1edd9515bSthomasraoux //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===//
2edd9515bSthomasraoux //
3edd9515bSthomasraoux // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4edd9515bSthomasraoux // See https://llvm.org/LICENSE.txt for license information.
5edd9515bSthomasraoux // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6edd9515bSthomasraoux //
7edd9515bSthomasraoux //===----------------------------------------------------------------------===//
8edd9515bSthomasraoux //
9edd9515bSthomasraoux // This file implements lowering of vector operations to GPU dialect ops.
10edd9515bSthomasraoux //
11edd9515bSthomasraoux //===----------------------------------------------------------------------===//
12edd9515bSthomasraoux 
13edd9515bSthomasraoux #include <type_traits>
14edd9515bSthomasraoux 
15edd9515bSthomasraoux #include "mlir/Conversion/VectorToGPU/VectorToGPU.h"
16edd9515bSthomasraoux 
17edd9515bSthomasraoux #include "../PassDetail.h"
18edd9515bSthomasraoux #include "mlir/Analysis/SliceAnalysis.h"
19*a54f4eaeSMogball #include "mlir/Dialect/Arithmetic/IR/Arithmetic.h"
20edd9515bSthomasraoux #include "mlir/Dialect/GPU/GPUDialect.h"
2166f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h"
221a865592Sthomasraoux #include "mlir/Dialect/SCF/SCF.h"
23edd9515bSthomasraoux #include "mlir/Dialect/Utils/StructuredOpsUtils.h"
24edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorOps.h"
25edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorUtils.h"
26edd9515bSthomasraoux #include "mlir/IR/Builders.h"
27edd9515bSthomasraoux #include "mlir/Pass/Pass.h"
28edd9515bSthomasraoux #include "mlir/Transforms/GreedyPatternRewriteDriver.h"
29edd9515bSthomasraoux #include "mlir/Transforms/Passes.h"
30edd9515bSthomasraoux 
31edd9515bSthomasraoux using namespace mlir;
32edd9515bSthomasraoux 
33edd9515bSthomasraoux // Return true if the contract op can be convert to MMA matmul.
34edd9515bSthomasraoux static bool contractSupportsMMAMatrixType(vector::ContractionOp contract) {
35edd9515bSthomasraoux   if (llvm::size(contract.masks()) != 0)
36edd9515bSthomasraoux     return false;
37edd9515bSthomasraoux 
38edd9515bSthomasraoux   using MapList = ArrayRef<ArrayRef<AffineExpr>>;
39edd9515bSthomasraoux   auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
40edd9515bSthomasraoux   AffineExpr m, n, k;
41edd9515bSthomasraoux   bindDims(contract.getContext(), m, n, k);
42edd9515bSthomasraoux   auto iteratorTypes = contract.iterator_types().getValue();
43edd9515bSthomasraoux   if (!(isParallelIterator(iteratorTypes[0]) &&
44edd9515bSthomasraoux         isParallelIterator(iteratorTypes[1]) &&
45edd9515bSthomasraoux         isReductionIterator(iteratorTypes[2])))
46edd9515bSthomasraoux     return false;
47edd9515bSthomasraoux 
48edd9515bSthomasraoux   // The contract needs to represent a matmul to be able to convert to
49edd9515bSthomasraoux   // MMAMatrix matmul.
50edd9515bSthomasraoux   if (contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}}))
51edd9515bSthomasraoux     return false;
52edd9515bSthomasraoux 
53edd9515bSthomasraoux   // Check that the size matches what is natively supported.
54edd9515bSthomasraoux   VectorType lhsType = contract.lhs().getType().cast<VectorType>();
55edd9515bSthomasraoux   VectorType rhsType = contract.rhs().getType().cast<VectorType>();
56edd9515bSthomasraoux   VectorType accType = contract.acc().getType().cast<VectorType>();
57edd9515bSthomasraoux 
58edd9515bSthomasraoux   std::tuple<int, int, int> dim(lhsType.getDimSize(0), rhsType.getDimSize(1),
59edd9515bSthomasraoux                                 lhsType.getDimSize(1));
60edd9515bSthomasraoux   if (lhsType.getElementType().isInteger(8) &&
61edd9515bSthomasraoux       rhsType.getElementType().isInteger(8) &&
62edd9515bSthomasraoux       accType.getElementType().isInteger(32) &&
63edd9515bSthomasraoux       (dim == std::make_tuple(8, 8, 32) || dim == std::make_tuple(16, 16, 32) ||
64edd9515bSthomasraoux        dim == std::make_tuple(16, 8, 32)))
65edd9515bSthomasraoux     return true;
66edd9515bSthomasraoux 
67edd9515bSthomasraoux   if (lhsType.getElementType().isF16() && rhsType.getElementType().isF16() &&
68edd9515bSthomasraoux       (accType.getElementType().isF16() || accType.getElementType().isF32()) &&
69edd9515bSthomasraoux       (dim == std::make_tuple(8, 8, 16) || dim == std::make_tuple(16, 16, 16) ||
70edd9515bSthomasraoux        dim == std::make_tuple(16, 8, 16)))
71edd9515bSthomasraoux     return true;
72edd9515bSthomasraoux   return false;
73edd9515bSthomasraoux }
74edd9515bSthomasraoux 
75edd9515bSthomasraoux // Return the stide for the dimension 0 of |type| if it is a memref and has a
76edd9515bSthomasraoux // constant stride.
77edd9515bSthomasraoux static llvm::Optional<int64_t>
78edd9515bSthomasraoux getMemrefConstantHorizontalStride(ShapedType type) {
79edd9515bSthomasraoux   auto memrefType = type.dyn_cast<MemRefType>();
80edd9515bSthomasraoux   if (!memrefType)
81edd9515bSthomasraoux     return false;
82edd9515bSthomasraoux   int64_t offset = 0;
83edd9515bSthomasraoux   SmallVector<int64_t, 2> strides;
84edd9515bSthomasraoux   if (failed(getStridesAndOffset(memrefType, strides, offset)))
85edd9515bSthomasraoux     return llvm::None;
86edd9515bSthomasraoux   if (strides[0] == ShapedType::kDynamicStrideOrOffset)
87edd9515bSthomasraoux     return llvm::None;
88edd9515bSthomasraoux   return strides[0];
89edd9515bSthomasraoux }
90edd9515bSthomasraoux 
91edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix load.
92edd9515bSthomasraoux static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) {
93edd9515bSthomasraoux   if (readOp.mask() || readOp.hasOutOfBoundsDim() ||
94edd9515bSthomasraoux       readOp.getVectorType().getRank() != 2)
95edd9515bSthomasraoux     return false;
96edd9515bSthomasraoux   if (!getMemrefConstantHorizontalStride(readOp.getShapedType()))
97edd9515bSthomasraoux     return false;
98edd9515bSthomasraoux   // TODO: Support transpose once it is added to GPU dialect ops.
99edd9515bSthomasraoux   if (!readOp.permutation_map().isMinorIdentity())
100edd9515bSthomasraoux     return false;
101edd9515bSthomasraoux   return true;
102edd9515bSthomasraoux }
103edd9515bSthomasraoux 
104edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix store.
105edd9515bSthomasraoux static bool
106edd9515bSthomasraoux transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) {
107edd9515bSthomasraoux   if (writeOp.mask() || writeOp.hasOutOfBoundsDim() ||
108edd9515bSthomasraoux       writeOp.getVectorType().getRank() != 2)
109edd9515bSthomasraoux     return false;
110edd9515bSthomasraoux   if (!getMemrefConstantHorizontalStride(writeOp.getShapedType()))
111edd9515bSthomasraoux     return false;
112edd9515bSthomasraoux   // TODO: Support transpose once it is added to GPU dialect ops.
113edd9515bSthomasraoux   if (!writeOp.permutation_map().isMinorIdentity())
114edd9515bSthomasraoux     return false;
115edd9515bSthomasraoux   return true;
116edd9515bSthomasraoux }
117edd9515bSthomasraoux 
1186413226dSthomasraoux /// Return true if the constant is a splat to a 2D vector so that it can be
1196413226dSthomasraoux /// converted to a MMA constant matrix op.
120*a54f4eaeSMogball static bool constantSupportsMMAMatrixType(arith::ConstantOp constantOp) {
1216413226dSthomasraoux   auto vecType = constantOp.getType().dyn_cast<VectorType>();
1226413226dSthomasraoux   if (!vecType || vecType.getRank() != 2)
1236413226dSthomasraoux     return false;
1246413226dSthomasraoux   return constantOp.value().isa<SplatElementsAttr>();
1256413226dSthomasraoux }
1266413226dSthomasraoux 
12743928419Sthomasraoux /// Return true if this is a broadcast from scalar to a 2D vector.
12843928419Sthomasraoux static bool broadcastSupportsMMAMatrixType(vector::BroadcastOp broadcastOp) {
12943928419Sthomasraoux   return broadcastOp.getVectorType().getRank() == 2 &&
13043928419Sthomasraoux          broadcastOp.source().getType().isa<FloatType>();
13143928419Sthomasraoux }
13243928419Sthomasraoux 
133edd9515bSthomasraoux static bool supportsMMaMatrixType(Operation *op) {
1341a865592Sthomasraoux   if (isa<scf::ForOp, scf::YieldOp>(op))
1351a865592Sthomasraoux     return true;
136edd9515bSthomasraoux   if (auto transferRead = dyn_cast<vector::TransferReadOp>(op))
137edd9515bSthomasraoux     return transferReadSupportsMMAMatrixType(transferRead);
138edd9515bSthomasraoux   if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op))
139edd9515bSthomasraoux     return transferWriteSupportsMMAMatrixType(transferWrite);
140edd9515bSthomasraoux   if (auto contract = dyn_cast<vector::ContractionOp>(op))
141edd9515bSthomasraoux     return contractSupportsMMAMatrixType(contract);
142*a54f4eaeSMogball   if (auto constant = dyn_cast<arith::ConstantOp>(op))
1436413226dSthomasraoux     return constantSupportsMMAMatrixType(constant);
14443928419Sthomasraoux   if (auto broadcast = dyn_cast<vector::BroadcastOp>(op))
14543928419Sthomasraoux     return broadcastSupportsMMAMatrixType(broadcast);
146edd9515bSthomasraoux   return false;
147edd9515bSthomasraoux }
148edd9515bSthomasraoux 
149edd9515bSthomasraoux // Analyze slice of operations based on convert op to figure out if the whole
150edd9515bSthomasraoux // slice can be converted to MMA operations.
151edd9515bSthomasraoux static SetVector<Operation *> getOpToConvert(mlir::Operation *op) {
152edd9515bSthomasraoux   auto hasVectorDest = [](Operation *op) {
15343928419Sthomasraoux     return llvm::any_of(op->getResultTypes(),
15443928419Sthomasraoux                         [](Type t) { return t.isa<VectorType>(); });
15543928419Sthomasraoux   };
15643928419Sthomasraoux   auto hasVectorSrc = [](Operation *op) {
15743928419Sthomasraoux     return llvm::any_of(op->getOperandTypes(),
158edd9515bSthomasraoux                         [](Type t) { return t.isa<VectorType>(); });
159edd9515bSthomasraoux   };
160edd9515bSthomasraoux   SetVector<Operation *> opToConvert;
161edd9515bSthomasraoux   op->walk([&](vector::ContractionOp contract) {
162edd9515bSthomasraoux     if (opToConvert.contains(contract.getOperation()))
163edd9515bSthomasraoux       return;
164edd9515bSthomasraoux     SetVector<Operation *> dependentOps =
16543928419Sthomasraoux         getSlice(contract, hasVectorDest, hasVectorSrc);
166edd9515bSthomasraoux     // If any instruction cannot use MMA matrix type drop the whole
167edd9515bSthomasraoux     // chaine. MMA matrix are stored in an opaque type so they cannot be used
168edd9515bSthomasraoux     // by all operations.
169edd9515bSthomasraoux     if (llvm::any_of(dependentOps,
170edd9515bSthomasraoux                      [](Operation *op) { return !supportsMMaMatrixType(op); }))
171edd9515bSthomasraoux       return;
172edd9515bSthomasraoux     opToConvert.insert(dependentOps.begin(), dependentOps.end());
173edd9515bSthomasraoux   });
174edd9515bSthomasraoux   return opToConvert;
175edd9515bSthomasraoux }
176edd9515bSthomasraoux 
177edd9515bSthomasraoux namespace {
178edd9515bSthomasraoux // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted
179edd9515bSthomasraoux // to MMA matmul.
180edd9515bSthomasraoux struct PrepareContractToGPUMMA
181edd9515bSthomasraoux     : public OpRewritePattern<vector::ContractionOp> {
182edd9515bSthomasraoux   using OpRewritePattern<vector::ContractionOp>::OpRewritePattern;
183edd9515bSthomasraoux 
184edd9515bSthomasraoux   LogicalResult matchAndRewrite(vector::ContractionOp op,
185edd9515bSthomasraoux                                 PatternRewriter &rewriter) const override {
186edd9515bSthomasraoux     Location loc = op.getLoc();
187edd9515bSthomasraoux     Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc();
188edd9515bSthomasraoux 
189edd9515bSthomasraoux     // Set up the parallel/reduction structure in right form.
190edd9515bSthomasraoux     using MapList = ArrayRef<ArrayRef<AffineExpr>>;
191edd9515bSthomasraoux     auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); };
192edd9515bSthomasraoux     AffineExpr m, n, k;
193edd9515bSthomasraoux     bindDims(rewriter.getContext(), m, n, k);
194edd9515bSthomasraoux     static constexpr std::array<int64_t, 2> perm = {1, 0};
195edd9515bSthomasraoux     auto iteratorTypes = op.iterator_types().getValue();
196edd9515bSthomasraoux     SmallVector<AffineMap, 4> maps = op.getIndexingMaps();
197edd9515bSthomasraoux     if (!(isParallelIterator(iteratorTypes[0]) &&
198edd9515bSthomasraoux           isParallelIterator(iteratorTypes[1]) &&
199edd9515bSthomasraoux           isReductionIterator(iteratorTypes[2])))
200edd9515bSthomasraoux       return failure();
201edd9515bSthomasraoux     //
202edd9515bSthomasraoux     // Two outer parallel, one inner reduction (matmat flavor).
203edd9515bSthomasraoux     //
204edd9515bSthomasraoux     if (maps == infer({{m, k}, {k, n}, {m, n}})) {
205edd9515bSthomasraoux       // This is the classical row-major matmul, nothing to do.
206edd9515bSthomasraoux       return failure();
207edd9515bSthomasraoux     }
208edd9515bSthomasraoux     if (maps == infer({{m, k}, {n, k}, {m, n}})) {
209edd9515bSthomasraoux       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
210edd9515bSthomasraoux     } else if (maps == infer({{k, m}, {k, n}, {m, n}})) {
211edd9515bSthomasraoux       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
212edd9515bSthomasraoux     } else if (maps == infer({{k, m}, {n, k}, {m, n}})) {
213edd9515bSthomasraoux       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
214edd9515bSthomasraoux       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
215edd9515bSthomasraoux     } else if (maps == infer({{m, k}, {k, n}, {n, m}})) {
216edd9515bSthomasraoux       std::swap(rhs, lhs);
217edd9515bSthomasraoux       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
218edd9515bSthomasraoux       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
219edd9515bSthomasraoux     } else if (maps == infer({{m, k}, {n, k}, {n, m}})) {
220edd9515bSthomasraoux       std::swap(rhs, lhs);
221edd9515bSthomasraoux       rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm);
222edd9515bSthomasraoux     } else if (maps == infer({{k, m}, {k, n}, {n, m}})) {
223edd9515bSthomasraoux       std::swap(lhs, rhs);
224edd9515bSthomasraoux       lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm);
225edd9515bSthomasraoux     } else if (maps == infer({{k, m}, {n, k}, {n, m}})) {
226edd9515bSthomasraoux       std::swap(lhs, rhs);
227edd9515bSthomasraoux     } else {
228edd9515bSthomasraoux       return failure();
229edd9515bSthomasraoux     }
230edd9515bSthomasraoux     rewriter.replaceOpWithNewOp<vector::ContractionOp>(
231edd9515bSthomasraoux         op, lhs, rhs, res,
232edd9515bSthomasraoux         rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})),
233edd9515bSthomasraoux         op.iterator_types());
234edd9515bSthomasraoux     return success();
235edd9515bSthomasraoux   }
236edd9515bSthomasraoux };
237edd9515bSthomasraoux 
238edd9515bSthomasraoux // Merge transpose op into the transfer read op. Transpose are not supported on
239edd9515bSthomasraoux // MMA types but MMA load can transpose the matrix when loading.
240edd9515bSthomasraoux struct CombineTransferReadOpTranspose final
241edd9515bSthomasraoux     : public OpRewritePattern<vector::TransposeOp> {
242edd9515bSthomasraoux   using OpRewritePattern<vector::TransposeOp>::OpRewritePattern;
243edd9515bSthomasraoux 
244edd9515bSthomasraoux   LogicalResult matchAndRewrite(vector::TransposeOp op,
245edd9515bSthomasraoux                                 PatternRewriter &rewriter) const override {
246edd9515bSthomasraoux     auto transferReadOp = op.vector().getDefiningOp<vector::TransferReadOp>();
247edd9515bSthomasraoux     if (!transferReadOp)
248edd9515bSthomasraoux       return failure();
249edd9515bSthomasraoux     if (transferReadOp.mask() || transferReadOp.hasOutOfBoundsDim())
250edd9515bSthomasraoux       return failure();
251edd9515bSthomasraoux     SmallVector<int64_t, 2> perm;
252edd9515bSthomasraoux     op.getTransp(perm);
253edd9515bSthomasraoux     SmallVector<unsigned, 2> permU;
254edd9515bSthomasraoux     for (int64_t o : perm)
255edd9515bSthomasraoux       permU.push_back(unsigned(o));
256edd9515bSthomasraoux     AffineMap permutationMap =
257edd9515bSthomasraoux         AffineMap::getPermutationMap(permU, op.getContext());
258edd9515bSthomasraoux     AffineMap newMap = permutationMap.compose(transferReadOp.permutation_map());
259edd9515bSthomasraoux     rewriter.replaceOpWithNewOp<vector::TransferReadOp>(
260edd9515bSthomasraoux         op, op.getType(), transferReadOp.source(), transferReadOp.indices(),
261edd9515bSthomasraoux         newMap, transferReadOp.padding(), transferReadOp.mask(),
262edd9515bSthomasraoux         transferReadOp.in_boundsAttr());
263edd9515bSthomasraoux     return success();
264edd9515bSthomasraoux   }
265edd9515bSthomasraoux };
266edd9515bSthomasraoux 
267edd9515bSthomasraoux } // namespace
268edd9515bSthomasraoux 
269edd9515bSthomasraoux // MMA types have different layout based on how they are used in matmul ops.
2706413226dSthomasraoux // Figure the right layout to use by looking at op uses.
271edd9515bSthomasraoux // TODO: Change the GPU dialect to abstract the layout at the this level and
272edd9515bSthomasraoux // only care about it during lowering to NVVM.
2736413226dSthomasraoux template <typename OpTy>
2746413226dSthomasraoux static const char *inferFragType(OpTy op) {
275edd9515bSthomasraoux   for (Operation *users : op->getUsers()) {
276edd9515bSthomasraoux     auto contract = dyn_cast<vector::ContractionOp>(users);
277edd9515bSthomasraoux     if (!contract)
278edd9515bSthomasraoux       continue;
279edd9515bSthomasraoux     if (contract.lhs() == op.getResult())
280edd9515bSthomasraoux       return "AOp";
281edd9515bSthomasraoux     if (contract.rhs() == op.getResult())
282edd9515bSthomasraoux       return "BOp";
283edd9515bSthomasraoux   }
284edd9515bSthomasraoux   return "COp";
285edd9515bSthomasraoux }
286edd9515bSthomasraoux 
287edd9515bSthomasraoux static void convertTransferReadOp(vector::TransferReadOp op,
288edd9515bSthomasraoux                                   llvm::DenseMap<Value, Value> &valueMapping) {
289edd9515bSthomasraoux   assert(transferReadSupportsMMAMatrixType(op));
290edd9515bSthomasraoux   Optional<int64_t> stride =
291edd9515bSthomasraoux       getMemrefConstantHorizontalStride(op.getShapedType());
292edd9515bSthomasraoux   assert(stride);
293edd9515bSthomasraoux   const char *fragType = inferFragType(op);
294edd9515bSthomasraoux   gpu::MMAMatrixType type =
295edd9515bSthomasraoux       gpu::MMAMatrixType::get(op.getVectorType().getShape(),
296edd9515bSthomasraoux                               op.getVectorType().getElementType(), fragType);
297edd9515bSthomasraoux   OpBuilder b(op);
298edd9515bSthomasraoux   Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>(
299edd9515bSthomasraoux       op.getLoc(), type, op.source(), op.indices(), b.getIndexAttr(*stride));
300edd9515bSthomasraoux   valueMapping[op.getResult()] = load;
301edd9515bSthomasraoux }
302edd9515bSthomasraoux 
303edd9515bSthomasraoux static void convertTransferWriteOp(vector::TransferWriteOp op,
304edd9515bSthomasraoux                                    llvm::DenseMap<Value, Value> &valueMapping) {
305edd9515bSthomasraoux   assert(transferWriteSupportsMMAMatrixType(op));
306edd9515bSthomasraoux   Optional<int64_t> stride =
307edd9515bSthomasraoux       getMemrefConstantHorizontalStride(op.getShapedType());
308edd9515bSthomasraoux   assert(stride);
309edd9515bSthomasraoux   OpBuilder b(op);
310edd9515bSthomasraoux   Value matrix = valueMapping.find(op.vector())->second;
311edd9515bSthomasraoux   b.create<gpu::SubgroupMmaStoreMatrixOp>(
312edd9515bSthomasraoux       op.getLoc(), matrix, op.source(), op.indices(), b.getIndexAttr(*stride));
313edd9515bSthomasraoux   op.erase();
314edd9515bSthomasraoux }
315edd9515bSthomasraoux 
316edd9515bSthomasraoux static void convertContractOp(vector::ContractionOp op,
317edd9515bSthomasraoux                               llvm::DenseMap<Value, Value> &valueMapping) {
318edd9515bSthomasraoux   OpBuilder b(op);
319edd9515bSthomasraoux   Value opA = valueMapping.find(op.lhs())->second;
320edd9515bSthomasraoux   Value opB = valueMapping.find(op.rhs())->second;
321edd9515bSthomasraoux   Value opC = valueMapping.find(op.acc())->second;
322edd9515bSthomasraoux   Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(),
323edd9515bSthomasraoux                                                      opA, opB, opC);
324edd9515bSthomasraoux   valueMapping[op.getResult()] = matmul;
325edd9515bSthomasraoux }
326edd9515bSthomasraoux 
3276413226dSthomasraoux /// Convert a 2D splat ConstantOp to a SubgroupMmaConstantMatrix op.
328*a54f4eaeSMogball static void convertConstantOp(arith::ConstantOp op,
3296413226dSthomasraoux                               llvm::DenseMap<Value, Value> &valueMapping) {
3306413226dSthomasraoux   assert(constantSupportsMMAMatrixType(op));
3316413226dSthomasraoux   OpBuilder b(op);
332*a54f4eaeSMogball   Attribute splat = op.value().cast<SplatElementsAttr>().getSplatValue();
3336413226dSthomasraoux   auto scalarConstant =
334*a54f4eaeSMogball       b.create<arith::ConstantOp>(op.getLoc(), splat.getType(), splat);
3356413226dSthomasraoux   const char *fragType = inferFragType(op);
3366413226dSthomasraoux   auto vecType = op.getType().cast<VectorType>();
3376413226dSthomasraoux   gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
3386413226dSthomasraoux       vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
3396413226dSthomasraoux   auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
3406413226dSthomasraoux                                                            scalarConstant);
3416413226dSthomasraoux   valueMapping[op.getResult()] = matrix;
3426413226dSthomasraoux }
3436413226dSthomasraoux 
34443928419Sthomasraoux /// Convert a vector.broadcast from scalar to a SubgroupMmaConstantMatrix op.
34543928419Sthomasraoux static void convertBroadcastOp(vector::BroadcastOp op,
34643928419Sthomasraoux                                llvm::DenseMap<Value, Value> &valueMapping) {
34743928419Sthomasraoux   assert(broadcastSupportsMMAMatrixType(op));
34843928419Sthomasraoux   OpBuilder b(op);
34943928419Sthomasraoux   const char *fragType = inferFragType(op);
35043928419Sthomasraoux   auto vecType = op.getVectorType();
35143928419Sthomasraoux   gpu::MMAMatrixType type = gpu::MMAMatrixType::get(
35243928419Sthomasraoux       vecType.getShape(), vecType.getElementType(), llvm::StringRef(fragType));
35343928419Sthomasraoux   auto matrix = b.create<gpu::SubgroupMmaConstantMatrixOp>(op.getLoc(), type,
35443928419Sthomasraoux                                                            op.source());
35543928419Sthomasraoux   valueMapping[op.getResult()] = matrix;
35643928419Sthomasraoux }
35743928419Sthomasraoux 
3581a865592Sthomasraoux // Replace ForOp with a new ForOp with extra operands. The YieldOp is not
3591a865592Sthomasraoux // updated and needs to be updated separatly for the loop to be correct.
3601a865592Sthomasraoux static scf::ForOp replaceForOpWithNewSignature(OpBuilder &b, scf::ForOp loop,
3611a865592Sthomasraoux                                                ValueRange newIterOperands) {
3621a865592Sthomasraoux   // Create a new loop before the existing one, with the extra operands.
3631a865592Sthomasraoux   OpBuilder::InsertionGuard g(b);
3641a865592Sthomasraoux   b.setInsertionPoint(loop);
3651a865592Sthomasraoux   auto operands = llvm::to_vector<4>(loop.getIterOperands());
3661a865592Sthomasraoux   operands.append(newIterOperands.begin(), newIterOperands.end());
3671a865592Sthomasraoux   scf::ForOp newLoop =
3681a865592Sthomasraoux       b.create<scf::ForOp>(loop.getLoc(), loop.lowerBound(), loop.upperBound(),
3691a865592Sthomasraoux                            loop.step(), operands);
3701a865592Sthomasraoux   newLoop.getBody()->erase();
3711a865592Sthomasraoux   newLoop.getLoopBody().getBlocks().splice(
3721a865592Sthomasraoux       newLoop.getLoopBody().getBlocks().begin(),
3731a865592Sthomasraoux       loop.getLoopBody().getBlocks());
3741a865592Sthomasraoux   for (auto operand : newIterOperands)
3751a865592Sthomasraoux     newLoop.getBody()->addArgument(operand.getType());
3761a865592Sthomasraoux 
3771a865592Sthomasraoux   for (auto it : llvm::zip(loop.getResults(), newLoop.getResults().take_front(
3781a865592Sthomasraoux                                                   loop.getNumResults())))
3791a865592Sthomasraoux     std::get<0>(it).replaceAllUsesWith(std::get<1>(it));
3801a865592Sthomasraoux   loop.erase();
3811a865592Sthomasraoux   return newLoop;
3821a865592Sthomasraoux }
3831a865592Sthomasraoux 
3841a865592Sthomasraoux static void convertForOp(scf::ForOp op,
3851a865592Sthomasraoux                          llvm::DenseMap<Value, Value> &valueMapping) {
3861a865592Sthomasraoux   SmallVector<Value> newOperands;
3871a865592Sthomasraoux   SmallVector<std::pair<size_t, size_t>> argMapping;
3881a865592Sthomasraoux   for (auto operand : llvm::enumerate(op.getIterOperands())) {
3891a865592Sthomasraoux     auto it = valueMapping.find(operand.value());
3901a865592Sthomasraoux     if (it == valueMapping.end())
3911a865592Sthomasraoux       continue;
3921a865592Sthomasraoux     argMapping.push_back(std::make_pair(
3931a865592Sthomasraoux         operand.index(), op.getNumIterOperands() + newOperands.size()));
3941a865592Sthomasraoux     newOperands.push_back(it->second);
3951a865592Sthomasraoux   }
3961a865592Sthomasraoux   OpBuilder b(op);
3971a865592Sthomasraoux   scf::ForOp newForOp = replaceForOpWithNewSignature(b, op, newOperands);
3981a865592Sthomasraoux   Block &loopBody = *newForOp.getBody();
3991a865592Sthomasraoux   for (auto mapping : argMapping) {
4001a865592Sthomasraoux     valueMapping[newForOp.getResult(mapping.first)] =
4011a865592Sthomasraoux         newForOp.getResult(mapping.second);
4021a865592Sthomasraoux     valueMapping[loopBody.getArgument(mapping.first +
4031a865592Sthomasraoux                                       newForOp.getNumInductionVars())] =
4041a865592Sthomasraoux         loopBody.getArgument(mapping.second + newForOp.getNumInductionVars());
4051a865592Sthomasraoux   }
4061a865592Sthomasraoux }
4071a865592Sthomasraoux 
4081a865592Sthomasraoux static void convertYieldOp(scf::YieldOp op,
4091a865592Sthomasraoux                            llvm::DenseMap<Value, Value> &valueMapping) {
4101a865592Sthomasraoux   OpBuilder b(op);
4111a865592Sthomasraoux   auto loop = cast<scf::ForOp>(op->getParentOp());
4121a865592Sthomasraoux   auto yieldOperands = llvm::to_vector<4>(op.getOperands());
4131a865592Sthomasraoux   for (auto operand : llvm::enumerate(op.getOperands())) {
4141a865592Sthomasraoux     auto it = valueMapping.find(operand.value());
4151a865592Sthomasraoux     if (it == valueMapping.end())
4161a865592Sthomasraoux       continue;
4171a865592Sthomasraoux     // Replace the yield of old value with the for op argument to make it easier
4181a865592Sthomasraoux     // to remove the dead code.
4191a865592Sthomasraoux     yieldOperands[operand.index()] = loop.getIterOperands()[operand.index()];
4201a865592Sthomasraoux     yieldOperands.push_back(it->second);
4211a865592Sthomasraoux   }
4221a865592Sthomasraoux   b.create<scf::YieldOp>(op.getLoc(), yieldOperands);
4231a865592Sthomasraoux   op.erase();
4241a865592Sthomasraoux }
4251a865592Sthomasraoux 
426edd9515bSthomasraoux namespace mlir {
427edd9515bSthomasraoux 
428edd9515bSthomasraoux void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns) {
429edd9515bSthomasraoux   patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>(
430edd9515bSthomasraoux       patterns.getContext());
431edd9515bSthomasraoux }
432edd9515bSthomasraoux 
433edd9515bSthomasraoux void convertVectorToMMAOps(FuncOp funcOp) {
434edd9515bSthomasraoux   SetVector<Operation *> ops = getOpToConvert(funcOp);
435edd9515bSthomasraoux   llvm::DenseMap<Value, Value> valueMapping;
436edd9515bSthomasraoux   for (Operation *op : ops) {
437edd9515bSthomasraoux     if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) {
438edd9515bSthomasraoux       convertTransferReadOp(transferRead, valueMapping);
439edd9515bSthomasraoux     } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) {
440edd9515bSthomasraoux       convertTransferWriteOp(transferWrite, valueMapping);
441edd9515bSthomasraoux     } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) {
442edd9515bSthomasraoux       convertContractOp(contractOp, valueMapping);
443*a54f4eaeSMogball     } else if (auto constantOp = dyn_cast<arith::ConstantOp>(op)) {
4446413226dSthomasraoux       convertConstantOp(constantOp, valueMapping);
44543928419Sthomasraoux     } else if (auto broadcastOp = dyn_cast<vector::BroadcastOp>(op)) {
44643928419Sthomasraoux       convertBroadcastOp(broadcastOp, valueMapping);
4471a865592Sthomasraoux     } else if (auto forOp = dyn_cast<scf::ForOp>(op)) {
4481a865592Sthomasraoux       convertForOp(forOp, valueMapping);
4491a865592Sthomasraoux     } else if (auto yiledOp = dyn_cast<scf::YieldOp>(op)) {
4501a865592Sthomasraoux       convertYieldOp(yiledOp, valueMapping);
451edd9515bSthomasraoux     }
452edd9515bSthomasraoux   }
453edd9515bSthomasraoux }
454edd9515bSthomasraoux 
455edd9515bSthomasraoux } // namespace mlir
456edd9515bSthomasraoux namespace {
457edd9515bSthomasraoux 
458edd9515bSthomasraoux struct ConvertVectorToGPUPass
459edd9515bSthomasraoux     : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> {
460edd9515bSthomasraoux   void runOnFunction() override {
461edd9515bSthomasraoux     RewritePatternSet patterns(getFunction().getContext());
462edd9515bSthomasraoux     populatePrepareVectorToMMAPatterns(patterns);
463edd9515bSthomasraoux     (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns));
464edd9515bSthomasraoux 
465edd9515bSthomasraoux     convertVectorToMMAOps(getFunction());
466edd9515bSthomasraoux   }
467edd9515bSthomasraoux };
468edd9515bSthomasraoux 
469edd9515bSthomasraoux } // namespace
470edd9515bSthomasraoux 
471edd9515bSthomasraoux std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass() {
472edd9515bSthomasraoux   return std::make_unique<ConvertVectorToGPUPass>();
473edd9515bSthomasraoux }
474