1edd9515bSthomasraoux //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// 2edd9515bSthomasraoux // 3edd9515bSthomasraoux // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4edd9515bSthomasraoux // See https://llvm.org/LICENSE.txt for license information. 5edd9515bSthomasraoux // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6edd9515bSthomasraoux // 7edd9515bSthomasraoux //===----------------------------------------------------------------------===// 8edd9515bSthomasraoux // 9edd9515bSthomasraoux // This file implements lowering of vector operations to GPU dialect ops. 10edd9515bSthomasraoux // 11edd9515bSthomasraoux //===----------------------------------------------------------------------===// 12edd9515bSthomasraoux 13edd9515bSthomasraoux #include <type_traits> 14edd9515bSthomasraoux 15edd9515bSthomasraoux #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" 16edd9515bSthomasraoux 17edd9515bSthomasraoux #include "../PassDetail.h" 18edd9515bSthomasraoux #include "mlir/Analysis/SliceAnalysis.h" 19*a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" 20edd9515bSthomasraoux #include "mlir/Dialect/GPU/GPUDialect.h" 2166f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 221a865592Sthomasraoux #include "mlir/Dialect/SCF/SCF.h" 23edd9515bSthomasraoux #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 24edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorOps.h" 25edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorUtils.h" 26edd9515bSthomasraoux #include "mlir/IR/Builders.h" 27edd9515bSthomasraoux #include "mlir/Pass/Pass.h" 28edd9515bSthomasraoux #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 29edd9515bSthomasraoux #include "mlir/Transforms/Passes.h" 30edd9515bSthomasraoux 31edd9515bSthomasraoux using namespace mlir; 32edd9515bSthomasraoux 33edd9515bSthomasraoux // Return true if the contract op can be convert to MMA matmul. 34edd9515bSthomasraoux static bool contractSupportsMMAMatrixType(vector::ContractionOp contract) { 35edd9515bSthomasraoux if (llvm::size(contract.masks()) != 0) 36edd9515bSthomasraoux return false; 37edd9515bSthomasraoux 38edd9515bSthomasraoux using MapList = ArrayRef<ArrayRef<AffineExpr>>; 39edd9515bSthomasraoux auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 40edd9515bSthomasraoux AffineExpr m, n, k; 41edd9515bSthomasraoux bindDims(contract.getContext(), m, n, k); 42edd9515bSthomasraoux auto iteratorTypes = contract.iterator_types().getValue(); 43edd9515bSthomasraoux if (!(isParallelIterator(iteratorTypes[0]) && 44edd9515bSthomasraoux isParallelIterator(iteratorTypes[1]) && 45edd9515bSthomasraoux isReductionIterator(iteratorTypes[2]))) 46edd9515bSthomasraoux return false; 47edd9515bSthomasraoux 48edd9515bSthomasraoux // The contract needs to represent a matmul to be able to convert to 49edd9515bSthomasraoux // MMAMatrix matmul. 50edd9515bSthomasraoux if (contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}})) 51edd9515bSthomasraoux return false; 52edd9515bSthomasraoux 53edd9515bSthomasraoux // Check that the size matches what is natively supported. 54edd9515bSthomasraoux VectorType lhsType = contract.lhs().getType().cast<VectorType>(); 55edd9515bSthomasraoux VectorType rhsType = contract.rhs().getType().cast<VectorType>(); 56edd9515bSthomasraoux VectorType accType = contract.acc().getType().cast<VectorType>(); 57edd9515bSthomasraoux 58edd9515bSthomasraoux std::tuple<int, int, int> dim(lhsType.getDimSize(0), rhsType.getDimSize(1), 59edd9515bSthomasraoux lhsType.getDimSize(1)); 60edd9515bSthomasraoux if (lhsType.getElementType().isInteger(8) && 61edd9515bSthomasraoux rhsType.getElementType().isInteger(8) && 62edd9515bSthomasraoux accType.getElementType().isInteger(32) && 63edd9515bSthomasraoux (dim == std::make_tuple(8, 8, 32) || dim == std::make_tuple(16, 16, 32) || 64edd9515bSthomasraoux dim == std::make_tuple(16, 8, 32))) 65edd9515bSthomasraoux return true; 66edd9515bSthomasraoux 67edd9515bSthomasraoux if (lhsType.getElementType().isF16() && rhsType.getElementType().isF16() && 68edd9515bSthomasraoux (accType.getElementType().isF16() || accType.getElementType().isF32()) && 69edd9515bSthomasraoux (dim == std::make_tuple(8, 8, 16) || dim == std::make_tuple(16, 16, 16) || 70edd9515bSthomasraoux dim == std::make_tuple(16, 8, 16))) 71edd9515bSthomasraoux return true; 72edd9515bSthomasraoux return false; 73edd9515bSthomasraoux } 74edd9515bSthomasraoux 75edd9515bSthomasraoux // Return the stide for the dimension 0 of |type| if it is a memref and has a 76edd9515bSthomasraoux // constant stride. 77edd9515bSthomasraoux static llvm::Optional<int64_t> 78edd9515bSthomasraoux getMemrefConstantHorizontalStride(ShapedType type) { 79edd9515bSthomasraoux auto memrefType = type.dyn_cast<MemRefType>(); 80edd9515bSthomasraoux if (!memrefType) 81edd9515bSthomasraoux return false; 82edd9515bSthomasraoux int64_t offset = 0; 83edd9515bSthomasraoux SmallVector<int64_t, 2> strides; 84edd9515bSthomasraoux if (failed(getStridesAndOffset(memrefType, strides, offset))) 85edd9515bSthomasraoux return llvm::None; 86edd9515bSthomasraoux if (strides[0] == ShapedType::kDynamicStrideOrOffset) 87edd9515bSthomasraoux return llvm::None; 88edd9515bSthomasraoux return strides[0]; 89edd9515bSthomasraoux } 90edd9515bSthomasraoux 91edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix load. 92edd9515bSthomasraoux static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) { 93edd9515bSthomasraoux if (readOp.mask() || readOp.hasOutOfBoundsDim() || 94edd9515bSthomasraoux readOp.getVectorType().getRank() != 2) 95edd9515bSthomasraoux return false; 96edd9515bSthomasraoux if (!getMemrefConstantHorizontalStride(readOp.getShapedType())) 97edd9515bSthomasraoux return false; 98edd9515bSthomasraoux // TODO: Support transpose once it is added to GPU dialect ops. 99edd9515bSthomasraoux if (!readOp.permutation_map().isMinorIdentity()) 100edd9515bSthomasraoux return false; 101edd9515bSthomasraoux return true; 102edd9515bSthomasraoux } 103edd9515bSthomasraoux 104edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix store. 105edd9515bSthomasraoux static bool 106edd9515bSthomasraoux transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { 107edd9515bSthomasraoux if (writeOp.mask() || writeOp.hasOutOfBoundsDim() || 108edd9515bSthomasraoux writeOp.getVectorType().getRank() != 2) 109edd9515bSthomasraoux return false; 110edd9515bSthomasraoux if (!getMemrefConstantHorizontalStride(writeOp.getShapedType())) 111edd9515bSthomasraoux return false; 112edd9515bSthomasraoux // TODO: Support transpose once it is added to GPU dialect ops. 113edd9515bSthomasraoux if (!writeOp.permutation_map().isMinorIdentity()) 114edd9515bSthomasraoux return false; 115edd9515bSthomasraoux return true; 116edd9515bSthomasraoux } 117edd9515bSthomasraoux 1186413226dSthomasraoux /// Return true if the constant is a splat to a 2D vector so that it can be 1196413226dSthomasraoux /// converted to a MMA constant matrix op. 120*a54f4eaeSMogball static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) { 1216413226dSthomasraoux auto vecType = constantOp.getType().dyn_cast<VectorType>(); 1226413226dSthomasraoux if (!vecType || vecType.getRank() != 2) 1236413226dSthomasraoux return false; 1246413226dSthomasraoux return constantOp.value().isa<SplatElementsAttr>(); 1256413226dSthomasraoux } 1266413226dSthomasraoux 12743928419Sthomasraoux /// Return true if this is a broadcast from scalar to a 2D vector. 12843928419Sthomasraoux static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) { 12943928419Sthomasraoux return broadcastOp.getVectorType().getRank() == 2 && 13043928419Sthomasraoux broadcastOp.source().getType().isa<FloatType>(); 13143928419Sthomasraoux } 13243928419Sthomasraoux 133edd9515bSthomasraoux static bool supportsMMaMatrixType(Operation *op) { 1341a865592Sthomasraoux if (isa<scf::ForOp, scf::YieldOp>(op)) 1351a865592Sthomasraoux return true; 136edd9515bSthomasraoux if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) 137edd9515bSthomasraoux return transferReadSupportsMMAMatrixType(transferRead); 138edd9515bSthomasraoux if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) 139edd9515bSthomasraoux return transferWriteSupportsMMAMatrixType(transferWrite); 140edd9515bSthomasraoux if (auto contract = dyn_cast<vector::ContractionOp>(op)) 141edd9515bSthomasraoux return contractSupportsMMAMatrixType(contract); 142*a54f4eaeSMogball if (auto constant = dyn_cast<arith::ConstantOp>(op)) 1436413226dSthomasraoux return constantSupportsMMAMatrixType(constant); 14443928419Sthomasraoux if (auto broadcast = dyn_cast<vector::BroadcastOp>(op)) 14543928419Sthomasraoux return broadcastSupportsMMAMatrixType(broadcast); 146edd9515bSthomasraoux return false; 147edd9515bSthomasraoux } 148edd9515bSthomasraoux 149edd9515bSthomasraoux // Analyze slice of operations based on convert op to figure out if the whole 150edd9515bSthomasraoux // slice can be converted to MMA operations. 151edd9515bSthomasraoux static SetVector<Operation *> getOpToConvert(mlir::Operation *op) { 152edd9515bSthomasraoux auto hasVectorDest = [](Operation *op) { 15343928419Sthomasraoux return llvm::any_of(op->getResultTypes(), 15443928419Sthomasraoux [](Type t) { return t.isa<VectorType>(); }); 15543928419Sthomasraoux }; 15643928419Sthomasraoux auto hasVectorSrc = [](Operation *op) { 15743928419Sthomasraoux return llvm::any_of(op->getOperandTypes(), 158edd9515bSthomasraoux [](Type t) { return t.isa<VectorType>(); }); 159edd9515bSthomasraoux }; 160edd9515bSthomasraoux SetVector<Operation *> opToConvert; 161edd9515bSthomasraoux op->walk([&](vector::ContractionOp contract) { 162edd9515bSthomasraoux if (opToConvert.contains(contract.getOperation())) 163edd9515bSthomasraoux return; 164edd9515bSthomasraoux SetVector<Operation *> dependentOps = 16543928419Sthomasraoux getSlice(contract, hasVectorDest, hasVectorSrc); 166edd9515bSthomasraoux // If any instruction cannot use MMA matrix type drop the whole 167edd9515bSthomasraoux // chaine. MMA matrix are stored in an opaque type so they cannot be used 168edd9515bSthomasraoux // by all operations. 169edd9515bSthomasraoux if (llvm::any_of(dependentOps, 170edd9515bSthomasraoux [](Operation *op) { return !supportsMMaMatrixType(op); })) 171edd9515bSthomasraoux return; 172edd9515bSthomasraoux opToConvert.insert(dependentOps.begin(), dependentOps.end()); 173edd9515bSthomasraoux }); 174edd9515bSthomasraoux return opToConvert; 175edd9515bSthomasraoux } 176edd9515bSthomasraoux 177edd9515bSthomasraoux namespace { 178edd9515bSthomasraoux // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted 179edd9515bSthomasraoux // to MMA matmul. 180edd9515bSthomasraoux struct PrepareContractToGPUMMA 181edd9515bSthomasraoux : public OpRewritePattern<vector::ContractionOp> { 182edd9515bSthomasraoux using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 183edd9515bSthomasraoux 184edd9515bSthomasraoux LogicalResult matchAndRewrite(vector::ContractionOp op, 185edd9515bSthomasraoux PatternRewriter &rewriter) const override { 186edd9515bSthomasraoux Location loc = op.getLoc(); 187edd9515bSthomasraoux Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc(); 188edd9515bSthomasraoux 189edd9515bSthomasraoux // Set up the parallel/reduction structure in right form. 190edd9515bSthomasraoux using MapList = ArrayRef<ArrayRef<AffineExpr>>; 191edd9515bSthomasraoux auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 192edd9515bSthomasraoux AffineExpr m, n, k; 193edd9515bSthomasraoux bindDims(rewriter.getContext(), m, n, k); 194edd9515bSthomasraoux static constexpr std::array<int64_t, 2> perm = {1, 0}; 195edd9515bSthomasraoux auto iteratorTypes = op.iterator_types().getValue(); 196edd9515bSthomasraoux SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 197edd9515bSthomasraoux if (!(isParallelIterator(iteratorTypes[0]) && 198edd9515bSthomasraoux isParallelIterator(iteratorTypes[1]) && 199edd9515bSthomasraoux isReductionIterator(iteratorTypes[2]))) 200edd9515bSthomasraoux return failure(); 201edd9515bSthomasraoux // 202edd9515bSthomasraoux // Two outer parallel, one inner reduction (matmat flavor). 203edd9515bSthomasraoux // 204edd9515bSthomasraoux if (maps == infer({{m, k}, {k, n}, {m, n}})) { 205edd9515bSthomasraoux // This is the classical row-major matmul, nothing to do. 206edd9515bSthomasraoux return failure(); 207edd9515bSthomasraoux } 208edd9515bSthomasraoux if (maps == infer({{m, k}, {n, k}, {m, n}})) { 209edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 210edd9515bSthomasraoux } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 211edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 212edd9515bSthomasraoux } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 213edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 214edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 215edd9515bSthomasraoux } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 216edd9515bSthomasraoux std::swap(rhs, lhs); 217edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 218edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 219edd9515bSthomasraoux } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 220edd9515bSthomasraoux std::swap(rhs, lhs); 221edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 222edd9515bSthomasraoux } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 223edd9515bSthomasraoux std::swap(lhs, rhs); 224edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 225edd9515bSthomasraoux } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 226edd9515bSthomasraoux std::swap(lhs, rhs); 227edd9515bSthomasraoux } else { 228edd9515bSthomasraoux return failure(); 229edd9515bSthomasraoux } 230edd9515bSthomasraoux rewriter.replaceOpWithNewOp<vector::ContractionOp>( 231edd9515bSthomasraoux op, lhs, rhs, res, 232edd9515bSthomasraoux rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})), 233edd9515bSthomasraoux op.iterator_types()); 234edd9515bSthomasraoux return success(); 235edd9515bSthomasraoux } 236edd9515bSthomasraoux }; 237edd9515bSthomasraoux 238edd9515bSthomasraoux // Merge transpose op into the transfer read op. Transpose are not supported on 239edd9515bSthomasraoux // MMA types but MMA load can transpose the matrix when loading. 240edd9515bSthomasraoux struct CombineTransferReadOpTranspose final 241edd9515bSthomasraoux : public OpRewritePattern<vector::TransposeOp> { 242edd9515bSthomasraoux using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 243edd9515bSthomasraoux 244edd9515bSthomasraoux LogicalResult matchAndRewrite(vector::TransposeOp op, 245edd9515bSthomasraoux PatternRewriter &rewriter) const override { 246edd9515bSthomasraoux auto transferReadOp = op.vector().getDefiningOp<vector::TransferReadOp>(); 247edd9515bSthomasraoux if (!transferReadOp) 248edd9515bSthomasraoux return failure(); 249edd9515bSthomasraoux if (transferReadOp.mask() || transferReadOp.hasOutOfBoundsDim()) 250edd9515bSthomasraoux return failure(); 251edd9515bSthomasraoux SmallVector<int64_t, 2> perm; 252edd9515bSthomasraoux op.getTransp(perm); 253edd9515bSthomasraoux SmallVector<unsigned, 2> permU; 254edd9515bSthomasraoux for (int64_t o : perm) 255edd9515bSthomasraoux permU.push_back(unsigned(o)); 256edd9515bSthomasraoux AffineMap permutationMap = 257edd9515bSthomasraoux AffineMap::getPermutationMap(permU, op.getContext()); 258edd9515bSthomasraoux AffineMap newMap = permutationMap.compose(transferReadOp.permutation_map()); 259edd9515bSthomasraoux rewriter.replaceOpWithNewOp<vector::TransferReadOp>( 260edd9515bSthomasraoux op, op.getType(), transferReadOp.source(), transferReadOp.indices(), 261edd9515bSthomasraoux newMap, transferReadOp.padding(), transferReadOp.mask(), 262edd9515bSthomasraoux transferReadOp.in_boundsAttr()); 263edd9515bSthomasraoux return success(); 264edd9515bSthomasraoux } 265edd9515bSthomasraoux }; 266edd9515bSthomasraoux 267edd9515bSthomasraoux } // namespace 268edd9515bSthomasraoux 269edd9515bSthomasraoux // MMA types have different layout based on how they are used in matmul ops. 2706413226dSthomasraoux // Figure the right layout to use by looking at op uses. 271edd9515bSthomasraoux // TODO: Change the GPU dialect to abstract the layout at the this level and 272edd9515bSthomasraoux // only care about it during lowering to NVVM. 2736413226dSthomasraoux template <typename OpTy> 2746413226dSthomasraoux static const char *inferFragType(OpTy op) { 275edd9515bSthomasraoux for (Operation *users : op->getUsers()) { 276edd9515bSthomasraoux auto contract = dyn_cast<vector::ContractionOp>(users); 277edd9515bSthomasraoux if (!contract) 278edd9515bSthomasraoux continue; 279edd9515bSthomasraoux if (contract.lhs() == op.getResult()) 280edd9515bSthomasraoux return "AOp"; 281edd9515bSthomasraoux if (contract.rhs() == op.getResult()) 282edd9515bSthomasraoux return "BOp"; 283edd9515bSthomasraoux } 284edd9515bSthomasraoux return "COp"; 285edd9515bSthomasraoux } 286edd9515bSthomasraoux 287edd9515bSthomasraoux static void convertTransferReadOp(vector::TransferReadOp op, 288edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 289edd9515bSthomasraoux assert(transferReadSupportsMMAMatrixType(op)); 290edd9515bSthomasraoux Optional<int64_t> stride = 291edd9515bSthomasraoux getMemrefConstantHorizontalStride(op.getShapedType()); 292edd9515bSthomasraoux assert(stride); 293edd9515bSthomasraoux const char *fragType = inferFragType(op); 294edd9515bSthomasraoux gpu::MMAMatrixType type = 295edd9515bSthomasraoux gpu::MMAMatrixType::get(op.getVectorType().getShape(), 296edd9515bSthomasraoux op.getVectorType().getElementType(), fragType); 297edd9515bSthomasraoux OpBuilder b(op); 298edd9515bSthomasraoux Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>( 299edd9515bSthomasraoux op.getLoc(), type, op.source(), op.indices(), b.getIndexAttr(*stride)); 300edd9515bSthomasraoux valueMapping[op.getResult()] = load; 301edd9515bSthomasraoux } 302edd9515bSthomasraoux 303edd9515bSthomasraoux static void convertTransferWriteOp(vector::TransferWriteOp op, 304edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 305edd9515bSthomasraoux assert(transferWriteSupportsMMAMatrixType(op)); 306edd9515bSthomasraoux Optional<int64_t> stride = 307edd9515bSthomasraoux getMemrefConstantHorizontalStride(op.getShapedType()); 308edd9515bSthomasraoux assert(stride); 309edd9515bSthomasraoux OpBuilder b(op); 310edd9515bSthomasraoux Value matrix = valueMapping.find(op.vector())->second; 311edd9515bSthomasraoux b.create<gpu::SubgroupMmaStoreMatrixOp>( 312edd9515bSthomasraoux op.getLoc(), matrix, op.source(), op.indices(), b.getIndexAttr(*stride)); 313edd9515bSthomasraoux op.erase(); 314edd9515bSthomasraoux } 315edd9515bSthomasraoux 316edd9515bSthomasraoux static void convertContractOp(vector::ContractionOp op, 317edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 318edd9515bSthomasraoux OpBuilder b(op); 319edd9515bSthomasraoux Value opA = valueMapping.find(op.lhs())->second; 320edd9515bSthomasraoux Value opB = valueMapping.find(op.rhs())->second; 321edd9515bSthomasraoux Value opC = valueMapping.find(op.acc())->second; 322edd9515bSthomasraoux Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(), 323edd9515bSthomasraoux opA, opB, opC); 324edd9515bSthomasraoux valueMapping[op.getResult()] = matmul; 325edd9515bSthomasraoux } 326edd9515bSthomasraoux 3276413226dSthomasraoux /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op. 328*a54f4eaeSMogball static void convertConstantOp(arith::ConstantOp op, 3296413226dSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 3306413226dSthomasraoux assert(constantSupportsMMAMatrixType(op)); 3316413226dSthomasraoux OpBuilder b(op); 332*a54f4eaeSMogball Attribute splat = op.value().cast<SplatElementsAttr>().getSplatValue(); 3336413226dSthomasraoux auto scalarConstant = 334*a54f4eaeSMogball b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat); 3356413226dSthomasraoux const char *fragType = inferFragType(op); 3366413226dSthomasraoux auto vecType = op.getType().cast<VectorType>(); 3376413226dSthomasraoux gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 3386413226dSthomasraoux vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 3396413226dSthomasraoux auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 3406413226dSthomasraoux scalarConstant); 3416413226dSthomasraoux valueMapping[op.getResult()] = matrix; 3426413226dSthomasraoux } 3436413226dSthomasraoux 34443928419Sthomasraoux /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op. 34543928419Sthomasraoux static void convertBroadcastOp(vector::BroadcastOp op, 34643928419Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 34743928419Sthomasraoux assert(broadcastSupportsMMAMatrixType(op)); 34843928419Sthomasraoux OpBuilder b(op); 34943928419Sthomasraoux const char *fragType = inferFragType(op); 35043928419Sthomasraoux auto vecType = op.getVectorType(); 35143928419Sthomasraoux gpu::MMAMatrixType type = gpu::MMAMatrixType::get( 35243928419Sthomasraoux vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType)); 35343928419Sthomasraoux auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type, 35443928419Sthomasraoux op.source()); 35543928419Sthomasraoux valueMapping[op.getResult()] = matrix; 35643928419Sthomasraoux } 35743928419Sthomasraoux 3581a865592Sthomasraoux // Replace ForOp with a new ForOp with extra operands. The YieldOp is not 3591a865592Sthomasraoux // updated and needs to be updated separatly for the loop to be correct. 3601a865592Sthomasraoux static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop, 3611a865592Sthomasraoux ValueRange newIterOperands) { 3621a865592Sthomasraoux // Create a new loop before the existing one, with the extra operands. 3631a865592Sthomasraoux OpBuilder::InsertionGuard g(b); 3641a865592Sthomasraoux b.setInsertionPoint(loop); 3651a865592Sthomasraoux auto operands = llvm::to_vector<4>(loop.getIterOperands()); 3661a865592Sthomasraoux operands.append(newIterOperands.begin(), newIterOperands.end()); 3671a865592Sthomasraoux scf::ForOp newLoop = 3681a865592Sthomasraoux b.create<scf::ForOp>(loop.getLoc(), loop.lowerBound(), loop.upperBound(), 3691a865592Sthomasraoux loop.step(), operands); 3701a865592Sthomasraoux newLoop.getBody()->erase(); 3711a865592Sthomasraoux newLoop.getLoopBody().getBlocks().splice( 3721a865592Sthomasraoux newLoop.getLoopBody().getBlocks().begin(), 3731a865592Sthomasraoux loop.getLoopBody().getBlocks()); 3741a865592Sthomasraoux for (auto operand : newIterOperands) 3751a865592Sthomasraoux newLoop.getBody()->addArgument(operand.getType()); 3761a865592Sthomasraoux 3771a865592Sthomasraoux for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front( 3781a865592Sthomasraoux loop.getNumResults()))) 3791a865592Sthomasraoux std::get<0>(it).replaceAllUsesWith(std::get<1>(it)); 3801a865592Sthomasraoux loop.erase(); 3811a865592Sthomasraoux return newLoop; 3821a865592Sthomasraoux } 3831a865592Sthomasraoux 3841a865592Sthomasraoux static void convertForOp(scf::ForOp op, 3851a865592Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 3861a865592Sthomasraoux SmallVector<Value> newOperands; 3871a865592Sthomasraoux SmallVector<std::pair<size_t, size_t>> argMapping; 3881a865592Sthomasraoux for (auto operand : llvm::enumerate(op.getIterOperands())) { 3891a865592Sthomasraoux auto it = valueMapping.find(operand.value()); 3901a865592Sthomasraoux if (it == valueMapping.end()) 3911a865592Sthomasraoux continue; 3921a865592Sthomasraoux argMapping.push_back(std::make_pair( 3931a865592Sthomasraoux operand.index(), op.getNumIterOperands() + newOperands.size())); 3941a865592Sthomasraoux newOperands.push_back(it->second); 3951a865592Sthomasraoux } 3961a865592Sthomasraoux OpBuilder b(op); 3971a865592Sthomasraoux scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands); 3981a865592Sthomasraoux Block &loopBody = *newForOp.getBody(); 3991a865592Sthomasraoux for (auto mapping : argMapping) { 4001a865592Sthomasraoux valueMapping[newForOp.getResult(mapping.first)] = 4011a865592Sthomasraoux newForOp.getResult(mapping.second); 4021a865592Sthomasraoux valueMapping[loopBody.getArgument(mapping.first + 4031a865592Sthomasraoux newForOp.getNumInductionVars())] = 4041a865592Sthomasraoux loopBody.getArgument(mapping.second + newForOp.getNumInductionVars()); 4051a865592Sthomasraoux } 4061a865592Sthomasraoux } 4071a865592Sthomasraoux 4081a865592Sthomasraoux static void convertYieldOp(scf::YieldOp op, 4091a865592Sthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 4101a865592Sthomasraoux OpBuilder b(op); 4111a865592Sthomasraoux auto loop = cast<scf::ForOp>(op->getParentOp()); 4121a865592Sthomasraoux auto yieldOperands = llvm::to_vector<4>(op.getOperands()); 4131a865592Sthomasraoux for (auto operand : llvm::enumerate(op.getOperands())) { 4141a865592Sthomasraoux auto it = valueMapping.find(operand.value()); 4151a865592Sthomasraoux if (it == valueMapping.end()) 4161a865592Sthomasraoux continue; 4171a865592Sthomasraoux // Replace the yield of old value with the for op argument to make it easier 4181a865592Sthomasraoux // to remove the dead code. 4191a865592Sthomasraoux yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()]; 4201a865592Sthomasraoux yieldOperands.push_back(it->second); 4211a865592Sthomasraoux } 4221a865592Sthomasraoux b.create<scf::YieldOp>(op.getLoc(), yieldOperands); 4231a865592Sthomasraoux op.erase(); 4241a865592Sthomasraoux } 4251a865592Sthomasraoux 426edd9515bSthomasraoux namespace mlir { 427edd9515bSthomasraoux 428edd9515bSthomasraoux void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns) { 429edd9515bSthomasraoux patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( 430edd9515bSthomasraoux patterns.getContext()); 431edd9515bSthomasraoux } 432edd9515bSthomasraoux 433edd9515bSthomasraoux void convertVectorToMMAOps(FuncOp funcOp) { 434edd9515bSthomasraoux SetVector<Operation *> ops = getOpToConvert(funcOp); 435edd9515bSthomasraoux llvm::DenseMap<Value, Value> valueMapping; 436edd9515bSthomasraoux for (Operation *op : ops) { 437edd9515bSthomasraoux if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { 438edd9515bSthomasraoux convertTransferReadOp(transferRead, valueMapping); 439edd9515bSthomasraoux } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { 440edd9515bSthomasraoux convertTransferWriteOp(transferWrite, valueMapping); 441edd9515bSthomasraoux } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { 442edd9515bSthomasraoux convertContractOp(contractOp, valueMapping); 443*a54f4eaeSMogball } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) { 4446413226dSthomasraoux convertConstantOp(constantOp, valueMapping); 44543928419Sthomasraoux } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) { 44643928419Sthomasraoux convertBroadcastOp(broadcastOp, valueMapping); 4471a865592Sthomasraoux } else if (auto forOp = dyn_cast<scf::ForOp>(op)) { 4481a865592Sthomasraoux convertForOp(forOp, valueMapping); 4491a865592Sthomasraoux } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) { 4501a865592Sthomasraoux convertYieldOp(yiledOp, valueMapping); 451edd9515bSthomasraoux } 452edd9515bSthomasraoux } 453edd9515bSthomasraoux } 454edd9515bSthomasraoux 455edd9515bSthomasraoux } // namespace mlir 456edd9515bSthomasraoux namespace { 457edd9515bSthomasraoux 458edd9515bSthomasraoux struct ConvertVectorToGPUPass 459edd9515bSthomasraoux : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> { 460edd9515bSthomasraoux void runOnFunction() override { 461edd9515bSthomasraoux RewritePatternSet patterns(getFunction().getContext()); 462edd9515bSthomasraoux populatePrepareVectorToMMAPatterns(patterns); 463edd9515bSthomasraoux (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 464edd9515bSthomasraoux 465edd9515bSthomasraoux convertVectorToMMAOps(getFunction()); 466edd9515bSthomasraoux } 467edd9515bSthomasraoux }; 468edd9515bSthomasraoux 469edd9515bSthomasraoux } // namespace 470edd9515bSthomasraoux 471edd9515bSthomasraoux std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass() { 472edd9515bSthomasraoux return std::make_unique<ConvertVectorToGPUPass>(); 473edd9515bSthomasraoux } 474