1 //===- ConvertLaunchFuncToLLVMCalls.cpp - MLIR GPU launch to LLVM pass ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements passes to convert `gpu.launch_func` op into a sequence
10 // of LLVM calls that emulate the host and device sides.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "../PassDetail.h"
15 #include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVM.h"
16 #include "mlir/Conversion/SPIRVToLLVM/SPIRVToLLVMPass.h"
17 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
18 #include "mlir/Dialect/GPU/GPUDialect.h"
19 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
20 #include "mlir/Dialect/SPIRV/IR/SPIRVOps.h"
21 #include "mlir/Dialect/StandardOps/IR/Ops.h"
22 #include "mlir/IR/BuiltinOps.h"
23 #include "mlir/IR/SymbolTable.h"
24 #include "mlir/Transforms/DialectConversion.h"
25 
26 #include "llvm/ADT/DenseMap.h"
27 #include "llvm/Support/FormatVariadic.h"
28 
29 using namespace mlir;
30 
31 static constexpr const char kSPIRVModule[] = "__spv__";
32 
33 //===----------------------------------------------------------------------===//
34 // Utility functions
35 //===----------------------------------------------------------------------===//
36 
37 /// Returns the string name of the `DescriptorSet` decoration.
38 static std::string descriptorSetName() {
39   return llvm::convertToSnakeFromCamelCase(
40       stringifyDecoration(spirv::Decoration::DescriptorSet));
41 }
42 
43 /// Returns the string name of the `Binding` decoration.
44 static std::string bindingName() {
45   return llvm::convertToSnakeFromCamelCase(
46       stringifyDecoration(spirv::Decoration::Binding));
47 }
48 
49 /// Calculates the index of the kernel's operand that is represented by the
50 /// given global variable with the `bind` attribute. We assume that the index of
51 /// each kernel's operand is mapped to (descriptorSet, binding) by the map:
52 ///   i -> (0, i)
53 /// which is implemented under `LowerABIAttributesPass`.
54 static unsigned calculateGlobalIndex(spirv::GlobalVariableOp op) {
55   IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
56   return binding.getInt();
57 }
58 
59 /// Copies the given number of bytes from src to dst pointers.
60 static void copy(Location loc, Value dst, Value src, Value size,
61                  OpBuilder &builder) {
62   MLIRContext *context = builder.getContext();
63   auto llvmI1Type = LLVM::LLVMIntegerType::get(context, 1);
64   Value isVolatile = builder.create<LLVM::ConstantOp>(
65       loc, llvmI1Type, builder.getBoolAttr(false));
66   builder.create<LLVM::MemcpyOp>(loc, dst, src, size, isVolatile);
67 }
68 
69 /// Encodes the binding and descriptor set numbers into a new symbolic name.
70 /// The name is specified by
71 ///   {kernel_module_name}_{variable_name}_descriptor_set{ds}_binding{b}
72 /// to avoid symbolic conflicts, where 'ds' and 'b' are descriptor set and
73 /// binding numbers.
74 static std::string
75 createGlobalVariableWithBindName(spirv::GlobalVariableOp op,
76                                  StringRef kernelModuleName) {
77   IntegerAttr descriptorSet =
78       op->getAttrOfType<IntegerAttr>(descriptorSetName());
79   IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
80   return llvm::formatv("{0}_{1}_descriptor_set{2}_binding{3}",
81                        kernelModuleName.str(), op.sym_name().str(),
82                        std::to_string(descriptorSet.getInt()),
83                        std::to_string(binding.getInt()));
84 }
85 
86 /// Returns true if the given global variable has both a descriptor set number
87 /// and a binding number.
88 static bool hasDescriptorSetAndBinding(spirv::GlobalVariableOp op) {
89   IntegerAttr descriptorSet =
90       op->getAttrOfType<IntegerAttr>(descriptorSetName());
91   IntegerAttr binding = op->getAttrOfType<IntegerAttr>(bindingName());
92   return descriptorSet && binding;
93 }
94 
95 /// Fills `globalVariableMap` with SPIR-V global variables that represent kernel
96 /// arguments from the given SPIR-V module. We assume that the module contains a
97 /// single entry point function. Hence, all `spv.globalVariable`s with a bind
98 /// attribute are kernel arguments.
99 static LogicalResult getKernelGlobalVariables(
100     spirv::ModuleOp module,
101     DenseMap<uint32_t, spirv::GlobalVariableOp> &globalVariableMap) {
102   auto entryPoints = module.getOps<spirv::EntryPointOp>();
103   if (!llvm::hasSingleElement(entryPoints)) {
104     return module.emitError(
105         "The module must contain exactly one entry point function");
106   }
107   auto globalVariables = module.getOps<spirv::GlobalVariableOp>();
108   for (auto globalOp : globalVariables) {
109     if (hasDescriptorSetAndBinding(globalOp))
110       globalVariableMap[calculateGlobalIndex(globalOp)] = globalOp;
111   }
112   return success();
113 }
114 
115 /// Encodes the SPIR-V module's symbolic name into the name of the entry point
116 /// function.
117 static LogicalResult encodeKernelName(spirv::ModuleOp module) {
118   StringRef spvModuleName = module.sym_name().getValue();
119   // We already know that the module contains exactly one entry point function
120   // based on `getKernelGlobalVariables()` call. Update this function's name
121   // to:
122   //   {spv_module_name}_{function_name}
123   auto entryPoint = *module.getOps<spirv::EntryPointOp>().begin();
124   StringRef funcName = entryPoint.fn();
125   auto funcOp = module.lookupSymbol<spirv::FuncOp>(funcName);
126   std::string newFuncName = spvModuleName.str() + "_" + funcName.str();
127   if (failed(SymbolTable::replaceAllSymbolUses(funcOp, newFuncName, module)))
128     return failure();
129   SymbolTable::setSymbolName(funcOp, newFuncName);
130   return success();
131 }
132 
133 //===----------------------------------------------------------------------===//
134 // Conversion patterns
135 //===----------------------------------------------------------------------===//
136 
137 namespace {
138 
139 /// Structure to group information about the variables being copied.
140 struct CopyInfo {
141   Value dst;
142   Value src;
143   Value size;
144 };
145 
146 /// This pattern emulates a call to the kernel in LLVM dialect. For that, we
147 /// copy the data to the global variable (emulating device side), call the
148 /// kernel as a normal void LLVM function, and copy the data back (emulating the
149 /// host side).
150 class GPULaunchLowering : public ConvertOpToLLVMPattern<gpu::LaunchFuncOp> {
151   using ConvertOpToLLVMPattern<gpu::LaunchFuncOp>::ConvertOpToLLVMPattern;
152 
153   LogicalResult
154   matchAndRewrite(gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
155                   ConversionPatternRewriter &rewriter) const override {
156     auto *op = launchOp.getOperation();
157     MLIRContext *context = rewriter.getContext();
158     auto module = launchOp->getParentOfType<ModuleOp>();
159 
160     // Get the SPIR-V module that represents the gpu kernel module. The module
161     // is named:
162     //   __spv__{kernel_module_name}
163     // based on GPU to SPIR-V conversion.
164     StringRef kernelModuleName = launchOp.getKernelModuleName();
165     std::string spvModuleName = kSPIRVModule + kernelModuleName.str();
166     auto spvModule = module.lookupSymbol<spirv::ModuleOp>(spvModuleName);
167     if (!spvModule) {
168       return launchOp.emitOpError("SPIR-V kernel module '")
169              << spvModuleName << "' is not found";
170     }
171 
172     // Declare kernel function in the main module so that it later can be linked
173     // with its definition from the kernel module. We know that the kernel
174     // function would have no arguments and the data is passed via global
175     // variables. The name of the kernel will be
176     //   {spv_module_name}_{kernel_function_name}
177     // to avoid symbolic name conflicts.
178     StringRef kernelFuncName = launchOp.getKernelName();
179     std::string newKernelFuncName = spvModuleName + "_" + kernelFuncName.str();
180     auto kernelFunc = module.lookupSymbol<LLVM::LLVMFuncOp>(newKernelFuncName);
181     if (!kernelFunc) {
182       OpBuilder::InsertionGuard guard(rewriter);
183       rewriter.setInsertionPointToStart(module.getBody());
184       kernelFunc = rewriter.create<LLVM::LLVMFuncOp>(
185           rewriter.getUnknownLoc(), newKernelFuncName,
186           LLVM::LLVMFunctionType::get(LLVM::LLVMVoidType::get(context),
187                                       ArrayRef<LLVM::LLVMType>()));
188       rewriter.setInsertionPoint(launchOp);
189     }
190 
191     // Get all global variables associated with the kernel operands.
192     DenseMap<uint32_t, spirv::GlobalVariableOp> globalVariableMap;
193     if (failed(getKernelGlobalVariables(spvModule, globalVariableMap)))
194       return failure();
195 
196     // Traverse kernel operands that were converted to MemRefDescriptors. For
197     // each operand, create a global variable and copy data from operand to it.
198     Location loc = launchOp.getLoc();
199     SmallVector<CopyInfo, 4> copyInfo;
200     auto numKernelOperands = launchOp.getNumKernelOperands();
201     auto kernelOperands = operands.take_back(numKernelOperands);
202     for (auto operand : llvm::enumerate(kernelOperands)) {
203       // Check if the kernel's opernad is a ranked memref.
204       auto memRefType = launchOp.getKernelOperand(operand.index())
205                             .getType()
206                             .dyn_cast<MemRefType>();
207       if (!memRefType)
208         return failure();
209 
210       // Calculate the size of the memref and get the pointer to the allocated
211       // buffer.
212       SmallVector<Value, 4> sizes;
213       SmallVector<Value, 4> strides;
214       Value sizeBytes;
215       getMemRefDescriptorSizes(loc, memRefType, operand.value(), rewriter,
216                                sizes, strides, sizeBytes);
217       MemRefDescriptor descriptor(operand.value());
218       Value src = descriptor.allocatedPtr(rewriter, loc);
219 
220       // Get the global variable in the SPIR-V module that is associated with
221       // the kernel operand. Construct its new name and create a corresponding
222       // LLVM dialect global variable.
223       spirv::GlobalVariableOp spirvGlobal = globalVariableMap[operand.index()];
224       auto pointeeType =
225           spirvGlobal.type().cast<spirv::PointerType>().getPointeeType();
226       auto dstGlobalType = typeConverter->convertType(pointeeType);
227       if (!dstGlobalType)
228         return failure();
229       std::string name =
230           createGlobalVariableWithBindName(spirvGlobal, spvModuleName);
231       // Check if this variable has already been created.
232       auto dstGlobal = module.lookupSymbol<LLVM::GlobalOp>(name);
233       if (!dstGlobal) {
234         OpBuilder::InsertionGuard guard(rewriter);
235         rewriter.setInsertionPointToStart(module.getBody());
236         dstGlobal = rewriter.create<LLVM::GlobalOp>(
237             loc, dstGlobalType.cast<LLVM::LLVMType>(),
238             /*isConstant=*/false, LLVM::Linkage::Linkonce, name, Attribute());
239         rewriter.setInsertionPoint(launchOp);
240       }
241 
242       // Copy the data from src operand pointer to dst global variable. Save
243       // src, dst and size so that we can copy data back after emulating the
244       // kernel call.
245       Value dst = rewriter.create<LLVM::AddressOfOp>(loc, dstGlobal);
246       copy(loc, dst, src, sizeBytes, rewriter);
247 
248       CopyInfo info;
249       info.dst = dst;
250       info.src = src;
251       info.size = sizeBytes;
252       copyInfo.push_back(info);
253     }
254     // Create a call to the kernel and copy the data back.
255     rewriter.replaceOpWithNewOp<LLVM::CallOp>(op, kernelFunc,
256                                               ArrayRef<Value>());
257     for (CopyInfo info : copyInfo)
258       copy(loc, info.src, info.dst, info.size, rewriter);
259     return success();
260   }
261 };
262 
263 class LowerHostCodeToLLVM
264     : public LowerHostCodeToLLVMBase<LowerHostCodeToLLVM> {
265 public:
266   void runOnOperation() override {
267     ModuleOp module = getOperation();
268 
269     // Erase the GPU module.
270     for (auto gpuModule :
271          llvm::make_early_inc_range(module.getOps<gpu::GPUModuleOp>()))
272       gpuModule.erase();
273 
274     // Specify options to lower Standard to LLVM and pull in the conversion
275     // patterns.
276     LowerToLLVMOptions options = {
277         /*useBarePtrCallConv=*/false,
278         /*emitCWrappers=*/true,
279         /*indexBitwidth=*/kDeriveIndexBitwidthFromDataLayout};
280     auto *context = module.getContext();
281     OwningRewritePatternList patterns;
282     LLVMTypeConverter typeConverter(context, options);
283     populateStdToLLVMConversionPatterns(typeConverter, patterns);
284     patterns.insert<GPULaunchLowering>(typeConverter);
285 
286     // Pull in SPIR-V type conversion patterns to convert SPIR-V global
287     // variable's type to LLVM dialect type.
288     populateSPIRVToLLVMTypeConversion(typeConverter);
289 
290     ConversionTarget target(*context);
291     target.addLegalDialect<LLVM::LLVMDialect>();
292     if (failed(applyPartialConversion(module, target, std::move(patterns))))
293       signalPassFailure();
294 
295     // Finally, modify the kernel function in SPIR-V modules to avoid symbolic
296     // conflicts.
297     for (auto spvModule : module.getOps<spirv::ModuleOp>())
298       encodeKernelName(spvModule);
299   }
300 };
301 } // namespace
302 
303 std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
304 mlir::createLowerHostCodeToLLVMPass() {
305   return std::make_unique<LowerHostCodeToLLVM>();
306 }
307