1 //===- ShapeToStandard.cpp - conversion from Shape to Standard dialect ----===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/ShapeToStandard/ShapeToStandard.h" 10 11 #include "../PassDetail.h" 12 #include "mlir/Dialect/SCF/SCF.h" 13 #include "mlir/Dialect/Shape/IR/Shape.h" 14 #include "mlir/Dialect/StandardOps/IR/Ops.h" 15 #include "mlir/Transforms/DialectConversion.h" 16 17 using namespace mlir; 18 using namespace mlir::shape; 19 20 /// Conversion patterns. 21 namespace { 22 class AnyOpConversion : public OpConversionPattern<AnyOp> { 23 public: 24 using OpConversionPattern<AnyOp>::OpConversionPattern; 25 26 LogicalResult 27 matchAndRewrite(AnyOp op, ArrayRef<Value> operands, 28 ConversionPatternRewriter &rewriter) const override; 29 }; 30 } // namespace 31 32 LogicalResult 33 AnyOpConversion::matchAndRewrite(AnyOp op, ArrayRef<Value> operands, 34 ConversionPatternRewriter &rewriter) const { 35 AnyOp::Adaptor transformed(operands); 36 37 // Replace `any` with its first operand. 38 // Any operand would be a valid substitution. 39 rewriter.replaceOp(op, {transformed.inputs().front()}); 40 return success(); 41 } 42 43 namespace { 44 template <typename SrcOpTy, typename DstOpTy> 45 class BinaryOpConversion : public OpConversionPattern<SrcOpTy> { 46 public: 47 using OpConversionPattern<SrcOpTy>::OpConversionPattern; 48 49 LogicalResult 50 matchAndRewrite(SrcOpTy op, ArrayRef<Value> operands, 51 ConversionPatternRewriter &rewriter) const override { 52 typename SrcOpTy::Adaptor adaptor(operands); 53 rewriter.replaceOpWithNewOp<DstOpTy>(op, adaptor.lhs(), adaptor.rhs()); 54 return success(); 55 } 56 }; 57 } // namespace 58 59 namespace { 60 class ShapeOfOpConversion : public OpConversionPattern<ShapeOfOp> { 61 public: 62 using OpConversionPattern<ShapeOfOp>::OpConversionPattern; 63 64 LogicalResult 65 matchAndRewrite(ShapeOfOp op, ArrayRef<Value> operands, 66 ConversionPatternRewriter &rewriter) const override; 67 }; 68 } // namespace 69 70 LogicalResult ShapeOfOpConversion::matchAndRewrite( 71 ShapeOfOp op, ArrayRef<Value> operands, 72 ConversionPatternRewriter &rewriter) const { 73 ShapeOfOp::Adaptor transformed(operands); 74 auto loc = op.getLoc(); 75 auto tensorVal = transformed.arg(); 76 auto tensorTy = tensorVal.getType(); 77 78 // For unranked tensors `shape_of` lowers to `scf` and the pattern can be 79 // found in the corresponding pass. 80 if (tensorTy.isa<UnrankedTensorType>()) 81 return failure(); 82 83 // Build values for individual dimensions. 84 SmallVector<Value, 8> dimValues; 85 auto rankedTensorTy = tensorTy.cast<RankedTensorType>(); 86 int64_t rank = rankedTensorTy.getRank(); 87 for (int64_t i = 0; i < rank; i++) { 88 if (rankedTensorTy.isDynamicDim(i)) { 89 auto dimVal = rewriter.create<DimOp>(loc, tensorVal, i); 90 dimValues.push_back(dimVal); 91 } else { 92 int64_t dim = rankedTensorTy.getDimSize(i); 93 auto dimVal = rewriter.create<ConstantIndexOp>(loc, dim); 94 dimValues.push_back(dimVal); 95 } 96 } 97 98 // Materialize extent tensor. 99 Value staticExtentTensor = 100 rewriter.create<TensorFromElementsOp>(loc, dimValues); 101 rewriter.replaceOpWithNewOp<TensorCastOp>(op, staticExtentTensor, 102 op.getType()); 103 return success(); 104 } 105 106 namespace { 107 class GetExtentOpConverter : public OpConversionPattern<GetExtentOp> { 108 using OpConversionPattern<GetExtentOp>::OpConversionPattern; 109 110 LogicalResult 111 matchAndRewrite(GetExtentOp op, ArrayRef<Value> operands, 112 ConversionPatternRewriter &rewriter) const override; 113 }; 114 } // namespace 115 116 LogicalResult GetExtentOpConverter::matchAndRewrite( 117 GetExtentOp op, ArrayRef<Value> operands, 118 ConversionPatternRewriter &rewriter) const { 119 GetExtentOp::Adaptor transformed(operands); 120 121 // Derive shape extent directly from shape origin if possible. 122 // This circumvents the necessity to materialize the shape in memory. 123 if (auto shapeOfOp = op.shape().getDefiningOp<ShapeOfOp>()) { 124 rewriter.replaceOpWithNewOp<DimOp>(op, shapeOfOp.arg(), transformed.dim()); 125 return success(); 126 } 127 128 rewriter.replaceOpWithNewOp<ExtractElementOp>(op, rewriter.getIndexType(), 129 transformed.shape(), 130 ValueRange{transformed.dim()}); 131 return success(); 132 } 133 134 namespace { 135 class RankOpConverter : public OpConversionPattern<shape::RankOp> { 136 public: 137 using OpConversionPattern<shape::RankOp>::OpConversionPattern; 138 139 LogicalResult 140 matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands, 141 ConversionPatternRewriter &rewriter) const override; 142 }; 143 } // namespace 144 145 LogicalResult 146 RankOpConverter::matchAndRewrite(shape::RankOp op, ArrayRef<Value> operands, 147 ConversionPatternRewriter &rewriter) const { 148 shape::RankOp::Adaptor transformed(operands); 149 rewriter.replaceOpWithNewOp<DimOp>(op, transformed.shape(), 0); 150 return success(); 151 } 152 153 namespace { 154 /// Type conversions. 155 class ShapeTypeConverter : public TypeConverter { 156 public: 157 using TypeConverter::convertType; 158 159 ShapeTypeConverter(MLIRContext *ctx) { 160 // Add default pass-through conversion. 161 addConversion([&](Type type) { return type; }); 162 163 addConversion([ctx](SizeType type) { return IndexType::get(ctx); }); 164 addConversion([ctx](ShapeType type) { 165 return RankedTensorType::get({ShapedType::kDynamicSize}, 166 IndexType::get(ctx)); 167 }); 168 } 169 }; 170 } // namespace 171 172 namespace { 173 /// Conversion pass. 174 class ConvertShapeToStandardPass 175 : public ConvertShapeToStandardBase<ConvertShapeToStandardPass> { 176 177 void runOnOperation() override; 178 }; 179 } // namespace 180 181 void ConvertShapeToStandardPass::runOnOperation() { 182 // Setup type conversion. 183 MLIRContext &ctx = getContext(); 184 ShapeTypeConverter typeConverter(&ctx); 185 186 // Setup target legality. 187 ConversionTarget target(ctx); 188 target.addLegalDialect<scf::SCFDialect, StandardOpsDialect>(); 189 target.addLegalOp<ModuleOp, ModuleTerminatorOp, ReturnOp>(); 190 target.addDynamicallyLegalOp<FuncOp>([&](FuncOp op) { 191 return typeConverter.isSignatureLegal(op.getType()) && 192 typeConverter.isLegal(&op.getBody()); 193 }); 194 195 // Setup conversion patterns. 196 OwningRewritePatternList patterns; 197 populateShapeToStandardConversionPatterns(patterns, &ctx); 198 populateFuncOpTypeConversionPattern(patterns, &ctx, typeConverter); 199 200 // Apply conversion. 201 auto module = getOperation(); 202 if (failed(applyFullConversion(module, target, patterns))) 203 signalPassFailure(); 204 } 205 206 void mlir::populateShapeToStandardConversionPatterns( 207 OwningRewritePatternList &patterns, MLIRContext *ctx) { 208 // clang-format off 209 patterns.insert< 210 AnyOpConversion, 211 BinaryOpConversion<AddOp, AddIOp>, 212 BinaryOpConversion<MulOp, MulIOp>, 213 GetExtentOpConverter, 214 RankOpConverter, 215 ShapeOfOpConversion>(ctx); 216 // clang-format on 217 } 218 219 std::unique_ptr<OperationPass<ModuleOp>> 220 mlir::createConvertShapeToStandardPass() { 221 return std::make_unique<ConvertShapeToStandardPass>(); 222 } 223