf7SAlex Zinenko       auto select_1 = std_select(i_plus_ii < N, i_plus_ii, N_minus_1);
3324ead2cf7SAlex Zinenko       clippedScalarAccessExprs[memRefDim] =
3334ead2cf7SAlex Zinenko           std_select(i_plus_ii < zero, zero, select_1);
3344ead2cf7SAlex Zinenko     }
3354ead2cf7SAlex Zinenko   }
3364ead2cf7SAlex Zinenko 
3374ead2cf7SAlex Zinenko   return clippedScalarAccessExprs;
3384ead2cf7SAlex Zinenko }
3394ead2cf7SAlex Zinenko 
3404ead2cf7SAlex Zinenko namespace {
3414ead2cf7SAlex Zinenko 
3424ead2cf7SAlex Zinenko /// Implements lowering of TransferReadOp and TransferWriteOp to a
3434ead2cf7SAlex Zinenko /// proper abstraction for the hardware.
3444ead2cf7SAlex Zinenko ///
3454ead2cf7SAlex Zinenko /// For now, we only emit a simple loop nest that performs clipped pointwise
3464ead2cf7SAlex Zinenko /// copies from a remote to a locally allocated memory.
3474ead2cf7SAlex Zinenko ///
3484ead2cf7SAlex Zinenko /// Consider the case:
3494ead2cf7SAlex Zinenko ///
3504ead2cf7SAlex Zinenko /// ```mlir
3514ead2cf7SAlex Zinenko ///    // Read the slice `%A[%i0, %i1:%i1+256, %i2:%i2+32]` into
3524ead2cf7SAlex Zinenko ///    // vector<32x256xf32> and pad with %f0 to handle the boundary case:
3534ead2cf7SAlex Zinenko ///    %f0 = constant 0.0f : f32
3544ead2cf7SAlex Zinenko ///    scf.for %i0 = 0 to %0 {
3554ead2cf7SAlex Zinenko ///      scf.for %i1 = 0 to %1 step %c256 {
3564ead2cf7SAlex Zinenko ///        scf.for %i2 = 0 to %2 step %c32 {
3574ead2cf7SAlex Zinenko ///          %v = vector.transfer_read %A[%i0, %i1, %i2], %f0
3584ead2cf7SAlex Zinenko ///               {permutation_map: (d0, d1, d2) -> (d2, d1)} :
3594ead2cf7SAlex Zinenko ///               memref<?x?x?xf32>, vector<32x256xf32>
3604ead2cf7SAlex Zinenko ///    }}}
3614ead2cf7SAlex Zinenko /// ```
3624ead2cf7SAlex Zinenko ///
3634ead2cf7SAlex Zinenko /// The rewriters construct loop and indices that access MemRef A in a pattern
3644ead2cf7SAlex Zinenko /// resembling the following (while guaranteeing an always full-tile
3654ead2cf7SAlex Zinenko /// abstraction):
3664ead2cf7SAlex Zinenko ///
3674ead2cf7SAlex Zinenko /// ```mlir
3684ead2cf7SAlex Zinenko ///    scf.for %d2 = 0 to %c256 {
3694ead2cf7SAlex Zinenko ///      scf.for %d1 = 0 to %c32 {
3704ead2cf7SAlex Zinenko ///        %s = %A[%i0, %i1 + %d1, %i2 + %d2] : f32
3714ead2cf7SAlex Zinenko ///        %tmp[%d2, %d1] = %s
3724ead2cf7SAlex Zinenko ///      }
3734ead2cf7SAlex Zinenko ///    }
3744ead2cf7SAlex Zinenko /// ```
3754ead2cf7SAlex Zinenko ///
3764ead2cf7SAlex Zinenko /// In the current state, only a clipping transfer is implemented by `clip`,
3774ead2cf7SAlex Zinenko /// which creates individual indexing expressions of the form:
3784ead2cf7SAlex Zinenko ///
3794ead2cf7SAlex Zinenko /// ```mlir-dsc
3804ead2cf7SAlex Zinenko ///    auto condMax = i + ii < N;
3814ead2cf7SAlex Zinenko ///    auto max = std_select(condMax, i + ii, N - one)
3824ead2cf7SAlex Zinenko ///    auto cond = i + ii < zero;
3834ead2cf7SAlex Zinenko ///    std_select(cond, zero, max);
3844ead2cf7SAlex Zinenko /// ```
3854ead2cf7SAlex Zinenko ///
3864ead2cf7SAlex Zinenko /// In the future, clipping should not be the only way and instead we should
3874ead2cf7SAlex Zinenko /// load vectors + mask them. Similarly on the write side, load/mask/store for
3884ead2cf7SAlex Zinenko /// implementing RMW behavior.
3894ead2cf7SAlex Zinenko ///
3904ead2cf7SAlex Zinenko /// Lowers TransferOp into a combination of:
3914ead2cf7SAlex Zinenko ///   1. local memory allocation;
3924ead2cf7SAlex Zinenko ///   2. perfect loop nest over:
3934ead2cf7SAlex Zinenko ///      a. scalar load/stores from local buffers (viewed as a scalar memref);
3944ead2cf7SAlex Zinenko ///      a. scalar store/load to original memref (with clipping).
3954ead2cf7SAlex Zinenko ///   3. vector_load/store
3964ead2cf7SAlex Zinenko ///   4. local memory deallocation.
3974ead2cf7SAlex Zinenko /// Minor variations occur depending on whether a TransferReadOp or
3984ead2cf7SAlex Zinenko /// a TransferWriteOp is rewritten.
3994ead2cf7SAlex Zinenko template <typename TransferOpTy>
4004ead2cf7SAlex Zinenko struct VectorTransferRewriter : public RewritePattern {
4014ead2cf7SAlex Zinenko   explicit VectorTransferRewriter(MLIRContext *context)
4024ead2cf7SAlex Zinenko       : RewritePattern(TransferOpTy::getOperationName(), 1, context) {}
4034ead2cf7SAlex Zinenko 
4044ead2cf7SAlex Zinenko   /// Used for staging the transfer in a local scalar buffer.
4054ead2cf7SAlex Zinenko   MemRefType tmpMemRefType(TransferOpTy transfer) const {
4064ead2cf7SAlex Zinenko     auto vectorType = transfer.getVectorType();
4074ead2cf7SAlex Zinenko     return MemRefType::get(vectorType.getShape(), vectorType.getElementType(),
4084ead2cf7SAlex Zinenko                            {}, 0);
4094ead2cf7SAlex Zinenko   }
4104ead2cf7SAlex Zinenko 
4114ead2cf7SAlex Zinenko   /// Performs the rewrite.
4124ead2cf7SAlex Zinenko   LogicalResult matchAndRewrite(Operation *op,
4134ead2cf7SAlex Zinenko                                 PatternRewriter &rewriter) const override;
4144ead2cf7SAlex Zinenko };
4154ead2cf7SAlex Zinenko 
4164ead2cf7SAlex Zinenko /// Lowers TransferReadOp into a combination of:
4174ead2cf7SAlex Zinenko ///   1. local memory allocation;
4184ead2cf7SAlex Zinenko ///   2. perfect loop nest over:
4194ead2cf7SAlex Zinenko ///      a. scalar load from local buffers (viewed as a scalar memref);
4204ead2cf7SAlex Zinenko ///      a. scalar store to original memref (with clipping).
4214ead2cf7SAlex Zinenko ///   3. vector_load from local buffer (viewed as a memref<1 x vector>);
4224ead2cf7SAlex Zinenko ///   4. local memory deallocation.
4234ead2cf7SAlex Zinenko ///
4244ead2cf7SAlex Zinenko /// Lowers the data transfer part of a TransferReadOp while ensuring no
4254ead2cf7SAlex Zinenko /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
4264ead2cf7SAlex Zinenko /// clipping. This means that a given value in memory can be read multiple
4274ead2cf7SAlex Zinenko /// times and concurrently.
4284ead2cf7SAlex Zinenko ///
4294ead2cf7SAlex Zinenko /// Important notes about clipping and "full-tiles only" abstraction:
4304ead2cf7SAlex Zinenko /// =================================================================
4314ead2cf7SAlex Zinenko /// When using clipping for dealing with boundary conditions, the same edge
4324ead2cf7SAlex Zinenko /// value will appear multiple times (a.k.a edge padding). This is fine if the
4334ead2cf7SAlex Zinenko /// subsequent vector operations are all data-parallel but **is generally
4344ead2cf7SAlex Zinenko /// incorrect** in the presence of reductions or extract operations.
4354ead2cf7SAlex Zinenko ///
4364ead2cf7SAlex Zinenko /// More generally, clipping is a scalar abstraction that is expected to work
4374ead2cf7SAlex Zinenko /// fine as a baseline for CPUs and GPUs but not for vector_load and DMAs.
4384ead2cf7SAlex Zinenko /// To deal with real vector_load and DMAs, a "padded allocation + view"
4394ead2cf7SAlex Zinenko /// abstraction with the ability to read out-of-memref-bounds (but still within
4404ead2cf7SAlex Zinenko /// the allocated region) is necessary.
4414ead2cf7SAlex Zinenko ///
4424ead2cf7SAlex Zinenko /// Whether using scalar loops or vector_load/DMAs to perform the transfer,
4434ead2cf7SAlex Zinenko /// junk values will be materialized in the vectors and generally need to be
4444ead2cf7SAlex Zinenko /// filtered out and replaced by the "neutral element". This neutral element is
4454ead2cf7SAlex Zinenko /// op-dependent so, in the future, we expect to create a vector filter and
4464ead2cf7SAlex Zinenko /// apply it to a splatted constant vector with the proper neutral element at
4474ead2cf7SAlex Zinenko /// each ssa-use. This filtering is not necessary for pure data-parallel
4484ead2cf7SAlex Zinenko /// operations.
4494ead2cf7SAlex Zinenko ///
4504ead2cf7SAlex Zinenko /// In the case of vector_store/DMAs, Read-Modify-Write will be required, which
4514ead2cf7SAlex Zinenko /// also have concurrency implications. Note that by using clipped scalar stores
4524ead2cf7SAlex Zinenko /// in the presence of data-parallel only operations, we generate code that
4534ead2cf7SAlex Zinenko /// writes the same value multiple time on the edge locations.
4544ead2cf7SAlex Zinenko ///
4554ead2cf7SAlex Zinenko /// TODO(ntv): implement alternatives to clipping.
4564ead2cf7SAlex Zinenko /// TODO(ntv): support non-data-parallel operations.
4574ead2cf7SAlex Zinenko 
4584ead2cf7SAlex Zinenko /// Performs the rewrite.
4594ead2cf7SAlex Zinenko template <>
4604ead2cf7SAlex Zinenko LogicalResult VectorTransferRewriter<TransferReadOp>::matchAndRewrite(
4614ead2cf7SAlex Zinenko     Operation *op, PatternRewriter &rewriter) const {
4624ead2cf7SAlex Zinenko   using namespace mlir::edsc::op;
4634ead2cf7SAlex Zinenko 
4644ead2cf7SAlex Zinenko   TransferReadOp transfer = cast<TransferReadOp>(op);
4654ead2cf7SAlex Zinenko   if (AffineMap::isMinorIdentity(transfer.permutation_map())) {
4664ead2cf7SAlex Zinenko     // If > 1D, emit a bunch of loops around 1-D vector transfers.
4674ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() > 1)
4684ead2cf7SAlex Zinenko       return NDTransferOpHelper<TransferReadOp>(rewriter, transfer).doReplace();
4694ead2cf7SAlex Zinenko     // If 1-D this is now handled by the target-specific lowering.
4704ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() == 1)
4714ead2cf7SAlex Zinenko       return failure();
4724ead2cf7SAlex Zinenko   }
4734ead2cf7SAlex Zinenko 
4744ead2cf7SAlex Zinenko   // Conservative lowering to scalar load / stores.
4754ead2cf7SAlex Zinenko   // 1. Setup all the captures.
4764ead2cf7SAlex Zinenko   ScopedContext scope(rewriter, transfer.getLoc());
4774ead2cf7SAlex Zinenko   StdIndexedValue remote(transfer.memref());
4784ead2cf7SAlex Zinenko   MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
4794ead2cf7SAlex Zinenko   VectorBoundsCapture vectorBoundsCapture(transfer.vector());
4804ead2cf7SAlex Zinenko   int coalescedIdx = computeCoalescedIndex(transfer);
4814ead2cf7SAlex Zinenko   // Swap the vectorBoundsCapture which will reorder loop bounds.
4824ead2cf7SAlex Zinenko   if (coalescedIdx >= 0)
4834ead2cf7SAlex Zinenko     vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
4844ead2cf7SAlex Zinenko                                    coalescedIdx);
4854ead2cf7SAlex Zinenko 
4864ead2cf7SAlex Zinenko   auto lbs = vectorBoundsCapture.getLbs();
4874ead2cf7SAlex Zinenko   auto ubs = vectorBoundsCapture.getUbs();
4884ead2cf7SAlex Zinenko   SmallVector<Value, 8> steps;
4894ead2cf7SAlex Zinenko   steps.reserve(vectorBoundsCapture.getSteps().size());
4904ead2cf7SAlex Zinenko   for (auto step : vectorBoundsCapture.getSteps())
4914ead2cf7SAlex Zinenko     steps.push_back(std_constant_index(step));
4924ead2cf7SAlex Zinenko 
4934ead2cf7SAlex Zinenko   // 2. Emit alloc-copy-load-dealloc.
4944ead2cf7SAlex Zinenko   Value tmp = std_alloc(tmpMemRefType(transfer));
4954ead2cf7SAlex Zinenko   StdIndexedValue local(tmp);
4964ead2cf7SAlex Zinenko   Value vec = vector_type_cast(tmp);
4974ead2cf7SAlex Zinenko   SmallVector<Value, 8> ivs(lbs.size());
4984ead2cf7SAlex Zinenko   LoopNestBuilder(ivs, lbs, ubs, steps)([&] {
4994ead2cf7SAlex Zinenko     // Swap the ivs which will reorder memory accesses.
5004ead2cf7SAlex Zinenko     if (coalescedIdx >= 0)
5014ead2cf7SAlex Zinenko       std::swap(ivs.back(), ivs[coalescedIdx]);
5024ead2cf7SAlex Zinenko     // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
5034ead2cf7SAlex Zinenko     local(ivs) = remote(clip(transfer, memRefBoundsCapture, ivs));
5044ead2cf7SAlex Zinenko   });
5054ead2cf7SAlex Zinenko   Value vectorValue = std_load(vec);
5064ead2cf7SAlex Zinenko   (std_dealloc(tmp)); // vexing parse
5074ead2cf7SAlex Zinenko 
5084ead2cf7SAlex Zinenko   // 3. Propagate.
5094ead2cf7SAlex Zinenko   rewriter.replaceOp(op, vectorValue);
5104ead2cf7SAlex Zinenko   return success();
5114ead2cf7SAlex Zinenko }
5124ead2cf7SAlex Zinenko 
5134ead2cf7SAlex Zinenko /// Lowers TransferWriteOp into a combination of:
5144ead2cf7SAlex Zinenko ///   1. local memory allocation;
5154ead2cf7SAlex Zinenko ///   2. vector_store to local buffer (viewed as a memref<1 x vector>);
5164ead2cf7SAlex Zinenko ///   3. perfect loop nest over:
5174ead2cf7SAlex Zinenko ///      a. scalar load from local buffers (viewed as a scalar memref);
5184ead2cf7SAlex Zinenko ///      a. scalar store to original memref (with clipping).
5194ead2cf7SAlex Zinenko ///   4. local memory deallocation.
5204ead2cf7SAlex Zinenko ///
5214ead2cf7SAlex Zinenko /// More specifically, lowers the data transfer part while ensuring no
5224ead2cf7SAlex Zinenko /// out-of-bounds accesses are possible. Out-of-bounds behavior is handled by
5234ead2cf7SAlex Zinenko /// clipping. This means that a given value in memory can be written to multiple
5244ead2cf7SAlex Zinenko /// times and concurrently.
5254ead2cf7SAlex Zinenko ///
5264ead2cf7SAlex Zinenko /// See `Important notes about clipping and full-tiles only abstraction` in the
5274ead2cf7SAlex Zinenko /// description of `readClipped` above.
5284ead2cf7SAlex Zinenko ///
5294ead2cf7SAlex Zinenko /// TODO(ntv): implement alternatives to clipping.
5304ead2cf7SAlex Zinenko /// TODO(ntv): support non-data-parallel operations.
5314ead2cf7SAlex Zinenko template <>
5324ead2cf7SAlex Zinenko LogicalResult VectorTransferRewriter<TransferWriteOp>::matchAndRewrite(
5334ead2cf7SAlex Zinenko     Operation *op, PatternRewriter &rewriter) const {
5344ead2cf7SAlex Zinenko   using namespace edsc::op;
5354ead2cf7SAlex Zinenko 
5364ead2cf7SAlex Zinenko   TransferWriteOp transfer = cast<TransferWriteOp>(op);
5374ead2cf7SAlex Zinenko   if (AffineMap::isMinorIdentity(transfer.permutation_map())) {
5384ead2cf7SAlex Zinenko     // If > 1D, emit a bunch of loops around 1-D vector transfers.
5394ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() > 1)
5404ead2cf7SAlex Zinenko       return NDTransferOpHelper<TransferWriteOp>(rewriter, transfer)
5414ead2cf7SAlex Zinenko           .doReplace();
5424ead2cf7SAlex Zinenko     // If 1-D this is now handled by the target-specific lowering.
5434ead2cf7SAlex Zinenko     if (transfer.getVectorType().getRank() == 1)
5444ead2cf7SAlex Zinenko       return failure();
5454ead2cf7SAlex Zinenko   }
5464ead2cf7SAlex Zinenko 
5474ead2cf7SAlex Zinenko   // 1. Setup all the captures.
5484ead2cf7SAlex Zinenko   ScopedContext scope(rewriter, transfer.getLoc());
5494ead2cf7SAlex Zinenko   StdIndexedValue remote(transfer.memref());
5504ead2cf7SAlex Zinenko   MemRefBoundsCapture memRefBoundsCapture(transfer.memref());
5514ead2cf7SAlex Zinenko   Value vectorValue(transfer.vector());
5524ead2cf7SAlex Zinenko   VectorBoundsCapture vectorBoundsCapture(transfer.vector());
5534ead2cf7SAlex Zinenko   int coalescedIdx = computeCoalescedIndex(transfer);
5544ead2cf7SAlex Zinenko   // Swap the vectorBoundsCapture which will reorder loop bounds.
5554ead2cf7SAlex Zinenko   if (coalescedIdx >= 0)
5564ead2cf7SAlex Zinenko     vectorBoundsCapture.swapRanges(vectorBoundsCapture.rank() - 1,
5574ead2cf7SAlex Zinenko                                    coalescedIdx);
5584ead2cf7SAlex Zinenko 
5594ead2cf7SAlex Zinenko   auto lbs = vectorBoundsCapture.getLbs();
5604ead2cf7SAlex Zinenko   auto ubs = vectorBoundsCapture.getUbs();
5614ead2cf7SAlex Zinenko   SmallVector<Value, 8> steps;
5624ead2cf7SAlex Zinenko   steps.reserve(vectorBoundsCapture.getSteps().size());
5634ead2cf7SAlex Zinenko   for (auto step : vectorBoundsCapture.getSteps())
5644ead2cf7SAlex Zinenko     steps.push_back(std_constant_index(step));
5654ead2cf7SAlex Zinenko 
5664ead2cf7SAlex Zinenko   // 2. Emit alloc-store-copy-dealloc.
5674ead2cf7SAlex Zinenko   Value tmp = std_alloc(tmpMemRefType(transfer));
5684ead2cf7SAlex Zinenko   StdIndexedValue local(tmp);
5694ead2cf7SAlex Zinenko   Value vec = vector_type_cast(tmp);
5704ead2cf7SAlex Zinenko   std_store(vectorValue, vec);
5714ead2cf7SAlex Zinenko   SmallVector<Value, 8> ivs(lbs.size());
5724ead2cf7SAlex Zinenko   LoopNestBuilder(ivs, lbs, ubs, steps)([&] {
5734ead2cf7SAlex Zinenko     // Swap the ivs which will reorder memory accesses.
5744ead2cf7SAlex Zinenko     if (coalescedIdx >= 0)
5754ead2cf7SAlex Zinenko       std::swap(ivs.back(), ivs[coalescedIdx]);
5764ead2cf7SAlex Zinenko     // Computes clippedScalarAccessExprs in the loop nest scope (ivs exist).
5774ead2cf7SAlex Zinenko     remote(clip(transfer, memRefBoundsCapture, ivs)) = local(ivs);
5784ead2cf7SAlex Zinenko   });
5794ead2cf7SAlex Zinenko   (std_dealloc(tmp)); // vexing parse...
5804ead2cf7SAlex Zinenko 
5814ead2cf7SAlex Zinenko   rewriter.eraseOp(op);
5824ead2cf7SAlex Zinenko   return success();
5834ead2cf7SAlex Zinenko }
5844ead2cf7SAlex Zinenko 
5854ead2cf7SAlex Zinenko } // namespace
5864ead2cf7SAlex Zinenko 
5874ead2cf7SAlex Zinenko void mlir::populateVectorToSCFConversionPatterns(
5884ead2cf7SAlex Zinenko     OwningRewritePatternList &patterns, MLIRContext *context) {
5894ead2cf7SAlex Zinenko   patterns.insert<VectorTransferRewriter<vector::TransferReadOp>,
5904ead2cf7SAlex Zinenko                   VectorTransferRewriter<vector::TransferWriteOp>>(context);
5914ead2cf7SAlex Zinenko }
592