1 //===- SPIRVToLLVM.cpp - SPIR-V to LLVM Patterns --------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements patterns to convert SPIR-V dialect to LLVM dialect. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVM.h" 14 #include "mlir/Conversion/LLVMCommon/Pattern.h" 15 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 16 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 17 #include "mlir/Dialect/SPIRV/IR/SPIRVDialect.h" 18 #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h" 19 #include "mlir/Dialect/SPIRV/Utils/LayoutUtils.h" 20 #include "mlir/IR/BuiltinOps.h" 21 #include "mlir/IR/PatternMatch.h" 22 #include "mlir/Support/LogicalResult.h" 23 #include "mlir/Transforms/DialectConversion.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/FormatVariadic.h" 26 27 #define DEBUG_TYPE "spirv-to-llvm-pattern" 28 29 using namespace mlir; 30 31 //===----------------------------------------------------------------------===// 32 // Utility functions 33 //===----------------------------------------------------------------------===// 34 35 /// Returns true if the given type is a signed integer or vector type. 36 static bool isSignedIntegerOrVector(Type type) { 37 if (type.isSignedInteger()) 38 return true; 39 if (auto vecType = type.dyn_cast<VectorType>()) 40 return vecType.getElementType().isSignedInteger(); 41 return false; 42 } 43 44 /// Returns true if the given type is an unsigned integer or vector type 45 static bool isUnsignedIntegerOrVector(Type type) { 46 if (type.isUnsignedInteger()) 47 return true; 48 if (auto vecType = type.dyn_cast<VectorType>()) 49 return vecType.getElementType().isUnsignedInteger(); 50 return false; 51 } 52 53 /// Returns the bit width of integer, float or vector of float or integer values 54 static unsigned getBitWidth(Type type) { 55 assert((type.isIntOrFloat() || type.isa<VectorType>()) && 56 "bitwidth is not supported for this type"); 57 if (type.isIntOrFloat()) 58 return type.getIntOrFloatBitWidth(); 59 auto vecType = type.dyn_cast<VectorType>(); 60 auto elementType = vecType.getElementType(); 61 assert(elementType.isIntOrFloat() && 62 "only integers and floats have a bitwidth"); 63 return elementType.getIntOrFloatBitWidth(); 64 } 65 66 /// Returns the bit width of LLVMType integer or vector. 67 static unsigned getLLVMTypeBitWidth(Type type) { 68 return (LLVM::isCompatibleVectorType(type) ? LLVM::getVectorElementType(type) 69 : type) 70 .cast<IntegerType>() 71 .getWidth(); 72 } 73 74 /// Creates `IntegerAttribute` with all bits set for given type 75 static IntegerAttr minusOneIntegerAttribute(Type type, Builder builder) { 76 if (auto vecType = type.dyn_cast<VectorType>()) { 77 auto integerType = vecType.getElementType().cast<IntegerType>(); 78 return builder.getIntegerAttr(integerType, -1); 79 } 80 auto integerType = type.cast<IntegerType>(); 81 return builder.getIntegerAttr(integerType, -1); 82 } 83 84 /// Creates `llvm.mlir.constant` with all bits set for the given type. 85 static Value createConstantAllBitsSet(Location loc, Type srcType, Type dstType, 86 PatternRewriter &rewriter) { 87 if (srcType.isa<VectorType>()) { 88 return rewriter.create<LLVM::ConstantOp>( 89 loc, dstType, 90 SplatElementsAttr::get(srcType.cast<ShapedType>(), 91 minusOneIntegerAttribute(srcType, rewriter))); 92 } 93 return rewriter.create<LLVM::ConstantOp>( 94 loc, dstType, minusOneIntegerAttribute(srcType, rewriter)); 95 } 96 97 /// Creates `llvm.mlir.constant` with a floating-point scalar or vector value. 98 static Value createFPConstant(Location loc, Type srcType, Type dstType, 99 PatternRewriter &rewriter, double value) { 100 if (auto vecType = srcType.dyn_cast<VectorType>()) { 101 auto floatType = vecType.getElementType().cast<FloatType>(); 102 return rewriter.create<LLVM::ConstantOp>( 103 loc, dstType, 104 SplatElementsAttr::get(vecType, 105 rewriter.getFloatAttr(floatType, value))); 106 } 107 auto floatType = srcType.cast<FloatType>(); 108 return rewriter.create<LLVM::ConstantOp>( 109 loc, dstType, rewriter.getFloatAttr(floatType, value)); 110 } 111 112 /// Utility function for bitfield ops: 113 /// - `BitFieldInsert` 114 /// - `BitFieldSExtract` 115 /// - `BitFieldUExtract` 116 /// Truncates or extends the value. If the bitwidth of the value is the same as 117 /// `llvmType` bitwidth, the value remains unchanged. 118 static Value optionallyTruncateOrExtend(Location loc, Value value, 119 Type llvmType, 120 PatternRewriter &rewriter) { 121 auto srcType = value.getType(); 122 unsigned targetBitWidth = getLLVMTypeBitWidth(llvmType); 123 unsigned valueBitWidth = LLVM::isCompatibleType(srcType) 124 ? getLLVMTypeBitWidth(srcType) 125 : getBitWidth(srcType); 126 127 if (valueBitWidth < targetBitWidth) 128 return rewriter.create<LLVM::ZExtOp>(loc, llvmType, value); 129 // If the bit widths of `Count` and `Offset` are greater than the bit width 130 // of the target type, they are truncated. Truncation is safe since `Count` 131 // and `Offset` must be no more than 64 for op behaviour to be defined. Hence, 132 // both values can be expressed in 8 bits. 133 if (valueBitWidth > targetBitWidth) 134 return rewriter.create<LLVM::TruncOp>(loc, llvmType, value); 135 return value; 136 } 137 138 /// Broadcasts the value to vector with `numElements` number of elements. 139 static Value broadcast(Location loc, Value toBroadcast, unsigned numElements, 140 LLVMTypeConverter &typeConverter, 141 ConversionPatternRewriter &rewriter) { 142 auto vectorType = VectorType::get(numElements, toBroadcast.getType()); 143 auto llvmVectorType = typeConverter.convertType(vectorType); 144 auto llvmI32Type = typeConverter.convertType(rewriter.getIntegerType(32)); 145 Value broadcasted = rewriter.create<LLVM::UndefOp>(loc, llvmVectorType); 146 for (unsigned i = 0; i < numElements; ++i) { 147 auto index = rewriter.create<LLVM::ConstantOp>( 148 loc, llvmI32Type, rewriter.getI32IntegerAttr(i)); 149 broadcasted = rewriter.create<LLVM::InsertElementOp>( 150 loc, llvmVectorType, broadcasted, toBroadcast, index); 151 } 152 return broadcasted; 153 } 154 155 /// Broadcasts the value. If `srcType` is a scalar, the value remains unchanged. 156 static Value optionallyBroadcast(Location loc, Value value, Type srcType, 157 LLVMTypeConverter &typeConverter, 158 ConversionPatternRewriter &rewriter) { 159 if (auto vectorType = srcType.dyn_cast<VectorType>()) { 160 unsigned numElements = vectorType.getNumElements(); 161 return broadcast(loc, value, numElements, typeConverter, rewriter); 162 } 163 return value; 164 } 165 166 /// Utility function for bitfield ops: `BitFieldInsert`, `BitFieldSExtract` and 167 /// `BitFieldUExtract`. 168 /// Broadcast `Offset` and `Count` to match the type of `Base`. If `Base` is of 169 /// a vector type, construct a vector that has: 170 /// - same number of elements as `Base` 171 /// - each element has the type that is the same as the type of `Offset` or 172 /// `Count` 173 /// - each element has the same value as `Offset` or `Count` 174 /// Then cast `Offset` and `Count` if their bit width is different 175 /// from `Base` bit width. 176 static Value processCountOrOffset(Location loc, Value value, Type srcType, 177 Type dstType, LLVMTypeConverter &converter, 178 ConversionPatternRewriter &rewriter) { 179 Value broadcasted = 180 optionallyBroadcast(loc, value, srcType, converter, rewriter); 181 return optionallyTruncateOrExtend(loc, broadcasted, dstType, rewriter); 182 } 183 184 /// Converts SPIR-V struct with a regular (according to `VulkanLayoutUtils`) 185 /// offset to LLVM struct. Otherwise, the conversion is not supported. 186 static Optional<Type> 187 convertStructTypeWithOffset(spirv::StructType type, 188 LLVMTypeConverter &converter) { 189 if (type != VulkanLayoutUtils::decorateType(type)) 190 return llvm::None; 191 192 auto elementsVector = llvm::to_vector<8>( 193 llvm::map_range(type.getElementTypes(), [&](Type elementType) { 194 return converter.convertType(elementType); 195 })); 196 return LLVM::LLVMStructType::getLiteral(type.getContext(), elementsVector, 197 /*isPacked=*/false); 198 } 199 200 /// Converts SPIR-V struct with no offset to packed LLVM struct. 201 static Type convertStructTypePacked(spirv::StructType type, 202 LLVMTypeConverter &converter) { 203 auto elementsVector = llvm::to_vector<8>( 204 llvm::map_range(type.getElementTypes(), [&](Type elementType) { 205 return converter.convertType(elementType); 206 })); 207 return LLVM::LLVMStructType::getLiteral(type.getContext(), elementsVector, 208 /*isPacked=*/true); 209 } 210 211 /// Creates LLVM dialect constant with the given value. 212 static Value createI32ConstantOf(Location loc, PatternRewriter &rewriter, 213 unsigned value) { 214 return rewriter.create<LLVM::ConstantOp>( 215 loc, IntegerType::get(rewriter.getContext(), 32), 216 rewriter.getIntegerAttr(rewriter.getI32Type(), value)); 217 } 218 219 /// Utility for `spv.Load` and `spv.Store` conversion. 220 static LogicalResult replaceWithLoadOrStore(Operation *op, ValueRange operands, 221 ConversionPatternRewriter &rewriter, 222 LLVMTypeConverter &typeConverter, 223 unsigned alignment, bool isVolatile, 224 bool isNonTemporal) { 225 if (auto loadOp = dyn_cast<spirv::LoadOp>(op)) { 226 auto dstType = typeConverter.convertType(loadOp.getType()); 227 if (!dstType) 228 return failure(); 229 rewriter.replaceOpWithNewOp<LLVM::LoadOp>( 230 loadOp, dstType, spirv::LoadOpAdaptor(operands).ptr(), alignment, 231 isVolatile, isNonTemporal); 232 return success(); 233 } 234 auto storeOp = cast<spirv::StoreOp>(op); 235 spirv::StoreOpAdaptor adaptor(operands); 236 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(storeOp, adaptor.value(), 237 adaptor.ptr(), alignment, 238 isVolatile, isNonTemporal); 239 return success(); 240 } 241 242 //===----------------------------------------------------------------------===// 243 // Type conversion 244 //===----------------------------------------------------------------------===// 245 246 /// Converts SPIR-V array type to LLVM array. Natural stride (according to 247 /// `VulkanLayoutUtils`) is also mapped to LLVM array. This has to be respected 248 /// when converting ops that manipulate array types. 249 static Optional<Type> convertArrayType(spirv::ArrayType type, 250 TypeConverter &converter) { 251 unsigned stride = type.getArrayStride(); 252 Type elementType = type.getElementType(); 253 auto sizeInBytes = elementType.cast<spirv::SPIRVType>().getSizeInBytes(); 254 if (stride != 0 && !(sizeInBytes && *sizeInBytes == stride)) 255 return llvm::None; 256 257 auto llvmElementType = converter.convertType(elementType); 258 unsigned numElements = type.getNumElements(); 259 return LLVM::LLVMArrayType::get(llvmElementType, numElements); 260 } 261 262 /// Converts SPIR-V pointer type to LLVM pointer. Pointer's storage class is not 263 /// modelled at the moment. 264 static Type convertPointerType(spirv::PointerType type, 265 TypeConverter &converter) { 266 auto pointeeType = converter.convertType(type.getPointeeType()); 267 return LLVM::LLVMPointerType::get(pointeeType); 268 } 269 270 /// Converts SPIR-V runtime array to LLVM array. Since LLVM allows indexing over 271 /// the bounds, the runtime array is converted to a 0-sized LLVM array. There is 272 /// no modelling of array stride at the moment. 273 static Optional<Type> convertRuntimeArrayType(spirv::RuntimeArrayType type, 274 TypeConverter &converter) { 275 if (type.getArrayStride() != 0) 276 return llvm::None; 277 auto elementType = converter.convertType(type.getElementType()); 278 return LLVM::LLVMArrayType::get(elementType, 0); 279 } 280 281 /// Converts SPIR-V struct to LLVM struct. There is no support of structs with 282 /// member decorations. Also, only natural offset is supported. 283 static Optional<Type> convertStructType(spirv::StructType type, 284 LLVMTypeConverter &converter) { 285 SmallVector<spirv::StructType::MemberDecorationInfo, 4> memberDecorations; 286 type.getMemberDecorations(memberDecorations); 287 if (!memberDecorations.empty()) 288 return llvm::None; 289 if (type.hasOffset()) 290 return convertStructTypeWithOffset(type, converter); 291 return convertStructTypePacked(type, converter); 292 } 293 294 //===----------------------------------------------------------------------===// 295 // Operation conversion 296 //===----------------------------------------------------------------------===// 297 298 namespace { 299 300 class AccessChainPattern : public SPIRVToLLVMConversion<spirv::AccessChainOp> { 301 public: 302 using SPIRVToLLVMConversion<spirv::AccessChainOp>::SPIRVToLLVMConversion; 303 304 LogicalResult 305 matchAndRewrite(spirv::AccessChainOp op, OpAdaptor adaptor, 306 ConversionPatternRewriter &rewriter) const override { 307 auto dstType = typeConverter.convertType(op.component_ptr().getType()); 308 if (!dstType) 309 return failure(); 310 // To use GEP we need to add a first 0 index to go through the pointer. 311 auto indices = llvm::to_vector<4>(adaptor.indices()); 312 Type indexType = op.indices().front().getType(); 313 auto llvmIndexType = typeConverter.convertType(indexType); 314 if (!llvmIndexType) 315 return failure(); 316 Value zero = rewriter.create<LLVM::ConstantOp>( 317 op.getLoc(), llvmIndexType, rewriter.getIntegerAttr(indexType, 0)); 318 indices.insert(indices.begin(), zero); 319 rewriter.replaceOpWithNewOp<LLVM::GEPOp>(op, dstType, adaptor.base_ptr(), 320 indices); 321 return success(); 322 } 323 }; 324 325 class AddressOfPattern : public SPIRVToLLVMConversion<spirv::AddressOfOp> { 326 public: 327 using SPIRVToLLVMConversion<spirv::AddressOfOp>::SPIRVToLLVMConversion; 328 329 LogicalResult 330 matchAndRewrite(spirv::AddressOfOp op, OpAdaptor adaptor, 331 ConversionPatternRewriter &rewriter) const override { 332 auto dstType = typeConverter.convertType(op.pointer().getType()); 333 if (!dstType) 334 return failure(); 335 rewriter.replaceOpWithNewOp<LLVM::AddressOfOp>(op, dstType, op.variable()); 336 return success(); 337 } 338 }; 339 340 class BitFieldInsertPattern 341 : public SPIRVToLLVMConversion<spirv::BitFieldInsertOp> { 342 public: 343 using SPIRVToLLVMConversion<spirv::BitFieldInsertOp>::SPIRVToLLVMConversion; 344 345 LogicalResult 346 matchAndRewrite(spirv::BitFieldInsertOp op, OpAdaptor adaptor, 347 ConversionPatternRewriter &rewriter) const override { 348 auto srcType = op.getType(); 349 auto dstType = typeConverter.convertType(srcType); 350 if (!dstType) 351 return failure(); 352 Location loc = op.getLoc(); 353 354 // Process `Offset` and `Count`: broadcast and extend/truncate if needed. 355 Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType, 356 typeConverter, rewriter); 357 Value count = processCountOrOffset(loc, op.count(), srcType, dstType, 358 typeConverter, rewriter); 359 360 // Create a mask with bits set outside [Offset, Offset + Count - 1]. 361 Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter); 362 Value maskShiftedByCount = 363 rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count); 364 Value negated = rewriter.create<LLVM::XOrOp>(loc, dstType, 365 maskShiftedByCount, minusOne); 366 Value maskShiftedByCountAndOffset = 367 rewriter.create<LLVM::ShlOp>(loc, dstType, negated, offset); 368 Value mask = rewriter.create<LLVM::XOrOp>( 369 loc, dstType, maskShiftedByCountAndOffset, minusOne); 370 371 // Extract unchanged bits from the `Base` that are outside of 372 // [Offset, Offset + Count - 1]. Then `or` with shifted `Insert`. 373 Value baseAndMask = 374 rewriter.create<LLVM::AndOp>(loc, dstType, op.base(), mask); 375 Value insertShiftedByOffset = 376 rewriter.create<LLVM::ShlOp>(loc, dstType, op.insert(), offset); 377 rewriter.replaceOpWithNewOp<LLVM::OrOp>(op, dstType, baseAndMask, 378 insertShiftedByOffset); 379 return success(); 380 } 381 }; 382 383 /// Converts SPIR-V ConstantOp with scalar or vector type. 384 class ConstantScalarAndVectorPattern 385 : public SPIRVToLLVMConversion<spirv::ConstantOp> { 386 public: 387 using SPIRVToLLVMConversion<spirv::ConstantOp>::SPIRVToLLVMConversion; 388 389 LogicalResult 390 matchAndRewrite(spirv::ConstantOp constOp, OpAdaptor adaptor, 391 ConversionPatternRewriter &rewriter) const override { 392 auto srcType = constOp.getType(); 393 if (!srcType.isa<VectorType>() && !srcType.isIntOrFloat()) 394 return failure(); 395 396 auto dstType = typeConverter.convertType(srcType); 397 if (!dstType) 398 return failure(); 399 400 // SPIR-V constant can be a signed/unsigned integer, which has to be 401 // casted to signless integer when converting to LLVM dialect. Removing the 402 // sign bit may have unexpected behaviour. However, it is better to handle 403 // it case-by-case, given that the purpose of the conversion is not to 404 // cover all possible corner cases. 405 if (isSignedIntegerOrVector(srcType) || 406 isUnsignedIntegerOrVector(srcType)) { 407 auto signlessType = rewriter.getIntegerType(getBitWidth(srcType)); 408 409 if (srcType.isa<VectorType>()) { 410 auto dstElementsAttr = constOp.value().cast<DenseIntElementsAttr>(); 411 rewriter.replaceOpWithNewOp<LLVM::ConstantOp>( 412 constOp, dstType, 413 dstElementsAttr.mapValues( 414 signlessType, [&](const APInt &value) { return value; })); 415 return success(); 416 } 417 auto srcAttr = constOp.value().cast<IntegerAttr>(); 418 auto dstAttr = rewriter.getIntegerAttr(signlessType, srcAttr.getValue()); 419 rewriter.replaceOpWithNewOp<LLVM::ConstantOp>(constOp, dstType, dstAttr); 420 return success(); 421 } 422 rewriter.replaceOpWithNewOp<LLVM::ConstantOp>( 423 constOp, dstType, adaptor.getOperands(), constOp->getAttrs()); 424 return success(); 425 } 426 }; 427 428 class BitFieldSExtractPattern 429 : public SPIRVToLLVMConversion<spirv::BitFieldSExtractOp> { 430 public: 431 using SPIRVToLLVMConversion<spirv::BitFieldSExtractOp>::SPIRVToLLVMConversion; 432 433 LogicalResult 434 matchAndRewrite(spirv::BitFieldSExtractOp op, OpAdaptor adaptor, 435 ConversionPatternRewriter &rewriter) const override { 436 auto srcType = op.getType(); 437 auto dstType = typeConverter.convertType(srcType); 438 if (!dstType) 439 return failure(); 440 Location loc = op.getLoc(); 441 442 // Process `Offset` and `Count`: broadcast and extend/truncate if needed. 443 Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType, 444 typeConverter, rewriter); 445 Value count = processCountOrOffset(loc, op.count(), srcType, dstType, 446 typeConverter, rewriter); 447 448 // Create a constant that holds the size of the `Base`. 449 IntegerType integerType; 450 if (auto vecType = srcType.dyn_cast<VectorType>()) 451 integerType = vecType.getElementType().cast<IntegerType>(); 452 else 453 integerType = srcType.cast<IntegerType>(); 454 455 auto baseSize = rewriter.getIntegerAttr(integerType, getBitWidth(srcType)); 456 Value size = 457 srcType.isa<VectorType>() 458 ? rewriter.create<LLVM::ConstantOp>( 459 loc, dstType, 460 SplatElementsAttr::get(srcType.cast<ShapedType>(), baseSize)) 461 : rewriter.create<LLVM::ConstantOp>(loc, dstType, baseSize); 462 463 // Shift `Base` left by [sizeof(Base) - (Count + Offset)], so that the bit 464 // at Offset + Count - 1 is the most significant bit now. 465 Value countPlusOffset = 466 rewriter.create<LLVM::AddOp>(loc, dstType, count, offset); 467 Value amountToShiftLeft = 468 rewriter.create<LLVM::SubOp>(loc, dstType, size, countPlusOffset); 469 Value baseShiftedLeft = rewriter.create<LLVM::ShlOp>( 470 loc, dstType, op.base(), amountToShiftLeft); 471 472 // Shift the result right, filling the bits with the sign bit. 473 Value amountToShiftRight = 474 rewriter.create<LLVM::AddOp>(loc, dstType, offset, amountToShiftLeft); 475 rewriter.replaceOpWithNewOp<LLVM::AShrOp>(op, dstType, baseShiftedLeft, 476 amountToShiftRight); 477 return success(); 478 } 479 }; 480 481 class BitFieldUExtractPattern 482 : public SPIRVToLLVMConversion<spirv::BitFieldUExtractOp> { 483 public: 484 using SPIRVToLLVMConversion<spirv::BitFieldUExtractOp>::SPIRVToLLVMConversion; 485 486 LogicalResult 487 matchAndRewrite(spirv::BitFieldUExtractOp op, OpAdaptor adaptor, 488 ConversionPatternRewriter &rewriter) const override { 489 auto srcType = op.getType(); 490 auto dstType = typeConverter.convertType(srcType); 491 if (!dstType) 492 return failure(); 493 Location loc = op.getLoc(); 494 495 // Process `Offset` and `Count`: broadcast and extend/truncate if needed. 496 Value offset = processCountOrOffset(loc, op.offset(), srcType, dstType, 497 typeConverter, rewriter); 498 Value count = processCountOrOffset(loc, op.count(), srcType, dstType, 499 typeConverter, rewriter); 500 501 // Create a mask with bits set at [0, Count - 1]. 502 Value minusOne = createConstantAllBitsSet(loc, srcType, dstType, rewriter); 503 Value maskShiftedByCount = 504 rewriter.create<LLVM::ShlOp>(loc, dstType, minusOne, count); 505 Value mask = rewriter.create<LLVM::XOrOp>(loc, dstType, maskShiftedByCount, 506 minusOne); 507 508 // Shift `Base` by `Offset` and apply the mask on it. 509 Value shiftedBase = 510 rewriter.create<LLVM::LShrOp>(loc, dstType, op.base(), offset); 511 rewriter.replaceOpWithNewOp<LLVM::AndOp>(op, dstType, shiftedBase, mask); 512 return success(); 513 } 514 }; 515 516 class BranchConversionPattern : public SPIRVToLLVMConversion<spirv::BranchOp> { 517 public: 518 using SPIRVToLLVMConversion<spirv::BranchOp>::SPIRVToLLVMConversion; 519 520 LogicalResult 521 matchAndRewrite(spirv::BranchOp branchOp, OpAdaptor adaptor, 522 ConversionPatternRewriter &rewriter) const override { 523 rewriter.replaceOpWithNewOp<LLVM::BrOp>(branchOp, adaptor.getOperands(), 524 branchOp.getTarget()); 525 return success(); 526 } 527 }; 528 529 class BranchConditionalConversionPattern 530 : public SPIRVToLLVMConversion<spirv::BranchConditionalOp> { 531 public: 532 using SPIRVToLLVMConversion< 533 spirv::BranchConditionalOp>::SPIRVToLLVMConversion; 534 535 LogicalResult 536 matchAndRewrite(spirv::BranchConditionalOp op, OpAdaptor adaptor, 537 ConversionPatternRewriter &rewriter) const override { 538 // If branch weights exist, map them to 32-bit integer vector. 539 ElementsAttr branchWeights = nullptr; 540 if (auto weights = op.branch_weights()) { 541 VectorType weightType = VectorType::get(2, rewriter.getI32Type()); 542 branchWeights = DenseElementsAttr::get(weightType, weights->getValue()); 543 } 544 545 rewriter.replaceOpWithNewOp<LLVM::CondBrOp>( 546 op, op.condition(), op.getTrueBlockArguments(), 547 op.getFalseBlockArguments(), branchWeights, op.getTrueBlock(), 548 op.getFalseBlock()); 549 return success(); 550 } 551 }; 552 553 /// Converts `spv.CompositeExtract` to `llvm.extractvalue` if the container type 554 /// is an aggregate type (struct or array). Otherwise, converts to 555 /// `llvm.extractelement` that operates on vectors. 556 class CompositeExtractPattern 557 : public SPIRVToLLVMConversion<spirv::CompositeExtractOp> { 558 public: 559 using SPIRVToLLVMConversion<spirv::CompositeExtractOp>::SPIRVToLLVMConversion; 560 561 LogicalResult 562 matchAndRewrite(spirv::CompositeExtractOp op, OpAdaptor adaptor, 563 ConversionPatternRewriter &rewriter) const override { 564 auto dstType = this->typeConverter.convertType(op.getType()); 565 if (!dstType) 566 return failure(); 567 568 Type containerType = op.composite().getType(); 569 if (containerType.isa<VectorType>()) { 570 Location loc = op.getLoc(); 571 IntegerAttr value = op.indices()[0].cast<IntegerAttr>(); 572 Value index = createI32ConstantOf(loc, rewriter, value.getInt()); 573 rewriter.replaceOpWithNewOp<LLVM::ExtractElementOp>( 574 op, dstType, adaptor.composite(), index); 575 return success(); 576 } 577 rewriter.replaceOpWithNewOp<LLVM::ExtractValueOp>( 578 op, dstType, adaptor.composite(), op.indices()); 579 return success(); 580 } 581 }; 582 583 /// Converts `spv.CompositeInsert` to `llvm.insertvalue` if the container type 584 /// is an aggregate type (struct or array). Otherwise, converts to 585 /// `llvm.insertelement` that operates on vectors. 586 class CompositeInsertPattern 587 : public SPIRVToLLVMConversion<spirv::CompositeInsertOp> { 588 public: 589 using SPIRVToLLVMConversion<spirv::CompositeInsertOp>::SPIRVToLLVMConversion; 590 591 LogicalResult 592 matchAndRewrite(spirv::CompositeInsertOp op, OpAdaptor adaptor, 593 ConversionPatternRewriter &rewriter) const override { 594 auto dstType = this->typeConverter.convertType(op.getType()); 595 if (!dstType) 596 return failure(); 597 598 Type containerType = op.composite().getType(); 599 if (containerType.isa<VectorType>()) { 600 Location loc = op.getLoc(); 601 IntegerAttr value = op.indices()[0].cast<IntegerAttr>(); 602 Value index = createI32ConstantOf(loc, rewriter, value.getInt()); 603 rewriter.replaceOpWithNewOp<LLVM::InsertElementOp>( 604 op, dstType, adaptor.composite(), adaptor.object(), index); 605 return success(); 606 } 607 rewriter.replaceOpWithNewOp<LLVM::InsertValueOp>( 608 op, dstType, adaptor.composite(), adaptor.object(), op.indices()); 609 return success(); 610 } 611 }; 612 613 /// Converts SPIR-V operations that have straightforward LLVM equivalent 614 /// into LLVM dialect operations. 615 template <typename SPIRVOp, typename LLVMOp> 616 class DirectConversionPattern : public SPIRVToLLVMConversion<SPIRVOp> { 617 public: 618 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 619 620 LogicalResult 621 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor, 622 ConversionPatternRewriter &rewriter) const override { 623 auto dstType = this->typeConverter.convertType(operation.getType()); 624 if (!dstType) 625 return failure(); 626 rewriter.template replaceOpWithNewOp<LLVMOp>( 627 operation, dstType, adaptor.getOperands(), operation->getAttrs()); 628 return success(); 629 } 630 }; 631 632 /// Converts `spv.ExecutionMode` into a global struct constant that holds 633 /// execution mode information. 634 class ExecutionModePattern 635 : public SPIRVToLLVMConversion<spirv::ExecutionModeOp> { 636 public: 637 using SPIRVToLLVMConversion<spirv::ExecutionModeOp>::SPIRVToLLVMConversion; 638 639 LogicalResult 640 matchAndRewrite(spirv::ExecutionModeOp op, OpAdaptor adaptor, 641 ConversionPatternRewriter &rewriter) const override { 642 // First, create the global struct's name that would be associated with 643 // this entry point's execution mode. We set it to be: 644 // __spv__{SPIR-V module name}_{function name}_execution_mode_info_{mode} 645 ModuleOp module = op->getParentOfType<ModuleOp>(); 646 IntegerAttr executionModeAttr = op.execution_modeAttr(); 647 std::string moduleName; 648 if (module.getName().hasValue()) 649 moduleName = "_" + module.getName().getValue().str(); 650 else 651 moduleName = ""; 652 std::string executionModeInfoName = 653 llvm::formatv("__spv_{0}_{1}_execution_mode_info_{2}", moduleName, 654 op.fn().str(), executionModeAttr.getValue()); 655 656 MLIRContext *context = rewriter.getContext(); 657 OpBuilder::InsertionGuard guard(rewriter); 658 rewriter.setInsertionPointToStart(module.getBody()); 659 660 // Create a struct type, corresponding to the C struct below. 661 // struct { 662 // int32_t executionMode; 663 // int32_t values[]; // optional values 664 // }; 665 auto llvmI32Type = IntegerType::get(context, 32); 666 SmallVector<Type, 2> fields; 667 fields.push_back(llvmI32Type); 668 ArrayAttr values = op.values(); 669 if (!values.empty()) { 670 auto arrayType = LLVM::LLVMArrayType::get(llvmI32Type, values.size()); 671 fields.push_back(arrayType); 672 } 673 auto structType = LLVM::LLVMStructType::getLiteral(context, fields); 674 675 // Create `llvm.mlir.global` with initializer region containing one block. 676 auto global = rewriter.create<LLVM::GlobalOp>( 677 UnknownLoc::get(context), structType, /*isConstant=*/true, 678 LLVM::Linkage::External, executionModeInfoName, Attribute(), 679 /*alignment=*/0); 680 Location loc = global.getLoc(); 681 Region ®ion = global.getInitializerRegion(); 682 Block *block = rewriter.createBlock(®ion); 683 684 // Initialize the struct and set the execution mode value. 685 rewriter.setInsertionPoint(block, block->begin()); 686 Value structValue = rewriter.create<LLVM::UndefOp>(loc, structType); 687 Value executionMode = 688 rewriter.create<LLVM::ConstantOp>(loc, llvmI32Type, executionModeAttr); 689 structValue = rewriter.create<LLVM::InsertValueOp>( 690 loc, structType, structValue, executionMode, 691 ArrayAttr::get(context, 692 {rewriter.getIntegerAttr(rewriter.getI32Type(), 0)})); 693 694 // Insert extra operands if they exist into execution mode info struct. 695 for (unsigned i = 0, e = values.size(); i < e; ++i) { 696 auto attr = values.getValue()[i]; 697 Value entry = rewriter.create<LLVM::ConstantOp>(loc, llvmI32Type, attr); 698 structValue = rewriter.create<LLVM::InsertValueOp>( 699 loc, structType, structValue, entry, 700 ArrayAttr::get(context, 701 {rewriter.getIntegerAttr(rewriter.getI32Type(), 1), 702 rewriter.getIntegerAttr(rewriter.getI32Type(), i)})); 703 } 704 rewriter.create<LLVM::ReturnOp>(loc, ArrayRef<Value>({structValue})); 705 rewriter.eraseOp(op); 706 return success(); 707 } 708 }; 709 710 /// Converts `spv.GlobalVariable` to `llvm.mlir.global`. Note that SPIR-V global 711 /// returns a pointer, whereas in LLVM dialect the global holds an actual value. 712 /// This difference is handled by `spv.mlir.addressof` and 713 /// `llvm.mlir.addressof`ops that both return a pointer. 714 class GlobalVariablePattern 715 : public SPIRVToLLVMConversion<spirv::GlobalVariableOp> { 716 public: 717 using SPIRVToLLVMConversion<spirv::GlobalVariableOp>::SPIRVToLLVMConversion; 718 719 LogicalResult 720 matchAndRewrite(spirv::GlobalVariableOp op, OpAdaptor adaptor, 721 ConversionPatternRewriter &rewriter) const override { 722 // Currently, there is no support of initialization with a constant value in 723 // SPIR-V dialect. Specialization constants are not considered as well. 724 if (op.initializer()) 725 return failure(); 726 727 auto srcType = op.type().cast<spirv::PointerType>(); 728 auto dstType = typeConverter.convertType(srcType.getPointeeType()); 729 if (!dstType) 730 return failure(); 731 732 // Limit conversion to the current invocation only or `StorageBuffer` 733 // required by SPIR-V runner. 734 // This is okay because multiple invocations are not supported yet. 735 auto storageClass = srcType.getStorageClass(); 736 switch (storageClass) { 737 case spirv::StorageClass::Input: 738 case spirv::StorageClass::Private: 739 case spirv::StorageClass::Output: 740 case spirv::StorageClass::StorageBuffer: 741 case spirv::StorageClass::UniformConstant: 742 break; 743 default: 744 return failure(); 745 } 746 747 // LLVM dialect spec: "If the global value is a constant, storing into it is 748 // not allowed.". This corresponds to SPIR-V 'Input' and 'UniformConstant' 749 // storage class that is read-only. 750 bool isConstant = (storageClass == spirv::StorageClass::Input) || 751 (storageClass == spirv::StorageClass::UniformConstant); 752 // SPIR-V spec: "By default, functions and global variables are private to a 753 // module and cannot be accessed by other modules. However, a module may be 754 // written to export or import functions and global (module scope) 755 // variables.". Therefore, map 'Private' storage class to private linkage, 756 // 'Input' and 'Output' to external linkage. 757 auto linkage = storageClass == spirv::StorageClass::Private 758 ? LLVM::Linkage::Private 759 : LLVM::Linkage::External; 760 auto newGlobalOp = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( 761 op, dstType, isConstant, linkage, op.sym_name(), Attribute(), 762 /*alignment=*/0); 763 764 // Attach location attribute if applicable 765 if (op.locationAttr()) 766 newGlobalOp->setAttr(op.locationAttrName(), op.locationAttr()); 767 768 return success(); 769 } 770 }; 771 772 /// Converts SPIR-V cast ops that do not have straightforward LLVM 773 /// equivalent in LLVM dialect. 774 template <typename SPIRVOp, typename LLVMExtOp, typename LLVMTruncOp> 775 class IndirectCastPattern : public SPIRVToLLVMConversion<SPIRVOp> { 776 public: 777 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 778 779 LogicalResult 780 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor, 781 ConversionPatternRewriter &rewriter) const override { 782 783 Type fromType = operation.operand().getType(); 784 Type toType = operation.getType(); 785 786 auto dstType = this->typeConverter.convertType(toType); 787 if (!dstType) 788 return failure(); 789 790 if (getBitWidth(fromType) < getBitWidth(toType)) { 791 rewriter.template replaceOpWithNewOp<LLVMExtOp>(operation, dstType, 792 adaptor.getOperands()); 793 return success(); 794 } 795 if (getBitWidth(fromType) > getBitWidth(toType)) { 796 rewriter.template replaceOpWithNewOp<LLVMTruncOp>(operation, dstType, 797 adaptor.getOperands()); 798 return success(); 799 } 800 return failure(); 801 } 802 }; 803 804 class FunctionCallPattern 805 : public SPIRVToLLVMConversion<spirv::FunctionCallOp> { 806 public: 807 using SPIRVToLLVMConversion<spirv::FunctionCallOp>::SPIRVToLLVMConversion; 808 809 LogicalResult 810 matchAndRewrite(spirv::FunctionCallOp callOp, OpAdaptor adaptor, 811 ConversionPatternRewriter &rewriter) const override { 812 if (callOp.getNumResults() == 0) { 813 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 814 callOp, llvm::None, adaptor.getOperands(), callOp->getAttrs()); 815 return success(); 816 } 817 818 // Function returns a single result. 819 auto dstType = typeConverter.convertType(callOp.getType(0)); 820 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 821 callOp, dstType, adaptor.getOperands(), callOp->getAttrs()); 822 return success(); 823 } 824 }; 825 826 /// Converts SPIR-V floating-point comparisons to llvm.fcmp "predicate" 827 template <typename SPIRVOp, LLVM::FCmpPredicate predicate> 828 class FComparePattern : public SPIRVToLLVMConversion<SPIRVOp> { 829 public: 830 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 831 832 LogicalResult 833 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor, 834 ConversionPatternRewriter &rewriter) const override { 835 836 auto dstType = this->typeConverter.convertType(operation.getType()); 837 if (!dstType) 838 return failure(); 839 840 rewriter.template replaceOpWithNewOp<LLVM::FCmpOp>( 841 operation, dstType, predicate, operation.operand1(), 842 operation.operand2()); 843 return success(); 844 } 845 }; 846 847 /// Converts SPIR-V integer comparisons to llvm.icmp "predicate" 848 template <typename SPIRVOp, LLVM::ICmpPredicate predicate> 849 class IComparePattern : public SPIRVToLLVMConversion<SPIRVOp> { 850 public: 851 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 852 853 LogicalResult 854 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor, 855 ConversionPatternRewriter &rewriter) const override { 856 857 auto dstType = this->typeConverter.convertType(operation.getType()); 858 if (!dstType) 859 return failure(); 860 861 rewriter.template replaceOpWithNewOp<LLVM::ICmpOp>( 862 operation, dstType, predicate, operation.operand1(), 863 operation.operand2()); 864 return success(); 865 } 866 }; 867 868 class InverseSqrtPattern 869 : public SPIRVToLLVMConversion<spirv::GLSLInverseSqrtOp> { 870 public: 871 using SPIRVToLLVMConversion<spirv::GLSLInverseSqrtOp>::SPIRVToLLVMConversion; 872 873 LogicalResult 874 matchAndRewrite(spirv::GLSLInverseSqrtOp op, OpAdaptor adaptor, 875 ConversionPatternRewriter &rewriter) const override { 876 auto srcType = op.getType(); 877 auto dstType = typeConverter.convertType(srcType); 878 if (!dstType) 879 return failure(); 880 881 Location loc = op.getLoc(); 882 Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0); 883 Value sqrt = rewriter.create<LLVM::SqrtOp>(loc, dstType, op.operand()); 884 rewriter.replaceOpWithNewOp<LLVM::FDivOp>(op, dstType, one, sqrt); 885 return success(); 886 } 887 }; 888 889 /// Converts `spv.Load` and `spv.Store` to LLVM dialect. 890 template <typename SPIRVOp> 891 class LoadStorePattern : public SPIRVToLLVMConversion<SPIRVOp> { 892 public: 893 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 894 895 LogicalResult 896 matchAndRewrite(SPIRVOp op, typename SPIRVOp::Adaptor adaptor, 897 ConversionPatternRewriter &rewriter) const override { 898 if (!op.memory_access()) { 899 return replaceWithLoadOrStore(op, adaptor.getOperands(), rewriter, 900 this->typeConverter, /*alignment=*/0, 901 /*isVolatile=*/false, 902 /*isNonTemporal=*/false); 903 } 904 auto memoryAccess = *op.memory_access(); 905 switch (memoryAccess) { 906 case spirv::MemoryAccess::Aligned: 907 case spirv::MemoryAccess::None: 908 case spirv::MemoryAccess::Nontemporal: 909 case spirv::MemoryAccess::Volatile: { 910 unsigned alignment = 911 memoryAccess == spirv::MemoryAccess::Aligned ? *op.alignment() : 0; 912 bool isNonTemporal = memoryAccess == spirv::MemoryAccess::Nontemporal; 913 bool isVolatile = memoryAccess == spirv::MemoryAccess::Volatile; 914 return replaceWithLoadOrStore(op, adaptor.getOperands(), rewriter, 915 this->typeConverter, alignment, isVolatile, 916 isNonTemporal); 917 } 918 default: 919 // There is no support of other memory access attributes. 920 return failure(); 921 } 922 } 923 }; 924 925 /// Converts `spv.Not` and `spv.LogicalNot` into LLVM dialect. 926 template <typename SPIRVOp> 927 class NotPattern : public SPIRVToLLVMConversion<SPIRVOp> { 928 public: 929 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 930 931 LogicalResult 932 matchAndRewrite(SPIRVOp notOp, typename SPIRVOp::Adaptor adaptor, 933 ConversionPatternRewriter &rewriter) const override { 934 auto srcType = notOp.getType(); 935 auto dstType = this->typeConverter.convertType(srcType); 936 if (!dstType) 937 return failure(); 938 939 Location loc = notOp.getLoc(); 940 IntegerAttr minusOne = minusOneIntegerAttribute(srcType, rewriter); 941 auto mask = srcType.template isa<VectorType>() 942 ? rewriter.create<LLVM::ConstantOp>( 943 loc, dstType, 944 SplatElementsAttr::get( 945 srcType.template cast<VectorType>(), minusOne)) 946 : rewriter.create<LLVM::ConstantOp>(loc, dstType, minusOne); 947 rewriter.template replaceOpWithNewOp<LLVM::XOrOp>(notOp, dstType, 948 notOp.operand(), mask); 949 return success(); 950 } 951 }; 952 953 /// A template pattern that erases the given `SPIRVOp`. 954 template <typename SPIRVOp> 955 class ErasePattern : public SPIRVToLLVMConversion<SPIRVOp> { 956 public: 957 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 958 959 LogicalResult 960 matchAndRewrite(SPIRVOp op, typename SPIRVOp::Adaptor adaptor, 961 ConversionPatternRewriter &rewriter) const override { 962 rewriter.eraseOp(op); 963 return success(); 964 } 965 }; 966 967 class ReturnPattern : public SPIRVToLLVMConversion<spirv::ReturnOp> { 968 public: 969 using SPIRVToLLVMConversion<spirv::ReturnOp>::SPIRVToLLVMConversion; 970 971 LogicalResult 972 matchAndRewrite(spirv::ReturnOp returnOp, OpAdaptor adaptor, 973 ConversionPatternRewriter &rewriter) const override { 974 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnOp, ArrayRef<Type>(), 975 ArrayRef<Value>()); 976 return success(); 977 } 978 }; 979 980 class ReturnValuePattern : public SPIRVToLLVMConversion<spirv::ReturnValueOp> { 981 public: 982 using SPIRVToLLVMConversion<spirv::ReturnValueOp>::SPIRVToLLVMConversion; 983 984 LogicalResult 985 matchAndRewrite(spirv::ReturnValueOp returnValueOp, OpAdaptor adaptor, 986 ConversionPatternRewriter &rewriter) const override { 987 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(returnValueOp, ArrayRef<Type>(), 988 adaptor.getOperands()); 989 return success(); 990 } 991 }; 992 993 /// Converts `spv.mlir.loop` to LLVM dialect. All blocks within selection should 994 /// be reachable for conversion to succeed. The structure of the loop in LLVM 995 /// dialect will be the following: 996 /// 997 /// +------------------------------------+ 998 /// | <code before spv.mlir.loop> | 999 /// | llvm.br ^header | 1000 /// +------------------------------------+ 1001 /// | 1002 /// +----------------+ | 1003 /// | | | 1004 /// | V V 1005 /// | +------------------------------------+ 1006 /// | | ^header: | 1007 /// | | <header code> | 1008 /// | | llvm.cond_br %cond, ^body, ^exit | 1009 /// | +------------------------------------+ 1010 /// | | 1011 /// | |----------------------+ 1012 /// | | | 1013 /// | V | 1014 /// | +------------------------------------+ | 1015 /// | | ^body: | | 1016 /// | | <body code> | | 1017 /// | | llvm.br ^continue | | 1018 /// | +------------------------------------+ | 1019 /// | | | 1020 /// | V | 1021 /// | +------------------------------------+ | 1022 /// | | ^continue: | | 1023 /// | | <continue code> | | 1024 /// | | llvm.br ^header | | 1025 /// | +------------------------------------+ | 1026 /// | | | 1027 /// +---------------+ +----------------------+ 1028 /// | 1029 /// V 1030 /// +------------------------------------+ 1031 /// | ^exit: | 1032 /// | llvm.br ^remaining | 1033 /// +------------------------------------+ 1034 /// | 1035 /// V 1036 /// +------------------------------------+ 1037 /// | ^remaining: | 1038 /// | <code after spv.mlir.loop> | 1039 /// +------------------------------------+ 1040 /// 1041 class LoopPattern : public SPIRVToLLVMConversion<spirv::LoopOp> { 1042 public: 1043 using SPIRVToLLVMConversion<spirv::LoopOp>::SPIRVToLLVMConversion; 1044 1045 LogicalResult 1046 matchAndRewrite(spirv::LoopOp loopOp, OpAdaptor adaptor, 1047 ConversionPatternRewriter &rewriter) const override { 1048 // There is no support of loop control at the moment. 1049 if (loopOp.loop_control() != spirv::LoopControl::None) 1050 return failure(); 1051 1052 Location loc = loopOp.getLoc(); 1053 1054 // Split the current block after `spv.mlir.loop`. The remaining ops will be 1055 // used in `endBlock`. 1056 Block *currentBlock = rewriter.getBlock(); 1057 auto position = Block::iterator(loopOp); 1058 Block *endBlock = rewriter.splitBlock(currentBlock, position); 1059 1060 // Remove entry block and create a branch in the current block going to the 1061 // header block. 1062 Block *entryBlock = loopOp.getEntryBlock(); 1063 assert(entryBlock->getOperations().size() == 1); 1064 auto brOp = dyn_cast<spirv::BranchOp>(entryBlock->getOperations().front()); 1065 if (!brOp) 1066 return failure(); 1067 Block *headerBlock = loopOp.getHeaderBlock(); 1068 rewriter.setInsertionPointToEnd(currentBlock); 1069 rewriter.create<LLVM::BrOp>(loc, brOp.getBlockArguments(), headerBlock); 1070 rewriter.eraseBlock(entryBlock); 1071 1072 // Branch from merge block to end block. 1073 Block *mergeBlock = loopOp.getMergeBlock(); 1074 Operation *terminator = mergeBlock->getTerminator(); 1075 ValueRange terminatorOperands = terminator->getOperands(); 1076 rewriter.setInsertionPointToEnd(mergeBlock); 1077 rewriter.create<LLVM::BrOp>(loc, terminatorOperands, endBlock); 1078 1079 rewriter.inlineRegionBefore(loopOp.body(), endBlock); 1080 rewriter.replaceOp(loopOp, endBlock->getArguments()); 1081 return success(); 1082 } 1083 }; 1084 1085 /// Converts `spv.mlir.selection` with `spv.BranchConditional` in its header 1086 /// block. All blocks within selection should be reachable for conversion to 1087 /// succeed. 1088 class SelectionPattern : public SPIRVToLLVMConversion<spirv::SelectionOp> { 1089 public: 1090 using SPIRVToLLVMConversion<spirv::SelectionOp>::SPIRVToLLVMConversion; 1091 1092 LogicalResult 1093 matchAndRewrite(spirv::SelectionOp op, OpAdaptor adaptor, 1094 ConversionPatternRewriter &rewriter) const override { 1095 // There is no support for `Flatten` or `DontFlatten` selection control at 1096 // the moment. This are just compiler hints and can be performed during the 1097 // optimization passes. 1098 if (op.selection_control() != spirv::SelectionControl::None) 1099 return failure(); 1100 1101 // `spv.mlir.selection` should have at least two blocks: one selection 1102 // header block and one merge block. If no blocks are present, or control 1103 // flow branches straight to merge block (two blocks are present), the op is 1104 // redundant and it is erased. 1105 if (op.body().getBlocks().size() <= 2) { 1106 rewriter.eraseOp(op); 1107 return success(); 1108 } 1109 1110 Location loc = op.getLoc(); 1111 1112 // Split the current block after `spv.mlir.selection`. The remaining ops 1113 // will be used in `continueBlock`. 1114 auto *currentBlock = rewriter.getInsertionBlock(); 1115 rewriter.setInsertionPointAfter(op); 1116 auto position = rewriter.getInsertionPoint(); 1117 auto *continueBlock = rewriter.splitBlock(currentBlock, position); 1118 1119 // Extract conditional branch information from the header block. By SPIR-V 1120 // dialect spec, it should contain `spv.BranchConditional` or `spv.Switch` 1121 // op. Note that `spv.Switch op` is not supported at the moment in the 1122 // SPIR-V dialect. Remove this block when finished. 1123 auto *headerBlock = op.getHeaderBlock(); 1124 assert(headerBlock->getOperations().size() == 1); 1125 auto condBrOp = dyn_cast<spirv::BranchConditionalOp>( 1126 headerBlock->getOperations().front()); 1127 if (!condBrOp) 1128 return failure(); 1129 rewriter.eraseBlock(headerBlock); 1130 1131 // Branch from merge block to continue block. 1132 auto *mergeBlock = op.getMergeBlock(); 1133 Operation *terminator = mergeBlock->getTerminator(); 1134 ValueRange terminatorOperands = terminator->getOperands(); 1135 rewriter.setInsertionPointToEnd(mergeBlock); 1136 rewriter.create<LLVM::BrOp>(loc, terminatorOperands, continueBlock); 1137 1138 // Link current block to `true` and `false` blocks within the selection. 1139 Block *trueBlock = condBrOp.getTrueBlock(); 1140 Block *falseBlock = condBrOp.getFalseBlock(); 1141 rewriter.setInsertionPointToEnd(currentBlock); 1142 rewriter.create<LLVM::CondBrOp>(loc, condBrOp.condition(), trueBlock, 1143 condBrOp.trueTargetOperands(), falseBlock, 1144 condBrOp.falseTargetOperands()); 1145 1146 rewriter.inlineRegionBefore(op.body(), continueBlock); 1147 rewriter.replaceOp(op, continueBlock->getArguments()); 1148 return success(); 1149 } 1150 }; 1151 1152 /// Converts SPIR-V shift ops to LLVM shift ops. Since LLVM dialect 1153 /// puts a restriction on `Shift` and `Base` to have the same bit width, 1154 /// `Shift` is zero or sign extended to match this specification. Cases when 1155 /// `Shift` bit width > `Base` bit width are considered to be illegal. 1156 template <typename SPIRVOp, typename LLVMOp> 1157 class ShiftPattern : public SPIRVToLLVMConversion<SPIRVOp> { 1158 public: 1159 using SPIRVToLLVMConversion<SPIRVOp>::SPIRVToLLVMConversion; 1160 1161 LogicalResult 1162 matchAndRewrite(SPIRVOp operation, typename SPIRVOp::Adaptor adaptor, 1163 ConversionPatternRewriter &rewriter) const override { 1164 1165 auto dstType = this->typeConverter.convertType(operation.getType()); 1166 if (!dstType) 1167 return failure(); 1168 1169 Type op1Type = operation.operand1().getType(); 1170 Type op2Type = operation.operand2().getType(); 1171 1172 if (op1Type == op2Type) { 1173 rewriter.template replaceOpWithNewOp<LLVMOp>(operation, dstType, 1174 adaptor.getOperands()); 1175 return success(); 1176 } 1177 1178 Location loc = operation.getLoc(); 1179 Value extended; 1180 if (isUnsignedIntegerOrVector(op2Type)) { 1181 extended = rewriter.template create<LLVM::ZExtOp>(loc, dstType, 1182 adaptor.operand2()); 1183 } else { 1184 extended = rewriter.template create<LLVM::SExtOp>(loc, dstType, 1185 adaptor.operand2()); 1186 } 1187 Value result = rewriter.template create<LLVMOp>( 1188 loc, dstType, adaptor.operand1(), extended); 1189 rewriter.replaceOp(operation, result); 1190 return success(); 1191 } 1192 }; 1193 1194 class TanPattern : public SPIRVToLLVMConversion<spirv::GLSLTanOp> { 1195 public: 1196 using SPIRVToLLVMConversion<spirv::GLSLTanOp>::SPIRVToLLVMConversion; 1197 1198 LogicalResult 1199 matchAndRewrite(spirv::GLSLTanOp tanOp, OpAdaptor adaptor, 1200 ConversionPatternRewriter &rewriter) const override { 1201 auto dstType = typeConverter.convertType(tanOp.getType()); 1202 if (!dstType) 1203 return failure(); 1204 1205 Location loc = tanOp.getLoc(); 1206 Value sin = rewriter.create<LLVM::SinOp>(loc, dstType, tanOp.operand()); 1207 Value cos = rewriter.create<LLVM::CosOp>(loc, dstType, tanOp.operand()); 1208 rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanOp, dstType, sin, cos); 1209 return success(); 1210 } 1211 }; 1212 1213 /// Convert `spv.Tanh` to 1214 /// 1215 /// exp(2x) - 1 1216 /// ----------- 1217 /// exp(2x) + 1 1218 /// 1219 class TanhPattern : public SPIRVToLLVMConversion<spirv::GLSLTanhOp> { 1220 public: 1221 using SPIRVToLLVMConversion<spirv::GLSLTanhOp>::SPIRVToLLVMConversion; 1222 1223 LogicalResult 1224 matchAndRewrite(spirv::GLSLTanhOp tanhOp, OpAdaptor adaptor, 1225 ConversionPatternRewriter &rewriter) const override { 1226 auto srcType = tanhOp.getType(); 1227 auto dstType = typeConverter.convertType(srcType); 1228 if (!dstType) 1229 return failure(); 1230 1231 Location loc = tanhOp.getLoc(); 1232 Value two = createFPConstant(loc, srcType, dstType, rewriter, 2.0); 1233 Value multiplied = 1234 rewriter.create<LLVM::FMulOp>(loc, dstType, two, tanhOp.operand()); 1235 Value exponential = rewriter.create<LLVM::ExpOp>(loc, dstType, multiplied); 1236 Value one = createFPConstant(loc, srcType, dstType, rewriter, 1.0); 1237 Value numerator = 1238 rewriter.create<LLVM::FSubOp>(loc, dstType, exponential, one); 1239 Value denominator = 1240 rewriter.create<LLVM::FAddOp>(loc, dstType, exponential, one); 1241 rewriter.replaceOpWithNewOp<LLVM::FDivOp>(tanhOp, dstType, numerator, 1242 denominator); 1243 return success(); 1244 } 1245 }; 1246 1247 class VariablePattern : public SPIRVToLLVMConversion<spirv::VariableOp> { 1248 public: 1249 using SPIRVToLLVMConversion<spirv::VariableOp>::SPIRVToLLVMConversion; 1250 1251 LogicalResult 1252 matchAndRewrite(spirv::VariableOp varOp, OpAdaptor adaptor, 1253 ConversionPatternRewriter &rewriter) const override { 1254 auto srcType = varOp.getType(); 1255 // Initialization is supported for scalars and vectors only. 1256 auto pointerTo = srcType.cast<spirv::PointerType>().getPointeeType(); 1257 auto init = varOp.initializer(); 1258 if (init && !pointerTo.isIntOrFloat() && !pointerTo.isa<VectorType>()) 1259 return failure(); 1260 1261 auto dstType = typeConverter.convertType(srcType); 1262 if (!dstType) 1263 return failure(); 1264 1265 Location loc = varOp.getLoc(); 1266 Value size = createI32ConstantOf(loc, rewriter, 1); 1267 if (!init) { 1268 rewriter.replaceOpWithNewOp<LLVM::AllocaOp>(varOp, dstType, size); 1269 return success(); 1270 } 1271 Value allocated = rewriter.create<LLVM::AllocaOp>(loc, dstType, size); 1272 rewriter.create<LLVM::StoreOp>(loc, adaptor.initializer(), allocated); 1273 rewriter.replaceOp(varOp, allocated); 1274 return success(); 1275 } 1276 }; 1277 1278 //===----------------------------------------------------------------------===// 1279 // FuncOp conversion 1280 //===----------------------------------------------------------------------===// 1281 1282 class FuncConversionPattern : public SPIRVToLLVMConversion<spirv::FuncOp> { 1283 public: 1284 using SPIRVToLLVMConversion<spirv::FuncOp>::SPIRVToLLVMConversion; 1285 1286 LogicalResult 1287 matchAndRewrite(spirv::FuncOp funcOp, OpAdaptor adaptor, 1288 ConversionPatternRewriter &rewriter) const override { 1289 1290 // Convert function signature. At the moment LLVMType converter is enough 1291 // for currently supported types. 1292 auto funcType = funcOp.getFunctionType(); 1293 TypeConverter::SignatureConversion signatureConverter( 1294 funcType.getNumInputs()); 1295 auto llvmType = typeConverter.convertFunctionSignature( 1296 funcType, /*isVariadic=*/false, signatureConverter); 1297 if (!llvmType) 1298 return failure(); 1299 1300 // Create a new `LLVMFuncOp` 1301 Location loc = funcOp.getLoc(); 1302 StringRef name = funcOp.getName(); 1303 auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>(loc, name, llvmType); 1304 1305 // Convert SPIR-V Function Control to equivalent LLVM function attribute 1306 MLIRContext *context = funcOp.getContext(); 1307 switch (funcOp.function_control()) { 1308 #define DISPATCH(functionControl, llvmAttr) \ 1309 case functionControl: \ 1310 newFuncOp->setAttr("passthrough", ArrayAttr::get(context, {llvmAttr})); \ 1311 break; 1312 1313 DISPATCH(spirv::FunctionControl::Inline, 1314 StringAttr::get(context, "alwaysinline")); 1315 DISPATCH(spirv::FunctionControl::DontInline, 1316 StringAttr::get(context, "noinline")); 1317 DISPATCH(spirv::FunctionControl::Pure, 1318 StringAttr::get(context, "readonly")); 1319 DISPATCH(spirv::FunctionControl::Const, 1320 StringAttr::get(context, "readnone")); 1321 1322 #undef DISPATCH 1323 1324 // Default: if `spirv::FunctionControl::None`, then no attributes are 1325 // needed. 1326 default: 1327 break; 1328 } 1329 1330 rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), 1331 newFuncOp.end()); 1332 if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), typeConverter, 1333 &signatureConverter))) { 1334 return failure(); 1335 } 1336 rewriter.eraseOp(funcOp); 1337 return success(); 1338 } 1339 }; 1340 1341 //===----------------------------------------------------------------------===// 1342 // ModuleOp conversion 1343 //===----------------------------------------------------------------------===// 1344 1345 class ModuleConversionPattern : public SPIRVToLLVMConversion<spirv::ModuleOp> { 1346 public: 1347 using SPIRVToLLVMConversion<spirv::ModuleOp>::SPIRVToLLVMConversion; 1348 1349 LogicalResult 1350 matchAndRewrite(spirv::ModuleOp spvModuleOp, OpAdaptor adaptor, 1351 ConversionPatternRewriter &rewriter) const override { 1352 1353 auto newModuleOp = 1354 rewriter.create<ModuleOp>(spvModuleOp.getLoc(), spvModuleOp.getName()); 1355 rewriter.inlineRegionBefore(spvModuleOp.getRegion(), newModuleOp.getBody()); 1356 1357 // Remove the terminator block that was automatically added by builder 1358 rewriter.eraseBlock(&newModuleOp.getBodyRegion().back()); 1359 rewriter.eraseOp(spvModuleOp); 1360 return success(); 1361 } 1362 }; 1363 1364 //===----------------------------------------------------------------------===// 1365 // VectorShuffleOp conversion 1366 //===----------------------------------------------------------------------===// 1367 1368 class VectorShufflePattern 1369 : public SPIRVToLLVMConversion<spirv::VectorShuffleOp> { 1370 public: 1371 using SPIRVToLLVMConversion<spirv::VectorShuffleOp>::SPIRVToLLVMConversion; 1372 LogicalResult 1373 matchAndRewrite(spirv::VectorShuffleOp op, OpAdaptor adaptor, 1374 ConversionPatternRewriter &rewriter) const override { 1375 Location loc = op.getLoc(); 1376 auto components = adaptor.components(); 1377 auto vector1 = adaptor.vector1(); 1378 auto vector2 = adaptor.vector2(); 1379 int vector1Size = vector1.getType().cast<VectorType>().getNumElements(); 1380 int vector2Size = vector2.getType().cast<VectorType>().getNumElements(); 1381 if (vector1Size == vector2Size) { 1382 rewriter.replaceOpWithNewOp<LLVM::ShuffleVectorOp>(op, vector1, vector2, 1383 components); 1384 return success(); 1385 } 1386 1387 auto dstType = typeConverter.convertType(op.getType()); 1388 auto scalarType = dstType.cast<VectorType>().getElementType(); 1389 auto componentsArray = components.getValue(); 1390 auto *context = rewriter.getContext(); 1391 auto llvmI32Type = IntegerType::get(context, 32); 1392 Value targetOp = rewriter.create<LLVM::UndefOp>(loc, dstType); 1393 for (unsigned i = 0; i < componentsArray.size(); i++) { 1394 if (componentsArray[i].isa<IntegerAttr>()) 1395 op.emitError("unable to support non-constant component"); 1396 1397 int indexVal = componentsArray[i].cast<IntegerAttr>().getInt(); 1398 if (indexVal == -1) 1399 continue; 1400 1401 int offsetVal = 0; 1402 Value baseVector = vector1; 1403 if (indexVal >= vector1Size) { 1404 offsetVal = vector1Size; 1405 baseVector = vector2; 1406 } 1407 1408 Value dstIndex = rewriter.create<LLVM::ConstantOp>( 1409 loc, llvmI32Type, rewriter.getIntegerAttr(rewriter.getI32Type(), i)); 1410 Value index = rewriter.create<LLVM::ConstantOp>( 1411 loc, llvmI32Type, 1412 rewriter.getIntegerAttr(rewriter.getI32Type(), indexVal - offsetVal)); 1413 1414 auto extractOp = rewriter.create<LLVM::ExtractElementOp>( 1415 loc, scalarType, baseVector, index); 1416 targetOp = rewriter.create<LLVM::InsertElementOp>(loc, dstType, targetOp, 1417 extractOp, dstIndex); 1418 } 1419 rewriter.replaceOp(op, targetOp); 1420 return success(); 1421 } 1422 }; 1423 } // namespace 1424 1425 //===----------------------------------------------------------------------===// 1426 // Pattern population 1427 //===----------------------------------------------------------------------===// 1428 1429 void mlir::populateSPIRVToLLVMTypeConversion(LLVMTypeConverter &typeConverter) { 1430 typeConverter.addConversion([&](spirv::ArrayType type) { 1431 return convertArrayType(type, typeConverter); 1432 }); 1433 typeConverter.addConversion([&](spirv::PointerType type) { 1434 return convertPointerType(type, typeConverter); 1435 }); 1436 typeConverter.addConversion([&](spirv::RuntimeArrayType type) { 1437 return convertRuntimeArrayType(type, typeConverter); 1438 }); 1439 typeConverter.addConversion([&](spirv::StructType type) { 1440 return convertStructType(type, typeConverter); 1441 }); 1442 } 1443 1444 void mlir::populateSPIRVToLLVMConversionPatterns( 1445 LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) { 1446 patterns.add< 1447 // Arithmetic ops 1448 DirectConversionPattern<spirv::IAddOp, LLVM::AddOp>, 1449 DirectConversionPattern<spirv::IMulOp, LLVM::MulOp>, 1450 DirectConversionPattern<spirv::ISubOp, LLVM::SubOp>, 1451 DirectConversionPattern<spirv::FAddOp, LLVM::FAddOp>, 1452 DirectConversionPattern<spirv::FDivOp, LLVM::FDivOp>, 1453 DirectConversionPattern<spirv::FMulOp, LLVM::FMulOp>, 1454 DirectConversionPattern<spirv::FNegateOp, LLVM::FNegOp>, 1455 DirectConversionPattern<spirv::FRemOp, LLVM::FRemOp>, 1456 DirectConversionPattern<spirv::FSubOp, LLVM::FSubOp>, 1457 DirectConversionPattern<spirv::SDivOp, LLVM::SDivOp>, 1458 DirectConversionPattern<spirv::SRemOp, LLVM::SRemOp>, 1459 DirectConversionPattern<spirv::UDivOp, LLVM::UDivOp>, 1460 DirectConversionPattern<spirv::UModOp, LLVM::URemOp>, 1461 1462 // Bitwise ops 1463 BitFieldInsertPattern, BitFieldUExtractPattern, BitFieldSExtractPattern, 1464 DirectConversionPattern<spirv::BitCountOp, LLVM::CtPopOp>, 1465 DirectConversionPattern<spirv::BitReverseOp, LLVM::BitReverseOp>, 1466 DirectConversionPattern<spirv::BitwiseAndOp, LLVM::AndOp>, 1467 DirectConversionPattern<spirv::BitwiseOrOp, LLVM::OrOp>, 1468 DirectConversionPattern<spirv::BitwiseXorOp, LLVM::XOrOp>, 1469 NotPattern<spirv::NotOp>, 1470 1471 // Cast ops 1472 DirectConversionPattern<spirv::BitcastOp, LLVM::BitcastOp>, 1473 DirectConversionPattern<spirv::ConvertFToSOp, LLVM::FPToSIOp>, 1474 DirectConversionPattern<spirv::ConvertFToUOp, LLVM::FPToUIOp>, 1475 DirectConversionPattern<spirv::ConvertSToFOp, LLVM::SIToFPOp>, 1476 DirectConversionPattern<spirv::ConvertUToFOp, LLVM::UIToFPOp>, 1477 IndirectCastPattern<spirv::FConvertOp, LLVM::FPExtOp, LLVM::FPTruncOp>, 1478 IndirectCastPattern<spirv::SConvertOp, LLVM::SExtOp, LLVM::TruncOp>, 1479 IndirectCastPattern<spirv::UConvertOp, LLVM::ZExtOp, LLVM::TruncOp>, 1480 1481 // Comparison ops 1482 IComparePattern<spirv::IEqualOp, LLVM::ICmpPredicate::eq>, 1483 IComparePattern<spirv::INotEqualOp, LLVM::ICmpPredicate::ne>, 1484 FComparePattern<spirv::FOrdEqualOp, LLVM::FCmpPredicate::oeq>, 1485 FComparePattern<spirv::FOrdGreaterThanOp, LLVM::FCmpPredicate::ogt>, 1486 FComparePattern<spirv::FOrdGreaterThanEqualOp, LLVM::FCmpPredicate::oge>, 1487 FComparePattern<spirv::FOrdLessThanEqualOp, LLVM::FCmpPredicate::ole>, 1488 FComparePattern<spirv::FOrdLessThanOp, LLVM::FCmpPredicate::olt>, 1489 FComparePattern<spirv::FOrdNotEqualOp, LLVM::FCmpPredicate::one>, 1490 FComparePattern<spirv::FUnordEqualOp, LLVM::FCmpPredicate::ueq>, 1491 FComparePattern<spirv::FUnordGreaterThanOp, LLVM::FCmpPredicate::ugt>, 1492 FComparePattern<spirv::FUnordGreaterThanEqualOp, 1493 LLVM::FCmpPredicate::uge>, 1494 FComparePattern<spirv::FUnordLessThanEqualOp, LLVM::FCmpPredicate::ule>, 1495 FComparePattern<spirv::FUnordLessThanOp, LLVM::FCmpPredicate::ult>, 1496 FComparePattern<spirv::FUnordNotEqualOp, LLVM::FCmpPredicate::une>, 1497 IComparePattern<spirv::SGreaterThanOp, LLVM::ICmpPredicate::sgt>, 1498 IComparePattern<spirv::SGreaterThanEqualOp, LLVM::ICmpPredicate::sge>, 1499 IComparePattern<spirv::SLessThanEqualOp, LLVM::ICmpPredicate::sle>, 1500 IComparePattern<spirv::SLessThanOp, LLVM::ICmpPredicate::slt>, 1501 IComparePattern<spirv::UGreaterThanOp, LLVM::ICmpPredicate::ugt>, 1502 IComparePattern<spirv::UGreaterThanEqualOp, LLVM::ICmpPredicate::uge>, 1503 IComparePattern<spirv::ULessThanEqualOp, LLVM::ICmpPredicate::ule>, 1504 IComparePattern<spirv::ULessThanOp, LLVM::ICmpPredicate::ult>, 1505 1506 // Constant op 1507 ConstantScalarAndVectorPattern, 1508 1509 // Control Flow ops 1510 BranchConversionPattern, BranchConditionalConversionPattern, 1511 FunctionCallPattern, LoopPattern, SelectionPattern, 1512 ErasePattern<spirv::MergeOp>, 1513 1514 // Entry points and execution mode are handled separately. 1515 ErasePattern<spirv::EntryPointOp>, ExecutionModePattern, 1516 1517 // GLSL extended instruction set ops 1518 DirectConversionPattern<spirv::GLSLCeilOp, LLVM::FCeilOp>, 1519 DirectConversionPattern<spirv::GLSLCosOp, LLVM::CosOp>, 1520 DirectConversionPattern<spirv::GLSLExpOp, LLVM::ExpOp>, 1521 DirectConversionPattern<spirv::GLSLFAbsOp, LLVM::FAbsOp>, 1522 DirectConversionPattern<spirv::GLSLFloorOp, LLVM::FFloorOp>, 1523 DirectConversionPattern<spirv::GLSLFMaxOp, LLVM::MaxNumOp>, 1524 DirectConversionPattern<spirv::GLSLFMinOp, LLVM::MinNumOp>, 1525 DirectConversionPattern<spirv::GLSLLogOp, LLVM::LogOp>, 1526 DirectConversionPattern<spirv::GLSLSinOp, LLVM::SinOp>, 1527 DirectConversionPattern<spirv::GLSLSMaxOp, LLVM::SMaxOp>, 1528 DirectConversionPattern<spirv::GLSLSMinOp, LLVM::SMinOp>, 1529 DirectConversionPattern<spirv::GLSLSqrtOp, LLVM::SqrtOp>, 1530 InverseSqrtPattern, TanPattern, TanhPattern, 1531 1532 // Logical ops 1533 DirectConversionPattern<spirv::LogicalAndOp, LLVM::AndOp>, 1534 DirectConversionPattern<spirv::LogicalOrOp, LLVM::OrOp>, 1535 IComparePattern<spirv::LogicalEqualOp, LLVM::ICmpPredicate::eq>, 1536 IComparePattern<spirv::LogicalNotEqualOp, LLVM::ICmpPredicate::ne>, 1537 NotPattern<spirv::LogicalNotOp>, 1538 1539 // Memory ops 1540 AccessChainPattern, AddressOfPattern, GlobalVariablePattern, 1541 LoadStorePattern<spirv::LoadOp>, LoadStorePattern<spirv::StoreOp>, 1542 VariablePattern, 1543 1544 // Miscellaneous ops 1545 CompositeExtractPattern, CompositeInsertPattern, 1546 DirectConversionPattern<spirv::SelectOp, LLVM::SelectOp>, 1547 DirectConversionPattern<spirv::UndefOp, LLVM::UndefOp>, 1548 VectorShufflePattern, 1549 1550 // Shift ops 1551 ShiftPattern<spirv::ShiftRightArithmeticOp, LLVM::AShrOp>, 1552 ShiftPattern<spirv::ShiftRightLogicalOp, LLVM::LShrOp>, 1553 ShiftPattern<spirv::ShiftLeftLogicalOp, LLVM::ShlOp>, 1554 1555 // Return ops 1556 ReturnPattern, ReturnValuePattern>(patterns.getContext(), typeConverter); 1557 } 1558 1559 void mlir::populateSPIRVToLLVMFunctionConversionPatterns( 1560 LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) { 1561 patterns.add<FuncConversionPattern>(patterns.getContext(), typeConverter); 1562 } 1563 1564 void mlir::populateSPIRVToLLVMModuleConversionPatterns( 1565 LLVMTypeConverter &typeConverter, RewritePatternSet &patterns) { 1566 patterns.add<ModuleConversionPattern>(patterns.getContext(), typeConverter); 1567 } 1568 1569 //===----------------------------------------------------------------------===// 1570 // Pre-conversion hooks 1571 //===----------------------------------------------------------------------===// 1572 1573 /// Hook for descriptor set and binding number encoding. 1574 static constexpr StringRef kBinding = "binding"; 1575 static constexpr StringRef kDescriptorSet = "descriptor_set"; 1576 void mlir::encodeBindAttribute(ModuleOp module) { 1577 auto spvModules = module.getOps<spirv::ModuleOp>(); 1578 for (auto spvModule : spvModules) { 1579 spvModule.walk([&](spirv::GlobalVariableOp op) { 1580 IntegerAttr descriptorSet = 1581 op->getAttrOfType<IntegerAttr>(kDescriptorSet); 1582 IntegerAttr binding = op->getAttrOfType<IntegerAttr>(kBinding); 1583 // For every global variable in the module, get the ones with descriptor 1584 // set and binding numbers. 1585 if (descriptorSet && binding) { 1586 // Encode these numbers into the variable's symbolic name. If the 1587 // SPIR-V module has a name, add it at the beginning. 1588 auto moduleAndName = spvModule.getName().hasValue() 1589 ? spvModule.getName().getValue().str() + "_" + 1590 op.sym_name().str() 1591 : op.sym_name().str(); 1592 std::string name = 1593 llvm::formatv("{0}_descriptor_set{1}_binding{2}", moduleAndName, 1594 std::to_string(descriptorSet.getInt()), 1595 std::to_string(binding.getInt())); 1596 auto nameAttr = StringAttr::get(op->getContext(), name); 1597 1598 // Replace all symbol uses and set the new symbol name. Finally, remove 1599 // descriptor set and binding attributes. 1600 if (failed(SymbolTable::replaceAllSymbolUses(op, nameAttr, spvModule))) 1601 op.emitError("unable to replace all symbol uses for ") << name; 1602 SymbolTable::setSymbolName(op, nameAttr); 1603 op->removeAttr(kDescriptorSet); 1604 op->removeAttr(kBinding); 1605 } 1606 }); 1607 } 1608 } 1609