1 //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements lowering of vector operations to GPU dialect ops. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include <type_traits> 14 15 #include "NvGpuSupport.h" 16 #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" 17 18 #include "../PassDetail.h" 19 #include "mlir/Analysis/SliceAnalysis.h" 20 #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 21 #include "mlir/Dialect/GPU/IR/GPUDialect.h" 22 #include "mlir/Dialect/MemRef/IR/MemRef.h" 23 #include "mlir/Dialect/NVGPU/IR/NVGPUDialect.h" 24 #include "mlir/Dialect/SCF/IR/SCF.h" 25 #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 26 #include "mlir/Dialect/Vector/IR/VectorOps.h" 27 #include "mlir/Dialect/Vector/Utils/VectorUtils.h" 28 #include "mlir/IR/Builders.h" 29 #include "mlir/Pass/Pass.h" 30 #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 31 #include "mlir/Transforms/Passes.h" 32 #include "llvm/ADT/TypeSwitch.h" 33 34 using namespace mlir; 35 36 /// For a vector TransferOpType `xferOp`, an empty `indices` vector, and an 37 /// AffineMap representing offsets to apply to indices, the function fills 38 /// `indices` with the original indices plus the offsets. The offsets are 39 /// applied by taking into account the permutation map of the transfer op. If 40 /// the `offsetMap` has dimension placeholders, those should be provided in 41 /// `dimValues`. 42 template <typename TransferOpType> 43 static void getXferIndices(OpBuilder &b, TransferOpType xferOp, 44 AffineMap offsetMap, ArrayRef<Value> dimValues, 45 SmallVector<Value, 4> &indices) { 46 indices.append(xferOp.getIndices().begin(), xferOp.getIndices().end()); 47 Location loc = xferOp.getLoc(); 48 unsigned offsetsIdx = 0; 49 for (auto expr : xferOp.getPermutationMap().getResults()) { 50 if (auto dim = expr.template dyn_cast<AffineDimExpr>()) { 51 Value prevIdx = indices[dim.getPosition()]; 52 SmallVector<Value, 3> dims(dimValues.begin(), dimValues.end()); 53 dims.push_back(prevIdx); 54 AffineExpr d0 = b.getAffineDimExpr(offsetMap.getNumDims()); 55 indices[dim.getPosition()] = makeComposedAffineApply( 56 b, loc, d0 + offsetMap.getResult(offsetsIdx++), dims); 57 continue; 58 } 59 } 60 } 61 62 // Return true if the contract op can be convert to MMA matmul. 63 static bool contractSupportsMMAMatrixType(vector::ContractionOp contract, 64 bool useNvGpu) { 65 if (llvm::size(contract.getMasks()) != 0) 66 return false; 67 68 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 69 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 70 AffineExpr m, n, k; 71 bindDims(contract.getContext(), m, n, k); 72 auto iteratorTypes = contract.getIteratorTypes().getValue(); 73 if (!(isParallelIterator(iteratorTypes[0]) && 74 isParallelIterator(iteratorTypes[1]) && 75 isReductionIterator(iteratorTypes[2]))) 76 return false; 77 78 // The contract needs to represent a matmul to be able to convert to 79 // MMAMatrix matmul. 80 if (!useNvGpu && 81 contract.getIndexingMapsArray() != infer({{m, k}, {k, n}, {m, n}})) 82 return false; 83 if (useNvGpu && 84 contract.getIndexingMapsArray() != infer({{m, k}, {n, k}, {m, n}})) 85 return false; 86 87 return true; 88 } 89 90 // Return the stide for the dimension 0 of |type| if it is a memref and has a 91 // constant stride. 92 static llvm::Optional<int64_t> 93 getMemrefConstantHorizontalStride(ShapedType type) { 94 auto memrefType = type.dyn_cast<MemRefType>(); 95 if (!memrefType) 96 return false; 97 // If the memref is 0 or 1D the horizontal stride is 0. 98 if (memrefType.getRank() < 2) 99 return 0; 100 int64_t offset = 0; 101 SmallVector<int64_t, 2> strides; 102 if (failed(getStridesAndOffset(memrefType, strides, offset)) || 103 strides.back() != 1) 104 return llvm::None; 105 int64_t stride = strides[strides.size() - 2]; 106 if (stride == ShapedType::kDynamicStrideOrOffset) 107 return llvm::None; 108 return stride; 109 } 110 111 // Return true if the transfer op can be converted to a MMA matrix load. 112 static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp, 113 bool useNvGpu) { 114 if (readOp.getMask() || readOp.hasOutOfBoundsDim() || 115 readOp.getVectorType().getRank() != 2) 116 return false; 117 if (!getMemrefConstantHorizontalStride(readOp.getShapedType())) 118 return false; 119 AffineMap map = readOp.getPermutationMap(); 120 OpBuilder b(readOp.getContext()); 121 AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1); 122 AffineExpr zero = b.getAffineConstantExpr(0); 123 auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim}, 124 readOp.getContext()); 125 126 if (!useNvGpu) { 127 // TODO: Support transpose once it is added to GPU dialect ops. 128 // For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1). 129 return map.isMinorIdentity() || map == broadcastInnerDim; 130 } 131 132 return true; 133 } 134 135 // Return true if the transfer op can be converted to a MMA matrix store. 136 static bool 137 transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { 138 // TODO: support 0-d corner case. 139 if (writeOp.getTransferRank() == 0) 140 return false; 141 142 if (writeOp.getMask() || writeOp.hasOutOfBoundsDim() || 143 writeOp.getVectorType().getRank() != 2) 144 return false; 145 if (!getMemrefConstantHorizontalStride(writeOp.getShapedType())) 146 return false; 147 // TODO: Support transpose once it is added to GPU dialect ops. 148 if (!writeOp.getPermutationMap().isMinorIdentity()) 149 return false; 150 return true; 151 } 152 153 /// Return true if the constant is a splat to a 2D vector so that it can be 154 /// converted to a MMA constant matrix op. 155 static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) { 156 auto vecType = constantOp.getType().dyn_cast<VectorType>(); 157 if (!vecType || vecType.getRank() != 2) 158 return false; 159 return constantOp.getValue().isa<SplatElementsAttr>(); 160 } 161 162 /// Return true if this is a broadcast from scalar to a 2D vector. 163 static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) { 164 return broadcastOp.getVectorType().getRank() == 2 && 165 broadcastOp.getSource().getType().isa<FloatType>(); 166 } 167 168 /// Return the MMA elementwise enum associated with `op` if it is supported. 169 /// Return `llvm::None` otherwise. 170 static llvm::Optional<gpu::MMAElementwiseOp> 171 convertElementwiseOpToMMA(Operation *op) { 172 if (isa<arith::AddFOp>(op)) 173 return gpu::MMAElementwiseOp::ADDF; 174 if (isa<arith::MulFOp>(op)) 175 return gpu::MMAElementwiseOp::MULF; 176 if (isa<arith::MaxFOp>(op)) 177 return gpu::MMAElementwiseOp::MAXF; 178 if (isa<arith::MinFOp>(op)) 179 return gpu::MMAElementwiseOp::MINF; 180 if (isa<arith::DivFOp>(op)) 181 return gpu::MMAElementwiseOp::DIVF; 182 return llvm::None; 183 } 184 185 /// Return true if the op is supported as elementwise op on MMAMatrix type. 186 static bool elementwiseSupportsMMAMatrixType(Operation *op) { 187 return convertElementwiseOpToMMA(op).has_value(); 188 } 189 190 static bool supportsMMaMatrixType(Operation *op, bool useNvGpu) { 191 if (isa<scf::ForOp, scf::YieldOp>(op)) 192 return true; 193 if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) 194 return transferReadSupportsMMAMatrixType(transferRead, useNvGpu); 195 if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) 196 return transferWriteSupportsMMAMatrixType(transferWrite); 197 if (auto contract = dyn_cast<vector::ContractionOp>(op)) 198 return contractSupportsMMAMatrixType(contract, useNvGpu); 199 if (auto constant = dyn_cast<arith::ConstantOp>(op)) 200 return constantSupportsMMAMatrixType(constant); 201 if (auto broadcast = dyn_cast<vector::BroadcastOp>(op)) 202 return broadcastSupportsMMAMatrixType(broadcast); 203 return elementwiseSupportsMMAMatrixType(op); 204 } 205 206 /// Return an unsorted slice handling scf.for region differently than 207 /// `getSlice`. In scf.for we only want to include as part of the slice elements 208 /// that are part of the use/def chain. 209 static SetVector<Operation *> getSliceContract(Operation *op, 210 TransitiveFilter backwardFilter, 211 TransitiveFilter forwardFilter) { 212 SetVector<Operation *> slice; 213 slice.insert(op); 214 unsigned currentIndex = 0; 215 SetVector<Operation *> backwardSlice; 216 SetVector<Operation *> forwardSlice; 217 while (currentIndex != slice.size()) { 218 auto *currentOp = (slice)[currentIndex]; 219 // Compute and insert the backwardSlice starting from currentOp. 220 backwardSlice.clear(); 221 getBackwardSlice(currentOp, &backwardSlice, backwardFilter); 222 slice.insert(backwardSlice.begin(), backwardSlice.end()); 223 224 // Compute and insert the forwardSlice starting from currentOp. 225 forwardSlice.clear(); 226 // Special case for ForOp, we don't want to include the whole region but 227 // only the value using the region arguments. 228 // TODO: We should refine this to only care about the region arguments being 229 // converted to matrix type. 230 if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) { 231 for (Value forOpResult : forOp.getResults()) 232 getForwardSlice(forOpResult, &forwardSlice, forwardFilter); 233 for (BlockArgument &arg : forOp.getRegionIterArgs()) 234 getForwardSlice(arg, &forwardSlice, forwardFilter); 235 } else { 236 getForwardSlice(currentOp, &forwardSlice, forwardFilter); 237 } 238 slice.insert(forwardSlice.begin(), forwardSlice.end()); 239 ++currentIndex; 240 } 241 return slice; 242 } 243 244 // Analyze slice of operations based on convert op to figure out if the whole 245 // slice can be converted to MMA operations. 246 static SetVector<Operation *> getOpToConvert(mlir::Operation *op, 247 bool useNvGpu) { 248 auto hasVectorDest = [](Operation *op) { 249 return llvm::any_of(op->getResultTypes(), 250 [](Type t) { return t.isa<VectorType>(); }); 251 }; 252 auto hasVectorSrc = [](Operation *op) { 253 return llvm::any_of(op->getOperandTypes(), 254 [](Type t) { return t.isa<VectorType>(); }); 255 }; 256 SetVector<Operation *> opToConvert; 257 op->walk([&](vector::ContractionOp contract) { 258 if (opToConvert.contains(contract.getOperation())) 259 return; 260 SetVector<Operation *> dependentOps = 261 getSliceContract(contract, hasVectorDest, hasVectorSrc); 262 // If any instruction cannot use MMA matrix type drop the whole 263 // chain. MMA matrix are stored in an opaque type so they cannot be used 264 // by all operations. 265 if (llvm::any_of(dependentOps, [useNvGpu](Operation *op) { 266 return !supportsMMaMatrixType(op, useNvGpu); 267 })) 268 return; 269 opToConvert.insert(dependentOps.begin(), dependentOps.end()); 270 }); 271 // Sort the operations so that we can convert them in topological order. 272 return topologicalSort(opToConvert); 273 } 274 275 namespace { 276 // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted 277 // to MMA matmul. 278 struct PrepareContractToGPUMMA 279 : public OpRewritePattern<vector::ContractionOp> { 280 using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 281 282 LogicalResult matchAndRewrite(vector::ContractionOp op, 283 PatternRewriter &rewriter) const override { 284 Location loc = op.getLoc(); 285 Value lhs = op.getLhs(), rhs = op.getRhs(), res = op.getAcc(); 286 287 // Set up the parallel/reduction structure in right form. 288 using MapList = ArrayRef<ArrayRef<AffineExpr>>; 289 auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 290 AffineExpr m, n, k; 291 bindDims(rewriter.getContext(), m, n, k); 292 static constexpr std::array<int64_t, 2> perm = {1, 0}; 293 auto iteratorTypes = op.getIteratorTypes().getValue(); 294 SmallVector<AffineMap, 4> maps = op.getIndexingMapsArray(); 295 if (!(isParallelIterator(iteratorTypes[0]) && 296 isParallelIterator(iteratorTypes[1]) && 297 isReductionIterator(iteratorTypes[2]))) 298 return failure(); 299 // 300 // Two outer parallel, one inner reduction (matmat flavor). 301 // 302 if (maps == infer({{m, k}, {k, n}, {m, n}})) { 303 // This is the classical row-major matmul, nothing to do. 304 return failure(); 305 } 306 if (maps == infer({{m, k}, {n, k}, {m, n}})) { 307 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 308 } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 309 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 310 } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 311 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 312 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 313 } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 314 std::swap(rhs, lhs); 315 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 316 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 317 } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 318 std::swap(rhs, lhs); 319 rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 320 } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 321 std::swap(lhs, rhs); 322 lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 323 } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 324 std::swap(lhs, rhs); 325 } else { 326 return failure(); 327 } 328 rewriter.replaceOpWithNewOp<vector::ContractionOp>( 329 op, lhs, rhs, res, 330 rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})), 331 op.getIteratorTypes()); 332 return success(); 333 } 334 }; 335 336 // Merge transpose op into the transfer read op. Transpose are not supported on 337 // MMA types but MMA load can transpose the matrix when loading. 338 struct CombineTransferReadOpTranspose final 339 : public OpRewritePattern<vector::TransposeOp> { 340 using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 341 342 LogicalResult matchAndRewrite(vector::TransposeOp op, 343 PatternRewriter &rewriter) const override { 344 auto transferReadOp = 345 op.getVector().getDefiningOp<vector::TransferReadOp>(); 346 if (!transferReadOp) 347 return failure(); 348 349 // TODO: support 0-d corner case. 350 if (transferReadOp.getTransferRank() == 0) 351 return failure(); 352 353 if (transferReadOp.getMask() || transferReadOp.hasOutOfBoundsDim()) 354 return failure(); 355 SmallVector<int64_t, 2> perm; 356 op.getTransp(perm); 357 SmallVector<unsigned, 2> permU; 358 for (int64_t o : perm) 359 permU.push_back(unsigned(o)); 360 AffineMap permutationMap = 361 AffineMap::getPermutationMap(permU, op.getContext()); 362 AffineMap newMap = 363 permutationMap.compose(transferReadOp.getPermutationMap()); 364 rewriter.replaceOpWithNewOp<vector::TransferReadOp>( 365 op, op.getType(), transferReadOp.getSource(), 366 transferReadOp.getIndices(), AffineMapAttr::get(newMap), 367 transferReadOp.getPadding(), transferReadOp.getMask(), 368 transferReadOp.getInBoundsAttr()); 369 return success(); 370 } 371 }; 372 373 } // namespace 374 375 // MMA types have different layout based on how they are used in matmul ops. 376 // Figure the right layout to use by looking at op uses. 377 // TODO: Change the GPU dialect to abstract the layout at the this level and 378 // only care about it during lowering to NVVM. 379 template <typename OpTy> 380 static const char *inferFragType(OpTy op) { 381 for (Operation *users : op->getUsers()) { 382 auto contract = dyn_cast<vector::ContractionOp>(users); 383 if (!contract) 384 continue; 385 if (contract.getLhs() == op.getResult()) 386 return "AOp"; 387 if (contract.getRhs() == op.getResult()) 388 return "BOp"; 389 } 390 return "COp"; 391 } 392 393 static void convertTransferReadOp(vector::TransferReadOp op, 394 llvm::DenseMap<Value, Value> &valueMapping) { 395 assert(op.getTransferRank() > 0 && "unexpected 0-d transfer"); 396 assert(transferReadSupportsMMAMatrixType(op, /*useNvGpu=*/false)); 397 Optional<int64_t> stride = 398 getMemrefConstantHorizontalStride(op.getShapedType()); 399 AffineMap map = op.getPermutationMap(); 400 // Handle broadcast by setting the stride to 0. 401 if (map.getResult(0).isa<AffineConstantExpr>()) { 402 assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0); 403 stride = 0; 404 } 405 assert(stride); 406 const char *fragType = inferFragType(op); 407 gpu::MMAMatrixType type = 408 gpu::MMAMatrixType::get(op.getVectorType().getShape(), 409 op.getVectorType().getElementType(), fragType); 410 OpBuilder b(op); 411 Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>( 412 op.getLoc(), type, op.getSource(), op.getIndices(), 413 b.getIndexAttr(*stride)); 414 valueMapping[op.getResult()] = load; 415 } 416 417 static void convertTransferWriteOp(vector::TransferWriteOp op, 418 llvm::DenseMap<Value, Value> &valueMapping) { 419 assert(transferWriteSupportsMMAMatrixType(op)); 420 Optional<int64_t> stride = 421 getMemrefConstantHorizontalStride(op.getShapedType()); 422 assert(stride); 423 OpBuilder b(op); 424 Value matrix = valueMapping.find(op.getVector())->second; 425 b.create<gpu::SubgroupMmaStoreMatrixOp>(op.getLoc(), matrix, op.getSource(), 426 op.getIndices(), 427 b.getIndexAttr(*stride)); 428 op.erase(); 429 } 430 431 /// Returns the vector type which represents a matrix fragment. 432 static VectorType 433 getMmaSyncVectorOperandType(const nvgpu::FragmentElementInfo ®Info) { 434 SmallVector<int64_t> shape{regInfo.numRegistersPerFragment, 435 regInfo.elementsPerRegister}; 436 Type elType = regInfo.registerLLVMType; 437 if (auto vecType = elType.dyn_cast<VectorType>()) 438 elType = vecType.getElementType(); 439 return VectorType::get(shape, elType); 440 } 441 442 /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. 443 static LogicalResult 444 convertConstantOpMmaSync(arith::ConstantOp op, 445 llvm::DenseMap<Value, Value> &valueMapping) { 446 OpBuilder b(op); 447 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = 448 nvgpu::getWarpMatrixInfo(op); 449 if (failed(warpMatrixInfo)) 450 return failure(); 451 452 FailureOr<nvgpu::FragmentElementInfo> regInfo = 453 nvgpu::getMmaSyncRegisterType(*warpMatrixInfo); 454 if (failed(regInfo)) 455 return failure(); 456 457 VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); 458 auto dense = op.getValue().dyn_cast<SplatElementsAttr>(); 459 if (!dense) 460 return failure(); 461 Value result = b.create<arith::ConstantOp>( 462 op.getLoc(), vectorType, 463 DenseElementsAttr::get(vectorType, dense.getSplatValue<Attribute>())); 464 valueMapping[op.getResult()] = result; 465 return success(); 466 } 467 468 static LogicalResult 469 creatLdMatrixCompatibleLoads(vector::TransferReadOp op, OpBuilder &builder, 470 llvm::DenseMap<Value, Value> &valueMapping) { 471 Location loc = op->getLoc(); 472 473 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = 474 nvgpu::getWarpMatrixInfo(op); 475 if (failed(warpMatrixInfo)) 476 return failure(); 477 478 FailureOr<nvgpu::FragmentElementInfo> regInfo = 479 nvgpu::getMmaSyncRegisterType(*warpMatrixInfo); 480 if (failed(regInfo)) 481 return failure(); 482 483 FailureOr<nvgpu::LdMatrixParams> params = nvgpu::getLdMatrixParams( 484 *warpMatrixInfo, 485 /*transpose=*/!op.getPermutationMap().isMinorIdentity()); 486 if (failed(params)) { 487 return op->emitError() 488 << "failed to convert vector.transfer_read to ldmatrix; this op " 489 "likely " 490 "should not be converted to a nvgpu.ldmatrix call."; 491 } 492 493 // Adjust the load offset. 494 auto laneId = builder.create<gpu::LaneIdOp>(loc); 495 FailureOr<AffineMap> offsets = 496 nvgpu::getLaneIdToLdMatrixMatrixCoord(loc, builder, *params); 497 if (failed(offsets)) 498 return failure(); 499 500 VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); 501 502 SmallVector<Value, 4> indices; 503 getXferIndices<vector::TransferReadOp>(builder, op, *offsets, {laneId}, 504 indices); 505 nvgpu::LdMatrixOp newOp = builder.create<nvgpu::LdMatrixOp>( 506 loc, vectorType, op.getSource(), indices, 507 !op.getPermutationMap().isMinorIdentity(), params->numTiles); 508 valueMapping[op] = newOp->getResult(0); 509 return success(); 510 } 511 512 static LogicalResult 513 createNonLdMatrixLoads(vector::TransferReadOp op, OpBuilder &builder, 514 llvm::DenseMap<Value, Value> &valueMapping) { 515 Location loc = op.getLoc(); 516 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = 517 nvgpu::getWarpMatrixInfo(op); 518 if (failed(warpMatrixInfo)) 519 return failure(); 520 FailureOr<nvgpu::FragmentElementInfo> regInfo = 521 nvgpu::getMmaSyncRegisterType(*warpMatrixInfo); 522 if (failed(regInfo)) { 523 op->emitError() << "Failed to deduce register fragment type during " 524 "conversion to distributed non-ldmatrix compatible load"; 525 return failure(); 526 } 527 528 Value laneId = builder.create<gpu::LaneIdOp>(loc); 529 SmallVector<Value, 4> elements; 530 531 // This is the individual element type. 532 Type loadedElType = regInfo->registerLLVMType; 533 VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); 534 535 Value fill = builder.create<arith::ConstantOp>( 536 op.getLoc(), vectorType.getElementType(), 537 builder.getZeroAttr(vectorType.getElementType())); 538 Value result = builder.create<vector::SplatOp>(op.getLoc(), fill, vectorType); 539 540 bool isTransposeLoad = !op.getPermutationMap().isMinorIdentity(); 541 542 // If we are not transposing, then we can use vectorized loads. Otherwise, we 543 // must load each element individually. 544 if (!isTransposeLoad) { 545 if (!loadedElType.isa<VectorType>()) { 546 loadedElType = VectorType::get({1}, loadedElType); 547 } 548 549 for (int i = 0; i < vectorType.getShape()[0]; i++) { 550 FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord( 551 op.getLoc(), builder, *warpMatrixInfo); 552 if (failed(coords)) 553 return failure(); 554 Value logicalValueId = builder.create<arith::ConstantOp>( 555 loc, builder.getIndexType(), 556 builder.getIndexAttr(i * regInfo->elementsPerRegister)); 557 SmallVector<Value, 4> newIndices; 558 getXferIndices<vector::TransferReadOp>( 559 builder, op, *coords, {laneId, logicalValueId}, newIndices); 560 561 Value el = builder.create<vector::LoadOp>(loc, loadedElType, 562 op.getSource(), newIndices); 563 result = builder.create<vector::InsertOp>(loc, el, result, 564 builder.getI64ArrayAttr(i)); 565 } 566 } else { 567 if (auto vecType = loadedElType.dyn_cast<VectorType>()) { 568 loadedElType = vecType.getElementType(); 569 } 570 for (int i = 0; i < vectorType.getShape()[0]; i++) { 571 for (unsigned innerIdx = 0; innerIdx < vectorType.getShape()[1]; 572 innerIdx++) { 573 574 Value logicalValueId = builder.create<arith::ConstantOp>( 575 loc, builder.getIndexType(), 576 builder.getIndexAttr(i * regInfo->elementsPerRegister + innerIdx)); 577 FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord( 578 op.getLoc(), builder, *warpMatrixInfo); 579 if (failed(coords)) 580 return failure(); 581 582 SmallVector<Value, 4> newIndices; 583 getXferIndices<vector::TransferReadOp>( 584 builder, op, *coords, {laneId, logicalValueId}, newIndices); 585 Value el = builder.create<memref::LoadOp>(op.getLoc(), loadedElType, 586 op.getSource(), newIndices); 587 result = builder.create<vector::InsertOp>( 588 op.getLoc(), el, result, builder.getI64ArrayAttr({i, innerIdx})); 589 } 590 } 591 } 592 593 valueMapping[op.getResult()] = result; 594 return success(); 595 } 596 597 /// Converts a `vector.transfer_read` operation directly to either a 598 /// `vector.load` or a `nvgpu.ldmatrix` operation. This function should only be 599 /// used when converting to `nvgpu.mma.sync` operations. 600 static LogicalResult 601 convertTransferReadToLoads(vector::TransferReadOp op, 602 llvm::DenseMap<Value, Value> &valueMapping) { 603 OpBuilder b(op); 604 605 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = 606 nvgpu::getWarpMatrixInfo(op); 607 if (failed(warpMatrixInfo)) 608 return failure(); 609 610 bool isLdMatrixCompatible = 611 op.getSource().getType().cast<MemRefType>().getMemorySpaceAsInt() == 3 && 612 nvgpu::inferTileWidthInBits(*warpMatrixInfo) == 128; 613 614 VectorType vecTy = op.getVectorType(); 615 int64_t bitWidth = vecTy.getElementType().getIntOrFloatBitWidth(); 616 617 // When we are transposing the B operand, ldmatrix will only work if we have 618 // at least 8 rows to read and the width to read for the transpose is 128 619 // bits. 620 if (!op.getPermutationMap().isMinorIdentity() && 621 (bitWidth != 16 || vecTy.getDimSize(1) < 8 || 622 vecTy.getDimSize(0) * bitWidth < 128)) 623 isLdMatrixCompatible = false; 624 625 if (!isLdMatrixCompatible) 626 return createNonLdMatrixLoads(op, b, valueMapping); 627 628 return creatLdMatrixCompatibleLoads(op, b, valueMapping); 629 } 630 631 static LogicalResult 632 convertTransferWriteToStores(vector::TransferWriteOp op, 633 llvm::DenseMap<Value, Value> &valueMapping) { 634 OpBuilder b(op); 635 Location loc = op->getLoc(); 636 Value matrix = valueMapping.find(op.getVector())->second; 637 638 FailureOr<nvgpu::WarpMatrixInfo> warpMatrixInfo = 639 nvgpu::getWarpMatrixInfo(op); 640 if (failed(warpMatrixInfo)) 641 return failure(); 642 FailureOr<nvgpu::FragmentElementInfo> regInfo = 643 nvgpu::getMmaSyncRegisterType(*warpMatrixInfo); 644 if (failed(regInfo)) 645 return failure(); 646 647 VectorType vectorType = getMmaSyncVectorOperandType(*regInfo); 648 Value laneId = b.create<gpu::LaneIdOp>(loc); 649 650 for (unsigned i = 0; i < vectorType.getShape()[0]; i++) { 651 Value logicalValueId = b.create<arith::ConstantOp>( 652 loc, b.getIndexType(), 653 b.getIndexAttr(i * regInfo->elementsPerRegister)); 654 FailureOr<AffineMap> coords = nvgpu::getLaneIdAndValueIdToOperandCoord( 655 op.getLoc(), b, *warpMatrixInfo); 656 if (failed(coords)) 657 return failure(); 658 659 Value el = b.create<vector::ExtractOp>(loc, matrix, ArrayRef<int64_t>{i}); 660 SmallVector<Value, 4> newIndices; 661 getXferIndices<vector::TransferWriteOp>( 662 b, op, *coords, {laneId, logicalValueId}, newIndices); 663 b.create<vector::StoreOp>(loc, el, op.getSource(), newIndices); 664 } 665 op->erase(); 666 return success(); 667 } 668 669 static void convertContractOp(vector::ContractionOp op, 670 llvm::DenseMap<Value, Value> &valueMapping) { 671 OpBuilder b(op); 672 Value opA = valueMapping.find(op.getLhs())->second; 673 Value opB = valueMapping.find(op.getRhs())->second; 674 Value opC = valueMapping.find(op.getAcc())->second; 675 Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(), 676 opA, opB, opC); 677 valueMapping[op.getResult()] = matmul; 678 } 679 680 static LogicalResult 681 convertContractOpToMmaSync(vector::ContractionOp op, 682 llvm::DenseMap<Value, Value> &valueMapping) { 683 OpBuilder b(op); 684 Value opA = valueMapping.find(op.getLhs())->second; 685 Value opB = valueMapping.find(op.getRhs())->second; 686 Value opC = valueMapping.find(op.getAcc())->second; 687 int64_t m = op.getLhs().getType().cast<VectorType>().getShape()[0]; 688 int64_t n = op.getRhs().getType().cast<VectorType>().getShape()[0]; 689 int64_t k = op.getLhs().getType().cast<VectorType>().getShape()[1]; 690 Value matmul = b.create<nvgpu::MmaSyncOp>( 691 op.getLoc(), opC.getType(), opA, opB, opC, b.getI64ArrayAttr({m, n, k})); 692 valueMapping[op.getResult()] = matmul; 693 return success(); 694 } 695 696 /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. 697 static void convertConstantOp(arith::ConstantOp op, 698 llvm::DenseMap<Value, Value> &valueMapping) { 699 assert(constantSupportsMMAMatrixType(op)); 700 OpBuilder b(op); 701 Attribute splat = 702 op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>(); 703 auto scalarConstant = 704 b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat); 705 const char *fragType = inferFragType(op); 706 auto vecType = op.getType().cast<VectorType>(); 707 gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 708 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 709 auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 710 scalarConstant); 711 valueMapping[op.getResult()] = matrix; 712 } 713 714 /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op. 715 static void convertBroadcastOp(vector::BroadcastOp op, 716 llvm::DenseMap<Value, Value> &valueMapping) { 717 assert(broadcastSupportsMMAMatrixType(op)); 718 OpBuilder b(op); 719 const char *fragType = inferFragType(op); 720 auto vecType = op.getVectorType(); 721 gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 722 vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 723 auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 724 op.getSource()); 725 valueMapping[op.getResult()] = matrix; 726 } 727 728 // Replace ForOp with a new ForOp with extra operands. The YieldOp is not 729 // updated and needs to be updated separatly for the loop to be correct. 730 static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop, 731 ValueRange newIterOperands) { 732 // Create a new loop before the existing one, with the extra operands. 733 OpBuilder::InsertionGuard g(b); 734 b.setInsertionPoint(loop); 735 auto operands = llvm::to_vector<4>(loop.getIterOperands()); 736 operands.append(newIterOperands.begin(), newIterOperands.end()); 737 scf::ForOp newLoop = 738 b.create<scf::ForOp>(loop.getLoc(), loop.getLowerBound(), 739 loop.getUpperBound(), loop.getStep(), operands); 740 newLoop.getBody()->erase(); 741 newLoop.getLoopBody().getBlocks().splice( 742 newLoop.getLoopBody().getBlocks().begin(), 743 loop.getLoopBody().getBlocks()); 744 for (Value operand : newIterOperands) 745 newLoop.getBody()->addArgument(operand.getType(), operand.getLoc()); 746 747 for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front( 748 loop.getNumResults()))) 749 std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); 750 loop.erase(); 751 return newLoop; 752 } 753 754 static void convertForOp(scf::ForOp op, 755 llvm::DenseMap<Value, Value> &valueMapping) { 756 SmallVector<Value> newOperands; 757 SmallVector<std::pair<size_t, size_t>> argMapping; 758 for (const auto &operand : llvm::enumerate(op.getIterOperands())) { 759 auto it = valueMapping.find(operand.value()); 760 if (it == valueMapping.end()) 761 continue; 762 argMapping.push_back(std::make_pair( 763 operand.index(), op.getNumIterOperands() + newOperands.size())); 764 newOperands.push_back(it->second); 765 } 766 OpBuilder b(op); 767 scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands); 768 Block &loopBody = *newForOp.getBody(); 769 for (auto mapping : argMapping) { 770 valueMapping[newForOp.getResult(mapping.first)] = 771 newForOp.getResult(mapping.second); 772 valueMapping[loopBody.getArgument(mapping.first + 773 newForOp.getNumInductionVars())] = 774 loopBody.getArgument(mapping.second + newForOp.getNumInductionVars()); 775 } 776 } 777 778 static void convertYieldOp(scf::YieldOp op, 779 llvm::DenseMap<Value, Value> &valueMapping) { 780 OpBuilder b(op); 781 auto loop = cast<scf::ForOp>(op->getParentOp()); 782 auto yieldOperands = llvm::to_vector<4>(op.getOperands()); 783 for (const auto &operand : llvm::enumerate(op.getOperands())) { 784 auto it = valueMapping.find(operand.value()); 785 if (it == valueMapping.end()) 786 continue; 787 // Replace the yield of old value with the for op argument to make it easier 788 // to remove the dead code. 789 yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()]; 790 yieldOperands.push_back(it->second); 791 } 792 b.create<scf::YieldOp>(op.getLoc(), yieldOperands); 793 op.erase(); 794 } 795 796 /// Convert an elementwise op to the equivalent elementwise op on MMA matrix. 797 static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType, 798 llvm::DenseMap<Value, Value> &valueMapping) { 799 OpBuilder b(op); 800 SmallVector<Value> matrixOperands; 801 for (Value operand : op->getOperands()) 802 matrixOperands.push_back(valueMapping.find(operand)->second); 803 Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>( 804 op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType); 805 valueMapping[op->getResult(0)] = newOp; 806 } 807 808 void mlir::populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns, 809 bool useNvGpu) { 810 if (!useNvGpu) { 811 patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( 812 patterns.getContext()); 813 return; 814 } 815 patterns 816 .add<nvgpu::PrepareContractToGPUMMASync, CombineTransferReadOpTranspose>( 817 patterns.getContext()); 818 } 819 820 void mlir::convertVectorToMMAOps(Operation *rootOp) { 821 SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/false); 822 llvm::DenseMap<Value, Value> valueMapping; 823 for (Operation *op : ops) { 824 if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { 825 convertTransferReadOp(transferRead, valueMapping); 826 } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { 827 convertTransferWriteOp(transferWrite, valueMapping); 828 } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { 829 convertContractOp(contractOp, valueMapping); 830 } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) { 831 convertConstantOp(constantOp, valueMapping); 832 } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) { 833 convertBroadcastOp(broadcastOp, valueMapping); 834 } else if (auto forOp = dyn_cast<scf::ForOp>(op)) { 835 convertForOp(forOp, valueMapping); 836 } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) { 837 convertYieldOp(yiledOp, valueMapping); 838 } else if (auto elementwiseType = convertElementwiseOpToMMA(op)) { 839 convertElementwiseOp(op, *elementwiseType, valueMapping); 840 } 841 } 842 } 843 844 LogicalResult mlir::convertVectorToNVVMCompatibleMMASync(Operation *rootOp) { 845 SetVector<Operation *> ops = getOpToConvert(rootOp, /*useNvGpu=*/true); 846 llvm::DenseMap<Value, Value> valueMapping; 847 for (Operation *op : ops) { 848 if (llvm::TypeSwitch<Operation *, LogicalResult>(op) 849 .Case([&](vector::TransferReadOp transferReadOp) { 850 return convertTransferReadToLoads(transferReadOp, valueMapping); 851 }) 852 .Case([&](vector::TransferWriteOp transferWriteOp) { 853 return convertTransferWriteToStores(transferWriteOp, 854 valueMapping); 855 }) 856 .Case([&](vector::ContractionOp contractionOp) { 857 return convertContractOpToMmaSync(contractionOp, valueMapping); 858 }) 859 .Case([&](scf::ForOp forOp) { 860 convertForOp(forOp, valueMapping); 861 return success(); 862 }) 863 .Case([&](scf::YieldOp yieldOp) { 864 convertYieldOp(yieldOp, valueMapping); 865 return success(); 866 }) 867 .Case([&](arith::ConstantOp constOp) { 868 return convertConstantOpMmaSync(constOp, valueMapping); 869 }) 870 .Default([&](Operation *op) { 871 op->emitError() << "unhandled vector to mma type: " << *op; 872 return failure(); 873 }) 874 .failed()) { 875 op->emitError() << "Failed to convert op " << *op; 876 return failure(); 877 } 878 } 879 return success(); 880 } 881 882 namespace { 883 884 struct ConvertVectorToGPUPass 885 : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> { 886 887 explicit ConvertVectorToGPUPass(bool useNvGpu_) { 888 useNvGpu.setValue(useNvGpu_); 889 } 890 891 void runOnOperation() override { 892 RewritePatternSet patterns(&getContext()); 893 populatePrepareVectorToMMAPatterns(patterns, useNvGpu.getValue()); 894 if (failed( 895 applyPatternsAndFoldGreedily(getOperation(), std::move(patterns)))) 896 return signalPassFailure(); 897 898 if (useNvGpu.getValue()) { 899 if (failed(convertVectorToNVVMCompatibleMMASync(getOperation()))) 900 return signalPassFailure(); 901 } 902 903 (void)convertVectorToMMAOps(getOperation()); 904 } 905 }; 906 907 } // namespace 908 909 std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass(bool useNvGpu) { 910 return std::make_unique<ConvertVectorToGPUPass>(useNvGpu); 911 } 912