1edd9515bSthomasraoux //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// 2edd9515bSthomasraoux // 3edd9515bSthomasraoux // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4edd9515bSthomasraoux // See https://llvm.org/LICENSE.txt for license information. 5edd9515bSthomasraoux // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6edd9515bSthomasraoux // 7edd9515bSthomasraoux //===----------------------------------------------------------------------===// 8edd9515bSthomasraoux // 9edd9515bSthomasraoux // This file implements lowering of vector operations to GPU dialect ops. 10edd9515bSthomasraoux // 11edd9515bSthomasraoux //===----------------------------------------------------------------------===// 12edd9515bSthomasraoux 13edd9515bSthomasraoux #include <type_traits> 14edd9515bSthomasraoux 15edd9515bSthomasraoux #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" 16edd9515bSthomasraoux 17edd9515bSthomasraoux #include "../PassDetail.h" 18edd9515bSthomasraoux #include "mlir/Analysis/SliceAnalysis.h" 19a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 20edd9515bSthomasraoux #include "mlir/Dialect/GPU/GPUDialect.h" 2166f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 221a865592Sthomasraoux #include "mlir/Dialect/SCF/SCF.h" 23edd9515bSthomasraoux #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 24edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorOps.h" 25edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorUtils.h" 26edd9515bSthomasraoux #include "mlir/IR/Builders.h" 27edd9515bSthomasraoux #include "mlir/Pass/Pass.h" 28edd9515bSthomasraoux #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 29edd9515bSthomasraoux #include "mlir/Transforms/Passes.h" 30edd9515bSthomasraoux 31edd9515bSthomasraoux using namespace mlir; 32edd9515bSthomasraoux 33edd9515bSthomasraoux // Return true if the contract op can be convert to MMA matmul. 34edd9515bSthomasraoux static bool contractSupportsMMAMatrixType(vector::ContractionOp contract) { 35edd9515bSthomasraoux if (llvm::size(contract.masks()) != 0) 36edd9515bSthomasraoux return false; 37edd9515bSthomasraoux 38edd9515bSthomasraoux using MapList = ArrayRef<ArrayRef<AffineExpr>>; 39edd9515bSthomasraoux auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 40edd9515bSthomasraoux AffineExpr m, n, k; 41edd9515bSthomasraoux bindDims(contract.getContext(), m, n, k); 42edd9515bSthomasraoux auto iteratorTypes = contract.iterator_types().getValue(); 43edd9515bSthomasraoux if (!(isParallelIterator(iteratorTypes[0]) && 44edd9515bSthomasraoux isParallelIterator(iteratorTypes[1]) && 45edd9515bSthomasraoux isReductionIterator(iteratorTypes[2]))) 46edd9515bSthomasraoux return false; 47edd9515bSthomasraoux 48edd9515bSthomasraoux // The contract needs to represent a matmul to be able to convert to 49edd9515bSthomasraoux // MMAMatrix matmul. 50edd9515bSthomasraoux if (contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}})) 51edd9515bSthomasraoux return false; 52edd9515bSthomasraoux 53edd9515bSthomasraoux return true; 54edd9515bSthomasraoux } 55edd9515bSthomasraoux 56edd9515bSthomasraoux // Return the stide for the dimension 0 of |type| if it is a memref and has a 57edd9515bSthomasraoux // constant stride. 58edd9515bSthomasraoux static llvm::Optional<int64_t> 59edd9515bSthomasraoux getMemrefConstantHorizontalStride(ShapedType type) { 60edd9515bSthomasraoux auto memrefType = type.dyn_cast<MemRefType>(); 61edd9515bSthomasraoux if (!memrefType) 62edd9515bSthomasraoux return false; 63edd9515bSthomasraoux int64_t offset = 0; 64edd9515bSthomasraoux SmallVector<int64_t, 2> strides; 65edd9515bSthomasraoux if (failed(getStridesAndOffset(memrefType, strides, offset))) 66edd9515bSthomasraoux return llvm::None; 67edd9515bSthomasraoux if (strides[0] == ShapedType::kDynamicStrideOrOffset) 68edd9515bSthomasraoux return llvm::None; 69edd9515bSthomasraoux return strides[0]; 70edd9515bSthomasraoux } 71edd9515bSthomasraoux 72edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix load. 73edd9515bSthomasraoux static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) { 74edd9515bSthomasraoux if (readOp.mask() || readOp.hasOutOfBoundsDim() || 75edd9515bSthomasraoux readOp.getVectorType().getRank() != 2) 76edd9515bSthomasraoux return false; 77edd9515bSthomasraoux if (!getMemrefConstantHorizontalStride(readOp.getShapedType())) 78edd9515bSthomasraoux return false; 79*e7969240SThomas Raoux AffineMap map = readOp.permutation_map(); 80*e7969240SThomas Raoux OpBuilder b(readOp.getContext()); 81*e7969240SThomas Raoux AffineExpr innerDim = b.getAffineDimExpr(map.getNumDims() - 1); 82*e7969240SThomas Raoux AffineExpr zero = b.getAffineConstantExpr(0); 83*e7969240SThomas Raoux auto broadcastInnerDim = AffineMap::get(map.getNumDims(), 0, {zero, innerDim}, 84*e7969240SThomas Raoux readOp.getContext()); 85edd9515bSthomasraoux // TODO: Support transpose once it is added to GPU dialect ops. 86*e7969240SThomas Raoux // For now we only support (d0, d1) -> (d0, d1) and (d0, d1) -> (0, d1). 87*e7969240SThomas Raoux if (!map.isMinorIdentity() && map != broadcastInnerDim) 88edd9515bSthomasraoux return false; 89edd9515bSthomasraoux return true; 90edd9515bSthomasraoux } 91edd9515bSthomasraoux 92edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix store. 93edd9515bSthomasraoux static bool 94edd9515bSthomasraoux transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { 95edd9515bSthomasraoux if (writeOp.mask() || writeOp.hasOutOfBoundsDim() || 96edd9515bSthomasraoux writeOp.getVectorType().getRank() != 2) 97edd9515bSthomasraoux return false; 98edd9515bSthomasraoux if (!getMemrefConstantHorizontalStride(writeOp.getShapedType())) 99edd9515bSthomasraoux return false; 100edd9515bSthomasraoux // TODO: Support transpose once it is added to GPU dialect ops. 101edd9515bSthomasraoux if (!writeOp.permutation_map().isMinorIdentity()) 102edd9515bSthomasraoux return false; 103edd9515bSthomasraoux return true; 104edd9515bSthomasraoux } 105edd9515bSthomasraoux 1066413226dSthomasraoux /// Return true if the constant is a splat to a 2D vector so that it can be 1076413226dSthomasraoux /// converted to a MMA constant matrix op. 108a54f4eaeSMogball static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) { 1096413226dSthomasraoux auto vecType = constantOp.getType().dyn_cast<VectorType>(); 1106413226dSthomasraoux if (!vecType || vecType.getRank() != 2) 1116413226dSthomasraoux return false; 112cfb72fd3SJacques Pienaar return constantOp.getValue().isa<SplatElementsAttr>(); 1136413226dSthomasraoux } 1146413226dSthomasraoux 11543928419Sthomasraoux /// Return true if this is a broadcast from scalar to a 2D vector. 11643928419Sthomasraoux static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) { 11743928419Sthomasraoux return broadcastOp.getVectorType().getRank() == 2 && 11843928419Sthomasraoux broadcastOp.source().getType().isa<FloatType>(); 11943928419Sthomasraoux } 12043928419Sthomasraoux 1217fbb0678Sthomasraoux /// Return the MMA elementwise enum associated with `op` if it is supported. 1227fbb0678Sthomasraoux /// Return `llvm::None` otherwise. 1237fbb0678Sthomasraoux static llvm::Optional<gpu::MMAElementwiseOp> 1247fbb0678Sthomasraoux convertElementwiseOpToMMA(Operation *op) { 1257fbb0678Sthomasraoux if (isa<arith::AddFOp>(op)) 1267fbb0678Sthomasraoux return gpu::MMAElementwiseOp::ADDF; 1277fbb0678Sthomasraoux if (isa<arith::MulFOp>(op)) 1287fbb0678Sthomasraoux return gpu::MMAElementwiseOp::MULF; 1297fbb0678Sthomasraoux if (isa<MaxFOp>(op)) 1307fbb0678Sthomasraoux return gpu::MMAElementwiseOp::MAXF; 1317fbb0678Sthomasraoux if (isa<MinFOp>(op)) 1327fbb0678Sthomasraoux return gpu::MMAElementwiseOp::MINF; 133*e7969240SThomas Raoux if (isa<arith::DivFOp>(op)) 134*e7969240SThomas Raoux return gpu::MMAElementwiseOp::DIVF; 1357fbb0678Sthomasraoux return llvm::None; 1367fbb0678Sthomasraoux } 1377fbb0678Sthomasraoux 1387fbb0678Sthomasraoux /// Return true if the op is supported as elementwise op on MMAMatrix type. 1397fbb0678Sthomasraoux static bool elementwiseSupportsMMAMatrixType(Operation *op) { 1407fbb0678Sthomasraoux return convertElementwiseOpToMMA(op).hasValue(); 1417fbb0678Sthomasraoux } 1427fbb0678Sthomasraoux 143edd9515bSthomasraoux static bool supportsMMaMatrixType(Operation *op) { 1441a865592Sthomasraoux if (isa<scf::ForOp, scf::YieldOp>(op)) 1451a865592Sthomasraoux return true; 146edd9515bSthomasraoux if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) 147edd9515bSthomasraoux return transferReadSupportsMMAMatrixType(transferRead); 148edd9515bSthomasraoux if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) 149edd9515bSthomasraoux return transferWriteSupportsMMAMatrixType(transferWrite); 150edd9515bSthomasraoux if (auto contract = dyn_cast<vector::ContractionOp>(op)) 151edd9515bSthomasraoux return contractSupportsMMAMatrixType(contract); 152a54f4eaeSMogball if (auto constant = dyn_cast<arith::ConstantOp>(op)) 1536413226dSthomasraoux return constantSupportsMMAMatrixType(constant); 15443928419Sthomasraoux if (auto broadcast = dyn_cast<vector::BroadcastOp>(op)) 15543928419Sthomasraoux return broadcastSupportsMMAMatrixType(broadcast); 1567fbb0678Sthomasraoux return elementwiseSupportsMMAMatrixType(op); 157edd9515bSthomasraoux } 158edd9515bSthomasraoux 159*e7969240SThomas Raoux /// Return an unsorted slice handling scf.for region differently than 160*e7969240SThomas Raoux /// `getSlice`. In scf.for we only want to include as part of the slice elements 161*e7969240SThomas Raoux /// that are part of the use/def chain. 162*e7969240SThomas Raoux static SetVector<Operation *> getSliceContract(Operation *op, 163*e7969240SThomas Raoux TransitiveFilter backwardFilter, 164*e7969240SThomas Raoux TransitiveFilter forwardFilter) { 165*e7969240SThomas Raoux SetVector<Operation *> slice; 166*e7969240SThomas Raoux slice.insert(op); 167*e7969240SThomas Raoux unsigned currentIndex = 0; 168*e7969240SThomas Raoux SetVector<Operation *> backwardSlice; 169*e7969240SThomas Raoux SetVector<Operation *> forwardSlice; 170*e7969240SThomas Raoux while (currentIndex != slice.size()) { 171*e7969240SThomas Raoux auto *currentOp = (slice)[currentIndex]; 172*e7969240SThomas Raoux // Compute and insert the backwardSlice starting from currentOp. 173*e7969240SThomas Raoux backwardSlice.clear(); 174*e7969240SThomas Raoux getBackwardSlice(currentOp, &backwardSlice, backwardFilter); 175*e7969240SThomas Raoux slice.insert(backwardSlice.begin(), backwardSlice.end()); 176*e7969240SThomas Raoux 177*e7969240SThomas Raoux // Compute and insert the forwardSlice starting from currentOp. 178*e7969240SThomas Raoux forwardSlice.clear(); 179*e7969240SThomas Raoux // Special case for ForOp, we don't want to include the whole region but 180*e7969240SThomas Raoux // only the value using the region arguments. 181*e7969240SThomas Raoux // TODO: We should refine this to only care about the region arguments being 182*e7969240SThomas Raoux // converted to matrix type. 183*e7969240SThomas Raoux if (auto forOp = dyn_cast<scf::ForOp>(currentOp)) { 184*e7969240SThomas Raoux for (Value forOpResult : forOp.getResults()) 185*e7969240SThomas Raoux getForwardSlice(forOpResult, &forwardSlice, forwardFilter); 186*e7969240SThomas Raoux for (BlockArgument &arg : forOp.getRegionIterArgs()) 187*e7969240SThomas Raoux getForwardSlice(arg, &forwardSlice, forwardFilter); 188*e7969240SThomas Raoux } else { 189*e7969240SThomas Raoux getForwardSlice(currentOp, &forwardSlice, forwardFilter); 190*e7969240SThomas Raoux } 191*e7969240SThomas Raoux slice.insert(forwardSlice.begin(), forwardSlice.end()); 192*e7969240SThomas Raoux ++currentIndex; 193*e7969240SThomas Raoux } 194*e7969240SThomas Raoux return slice; 195*e7969240SThomas Raoux } 196*e7969240SThomas Raoux 197edd9515bSthomasraoux // Analyze slice of operations based on convert op to figure out if the whole 198edd9515bSthomasraoux // slice can be converted to MMA operations. 199edd9515bSthomasraoux static SetVector<Operation *> getOpToConvert(mlir::Operation *op) { 200edd9515bSthomasraoux auto hasVectorDest = [](Operation *op) { 20143928419Sthomasraoux return llvm::any_of(op->getResultTypes(), 20243928419Sthomasraoux [](Type t) { return t.isa<VectorType>(); }); 20343928419Sthomasraoux }; 20443928419Sthomasraoux auto hasVectorSrc = [](Operation *op) { 20543928419Sthomasraoux return llvm::any_of(op->getOperandTypes(), 206edd9515bSthomasraoux [](Type t) { return t.isa<VectorType>(); }); 207edd9515bSthomasraoux }; 208edd9515bSthomasraoux SetVector<Operation *> opToConvert; 209edd9515bSthomasraoux op->walk([&](vector::ContractionOp contract) { 210edd9515bSthomasraoux if (opToConvert.contains(contract.getOperation())) 211edd9515bSthomasraoux return; 212edd9515bSthomasraoux SetVector<Operation *> dependentOps = 213*e7969240SThomas Raoux getSliceContract(contract, hasVectorDest, hasVectorSrc); 214edd9515bSthomasraoux // If any instruction cannot use MMA matrix type drop the whole 215*e7969240SThomas Raoux // chain. MMA matrix are stored in an opaque type so they cannot be used 216edd9515bSthomasraoux // by all operations. 217edd9515bSthomasraoux if (llvm::any_of(dependentOps, 218edd9515bSthomasraoux [](Operation *op) { return !supportsMMaMatrixType(op); })) 219edd9515bSthomasraoux return; 220edd9515bSthomasraoux opToConvert.insert(dependentOps.begin(), dependentOps.end()); 221edd9515bSthomasraoux }); 222*e7969240SThomas Raoux // Sort the operations so that we can convert them in topological order. 223*e7969240SThomas Raoux return topologicalSort(opToConvert); 224edd9515bSthomasraoux } 225edd9515bSthomasraoux 226edd9515bSthomasraoux namespace { 227edd9515bSthomasraoux // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted 228edd9515bSthomasraoux // to MMA matmul. 229edd9515bSthomasraoux struct PrepareContractToGPUMMA 230edd9515bSthomasraoux : public OpRewritePattern<vector::ContractionOp> { 231edd9515bSthomasraoux using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 232edd9515bSthomasraoux 233edd9515bSthomasraoux LogicalResult matchAndRewrite(vector::ContractionOp op, 234edd9515bSthomasraoux PatternRewriter &rewriter) const override { 235edd9515bSthomasraoux Location loc = op.getLoc(); 236edd9515bSthomasraoux Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc(); 237edd9515bSthomasraoux 238edd9515bSthomasraoux // Set up the parallel/reduction structure in right form. 239edd9515bSthomasraoux using MapList = ArrayRef<ArrayRef<AffineExpr>>; 240edd9515bSthomasraoux auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 241edd9515bSthomasraoux AffineExpr m, n, k; 242edd9515bSthomasraoux bindDims(rewriter.getContext(), m, n, k); 243edd9515bSthomasraoux static constexpr std::array<int64_t, 2> perm = {1, 0}; 244edd9515bSthomasraoux auto iteratorTypes = op.iterator_types().getValue(); 245edd9515bSthomasraoux SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 246edd9515bSthomasraoux if (!(isParallelIterator(iteratorTypes[0]) && 247edd9515bSthomasraoux isParallelIterator(iteratorTypes[1]) && 248edd9515bSthomasraoux isReductionIterator(iteratorTypes[2]))) 249edd9515bSthomasraoux return failure(); 250edd9515bSthomasraoux // 251edd9515bSthomasraoux // Two outer parallel, one inner reduction (matmat flavor). 252edd9515bSthomasraoux // 253edd9515bSthomasraoux if (maps == infer({{m, k}, {k, n}, {m, n}})) { 254edd9515bSthomasraoux // This is the classical row-major matmul, nothing to do. 255edd9515bSthomasraoux return failure(); 256edd9515bSthomasraoux } 257edd9515bSthomasraoux if (maps == infer({{m, k}, {n, k}, {m, n}})) { 258edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 259edd9515bSthomasraoux } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 260edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 261edd9515bSthomasraoux } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 262edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 263edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 264edd9515bSthomasraoux } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 265edd9515bSthomasraoux std::swap(rhs, lhs); 266edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 267edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 268edd9515bSthomasraoux } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 269edd9515bSthomasraoux std::swap(rhs, lhs); 270edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 271edd9515bSthomasraoux } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 272edd9515bSthomasraoux std::swap(lhs, rhs); 273edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 274edd9515bSthomasraoux } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 275edd9515bSthomasraoux std::swap(lhs, rhs); 276edd9515bSthomasraoux } else { 277edd9515bSthomasraoux return failure(); 278edd9515bSthomasraoux } 279edd9515bSthomasraoux rewriter.replaceOpWithNewOp<vector::ContractionOp>( 280edd9515bSthomasraoux op, lhs, rhs, res, 281edd9515bSthomasraoux rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})), 282edd9515bSthomasraoux op.iterator_types()); 283edd9515bSthomasraoux return success(); 284edd9515bSthomasraoux } 285edd9515bSthomasraoux }; 286edd9515bSthomasraoux 287edd9515bSthomasraoux // Merge transpose op into the transfer read op. Transpose are not supported on 288edd9515bSthomasraoux // MMA types but MMA load can transpose the matrix when loading. 289edd9515bSthomasraoux struct CombineTransferReadOpTranspose final 290edd9515bSthomasraoux : public OpRewritePattern<vector::TransposeOp> { 291edd9515bSthomasraoux using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 292edd9515bSthomasraoux 293edd9515bSthomasraoux LogicalResult matchAndRewrite(vector::TransposeOp op, 294edd9515bSthomasraoux PatternRewriter &rewriter) const override { 295edd9515bSthomasraoux auto transferReadOp = op.vector().getDefiningOp<vector::TransferReadOp>(); 296edd9515bSthomasraoux if (!transferReadOp) 297edd9515bSthomasraoux return failure(); 298edd9515bSthomasraoux if (transferReadOp.mask() || transferReadOp.hasOutOfBoundsDim()) 299edd9515bSthomasraoux return failure(); 300edd9515bSthomasraoux SmallVector<int64_t, 2> perm; 301edd9515bSthomasraoux op.getTransp(perm); 302edd9515bSthomasraoux SmallVector<unsigned, 2> permU; 303edd9515bSthomasraoux for (int64_t o : perm) 304edd9515bSthomasraoux permU.push_back(unsigned(o)); 305edd9515bSthomasraoux AffineMap permutationMap = 306edd9515bSthomasraoux AffineMap::getPermutationMap(permU, op.getContext()); 307edd9515bSthomasraoux AffineMap newMap = permutationMap.compose(transferReadOp.permutation_map()); 308edd9515bSthomasraoux rewriter.replaceOpWithNewOp<vector::TransferReadOp>( 309edd9515bSthomasraoux op, op.getType(), transferReadOp.source(), transferReadOp.indices(), 310edd9515bSthomasraoux newMap, transferReadOp.padding(), transferReadOp.mask(), 311edd9515bSthomasraoux transferReadOp.in_boundsAttr()); 312edd9515bSthomasraoux return success(); 313edd9515bSthomasraoux } 314edd9515bSthomasraoux }; 315edd9515bSthomasraoux 316edd9515bSthomasraoux } // namespace 317edd9515bSthomasraoux 318edd9515bSthomasraoux // MMA types have different layout based on how they are used in matmul ops. 3196413226dSthomasraoux // Figure the right layout to use by looking at op uses. 320edd9515bSthomasraoux // TODO: Change the GPU dialect to abstract the layout at the this level and 321edd9515bSthomasraoux // only care about it during lowering to NVVM. 3226413226dSthomasraoux template <typename OpTy> 3236413226dSthomasraoux static const char *inferFragType(OpTy op) { 324edd9515bSthomasraoux for (Operation *users : op->getUsers()) { 325edd9515bSthomasraoux auto contract = dyn_cast<vector::ContractionOp>(users); 326edd9515bSthomasraoux if (!contract) 327edd9515bSthomasraoux continue; 328edd9515bSthomasraoux if (contract.lhs() == op.getResult()) 329edd9515bSthomasraoux return "AOp"; 330edd9515bSthomasraoux if (contract.rhs() == op.getResult()) 331edd9515bSthomasraoux return "BOp"; 332edd9515bSthomasraoux } 333edd9515bSthomasraoux return "COp"; 334edd9515bSthomasraoux } 335edd9515bSthomasraoux 336edd9515bSthomasraoux static void convertTransferReadOp(vector::TransferReadOp op, 337edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 338edd9515bSthomasraoux assert(transferReadSupportsMMAMatrixType(op)); 339edd9515bSthomasraoux Optional<int64_t> stride = 340edd9515bSthomasraoux getMemrefConstantHorizontalStride(op.getShapedType()); 341*e7969240SThomas Raoux AffineMap map = op.permutation_map(); 342*e7969240SThomas Raoux // Handle broadcast by setting the stride to 0. 343*e7969240SThomas Raoux if (map.getResult(0).isa<AffineConstantExpr>()) { 344*e7969240SThomas Raoux assert(map.getResult(0).cast<AffineConstantExpr>().getValue() == 0); 345*e7969240SThomas Raoux stride = 0; 346*e7969240SThomas Raoux } 347edd9515bSthomasraoux assert(stride); 348edd9515bSthomasraoux const char *fragType = inferFragType(op); 349edd9515bSthomasraoux gpu::MMAMatrixType type = 350edd9515bSthomasraoux gpu::MMAMatrixType::get(op.getVectorType().getShape(), 351edd9515bSthomasraoux op.getVectorType().getElementType(), fragType); 352edd9515bSthomasraoux OpBuilder b(op); 353edd9515bSthomasraoux Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>( 354edd9515bSthomasraoux op.getLoc(), type, op.source(), op.indices(), b.getIndexAttr(*stride)); 355edd9515bSthomasraoux valueMapping[op.getResult()] = load; 356edd9515bSthomasraoux } 357edd9515bSthomasraoux 358edd9515bSthomasraoux static void convertTransferWriteOp(vector::TransferWriteOp op, 359edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 360edd9515bSthomasraoux assert(transferWriteSupportsMMAMatrixType(op)); 361edd9515bSthomasraoux Optional<int64_t> stride = 362edd9515bSthomasraoux getMemrefConstantHorizontalStride(op.getShapedType()); 363edd9515bSthomasraoux assert(stride); 364edd9515bSthomasraoux OpBuilder b(op); 365edd9515bSthomasraoux Value matrix = valueMapping.find(op.vector())->second; 366edd9515bSthomasraoux b.create<gpu::SubgroupMmaStoreMatrixOp>( 367edd9515bSthomasraoux op.getLoc(), matrix, op.source(), op.indices(), b.getIndexAttr(*stride)); 368edd9515bSthomasraoux op.erase(); 369edd9515bSthomasraoux } 370edd9515bSthomasraoux 371edd9515bSthomasraoux static void convertContractOp(vector::ContractionOp op, 372edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 373edd9515bSthomasraoux OpBuilder b(op); 374edd9515bSthomasraoux Value opA = valueMapping.find(op.lhs())->second; 375edd9515bSthomasraoux Value opB = valueMapping.find(op.rhs())->second; 376edd9515bSthomasraoux Value opC = valueMapping.find(op.acc())->second; 377edd9515bSthomasraoux Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(), 378edd9515bSthomasraoux opA, opB, opC); 379edd9515bSthomasraoux valueMapping[op.getResult()] = matmul; 380edd9515bSthomasraoux } 381edd9515bSthomasraoux 3826413226dSthomasraoux /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. 383a54f4eaeSMogball static void convertConstantOp(arith::ConstantOp op, 3846413226dSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 3856413226dSthomasraoux assert(constantSupportsMMAMatrixType(op)); 3866413226dSthomasraoux OpBuilder b(op); 387937e40a8SRiver Riddle Attribute splat = 388937e40a8SRiver Riddle op.getValue().cast<SplatElementsAttr>().getSplatValue<Attribute>(); 3896413226dSthomasraoux auto scalarConstant = 390a54f4eaeSMogball b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat); 3916413226dSthomasraoux const char *fragType = inferFragType(op); 3926413226dSthomasraoux auto vecType = op.getType().cast<VectorType>(); 3936413226dSthomasraoux gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 3946413226dSthomasraoux vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 3956413226dSthomasraoux auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 3966413226dSthomasraoux scalarConstant); 3976413226dSthomasraoux valueMapping[op.getResult()] = matrix; 3986413226dSthomasraoux } 3996413226dSthomasraoux 40043928419Sthomasraoux /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op. 40143928419Sthomasraoux static void convertBroadcastOp(vector::BroadcastOp op, 40243928419Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 40343928419Sthomasraoux assert(broadcastSupportsMMAMatrixType(op)); 40443928419Sthomasraoux OpBuilder b(op); 40543928419Sthomasraoux const char *fragType = inferFragType(op); 40643928419Sthomasraoux auto vecType = op.getVectorType(); 40743928419Sthomasraoux gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 40843928419Sthomasraoux vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 40943928419Sthomasraoux auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 41043928419Sthomasraoux op.source()); 41143928419Sthomasraoux valueMapping[op.getResult()] = matrix; 41243928419Sthomasraoux } 41343928419Sthomasraoux 4141a865592Sthomasraoux // Replace ForOp with a new ForOp with extra operands. The YieldOp is not 4151a865592Sthomasraoux // updated and needs to be updated separatly for the loop to be correct. 4161a865592Sthomasraoux static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop, 4171a865592Sthomasraoux ValueRange newIterOperands) { 4181a865592Sthomasraoux // Create a new loop before the existing one, with the extra operands. 4191a865592Sthomasraoux OpBuilder::InsertionGuard g(b); 4201a865592Sthomasraoux b.setInsertionPoint(loop); 4211a865592Sthomasraoux auto operands = llvm::to_vector<4>(loop.getIterOperands()); 4221a865592Sthomasraoux operands.append(newIterOperands.begin(), newIterOperands.end()); 4231a865592Sthomasraoux scf::ForOp newLoop = 4241a865592Sthomasraoux b.create<scf::ForOp>(loop.getLoc(), loop.lowerBound(), loop.upperBound(), 4251a865592Sthomasraoux loop.step(), operands); 4261a865592Sthomasraoux newLoop.getBody()->erase(); 4271a865592Sthomasraoux newLoop.getLoopBody().getBlocks().splice( 4281a865592Sthomasraoux newLoop.getLoopBody().getBlocks().begin(), 4291a865592Sthomasraoux loop.getLoopBody().getBlocks()); 4301a865592Sthomasraoux for (auto operand : newIterOperands) 4311a865592Sthomasraoux newLoop.getBody()->addArgument(operand.getType()); 4321a865592Sthomasraoux 4331a865592Sthomasraoux for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front( 4341a865592Sthomasraoux loop.getNumResults()))) 4351a865592Sthomasraoux std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); 4361a865592Sthomasraoux loop.erase(); 4371a865592Sthomasraoux return newLoop; 4381a865592Sthomasraoux } 4391a865592Sthomasraoux 4401a865592Sthomasraoux static void convertForOp(scf::ForOp op, 4411a865592Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 4421a865592Sthomasraoux SmallVector<Value> newOperands; 4431a865592Sthomasraoux SmallVector<std::pair<size_t, size_t>> argMapping; 4441a865592Sthomasraoux for (auto operand : llvm::enumerate(op.getIterOperands())) { 4451a865592Sthomasraoux auto it = valueMapping.find(operand.value()); 4461a865592Sthomasraoux if (it == valueMapping.end()) 4471a865592Sthomasraoux continue; 4481a865592Sthomasraoux argMapping.push_back(std::make_pair( 4491a865592Sthomasraoux operand.index(), op.getNumIterOperands() + newOperands.size())); 4501a865592Sthomasraoux newOperands.push_back(it->second); 4511a865592Sthomasraoux } 4521a865592Sthomasraoux OpBuilder b(op); 4531a865592Sthomasraoux scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands); 4541a865592Sthomasraoux Block &loopBody = *newForOp.getBody(); 4551a865592Sthomasraoux for (auto mapping : argMapping) { 4561a865592Sthomasraoux valueMapping[newForOp.getResult(mapping.first)] = 4571a865592Sthomasraoux newForOp.getResult(mapping.second); 4581a865592Sthomasraoux valueMapping[loopBody.getArgument(mapping.first + 4591a865592Sthomasraoux newForOp.getNumInductionVars())] = 4601a865592Sthomasraoux loopBody.getArgument(mapping.second + newForOp.getNumInductionVars()); 4611a865592Sthomasraoux } 4621a865592Sthomasraoux } 4631a865592Sthomasraoux 4641a865592Sthomasraoux static void convertYieldOp(scf::YieldOp op, 4651a865592Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 4661a865592Sthomasraoux OpBuilder b(op); 4671a865592Sthomasraoux auto loop = cast<scf::ForOp>(op->getParentOp()); 4681a865592Sthomasraoux auto yieldOperands = llvm::to_vector<4>(op.getOperands()); 4691a865592Sthomasraoux for (auto operand : llvm::enumerate(op.getOperands())) { 4701a865592Sthomasraoux auto it = valueMapping.find(operand.value()); 4711a865592Sthomasraoux if (it == valueMapping.end()) 4721a865592Sthomasraoux continue; 4731a865592Sthomasraoux // Replace the yield of old value with the for op argument to make it easier 4741a865592Sthomasraoux // to remove the dead code. 4751a865592Sthomasraoux yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()]; 4761a865592Sthomasraoux yieldOperands.push_back(it->second); 4771a865592Sthomasraoux } 4781a865592Sthomasraoux b.create<scf::YieldOp>(op.getLoc(), yieldOperands); 4791a865592Sthomasraoux op.erase(); 4801a865592Sthomasraoux } 4811a865592Sthomasraoux 4827fbb0678Sthomasraoux /// Convert an elementwise op to the equivalent elementwise op on MMA matrix. 4837fbb0678Sthomasraoux static void convertElementwiseOp(Operation *op, gpu::MMAElementwiseOp opType, 4847fbb0678Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 4857fbb0678Sthomasraoux OpBuilder b(op); 4867fbb0678Sthomasraoux SmallVector<Value> matrixOperands; 4877fbb0678Sthomasraoux for (Value operand : op->getOperands()) 4887fbb0678Sthomasraoux matrixOperands.push_back(valueMapping.find(operand)->second); 4897fbb0678Sthomasraoux Value newOp = b.create<gpu::SubgroupMmaElementwiseOp>( 4907fbb0678Sthomasraoux op->getLoc(), matrixOperands[0].getType(), matrixOperands, opType); 4917fbb0678Sthomasraoux valueMapping[op->getResult(0)] = newOp; 4927fbb0678Sthomasraoux } 4937fbb0678Sthomasraoux 494edd9515bSthomasraoux namespace mlir { 495edd9515bSthomasraoux 496edd9515bSthomasraoux void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns) { 497edd9515bSthomasraoux patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( 498edd9515bSthomasraoux patterns.getContext()); 499edd9515bSthomasraoux } 500edd9515bSthomasraoux 501edd9515bSthomasraoux void convertVectorToMMAOps(FuncOp funcOp) { 502edd9515bSthomasraoux SetVector<Operation *> ops = getOpToConvert(funcOp); 503edd9515bSthomasraoux llvm::DenseMap<Value, Value> valueMapping; 504edd9515bSthomasraoux for (Operation *op : ops) { 505edd9515bSthomasraoux if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { 506edd9515bSthomasraoux convertTransferReadOp(transferRead, valueMapping); 507edd9515bSthomasraoux } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { 508edd9515bSthomasraoux convertTransferWriteOp(transferWrite, valueMapping); 509edd9515bSthomasraoux } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { 510edd9515bSthomasraoux convertContractOp(contractOp, valueMapping); 511a54f4eaeSMogball } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) { 5126413226dSthomasraoux convertConstantOp(constantOp, valueMapping); 51343928419Sthomasraoux } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) { 51443928419Sthomasraoux convertBroadcastOp(broadcastOp, valueMapping); 5151a865592Sthomasraoux } else if (auto forOp = dyn_cast<scf::ForOp>(op)) { 5161a865592Sthomasraoux convertForOp(forOp, valueMapping); 5171a865592Sthomasraoux } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) { 5181a865592Sthomasraoux convertYieldOp(yiledOp, valueMapping); 5197fbb0678Sthomasraoux } else if (auto elementwiseType = convertElementwiseOpToMMA(op)) { 5207fbb0678Sthomasraoux convertElementwiseOp(op, *elementwiseType, valueMapping); 521edd9515bSthomasraoux } 522edd9515bSthomasraoux } 523edd9515bSthomasraoux } 524edd9515bSthomasraoux 525edd9515bSthomasraoux } // namespace mlir 526edd9515bSthomasraoux namespace { 527edd9515bSthomasraoux 528edd9515bSthomasraoux struct ConvertVectorToGPUPass 529edd9515bSthomasraoux : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> { 530edd9515bSthomasraoux void runOnFunction() override { 531edd9515bSthomasraoux RewritePatternSet patterns(getFunction().getContext()); 532edd9515bSthomasraoux populatePrepareVectorToMMAPatterns(patterns); 533edd9515bSthomasraoux (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 534edd9515bSthomasraoux 535edd9515bSthomasraoux convertVectorToMMAOps(getFunction()); 536edd9515bSthomasraoux } 537edd9515bSthomasraoux }; 538edd9515bSthomasraoux 539edd9515bSthomasraoux } // namespace 540edd9515bSthomasraoux 541edd9515bSthomasraoux std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass() { 542edd9515bSthomasraoux return std::make_unique<ConvertVectorToGPUPass>(); 543edd9515bSthomasraoux } 544