1 //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering of vector operations to GPU dialect ops. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" 16 17 #include "../PassDetail.h" 18 #include "mlir/Analysis/SliceAnalysis.h" 19 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 20 #include "mlir/Dialect/GPU/GPUDialect.h" 21 #include "mlir/Dialect/MemRef/IR/MemRef.h" 22 #include "mlir/Dialect/SCF/SCF.h" 23 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 24 #include "mlir/Dialect/Vector/VectorOps.h" 25 #include "mlir/Dialect/Vector/VectorUtils.h" 26 #include "mlir/IR/Builders.h" 27 #include "mlir/Pass/Pass.h" 28 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 29 #include "mlir/Transforms/Passes.h" 30 31 using namespace mlir; 32 33 // Return true if the contract op can be convert to MMA matmul. 34 static bool contractSupportsMMAMatrixType(vector::ContractionOp contract) { 35 if (llvm::size(contract.masks()) != 0) 36 return false; 37 38 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 39 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 40 AffineExpr m, n, k; 41 bindDims(contract.getContext(), m, n, k); 42 auto iteratorTypes = contract.iterator_types().getValue(); 43 if (!(isParallelIterator(iteratorTypes[0]) && 44 isParallelIterator(iteratorTypes[1]) && 45 isReductionIterator(iteratorTypes[2]))) 46 return false; 47 48 // The contract needs to represent a matmul to be able to convert to 49 // MMAMatrix matmul. 50 if (contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}})) 51 return false; 52 53 return true; 54 } 55 56 // Return the stide for the dimension 0 of |type| if it is a memref and has a 57 // constant stride. 58 static llvm::Optional<int64_t> 59 getMemrefConstantHorizontalStride(ShapedType type) { 60 auto memrefType = type.dyn_cast<MemRefType>(); 61 if (!memrefType) 62 return false; 63 int64_t offset = 0; 64 SmallVector<int64_t, 2> strides; 65 if (failed(getStridesAndOffset(memrefType, strides, offset))) 66 return llvm::None; 67 if (strides[0] == ShapedType::kDynamicStrideOrOffset) 68 return llvm::None; 69 return strides[0]; 70 } 71 72 // Return true if the transfer op can be converted to a MMA matrix load. 73 static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) { 74 if (readOp.mask() || readOp.hasOutOfBoundsDim() || 75 readOp.getVectorType().getRank() != 2) 76 return false; 77 if (!getMemrefConstantHorizontalStride(readOp.getShapedType())) 78 return false; 79 AffineMap map = readOp.permutation_map(); 80 OpBuilder b(readOp.getContext()); 81 AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1); 82 AffineExpr zero = b.getAffineConstantExpr(0); 83 auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim}, 84 readOp.getContext()); 85 // TODO: Support transpose once it is added to GPU dialect ops. 86 // For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1). 87 if (!map.isMinorIdentity() && map != broadcastInnerDim) 88 return false; 89 return true; 90 } 91 92 // Return true if the transfer op can be converted to a MMA matrix store. 93 static bool 94 transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { 95 // TODO: support 0-d corner case. 96 if (writeOp.getTransferRank() == 0) 97 return false; 98 99 if (writeOp.mask() || writeOp.hasOutOfBoundsDim() || 100 writeOp.getVectorType().getRank() != 2) 101 return false; 102 if (!getMemrefConstantHorizontalStride(writeOp.getShapedType())) 103 return false; 104 // TODO: Support transpose once it is added to GPU dialect ops. 105 if (!writeOp.permutation_map().isMinorIdentity()) 106 return false; 107 return true; 108 } 109 110 /// Return true if the constant is a splat to a 2D vector so that it can be 111 /// converted to a MMA constant matrix op. 112 static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) { 113 auto vecType = constantOp.getType().dyn_cast<VectorType>(); 114 if (!vecType || vecType.getRank() != 2) 115 return false; 116 return constantOp.getValue().isa<SplatElementsAttr>(); 117 } 118 119 /// Return true if this is a broadcast from scalar to a 2D vector. 120 static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) { 121 return broadcastOp.getVectorType().getRank() == 2 && 122 broadcastOp.source().getType().isa<FloatType>(); 123 } 124 125 /// Return the MMA elementwise enum associated with `op` if it is supported. 126 /// Return `llvm::None` otherwise. 127 static llvm::Optional<gpu::MMAElementwiseOp> 128 convertElementwiseOpToMMA(Operation *op) { 129 if (isa<arith::AddFOp>(op)) 130 return gpu::MMAElementwiseOp::ADDF; 131 if (isa<arith::MulFOp>(op)) 132 return gpu::MMAElementwiseOp::MULF; 133 if (isa<arith::MaxFOp>(op)) 134 return gpu::MMAElementwiseOp::MAXF; 135 if (isa<arith::MinFOp>(op)) 136 return gpu::MMAElementwiseOp::MINF; 137 if (isa<arith::DivFOp>(op)) 138 return gpu::MMAElementwiseOp::DIVF; 139 return llvm::None; 140 } 141 142 /// Return true if the op is supported as elementwise op on MMAMatrix type. 143 static bool elementwiseSupportsMMAMatrixType(Operation *op) { 144 return convertElementwiseOpToMMA(op).hasValue(); 145 } 146 147 static bool supportsMMaMatrixType(Operation *op) { 148 if (isa<scf::ForOp, scf::YieldOp>(op)) 149 return true; 150 if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) 151 return transferReadSupportsMMAMatrixType(transferRead); 152 if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) 153 return transferWriteSupportsMMAMatrixType(transferWrite); 154 if (auto contract = dyn_cast<vector::ContractionOp>(op)) 155 return contractSupportsMMAMatrixType(contract); 156 if (auto constant = dyn_cast<arith::ConstantOp>(op)) 157 return constantSupportsMMAMatrixType(constant); 158 if (auto broadcast = dyn_cast<vector::BroadcastOp>(op)) 159 return broadcastSupportsMMAMatrixType(broadcast); 160 return elementwiseSupportsMMAMatrixType(op); 161 } 162 163 /// Return an unsorted slice handling scf.for region differently than 164 /// `getSlice`. In scf.for we only want to include as part of the slice elements 165 /// that are part of the use/def chain. 166 static SetVector<Operation *> getSliceContract(Operation *op, 167 TransitiveFilter backwardFilter, 168 TransitiveFilter forwardFilter) { 169 SetVector<Operation *> slice; 170 slice.insert(op); 171 unsigned currentIndex = 0; 172 SetVector<Operation *> backwardSlice; 173 SetVector<Operation *> forwardSlice; 174 while (currentIndex != slice.size()) { 175 auto *currentOp = (slice)[currentIndex]; 176 // Compute and insert the backwardSlice starting from currentOp. 177 backwardSlice.clear(); 178 getBackwardSlice(currentOp, &backwardSlice, backwardFilter); 179 slice.insert(backwardSlice.begin(), backwardSlice.end()); 180 181 // Compute and insert the forwardSlice starting from currentOp. 182 forwardSlice.clear(); 183 // Special case for ForOp, we don't want to include the whole region but 184 // only the value using the region arguments. 185 // TODO: We should refine this to only care about the region arguments being 186 // converted to matrix type. 187 if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) { 188 for (Value forOpResult : forOp.getResults()) 189 getForwardSlice(forOpResult, &forwardSlice, forwardFilter); 190 for (BlockArgument &arg : forOp.getRegionIterArgs()) 191 getForwardSlice(arg, &forwardSlice, forwardFilter); 192 } else { 193 getForwardSlice(currentOp, &forwardSlice, forwardFilter); 194 } 195 slice.insert(forwardSlice.begin(), forwardSlice.end()); 196 ++currentIndex; 197 } 198 return slice; 199 } 200 201 // Analyze slice of operations based on convert op to figure out if the whole 202 // slice can be converted to MMA operations. 203 static SetVector<Operation *> getOpToConvert(mlir::Operation *op) { 204 auto hasVectorDest = [](Operation *op) { 205 return llvm::any_of(op->getResultTypes(), 206 [](Type t) { return t.isa<VectorType>(); }); 207 }; 208 auto hasVectorSrc = [](Operation *op) { 209 return llvm::any_of(op->getOperandTypes(), 210 [](Type t) { return t.isa<VectorType>(); }); 211 }; 212 SetVector<Operation *> opToConvert; 213 op->walk([&](vector::ContractionOp contract) { 214 if (opToConvert.contains(contract.getOperation())) 215 return; 216 SetVector<Operation *> dependentOps = 217 getSliceContract(contract, hasVectorDest, hasVectorSrc); 218 // If any instruction cannot use MMA matrix type drop the whole 219 // chain. MMA matrix are stored in an opaque type so they cannot be used 220 // by all operations. 221 if (llvm::any_of(dependentOps, 222 [](Operation *op) { return !supportsMMaMatrixType(op); })) 223 return; 224 opToConvert.insert(dependentOps.begin(), dependentOps.end()); 225 }); 226 // Sort the operations so that we can convert them in topological order. 227 return topologicalSort(opToConvert); 228 } 229 230 namespace { 231 // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted 232 // to MMA matmul. 233 struct PrepareContractToGPUMMA 234 : public OpRewritePattern<vector::ContractionOp> { 235 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 236 237 LogicalResult matchAndRewrite(vector::ContractionOp op, 238 PatternRewriter &rewriter) const override { 239 Location loc = op.getLoc(); 240 Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc(); 241 242 // Set up the parallel/reduction structure in right form. 243 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 244 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 245 AffineExpr m, n, k; 246 bindDims(rewriter.getContext(), m, n, k); 247 static constexpr std::array<int64_t, 2> perm = {1, 0}; 248 auto iteratorTypes = op.iterator_types().getValue(); 249 SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 250 if (!(isParallelIterator(iteratorTypes[0]) && 251 isParallelIterator(iteratorTypes[1]) && 252 isReductionIterator(iteratorTypes[2]))) 253 return failure(); 254 // 255 // Two outer parallel, one inner reduction (matmat flavor). 256 // 257 if (maps == infer({{m, k}, {k, n}, {m, n}})) { 258 // This is the classical row-major matmul, nothing to do. 259 return failure(); 260 } 261 if (maps == infer({{m, k}, {n, k}, {m, n}})) { 262 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 263 } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 264 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 265 } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 266 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 267 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 268 } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 269 std::swap(rhs, lhs); 270 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 271 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 272 } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 273 std::swap(rhs, lhs); 274 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 275 } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 276 std::swap(lhs, rhs); 277 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 278 } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 279 std::swap(lhs, rhs); 280 } else { 281 return failure(); 282 } 283 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 284 op, lhs, rhs, res, 285 rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})), 286 op.iterator_types()); 287 return success(); 288 } 289 }; 290 291 // Merge transpose op into the transfer read op. Transpose are not supported on 292 // MMA types but MMA load can transpose the matrix when loading. 293 struct CombineTransferReadOpTranspose final 294 : public OpRewritePattern<vector::TransposeOp> { 295 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 296 297 LogicalResult matchAndRewrite(vector::TransposeOp op, 298 PatternRewriter &rewriter) const override { 299 auto transferReadOp = op.vector().getDefiningOp<vector::TransferReadOp>(); 300 if (!transferReadOp) 301 return failure(); 302 303 // TODO: support 0-d corner case. 304 if (transferReadOp.getTransferRank() == 0) 305 return failure(); 306 307 if (transferReadOp.mask() || transferReadOp.hasOutOfBoundsDim()) 308 return failure(); 309 SmallVector<int64_t, 2> perm; 310 op.getTransp(perm); 311 SmallVector<unsigned, 2> permU; 312 for (int64_t o : perm) 313 permU.push_back(unsigned(o)); 314 AffineMap permutationMap = 315 AffineMap::getPermutationMap(permU, op.getContext()); 316 AffineMap newMap = permutationMap.compose(transferReadOp.permutation_map()); 317 rewriter.replaceOpWithNewOp<vector::TransferReadOp>( 318 op, op.getType(), transferReadOp.source(), transferReadOp.indices(), 319 AffineMapAttr::get(newMap), transferReadOp.padding(), 320 transferReadOp.mask(), transferReadOp.in_boundsAttr()); 321 return success(); 322 } 323 }; 324 325 } // namespace 326 327 // MMA types have different layout based on how they are used in matmul ops. 328 // Figure the right layout to use by looking at op uses. 329 // TODO: Change the GPU dialect to abstract the layout at the this level and 330 // only care about it during lowering to NVVM. 331 template <typename OpTy> 332 static const char *inferFragType(OpTy op) { 333 for (Operation *users : op->getUsers()) { 334 auto contract = dyn_cast<vector::ContractionOp>(users); 335 if (!contract) 336 continue; 337 if (contract.lhs() == op.getResult()) 338 return "AOp"; 339 if (contract.rhs() == op.getResult()) 340 return "BOp"; 341 } 342 return "COp"; 343 } 344 345 static void convertTransferReadOp(vector::TransferReadOp op, 346 llvm::DenseMap<Value, Value> &valueMapping) { 347 assert(op.getTransferRank() > 0 && "unexpected 0-d transfer"); 348 assert(transferReadSupportsMMAMatrixType(op)); 349 Optional<int64_t> stride = 350 getMemrefConstantHorizontalStride(op.getShapedType()); 351 AffineMap map = op.permutation_map(); 352 // Handle broadcast by setting the stride to 0. 353 if (map.getResult(0).isa<AffineConstantExpr>()) { 354 assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0); 355 stride = 0; 356 } 357 assert(stride); 358 const char *fragType = inferFragType(op); 359 gpu::MMAMatrixType type = 360 gpu::MMAMatrixType::get(op.getVectorType().getShape(), 361 op.getVectorType().getElementType(), fragType); 362 OpBuilder b(op); 363 Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>( 364 op.getLoc(), type, op.source(), op.indices(), b.getIndexAttr(*stride)); 365 valueMapping[op.getResult()] = load; 366 } 367 368 static void convertTransferWriteOp(vector::TransferWriteOp op, 369 llvm::DenseMap<Value, Value> &valueMapping) { 370 assert(transferWriteSupportsMMAMatrixType(op)); 371 Optional<int64_t> stride = 372 getMemrefConstantHorizontalStride(op.getShapedType()); 373 assert(stride); 374 OpBuilder b(op); 375 Value matrix = valueMapping.find(op.vector())->second; 376 b.create<gpu::SubgroupMmaStoreMatrixOp>( 377 op.getLoc(), matrix, op.source(), op.indices(), b.getIndexAttr(*stride)); 378 op.erase(); 379 } 380 381 static void convertContractOp(vector::ContractionOp op, 382 llvm::DenseMap<Value, Value> &valueMapping) { 383 OpBuilder b(op); 384 Value opA = valueMapping.find(op.lhs())->second; 385 Value opB = valueMapping.find(op.rhs())->second; 386 Value opC = valueMapping.find(op.acc())->second; 387 Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(), 388 opA, opB, opC); 389 valueMapping[op.getResult()] = matmul; 390 } 391 392 /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. 393 static void convertConstantOp(arith::ConstantOp op, 394 llvm::DenseMap<Value, Value> &valueMapping) { 395 assert(constantSupportsMMAMatrixType(op)); 396 OpBuilder b(op); 397 Attribute splat = 398 op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>(); 399 auto scalarConstant = 400 b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat); 401 const char *fragType = inferFragType(op); 402 auto vecType = op.getType().cast<VectorType>(); 403 gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 404 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 405 auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 406 scalarConstant); 407 valueMapping[op.getResult()] = matrix; 408 } 409 410 /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op. 411 static void convertBroadcastOp(vector::BroadcastOp op, 412 llvm::DenseMap<Value, Value> &valueMapping) { 413 assert(broadcastSupportsMMAMatrixType(op)); 414 OpBuilder b(op); 415 const char *fragType = inferFragType(op); 416 auto vecType = op.getVectorType(); 417 gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 418 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 419 auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 420 op.source()); 421 valueMapping[op.getResult()] = matrix; 422 } 423 424 // Replace ForOp with a new ForOp with extra operands. The YieldOp is not 425 // updated and needs to be updated separatly for the loop to be correct. 426 static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop, 427 ValueRange newIterOperands) { 428 // Create a new loop before the existing one, with the extra operands. 429 OpBuilder::InsertionGuard g(b); 430 b.setInsertionPoint(loop); 431 auto operands = llvm::to_vector<4>(loop.getIterOperands()); 432 operands.append(newIterOperands.begin(), newIterOperands.end()); 433 scf::ForOp newLoop = 434 b.create<scf::ForOp>(loop.getLoc(), loop.getLowerBound(), 435 loop.getUpperBound(), loop.getStep(), operands); 436 newLoop.getBody()->erase(); 437 newLoop.getLoopBody().getBlocks().splice( 438 newLoop.getLoopBody().getBlocks().begin(), 439 loop.getLoopBody().getBlocks()); 440 for (auto operand : newIterOperands) 441 newLoop.getBody()->addArgument(operand.getType()); 442 443 for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front( 444 loop.getNumResults()))) 445 std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); 446 loop.erase(); 447 return newLoop; 448 } 449 450 static void convertForOp(scf::ForOp op, 451 llvm::DenseMap<Value, Value> &valueMapping) { 452 SmallVector<Value> newOperands; 453 SmallVector<std::pair<size_t, size_t>> argMapping; 454 for (auto operand : llvm::enumerate(op.getIterOperands())) { 455 auto it = valueMapping.find(operand.value()); 456 if (it == valueMapping.end()) 457 continue; 458 argMapping.push_back(std::make_pair( 459 operand.index(), op.getNumIterOperands() + newOperands.size())); 460 newOperands.push_back(it->second); 461 } 462 OpBuilder b(op); 463 scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands); 464 Block &loopBody = *newForOp.getBody(); 465 for (auto mapping : argMapping) { 466 valueMapping[newForOp.getResult(mapping.first)] = 467 newForOp.getResult(mapping.second); 468 valueMapping[loopBody.getArgument(mapping.first + 469 newForOp.getNumInductionVars())] = 470 loopBody.getArgument(mapping.second + newForOp.getNumInductionVars()); 471 } 472 } 473 474 static void convertYieldOp(scf::YieldOp op, 475 llvm::DenseMap<Value, Value> &valueMapping) { 476 OpBuilder b(op); 477 auto loop = cast<scf::ForOp>(op->getParentOp()); 478 auto yieldOperands = llvm::to_vector<4>(op.getOperands()); 479 for (auto operand : llvm::enumerate(op.getOperands())) { 480 auto it = valueMapping.find(operand.value()); 481 if (it == valueMapping.end()) 482 continue; 483 // Replace the yield of old value with the for op argument to make it easier 484 // to remove the dead code. 485 yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()]; 486 yieldOperands.push_back(it->second); 487 } 488 b.create<scf::YieldOp>(op.getLoc(), yieldOperands); 489 op.erase(); 490 } 491 492 /// Convert an elementwise op to the equivalent elementwise op on MMA matrix. 493 static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType, 494 llvm::DenseMap<Value, Value> &valueMapping) { 495 OpBuilder b(op); 496 SmallVector<Value> matrixOperands; 497 for (Value operand : op->getOperands()) 498 matrixOperands.push_back(valueMapping.find(operand)->second); 499 Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>( 500 op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType); 501 valueMapping[op->getResult(0)] = newOp; 502 } 503 504 namespace mlir { 505 506 void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns) { 507 patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( 508 patterns.getContext()); 509 } 510 511 void convertVectorToMMAOps(FuncOp funcOp) { 512 SetVector<Operation *> ops = getOpToConvert(funcOp); 513 llvm::DenseMap<Value, Value> valueMapping; 514 for (Operation *op : ops) { 515 if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { 516 convertTransferReadOp(transferRead, valueMapping); 517 } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { 518 convertTransferWriteOp(transferWrite, valueMapping); 519 } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { 520 convertContractOp(contractOp, valueMapping); 521 } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) { 522 convertConstantOp(constantOp, valueMapping); 523 } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) { 524 convertBroadcastOp(broadcastOp, valueMapping); 525 } else if (auto forOp = dyn_cast<scf::ForOp>(op)) { 526 convertForOp(forOp, valueMapping); 527 } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) { 528 convertYieldOp(yiledOp, valueMapping); 529 } else if (auto elementwiseType = convertElementwiseOpToMMA(op)) { 530 convertElementwiseOp(op, *elementwiseType, valueMapping); 531 } 532 } 533 } 534 535 } // namespace mlir 536 namespace { 537 538 struct ConvertVectorToGPUPass 539 : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> { 540 void runOnFunction() override { 541 RewritePatternSet patterns(getFunction().getContext()); 542 populatePrepareVectorToMMAPatterns(patterns); 543 (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 544 545 convertVectorToMMAOps(getFunction()); 546 } 547 }; 548 549 } // namespace 550 551 std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass() { 552 return std::make_unique<ConvertVectorToGPUPass>(); 553 } 554