1edd9515bSthomasraoux //===- VectorToGPU.cpp - Convert vector to GPU dialect ----------*- C++ -*-===// 2edd9515bSthomasraoux // 3edd9515bSthomasraoux // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4edd9515bSthomasraoux // See https://llvm.org/LICENSE.txt for license information. 5edd9515bSthomasraoux // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6edd9515bSthomasraoux // 7edd9515bSthomasraoux //===----------------------------------------------------------------------===// 8edd9515bSthomasraoux // 9edd9515bSthomasraoux // This file implements lowering of vector operations to GPU dialect ops. 10edd9515bSthomasraoux // 11edd9515bSthomasraoux //===----------------------------------------------------------------------===// 12edd9515bSthomasraoux 13edd9515bSthomasraoux #include <type_traits> 14edd9515bSthomasraoux 15edd9515bSthomasraoux #include "mlir/Conversion/VectorToGPU/VectorToGPU.h" 16edd9515bSthomasraoux 17edd9515bSthomasraoux #include "../PassDetail.h" 18edd9515bSthomasraoux #include "mlir/Analysis/SliceAnalysis.h" 19edd9515bSthomasraoux #include "mlir/Dialect/GPU/GPUDialect.h" 20*66f878ceSMatthias Springer #include "mlir/Dialect/MemRef/IR/MemRef.h" 21edd9515bSthomasraoux #include "mlir/Dialect/Utils/StructuredOpsUtils.h" 22edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorOps.h" 23edd9515bSthomasraoux #include "mlir/Dialect/Vector/VectorUtils.h" 24edd9515bSthomasraoux #include "mlir/IR/Builders.h" 25edd9515bSthomasraoux #include "mlir/Pass/Pass.h" 26edd9515bSthomasraoux #include "mlir/Transforms/GreedyPatternRewriteDriver.h" 27edd9515bSthomasraoux #include "mlir/Transforms/Passes.h" 28edd9515bSthomasraoux 29edd9515bSthomasraoux using namespace mlir; 30edd9515bSthomasraoux 31edd9515bSthomasraoux // Return true if the contract op can be convert to MMA matmul. 32edd9515bSthomasraoux static bool contractSupportsMMAMatrixType(vector::ContractionOp contract) { 33edd9515bSthomasraoux if (llvm::size(contract.masks()) != 0) 34edd9515bSthomasraoux return false; 35edd9515bSthomasraoux 36edd9515bSthomasraoux using MapList = ArrayRef<ArrayRef<AffineExpr>>; 37edd9515bSthomasraoux auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 38edd9515bSthomasraoux AffineExpr m, n, k; 39edd9515bSthomasraoux bindDims(contract.getContext(), m, n, k); 40edd9515bSthomasraoux auto iteratorTypes = contract.iterator_types().getValue(); 41edd9515bSthomasraoux if (!(isParallelIterator(iteratorTypes[0]) && 42edd9515bSthomasraoux isParallelIterator(iteratorTypes[1]) && 43edd9515bSthomasraoux isReductionIterator(iteratorTypes[2]))) 44edd9515bSthomasraoux return false; 45edd9515bSthomasraoux 46edd9515bSthomasraoux // The contract needs to represent a matmul to be able to convert to 47edd9515bSthomasraoux // MMAMatrix matmul. 48edd9515bSthomasraoux if (contract.getIndexingMaps() != infer({{m, k}, {k, n}, {m, n}})) 49edd9515bSthomasraoux return false; 50edd9515bSthomasraoux 51edd9515bSthomasraoux // Check that the size matches what is natively supported. 52edd9515bSthomasraoux VectorType lhsType = contract.lhs().getType().cast<VectorType>(); 53edd9515bSthomasraoux VectorType rhsType = contract.rhs().getType().cast<VectorType>(); 54edd9515bSthomasraoux VectorType accType = contract.acc().getType().cast<VectorType>(); 55edd9515bSthomasraoux 56edd9515bSthomasraoux std::tuple<int, int, int> dim(lhsType.getDimSize(0), rhsType.getDimSize(1), 57edd9515bSthomasraoux lhsType.getDimSize(1)); 58edd9515bSthomasraoux if (lhsType.getElementType().isInteger(8) && 59edd9515bSthomasraoux rhsType.getElementType().isInteger(8) && 60edd9515bSthomasraoux accType.getElementType().isInteger(32) && 61edd9515bSthomasraoux (dim == std::make_tuple(8, 8, 32) || dim == std::make_tuple(16, 16, 32) || 62edd9515bSthomasraoux dim == std::make_tuple(16, 8, 32))) 63edd9515bSthomasraoux return true; 64edd9515bSthomasraoux 65edd9515bSthomasraoux if (lhsType.getElementType().isF16() && rhsType.getElementType().isF16() && 66edd9515bSthomasraoux (accType.getElementType().isF16() || accType.getElementType().isF32()) && 67edd9515bSthomasraoux (dim == std::make_tuple(8, 8, 16) || dim == std::make_tuple(16, 16, 16) || 68edd9515bSthomasraoux dim == std::make_tuple(16, 8, 16))) 69edd9515bSthomasraoux return true; 70edd9515bSthomasraoux return false; 71edd9515bSthomasraoux } 72edd9515bSthomasraoux 73edd9515bSthomasraoux // Return the stide for the dimension 0 of |type| if it is a memref and has a 74edd9515bSthomasraoux // constant stride. 75edd9515bSthomasraoux static llvm::Optional<int64_t> 76edd9515bSthomasraoux getMemrefConstantHorizontalStride(ShapedType type) { 77edd9515bSthomasraoux auto memrefType = type.dyn_cast<MemRefType>(); 78edd9515bSthomasraoux if (!memrefType) 79edd9515bSthomasraoux return false; 80edd9515bSthomasraoux int64_t offset = 0; 81edd9515bSthomasraoux SmallVector<int64_t, 2> strides; 82edd9515bSthomasraoux if (failed(getStridesAndOffset(memrefType, strides, offset))) 83edd9515bSthomasraoux return llvm::None; 84edd9515bSthomasraoux if (strides[0] == ShapedType::kDynamicStrideOrOffset) 85edd9515bSthomasraoux return llvm::None; 86edd9515bSthomasraoux return strides[0]; 87edd9515bSthomasraoux } 88edd9515bSthomasraoux 89edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix load. 90edd9515bSthomasraoux static bool transferReadSupportsMMAMatrixType(vector::TransferReadOp readOp) { 91edd9515bSthomasraoux if (readOp.mask() || readOp.hasOutOfBoundsDim() || 92edd9515bSthomasraoux readOp.getVectorType().getRank() != 2) 93edd9515bSthomasraoux return false; 94edd9515bSthomasraoux if (!getMemrefConstantHorizontalStride(readOp.getShapedType())) 95edd9515bSthomasraoux return false; 96edd9515bSthomasraoux // TODO: Support transpose once it is added to GPU dialect ops. 97edd9515bSthomasraoux if (!readOp.permutation_map().isMinorIdentity()) 98edd9515bSthomasraoux return false; 99edd9515bSthomasraoux return true; 100edd9515bSthomasraoux } 101edd9515bSthomasraoux 102edd9515bSthomasraoux // Return true if the transfer op can be converted to a MMA matrix store. 103edd9515bSthomasraoux static bool 104edd9515bSthomasraoux transferWriteSupportsMMAMatrixType(vector::TransferWriteOp writeOp) { 105edd9515bSthomasraoux if (writeOp.mask() || writeOp.hasOutOfBoundsDim() || 106edd9515bSthomasraoux writeOp.getVectorType().getRank() != 2) 107edd9515bSthomasraoux return false; 108edd9515bSthomasraoux if (!getMemrefConstantHorizontalStride(writeOp.getShapedType())) 109edd9515bSthomasraoux return false; 110edd9515bSthomasraoux // TODO: Support transpose once it is added to GPU dialect ops. 111edd9515bSthomasraoux if (!writeOp.permutation_map().isMinorIdentity()) 112edd9515bSthomasraoux return false; 113edd9515bSthomasraoux return true; 114edd9515bSthomasraoux } 115edd9515bSthomasraoux 116edd9515bSthomasraoux static bool supportsMMaMatrixType(Operation *op) { 117edd9515bSthomasraoux if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) 118edd9515bSthomasraoux return transferReadSupportsMMAMatrixType(transferRead); 119edd9515bSthomasraoux if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) 120edd9515bSthomasraoux return transferWriteSupportsMMAMatrixType(transferWrite); 121edd9515bSthomasraoux if (auto contract = dyn_cast<vector::ContractionOp>(op)) 122edd9515bSthomasraoux return contractSupportsMMAMatrixType(contract); 123edd9515bSthomasraoux return false; 124edd9515bSthomasraoux } 125edd9515bSthomasraoux 126edd9515bSthomasraoux // Analyze slice of operations based on convert op to figure out if the whole 127edd9515bSthomasraoux // slice can be converted to MMA operations. 128edd9515bSthomasraoux static SetVector<Operation *> getOpToConvert(mlir::Operation *op) { 129edd9515bSthomasraoux auto hasVectorDest = [](Operation *op) { 130edd9515bSthomasraoux return op->getNumResults() == 0 || 131edd9515bSthomasraoux llvm::any_of(op->getResultTypes(), 132edd9515bSthomasraoux [](Type t) { return t.isa<VectorType>(); }); 133edd9515bSthomasraoux }; 134edd9515bSthomasraoux SetVector<Operation *> opToConvert; 135edd9515bSthomasraoux op->walk([&](vector::ContractionOp contract) { 136edd9515bSthomasraoux if (opToConvert.contains(contract.getOperation())) 137edd9515bSthomasraoux return; 138edd9515bSthomasraoux SetVector<Operation *> dependentOps = 139edd9515bSthomasraoux getSlice(contract, hasVectorDest, hasVectorDest); 140edd9515bSthomasraoux // If any instruction cannot use MMA matrix type drop the whole 141edd9515bSthomasraoux // chaine. MMA matrix are stored in an opaque type so they cannot be used 142edd9515bSthomasraoux // by all operations. 143edd9515bSthomasraoux if (llvm::any_of(dependentOps, 144edd9515bSthomasraoux [](Operation *op) { return !supportsMMaMatrixType(op); })) 145edd9515bSthomasraoux return; 146edd9515bSthomasraoux opToConvert.insert(dependentOps.begin(), dependentOps.end()); 147edd9515bSthomasraoux }); 148edd9515bSthomasraoux return opToConvert; 149edd9515bSthomasraoux } 150edd9515bSthomasraoux 151edd9515bSthomasraoux namespace { 152edd9515bSthomasraoux // Transform contract into (m, k)x(k, n)x(m, n) form so that it can be converted 153edd9515bSthomasraoux // to MMA matmul. 154edd9515bSthomasraoux struct PrepareContractToGPUMMA 155edd9515bSthomasraoux : public OpRewritePattern<vector::ContractionOp> { 156edd9515bSthomasraoux using OpRewritePattern<vector::ContractionOp>::OpRewritePattern; 157edd9515bSthomasraoux 158edd9515bSthomasraoux LogicalResult matchAndRewrite(vector::ContractionOp op, 159edd9515bSthomasraoux PatternRewriter &rewriter) const override { 160edd9515bSthomasraoux Location loc = op.getLoc(); 161edd9515bSthomasraoux Value lhs = op.lhs(), rhs = op.rhs(), res = op.acc(); 162edd9515bSthomasraoux 163edd9515bSthomasraoux // Set up the parallel/reduction structure in right form. 164edd9515bSthomasraoux using MapList = ArrayRef<ArrayRef<AffineExpr>>; 165edd9515bSthomasraoux auto infer = [](MapList m) { return AffineMap::inferFromExprList(m); }; 166edd9515bSthomasraoux AffineExpr m, n, k; 167edd9515bSthomasraoux bindDims(rewriter.getContext(), m, n, k); 168edd9515bSthomasraoux static constexpr std::array<int64_t, 2> perm = {1, 0}; 169edd9515bSthomasraoux auto iteratorTypes = op.iterator_types().getValue(); 170edd9515bSthomasraoux SmallVector<AffineMap, 4> maps = op.getIndexingMaps(); 171edd9515bSthomasraoux if (!(isParallelIterator(iteratorTypes[0]) && 172edd9515bSthomasraoux isParallelIterator(iteratorTypes[1]) && 173edd9515bSthomasraoux isReductionIterator(iteratorTypes[2]))) 174edd9515bSthomasraoux return failure(); 175edd9515bSthomasraoux // 176edd9515bSthomasraoux // Two outer parallel, one inner reduction (matmat flavor). 177edd9515bSthomasraoux // 178edd9515bSthomasraoux if (maps == infer({{m, k}, {k, n}, {m, n}})) { 179edd9515bSthomasraoux // This is the classical row-major matmul, nothing to do. 180edd9515bSthomasraoux return failure(); 181edd9515bSthomasraoux } 182edd9515bSthomasraoux if (maps == infer({{m, k}, {n, k}, {m, n}})) { 183edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 184edd9515bSthomasraoux } else if (maps == infer({{k, m}, {k, n}, {m, n}})) { 185edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 186edd9515bSthomasraoux } else if (maps == infer({{k, m}, {n, k}, {m, n}})) { 187edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 188edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 189edd9515bSthomasraoux } else if (maps == infer({{m, k}, {k, n}, {n, m}})) { 190edd9515bSthomasraoux std::swap(rhs, lhs); 191edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 192edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 193edd9515bSthomasraoux } else if (maps == infer({{m, k}, {n, k}, {n, m}})) { 194edd9515bSthomasraoux std::swap(rhs, lhs); 195edd9515bSthomasraoux rhs = rewriter.create<vector::TransposeOp>(loc, rhs, perm); 196edd9515bSthomasraoux } else if (maps == infer({{k, m}, {k, n}, {n, m}})) { 197edd9515bSthomasraoux std::swap(lhs, rhs); 198edd9515bSthomasraoux lhs = rewriter.create<vector::TransposeOp>(loc, lhs, perm); 199edd9515bSthomasraoux } else if (maps == infer({{k, m}, {n, k}, {n, m}})) { 200edd9515bSthomasraoux std::swap(lhs, rhs); 201edd9515bSthomasraoux } else { 202edd9515bSthomasraoux return failure(); 203edd9515bSthomasraoux } 204edd9515bSthomasraoux rewriter.replaceOpWithNewOp<vector::ContractionOp>( 205edd9515bSthomasraoux op, lhs, rhs, res, 206edd9515bSthomasraoux rewriter.getAffineMapArrayAttr(infer({{m, k}, {k, n}, {m, n}})), 207edd9515bSthomasraoux op.iterator_types()); 208edd9515bSthomasraoux return success(); 209edd9515bSthomasraoux } 210edd9515bSthomasraoux }; 211edd9515bSthomasraoux 212edd9515bSthomasraoux // Merge transpose op into the transfer read op. Transpose are not supported on 213edd9515bSthomasraoux // MMA types but MMA load can transpose the matrix when loading. 214edd9515bSthomasraoux struct CombineTransferReadOpTranspose final 215edd9515bSthomasraoux : public OpRewritePattern<vector::TransposeOp> { 216edd9515bSthomasraoux using OpRewritePattern<vector::TransposeOp>::OpRewritePattern; 217edd9515bSthomasraoux 218edd9515bSthomasraoux LogicalResult matchAndRewrite(vector::TransposeOp op, 219edd9515bSthomasraoux PatternRewriter &rewriter) const override { 220edd9515bSthomasraoux auto transferReadOp = op.vector().getDefiningOp<vector::TransferReadOp>(); 221edd9515bSthomasraoux if (!transferReadOp) 222edd9515bSthomasraoux return failure(); 223edd9515bSthomasraoux if (transferReadOp.mask() || transferReadOp.hasOutOfBoundsDim()) 224edd9515bSthomasraoux return failure(); 225edd9515bSthomasraoux SmallVector<int64_t, 2> perm; 226edd9515bSthomasraoux op.getTransp(perm); 227edd9515bSthomasraoux SmallVector<unsigned, 2> permU; 228edd9515bSthomasraoux for (int64_t o : perm) 229edd9515bSthomasraoux permU.push_back(unsigned(o)); 230edd9515bSthomasraoux AffineMap permutationMap = 231edd9515bSthomasraoux AffineMap::getPermutationMap(permU, op.getContext()); 232edd9515bSthomasraoux AffineMap newMap = permutationMap.compose(transferReadOp.permutation_map()); 233edd9515bSthomasraoux rewriter.replaceOpWithNewOp<vector::TransferReadOp>( 234edd9515bSthomasraoux op, op.getType(), transferReadOp.source(), transferReadOp.indices(), 235edd9515bSthomasraoux newMap, transferReadOp.padding(), transferReadOp.mask(), 236edd9515bSthomasraoux transferReadOp.in_boundsAttr()); 237edd9515bSthomasraoux return success(); 238edd9515bSthomasraoux } 239edd9515bSthomasraoux }; 240edd9515bSthomasraoux 241edd9515bSthomasraoux } // namespace 242edd9515bSthomasraoux 243edd9515bSthomasraoux // MMA types have different layout based on how they are used in matmul ops. 244edd9515bSthomasraoux // Figure the right layout to use by looking at Transfer op uses. 245edd9515bSthomasraoux // TODO: Change the GPU dialect to abstract the layout at the this level and 246edd9515bSthomasraoux // only care about it during lowering to NVVM. 247edd9515bSthomasraoux static const char *inferFragType(vector::TransferReadOp op) { 248edd9515bSthomasraoux for (Operation *users : op->getUsers()) { 249edd9515bSthomasraoux auto contract = dyn_cast<vector::ContractionOp>(users); 250edd9515bSthomasraoux if (!contract) 251edd9515bSthomasraoux continue; 252edd9515bSthomasraoux if (contract.lhs() == op.getResult()) 253edd9515bSthomasraoux return "AOp"; 254edd9515bSthomasraoux if (contract.rhs() == op.getResult()) 255edd9515bSthomasraoux return "BOp"; 256edd9515bSthomasraoux } 257edd9515bSthomasraoux return "COp"; 258edd9515bSthomasraoux } 259edd9515bSthomasraoux 260edd9515bSthomasraoux static void convertTransferReadOp(vector::TransferReadOp op, 261edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 262edd9515bSthomasraoux assert(transferReadSupportsMMAMatrixType(op)); 263edd9515bSthomasraoux Optional<int64_t> stride = 264edd9515bSthomasraoux getMemrefConstantHorizontalStride(op.getShapedType()); 265edd9515bSthomasraoux assert(stride); 266edd9515bSthomasraoux const char *fragType = inferFragType(op); 267edd9515bSthomasraoux gpu::MMAMatrixType type = 268edd9515bSthomasraoux gpu::MMAMatrixType::get(op.getVectorType().getShape(), 269edd9515bSthomasraoux op.getVectorType().getElementType(), fragType); 270edd9515bSthomasraoux OpBuilder b(op); 271edd9515bSthomasraoux Value load = b.create<gpu::SubgroupMmaLoadMatrixOp>( 272edd9515bSthomasraoux op.getLoc(), type, op.source(), op.indices(), b.getIndexAttr(*stride)); 273edd9515bSthomasraoux valueMapping[op.getResult()] = load; 274edd9515bSthomasraoux } 275edd9515bSthomasraoux 276edd9515bSthomasraoux static void convertTransferWriteOp(vector::TransferWriteOp op, 277edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 278edd9515bSthomasraoux assert(transferWriteSupportsMMAMatrixType(op)); 279edd9515bSthomasraoux Optional<int64_t> stride = 280edd9515bSthomasraoux getMemrefConstantHorizontalStride(op.getShapedType()); 281edd9515bSthomasraoux assert(stride); 282edd9515bSthomasraoux OpBuilder b(op); 283edd9515bSthomasraoux Value matrix = valueMapping.find(op.vector())->second; 284edd9515bSthomasraoux b.create<gpu::SubgroupMmaStoreMatrixOp>( 285edd9515bSthomasraoux op.getLoc(), matrix, op.source(), op.indices(), b.getIndexAttr(*stride)); 286edd9515bSthomasraoux op.erase(); 287edd9515bSthomasraoux } 288edd9515bSthomasraoux 289edd9515bSthomasraoux static void convertContractOp(vector::ContractionOp op, 290edd9515bSthomasraoux llvm::DenseMap<Value, Value> &valueMapping) { 291edd9515bSthomasraoux OpBuilder b(op); 292edd9515bSthomasraoux Value opA = valueMapping.find(op.lhs())->second; 293edd9515bSthomasraoux Value opB = valueMapping.find(op.rhs())->second; 294edd9515bSthomasraoux Value opC = valueMapping.find(op.acc())->second; 295edd9515bSthomasraoux Value matmul = b.create<gpu::SubgroupMmaComputeOp>(op.getLoc(), opC.getType(), 296edd9515bSthomasraoux opA, opB, opC); 297edd9515bSthomasraoux valueMapping[op.getResult()] = matmul; 298edd9515bSthomasraoux } 299edd9515bSthomasraoux 300edd9515bSthomasraoux namespace mlir { 301edd9515bSthomasraoux 302edd9515bSthomasraoux void populatePrepareVectorToMMAPatterns(RewritePatternSet &patterns) { 303edd9515bSthomasraoux patterns.add<PrepareContractToGPUMMA, CombineTransferReadOpTranspose>( 304edd9515bSthomasraoux patterns.getContext()); 305edd9515bSthomasraoux } 306edd9515bSthomasraoux 307edd9515bSthomasraoux void convertVectorToMMAOps(FuncOp funcOp) { 308edd9515bSthomasraoux SetVector<Operation *> ops = getOpToConvert(funcOp); 309edd9515bSthomasraoux llvm::DenseMap<Value, Value> valueMapping; 310edd9515bSthomasraoux for (Operation *op : ops) { 311edd9515bSthomasraoux if (auto transferRead = dyn_cast<vector::TransferReadOp>(op)) { 312edd9515bSthomasraoux convertTransferReadOp(transferRead, valueMapping); 313edd9515bSthomasraoux } else if (auto transferWrite = dyn_cast<vector::TransferWriteOp>(op)) { 314edd9515bSthomasraoux convertTransferWriteOp(transferWrite, valueMapping); 315edd9515bSthomasraoux } else if (auto contractOp = dyn_cast<vector::ContractionOp>(op)) { 316edd9515bSthomasraoux convertContractOp(contractOp, valueMapping); 317edd9515bSthomasraoux } 318edd9515bSthomasraoux } 319edd9515bSthomasraoux } 320edd9515bSthomasraoux 321edd9515bSthomasraoux } // namespace mlir 322edd9515bSthomasraoux namespace { 323edd9515bSthomasraoux 324edd9515bSthomasraoux struct ConvertVectorToGPUPass 325edd9515bSthomasraoux : public ConvertVectorToGPUBase<ConvertVectorToGPUPass> { 326edd9515bSthomasraoux void runOnFunction() override { 327edd9515bSthomasraoux RewritePatternSet patterns(getFunction().getContext()); 328edd9515bSthomasraoux populatePrepareVectorToMMAPatterns(patterns); 329edd9515bSthomasraoux (void)applyPatternsAndFoldGreedily(getFunction(), std::move(patterns)); 330edd9515bSthomasraoux 331edd9515bSthomasraoux convertVectorToMMAOps(getFunction()); 332edd9515bSthomasraoux } 333edd9515bSthomasraoux }; 334edd9515bSthomasraoux 335edd9515bSthomasraoux } // namespace 336edd9515bSthomasraoux 337edd9515bSthomasraoux std::unique_ptr<Pass> mlir::createConvertVectorToGPUPass() { 338edd9515bSthomasraoux return std::make_unique<ConvertVectorToGPUPass>(); 339edd9515bSthomasraoux } 340