1 //===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h" 10 #include "../PassDetail.h" 11 #include "PredicateTree.h" 12 #include "mlir/Dialect/PDL/IR/PDL.h" 13 #include "mlir/Dialect/PDL/IR/PDLTypes.h" 14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h" 15 #include "mlir/Pass/Pass.h" 16 #include "llvm/ADT/MapVector.h" 17 #include "llvm/ADT/ScopedHashTable.h" 18 #include "llvm/ADT/Sequence.h" 19 #include "llvm/ADT/SetVector.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/TypeSwitch.h" 22 23 using namespace mlir; 24 using namespace mlir::pdl_to_pdl_interp; 25 26 //===----------------------------------------------------------------------===// 27 // PatternLowering 28 //===----------------------------------------------------------------------===// 29 30 namespace { 31 /// This class generators operations within the PDL Interpreter dialect from a 32 /// given module containing PDL pattern operations. 33 struct PatternLowering { 34 public: 35 PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule); 36 37 /// Generate code for matching and rewriting based on the pattern operations 38 /// within the module. 39 void lower(ModuleOp module); 40 41 private: 42 using ValueMap = llvm::ScopedHashTable<Position *, Value>; 43 using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>; 44 45 /// Generate interpreter operations for the tree rooted at the given matcher 46 /// node, in the specified region. 47 Block *generateMatcher(MatcherNode &node, Region ®ion); 48 49 /// Get or create an access to the provided positional value in the current 50 /// block. This operation may mutate the provided block pointer if nested 51 /// regions (i.e., pdl_interp.iterate) are required. 52 Value getValueAt(Block *¤tBlock, Position *pos); 53 54 /// Create the interpreter predicate operations. This operation may mutate the 55 /// provided current block pointer if nested regions (iterates) are required. 56 void generate(BoolNode *boolNode, Block *¤tBlock, Value val); 57 58 /// Create the interpreter switch / predicate operations, with several case 59 /// destinations. This operation never mutates the provided current block 60 /// pointer, because the switch operation does not need Values beyond `val`. 61 void generate(SwitchNode *switchNode, Block *currentBlock, Value val); 62 63 /// Create the interpreter operations to record a successful pattern match 64 /// using the contained root operation. This operation may mutate the current 65 /// block pointer if nested regions (i.e., pdl_interp.iterate) are required. 66 void generate(SuccessNode *successNode, Block *¤tBlock); 67 68 /// Generate a rewriter function for the given pattern operation, and returns 69 /// a reference to that function. 70 SymbolRefAttr generateRewriter(pdl::PatternOp pattern, 71 SmallVectorImpl<Position *> &usedMatchValues); 72 73 /// Generate the rewriter code for the given operation. 74 void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp, 75 DenseMap<Value, Value> &rewriteValues, 76 function_ref<Value(Value)> mapRewriteValue); 77 void generateRewriter(pdl::AttributeOp attrOp, 78 DenseMap<Value, Value> &rewriteValues, 79 function_ref<Value(Value)> mapRewriteValue); 80 void generateRewriter(pdl::EraseOp eraseOp, 81 DenseMap<Value, Value> &rewriteValues, 82 function_ref<Value(Value)> mapRewriteValue); 83 void generateRewriter(pdl::OperationOp operationOp, 84 DenseMap<Value, Value> &rewriteValues, 85 function_ref<Value(Value)> mapRewriteValue); 86 void generateRewriter(pdl::ReplaceOp replaceOp, 87 DenseMap<Value, Value> &rewriteValues, 88 function_ref<Value(Value)> mapRewriteValue); 89 void generateRewriter(pdl::ResultOp resultOp, 90 DenseMap<Value, Value> &rewriteValues, 91 function_ref<Value(Value)> mapRewriteValue); 92 void generateRewriter(pdl::ResultsOp resultOp, 93 DenseMap<Value, Value> &rewriteValues, 94 function_ref<Value(Value)> mapRewriteValue); 95 void generateRewriter(pdl::TypeOp typeOp, 96 DenseMap<Value, Value> &rewriteValues, 97 function_ref<Value(Value)> mapRewriteValue); 98 void generateRewriter(pdl::TypesOp typeOp, 99 DenseMap<Value, Value> &rewriteValues, 100 function_ref<Value(Value)> mapRewriteValue); 101 102 /// Generate the values used for resolving the result types of an operation 103 /// created within a dag rewriter region. 104 void generateOperationResultTypeRewriter( 105 pdl::OperationOp op, SmallVectorImpl<Value> &types, 106 DenseMap<Value, Value> &rewriteValues, 107 function_ref<Value(Value)> mapRewriteValue); 108 109 /// A builder to use when generating interpreter operations. 110 OpBuilder builder; 111 112 /// The matcher function used for all match related logic within PDL patterns. 113 FuncOp matcherFunc; 114 115 /// The rewriter module containing the all rewrite related logic within PDL 116 /// patterns. 117 ModuleOp rewriterModule; 118 119 /// The symbol table of the rewriter module used for insertion. 120 SymbolTable rewriterSymbolTable; 121 122 /// A scoped map connecting a position with the corresponding interpreter 123 /// value. 124 ValueMap values; 125 126 /// A stack of blocks used as the failure destination for matcher nodes that 127 /// don't have an explicit failure path. 128 SmallVector<Block *, 8> failureBlockStack; 129 130 /// A mapping between values defined in a pattern match, and the corresponding 131 /// positional value. 132 DenseMap<Value, Position *> valueToPosition; 133 134 /// The set of operation values whose whose location will be used for newly 135 /// generated operations. 136 SetVector<Value> locOps; 137 }; 138 } // namespace 139 140 PatternLowering::PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule) 141 : builder(matcherFunc.getContext()), matcherFunc(matcherFunc), 142 rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule) {} 143 144 void PatternLowering::lower(ModuleOp module) { 145 PredicateUniquer predicateUniquer; 146 PredicateBuilder predicateBuilder(predicateUniquer, module.getContext()); 147 148 // Define top-level scope for the arguments to the matcher function. 149 ValueMapScope topLevelValueScope(values); 150 151 // Insert the root operation, i.e. argument to the matcher, at the root 152 // position. 153 Block *matcherEntryBlock = matcherFunc.addEntryBlock(); 154 values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0)); 155 156 // Generate a root matcher node from the provided PDL module. 157 std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree( 158 module, predicateBuilder, valueToPosition); 159 Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody()); 160 assert(failureBlockStack.empty() && "failed to empty the stack"); 161 162 // After generation, merged the first matched block into the entry. 163 matcherEntryBlock->getOperations().splice(matcherEntryBlock->end(), 164 firstMatcherBlock->getOperations()); 165 firstMatcherBlock->erase(); 166 } 167 168 Block *PatternLowering::generateMatcher(MatcherNode &node, Region ®ion) { 169 // Push a new scope for the values used by this matcher. 170 Block *block = ®ion.emplaceBlock(); 171 ValueMapScope scope(values); 172 173 // If this is the return node, simply insert the corresponding interpreter 174 // finalize. 175 if (isa<ExitNode>(node)) { 176 builder.setInsertionPointToEnd(block); 177 builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc()); 178 return block; 179 } 180 181 // Get the next block in the match sequence. 182 // This is intentionally executed first, before we get the value for the 183 // position associated with the node, so that we preserve an "there exist" 184 // semantics: if getting a value requires an upward traversal (going from a 185 // value to its consumers), we want to perform the check on all the consumers 186 // before we pass control to the failure node. 187 std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode(); 188 Block *failureBlock; 189 if (failureNode) { 190 failureBlock = generateMatcher(*failureNode, region); 191 failureBlockStack.push_back(failureBlock); 192 } else { 193 assert(!failureBlockStack.empty() && "expected valid failure block"); 194 failureBlock = failureBlockStack.back(); 195 } 196 197 // If this node contains a position, get the corresponding value for this 198 // block. 199 Block *currentBlock = block; 200 Position *position = node.getPosition(); 201 Value val = position ? getValueAt(currentBlock, position) : Value(); 202 203 // If this value corresponds to an operation, record that we are going to use 204 // its location as part of a fused location. 205 bool isOperationValue = val && val.getType().isa<pdl::OperationType>(); 206 if (isOperationValue) 207 locOps.insert(val); 208 209 // Dispatch to the correct method based on derived node type. 210 TypeSwitch<MatcherNode *>(&node) 211 .Case<BoolNode, SwitchNode>([&](auto *derivedNode) { 212 this->generate(derivedNode, currentBlock, val); 213 }) 214 .Case([&](SuccessNode *successNode) { 215 generate(successNode, currentBlock); 216 }); 217 218 // Pop all the failure blocks that were inserted due to nesting of 219 // pdl_interp.iterate. 220 while (failureBlockStack.back() != failureBlock) { 221 failureBlockStack.pop_back(); 222 assert(!failureBlockStack.empty() && "unable to locate failure block"); 223 } 224 225 // Pop the new failure block. 226 if (failureNode) 227 failureBlockStack.pop_back(); 228 229 if (isOperationValue) 230 locOps.remove(val); 231 232 return block; 233 } 234 235 Value PatternLowering::getValueAt(Block *¤tBlock, Position *pos) { 236 if (Value val = values.lookup(pos)) 237 return val; 238 239 // Get the value for the parent position. 240 Value parentVal; 241 if (Position *parent = pos->getParent()) 242 parentVal = getValueAt(currentBlock, pos->getParent()); 243 244 // TODO: Use a location from the position. 245 Location loc = parentVal ? parentVal.getLoc() : builder.getUnknownLoc(); 246 builder.setInsertionPointToEnd(currentBlock); 247 Value value; 248 switch (pos->getKind()) { 249 case Predicates::OperationPos: { 250 auto *operationPos = cast<OperationPosition>(pos); 251 if (!operationPos->isUpward()) { 252 // Standard (downward) traversal which directly follows the defining op. 253 value = builder.create<pdl_interp::GetDefiningOpOp>( 254 loc, builder.getType<pdl::OperationType>(), parentVal); 255 break; 256 } 257 258 // The first operation retrieves the representative value of a range. 259 // This applies only when the parent is a range of values. 260 if (parentVal.getType().isa<pdl::RangeType>()) 261 value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0); 262 else 263 value = parentVal; 264 265 // The second operation retrieves the users. 266 value = builder.create<pdl_interp::GetUsersOp>(loc, value); 267 268 // The third operation iterates over them. 269 assert(!failureBlockStack.empty() && "expected valid failure block"); 270 auto foreach = builder.create<pdl_interp::ForEachOp>( 271 loc, value, failureBlockStack.back(), /*initLoop=*/true); 272 value = foreach.getLoopVariable(); 273 274 // Create the success and continuation blocks. 275 Block *successBlock = builder.createBlock(&foreach.region()); 276 Block *continueBlock = builder.createBlock(successBlock); 277 builder.create<pdl_interp::ContinueOp>(loc); 278 failureBlockStack.push_back(continueBlock); 279 280 // The fourth operation extracts the operand(s) of the user at the specified 281 // index (which can be None, indicating all operands). 282 builder.setInsertionPointToStart(&foreach.region().front()); 283 Value operands = builder.create<pdl_interp::GetOperandsOp>( 284 loc, parentVal.getType(), value, operationPos->getIndex()); 285 286 // The fifth operation compares the operands to the parent value / range. 287 builder.create<pdl_interp::AreEqualOp>(loc, parentVal, operands, 288 successBlock, continueBlock); 289 currentBlock = successBlock; 290 break; 291 } 292 case Predicates::OperandPos: { 293 auto *operandPos = cast<OperandPosition>(pos); 294 value = builder.create<pdl_interp::GetOperandOp>( 295 loc, builder.getType<pdl::ValueType>(), parentVal, 296 operandPos->getOperandNumber()); 297 break; 298 } 299 case Predicates::OperandGroupPos: { 300 auto *operandPos = cast<OperandGroupPosition>(pos); 301 Type valueTy = builder.getType<pdl::ValueType>(); 302 value = builder.create<pdl_interp::GetOperandsOp>( 303 loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, 304 parentVal, operandPos->getOperandGroupNumber()); 305 break; 306 } 307 case Predicates::AttributePos: { 308 auto *attrPos = cast<AttributePosition>(pos); 309 value = builder.create<pdl_interp::GetAttributeOp>( 310 loc, builder.getType<pdl::AttributeType>(), parentVal, 311 attrPos->getName().strref()); 312 break; 313 } 314 case Predicates::TypePos: { 315 if (parentVal.getType().isa<pdl::AttributeType>()) 316 value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal); 317 else 318 value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal); 319 break; 320 } 321 case Predicates::ResultPos: { 322 auto *resPos = cast<ResultPosition>(pos); 323 value = builder.create<pdl_interp::GetResultOp>( 324 loc, builder.getType<pdl::ValueType>(), parentVal, 325 resPos->getResultNumber()); 326 break; 327 } 328 case Predicates::ResultGroupPos: { 329 auto *resPos = cast<ResultGroupPosition>(pos); 330 Type valueTy = builder.getType<pdl::ValueType>(); 331 value = builder.create<pdl_interp::GetResultsOp>( 332 loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy, 333 parentVal, resPos->getResultGroupNumber()); 334 break; 335 } 336 case Predicates::AttributeLiteralPos: { 337 auto *attrPos = cast<AttributeLiteralPosition>(pos); 338 value = 339 builder.create<pdl_interp::CreateAttributeOp>(loc, attrPos->getValue()); 340 break; 341 } 342 case Predicates::TypeLiteralPos: { 343 auto *typePos = cast<TypeLiteralPosition>(pos); 344 Attribute rawTypeAttr = typePos->getValue(); 345 if (TypeAttr typeAttr = rawTypeAttr.dyn_cast<TypeAttr>()) 346 value = builder.create<pdl_interp::CreateTypeOp>(loc, typeAttr); 347 else 348 value = builder.create<pdl_interp::CreateTypesOp>( 349 loc, rawTypeAttr.cast<ArrayAttr>()); 350 break; 351 } 352 default: 353 llvm_unreachable("Generating unknown Position getter"); 354 break; 355 } 356 357 values.insert(pos, value); 358 return value; 359 } 360 361 void PatternLowering::generate(BoolNode *boolNode, Block *¤tBlock, 362 Value val) { 363 Location loc = val.getLoc(); 364 Qualifier *question = boolNode->getQuestion(); 365 Qualifier *answer = boolNode->getAnswer(); 366 Region *region = currentBlock->getParent(); 367 368 // Execute the getValue queries first, so that we create success 369 // matcher in the correct (possibly nested) region. 370 SmallVector<Value> args; 371 if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(question)) { 372 args = {getValueAt(currentBlock, equalToQuestion->getValue())}; 373 } else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(question)) { 374 for (Position *position : cstQuestion->getArgs()) 375 args.push_back(getValueAt(currentBlock, position)); 376 } 377 378 // Generate the matcher in the current (potentially nested) region 379 // and get the failure successor. 380 Block *success = generateMatcher(*boolNode->getSuccessNode(), *region); 381 Block *failure = failureBlockStack.back(); 382 383 // Finally, create the predicate. 384 builder.setInsertionPointToEnd(currentBlock); 385 Predicates::Kind kind = question->getKind(); 386 switch (kind) { 387 case Predicates::IsNotNullQuestion: 388 builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure); 389 break; 390 case Predicates::OperationNameQuestion: { 391 auto *opNameAnswer = cast<OperationNameAnswer>(answer); 392 builder.create<pdl_interp::CheckOperationNameOp>( 393 loc, val, opNameAnswer->getValue().getStringRef(), success, failure); 394 break; 395 } 396 case Predicates::TypeQuestion: { 397 auto *ans = cast<TypeAnswer>(answer); 398 if (val.getType().isa<pdl::RangeType>()) 399 builder.create<pdl_interp::CheckTypesOp>( 400 loc, val, ans->getValue().cast<ArrayAttr>(), success, failure); 401 else 402 builder.create<pdl_interp::CheckTypeOp>( 403 loc, val, ans->getValue().cast<TypeAttr>(), success, failure); 404 break; 405 } 406 case Predicates::AttributeQuestion: { 407 auto *ans = cast<AttributeAnswer>(answer); 408 builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(), 409 success, failure); 410 break; 411 } 412 case Predicates::OperandCountAtLeastQuestion: 413 case Predicates::OperandCountQuestion: 414 builder.create<pdl_interp::CheckOperandCountOp>( 415 loc, val, cast<UnsignedAnswer>(answer)->getValue(), 416 /*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion, 417 success, failure); 418 break; 419 case Predicates::ResultCountAtLeastQuestion: 420 case Predicates::ResultCountQuestion: 421 builder.create<pdl_interp::CheckResultCountOp>( 422 loc, val, cast<UnsignedAnswer>(answer)->getValue(), 423 /*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion, 424 success, failure); 425 break; 426 case Predicates::EqualToQuestion: { 427 bool trueAnswer = isa<TrueAnswer>(answer); 428 builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(), 429 trueAnswer ? success : failure, 430 trueAnswer ? failure : success); 431 break; 432 } 433 case Predicates::ConstraintQuestion: { 434 auto *cstQuestion = cast<ConstraintQuestion>(question); 435 builder.create<pdl_interp::ApplyConstraintOp>( 436 loc, cstQuestion->getName(), args, cstQuestion->getParams(), success, 437 failure); 438 break; 439 } 440 default: 441 llvm_unreachable("Generating unknown Predicate operation"); 442 } 443 } 444 445 template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy> 446 static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder, 447 llvm::MapVector<Qualifier *, Block *> &dests) { 448 std::vector<ValT> values; 449 std::vector<Block *> blocks; 450 values.reserve(dests.size()); 451 blocks.reserve(dests.size()); 452 for (const auto &it : dests) { 453 blocks.push_back(it.second); 454 values.push_back(cast<PredT>(it.first)->getValue()); 455 } 456 builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks); 457 } 458 459 void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock, 460 Value val) { 461 Qualifier *question = switchNode->getQuestion(); 462 Region *region = currentBlock->getParent(); 463 Block *defaultDest = failureBlockStack.back(); 464 465 // If the switch question is not an exact answer, i.e. for the `at_least` 466 // cases, we generate a special block sequence. 467 Predicates::Kind kind = question->getKind(); 468 if (kind == Predicates::OperandCountAtLeastQuestion || 469 kind == Predicates::ResultCountAtLeastQuestion) { 470 // Order the children such that the cases are in reverse numerical order. 471 SmallVector<unsigned> sortedChildren = llvm::to_vector<16>( 472 llvm::seq<unsigned>(0, switchNode->getChildren().size())); 473 llvm::sort(sortedChildren, [&](unsigned lhs, unsigned rhs) { 474 return cast<UnsignedAnswer>(switchNode->getChild(lhs).first)->getValue() > 475 cast<UnsignedAnswer>(switchNode->getChild(rhs).first)->getValue(); 476 }); 477 478 // Build the destination for each child using the next highest child as a 479 // a failure destination. This essentially creates the following control 480 // flow: 481 // 482 // if (operand_count < 1) 483 // goto failure 484 // if (child1.match()) 485 // ... 486 // 487 // if (operand_count < 2) 488 // goto failure 489 // if (child2.match()) 490 // ... 491 // 492 // failure: 493 // ... 494 // 495 failureBlockStack.push_back(defaultDest); 496 Location loc = val.getLoc(); 497 for (unsigned idx : sortedChildren) { 498 auto &child = switchNode->getChild(idx); 499 Block *childBlock = generateMatcher(*child.second, *region); 500 Block *predicateBlock = builder.createBlock(childBlock); 501 builder.setInsertionPointToEnd(predicateBlock); 502 unsigned ans = cast<UnsignedAnswer>(child.first)->getValue(); 503 switch (kind) { 504 case Predicates::OperandCountAtLeastQuestion: 505 builder.create<pdl_interp::CheckOperandCountOp>( 506 loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); 507 break; 508 case Predicates::ResultCountAtLeastQuestion: 509 builder.create<pdl_interp::CheckResultCountOp>( 510 loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest); 511 break; 512 default: 513 llvm_unreachable("Generating invalid AtLeast operation"); 514 } 515 failureBlockStack.back() = predicateBlock; 516 } 517 Block *firstPredicateBlock = failureBlockStack.pop_back_val(); 518 currentBlock->getOperations().splice(currentBlock->end(), 519 firstPredicateBlock->getOperations()); 520 firstPredicateBlock->erase(); 521 return; 522 } 523 524 // Otherwise, generate each of the children and generate an interpreter 525 // switch. 526 llvm::MapVector<Qualifier *, Block *> children; 527 for (auto &it : switchNode->getChildren()) 528 children.insert({it.first, generateMatcher(*it.second, *region)}); 529 builder.setInsertionPointToEnd(currentBlock); 530 531 switch (question->getKind()) { 532 case Predicates::OperandCountQuestion: 533 return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer, 534 int32_t>(val, defaultDest, builder, children); 535 case Predicates::ResultCountQuestion: 536 return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer, 537 int32_t>(val, defaultDest, builder, children); 538 case Predicates::OperationNameQuestion: 539 return createSwitchOp<pdl_interp::SwitchOperationNameOp, 540 OperationNameAnswer>(val, defaultDest, builder, 541 children); 542 case Predicates::TypeQuestion: 543 if (val.getType().isa<pdl::RangeType>()) { 544 return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>( 545 val, defaultDest, builder, children); 546 } 547 return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>( 548 val, defaultDest, builder, children); 549 case Predicates::AttributeQuestion: 550 return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>( 551 val, defaultDest, builder, children); 552 default: 553 llvm_unreachable("Generating unknown switch predicate."); 554 } 555 } 556 557 void PatternLowering::generate(SuccessNode *successNode, Block *¤tBlock) { 558 pdl::PatternOp pattern = successNode->getPattern(); 559 Value root = successNode->getRoot(); 560 561 // Generate a rewriter for the pattern this success node represents, and track 562 // any values used from the match region. 563 SmallVector<Position *, 8> usedMatchValues; 564 SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues); 565 566 // Process any values used in the rewrite that are defined in the match. 567 std::vector<Value> mappedMatchValues; 568 mappedMatchValues.reserve(usedMatchValues.size()); 569 for (Position *position : usedMatchValues) 570 mappedMatchValues.push_back(getValueAt(currentBlock, position)); 571 572 // Collect the set of operations generated by the rewriter. 573 SmallVector<StringRef, 4> generatedOps; 574 for (auto op : pattern.getRewriter().body().getOps<pdl::OperationOp>()) 575 generatedOps.push_back(*op.name()); 576 ArrayAttr generatedOpsAttr; 577 if (!generatedOps.empty()) 578 generatedOpsAttr = builder.getStrArrayAttr(generatedOps); 579 580 // Grab the root kind if present. 581 StringAttr rootKindAttr; 582 if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>()) 583 if (Optional<StringRef> rootKind = rootOp.name()) 584 rootKindAttr = builder.getStringAttr(*rootKind); 585 586 builder.setInsertionPointToEnd(currentBlock); 587 builder.create<pdl_interp::RecordMatchOp>( 588 pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(), 589 rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.benefitAttr(), 590 failureBlockStack.back()); 591 } 592 593 SymbolRefAttr PatternLowering::generateRewriter( 594 pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) { 595 FuncOp rewriterFunc = 596 FuncOp::create(pattern.getLoc(), "pdl_generated_rewriter", 597 builder.getFunctionType(llvm::None, llvm::None)); 598 rewriterSymbolTable.insert(rewriterFunc); 599 600 // Generate the rewriter function body. 601 builder.setInsertionPointToEnd(rewriterFunc.addEntryBlock()); 602 603 // Map an input operand of the pattern to a generated interpreter value. 604 DenseMap<Value, Value> rewriteValues; 605 auto mapRewriteValue = [&](Value oldValue) { 606 Value &newValue = rewriteValues[oldValue]; 607 if (newValue) 608 return newValue; 609 610 // Prefer materializing constants directly when possible. 611 Operation *oldOp = oldValue.getDefiningOp(); 612 if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) { 613 if (Attribute value = attrOp.valueAttr()) { 614 return newValue = builder.create<pdl_interp::CreateAttributeOp>( 615 attrOp.getLoc(), value); 616 } 617 } else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) { 618 if (TypeAttr type = typeOp.typeAttr()) { 619 return newValue = builder.create<pdl_interp::CreateTypeOp>( 620 typeOp.getLoc(), type); 621 } 622 } else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) { 623 if (ArrayAttr type = typeOp.typesAttr()) { 624 return newValue = builder.create<pdl_interp::CreateTypesOp>( 625 typeOp.getLoc(), typeOp.getType(), type); 626 } 627 } 628 629 // Otherwise, add this as an input to the rewriter. 630 Position *inputPos = valueToPosition.lookup(oldValue); 631 assert(inputPos && "expected value to be a pattern input"); 632 usedMatchValues.push_back(inputPos); 633 return newValue = rewriterFunc.front().addArgument(oldValue.getType()); 634 }; 635 636 // If this is a custom rewriter, simply dispatch to the registered rewrite 637 // method. 638 pdl::RewriteOp rewriter = pattern.getRewriter(); 639 if (StringAttr rewriteName = rewriter.nameAttr()) { 640 SmallVector<Value> args; 641 if (rewriter.root()) 642 args.push_back(mapRewriteValue(rewriter.root())); 643 auto mappedArgs = llvm::map_range(rewriter.externalArgs(), mapRewriteValue); 644 args.append(mappedArgs.begin(), mappedArgs.end()); 645 builder.create<pdl_interp::ApplyRewriteOp>( 646 rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args, 647 rewriter.externalConstParamsAttr()); 648 } else { 649 // Otherwise this is a dag rewriter defined using PDL operations. 650 for (Operation &rewriteOp : *rewriter.getBody()) { 651 llvm::TypeSwitch<Operation *>(&rewriteOp) 652 .Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp, 653 pdl::OperationOp, pdl::ReplaceOp, pdl::ResultOp, pdl::ResultsOp, 654 pdl::TypeOp, pdl::TypesOp>([&](auto op) { 655 this->generateRewriter(op, rewriteValues, mapRewriteValue); 656 }); 657 } 658 } 659 660 // Update the signature of the rewrite function. 661 rewriterFunc.setType(builder.getFunctionType( 662 llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()), 663 /*results=*/llvm::None)); 664 665 builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc()); 666 return SymbolRefAttr::get( 667 builder.getContext(), 668 pdl_interp::PDLInterpDialect::getRewriterModuleName(), 669 SymbolRefAttr::get(rewriterFunc)); 670 } 671 672 void PatternLowering::generateRewriter( 673 pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues, 674 function_ref<Value(Value)> mapRewriteValue) { 675 SmallVector<Value, 2> arguments; 676 for (Value argument : rewriteOp.args()) 677 arguments.push_back(mapRewriteValue(argument)); 678 auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>( 679 rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.nameAttr(), 680 arguments, rewriteOp.constParamsAttr()); 681 for (auto it : llvm::zip(rewriteOp.results(), interpOp.results())) 682 rewriteValues[std::get<0>(it)] = std::get<1>(it); 683 } 684 685 void PatternLowering::generateRewriter( 686 pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues, 687 function_ref<Value(Value)> mapRewriteValue) { 688 Value newAttr = builder.create<pdl_interp::CreateAttributeOp>( 689 attrOp.getLoc(), attrOp.valueAttr()); 690 rewriteValues[attrOp] = newAttr; 691 } 692 693 void PatternLowering::generateRewriter( 694 pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues, 695 function_ref<Value(Value)> mapRewriteValue) { 696 builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(), 697 mapRewriteValue(eraseOp.operation())); 698 } 699 700 void PatternLowering::generateRewriter( 701 pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues, 702 function_ref<Value(Value)> mapRewriteValue) { 703 SmallVector<Value, 4> operands; 704 for (Value operand : operationOp.operands()) 705 operands.push_back(mapRewriteValue(operand)); 706 707 SmallVector<Value, 4> attributes; 708 for (Value attr : operationOp.attributes()) 709 attributes.push_back(mapRewriteValue(attr)); 710 711 SmallVector<Value, 2> types; 712 generateOperationResultTypeRewriter(operationOp, types, rewriteValues, 713 mapRewriteValue); 714 715 // Create the new operation. 716 Location loc = operationOp.getLoc(); 717 Value createdOp = builder.create<pdl_interp::CreateOperationOp>( 718 loc, *operationOp.name(), types, operands, attributes, 719 operationOp.attributeNames()); 720 rewriteValues[operationOp.op()] = createdOp; 721 722 // Generate accesses for any results that have their types constrained. 723 // Handle the case where there is a single range representing all of the 724 // result types. 725 OperandRange resultTys = operationOp.types(); 726 if (resultTys.size() == 1 && resultTys[0].getType().isa<pdl::RangeType>()) { 727 Value &type = rewriteValues[resultTys[0]]; 728 if (!type) { 729 auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp); 730 type = builder.create<pdl_interp::GetValueTypeOp>(loc, results); 731 } 732 return; 733 } 734 735 // Otherwise, populate the individual results. 736 bool seenVariableLength = false; 737 Type valueTy = builder.getType<pdl::ValueType>(); 738 Type valueRangeTy = pdl::RangeType::get(valueTy); 739 for (auto it : llvm::enumerate(resultTys)) { 740 Value &type = rewriteValues[it.value()]; 741 if (type) 742 continue; 743 bool isVariadic = it.value().getType().isa<pdl::RangeType>(); 744 seenVariableLength |= isVariadic; 745 746 // After a variable length result has been seen, we need to use result 747 // groups because the exact index of the result is not statically known. 748 Value resultVal; 749 if (seenVariableLength) 750 resultVal = builder.create<pdl_interp::GetResultsOp>( 751 loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index()); 752 else 753 resultVal = builder.create<pdl_interp::GetResultOp>( 754 loc, valueTy, createdOp, it.index()); 755 type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal); 756 } 757 } 758 759 void PatternLowering::generateRewriter( 760 pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues, 761 function_ref<Value(Value)> mapRewriteValue) { 762 SmallVector<Value, 4> replOperands; 763 764 // If the replacement was another operation, get its results. `pdl` allows 765 // for using an operation for simplicitly, but the interpreter isn't as 766 // user facing. 767 if (Value replOp = replaceOp.replOperation()) { 768 // Don't use replace if we know the replaced operation has no results. 769 auto opOp = replaceOp.operation().getDefiningOp<pdl::OperationOp>(); 770 if (!opOp || !opOp.types().empty()) { 771 replOperands.push_back(builder.create<pdl_interp::GetResultsOp>( 772 replOp.getLoc(), mapRewriteValue(replOp))); 773 } 774 } else { 775 for (Value operand : replaceOp.replValues()) 776 replOperands.push_back(mapRewriteValue(operand)); 777 } 778 779 // If there are no replacement values, just create an erase instead. 780 if (replOperands.empty()) { 781 builder.create<pdl_interp::EraseOp>(replaceOp.getLoc(), 782 mapRewriteValue(replaceOp.operation())); 783 return; 784 } 785 786 builder.create<pdl_interp::ReplaceOp>( 787 replaceOp.getLoc(), mapRewriteValue(replaceOp.operation()), replOperands); 788 } 789 790 void PatternLowering::generateRewriter( 791 pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues, 792 function_ref<Value(Value)> mapRewriteValue) { 793 rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>( 794 resultOp.getLoc(), builder.getType<pdl::ValueType>(), 795 mapRewriteValue(resultOp.parent()), resultOp.index()); 796 } 797 798 void PatternLowering::generateRewriter( 799 pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues, 800 function_ref<Value(Value)> mapRewriteValue) { 801 rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>( 802 resultOp.getLoc(), resultOp.getType(), mapRewriteValue(resultOp.parent()), 803 resultOp.index()); 804 } 805 806 void PatternLowering::generateRewriter( 807 pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues, 808 function_ref<Value(Value)> mapRewriteValue) { 809 // If the type isn't constant, the users (e.g. OperationOp) will resolve this 810 // type. 811 if (TypeAttr typeAttr = typeOp.typeAttr()) { 812 rewriteValues[typeOp] = 813 builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr); 814 } 815 } 816 817 void PatternLowering::generateRewriter( 818 pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues, 819 function_ref<Value(Value)> mapRewriteValue) { 820 // If the type isn't constant, the users (e.g. OperationOp) will resolve this 821 // type. 822 if (ArrayAttr typeAttr = typeOp.typesAttr()) { 823 rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>( 824 typeOp.getLoc(), typeOp.getType(), typeAttr); 825 } 826 } 827 828 void PatternLowering::generateOperationResultTypeRewriter( 829 pdl::OperationOp op, SmallVectorImpl<Value> &types, 830 DenseMap<Value, Value> &rewriteValues, 831 function_ref<Value(Value)> mapRewriteValue) { 832 // Look for an operation that was replaced by `op`. The result types will be 833 // inferred from the results that were replaced. 834 Block *rewriterBlock = op->getBlock(); 835 Value replacedOp; 836 for (OpOperand &use : op.op().getUses()) { 837 // Check that the use corresponds to a ReplaceOp and that it is the 838 // replacement value, not the operation being replaced. 839 pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner()); 840 if (!replOpUser || use.getOperandNumber() == 0) 841 continue; 842 // Make sure the replaced operation was defined before this one. 843 Value replOpVal = replOpUser.operation(); 844 Operation *replacedOp = replOpVal.getDefiningOp(); 845 if (replacedOp->getBlock() == rewriterBlock && 846 !replacedOp->isBeforeInBlock(op)) 847 continue; 848 849 Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>( 850 replacedOp->getLoc(), mapRewriteValue(replOpVal)); 851 types.push_back(builder.create<pdl_interp::GetValueTypeOp>( 852 replacedOp->getLoc(), replacedOpResults)); 853 return; 854 } 855 856 // Check if the operation has type inference support. 857 if (op.hasTypeInference()) { 858 types.push_back(builder.create<pdl_interp::InferredTypesOp>(op.getLoc())); 859 return; 860 } 861 862 // Otherwise, handle inference for each of the result types individually. 863 OperandRange resultTypeValues = op.types(); 864 types.reserve(resultTypeValues.size()); 865 for (auto it : llvm::enumerate(resultTypeValues)) { 866 Value resultType = it.value(); 867 868 // Check for an already translated value. 869 if (Value existingRewriteValue = rewriteValues.lookup(resultType)) { 870 types.push_back(existingRewriteValue); 871 continue; 872 } 873 874 // Check for an input from the matcher. 875 if (resultType.getDefiningOp()->getBlock() != rewriterBlock) { 876 types.push_back(mapRewriteValue(resultType)); 877 continue; 878 } 879 880 // The verifier asserts that the result types of each pdl.operation can be 881 // inferred. If we reach here, there is a bug either in the logic above or 882 // in the verifier for pdl.operation. 883 op->emitOpError() << "unable to infer result type for operation"; 884 llvm_unreachable("unable to infer result type for operation"); 885 } 886 } 887 888 //===----------------------------------------------------------------------===// 889 // Conversion Pass 890 //===----------------------------------------------------------------------===// 891 892 namespace { 893 struct PDLToPDLInterpPass 894 : public ConvertPDLToPDLInterpBase<PDLToPDLInterpPass> { 895 void runOnOperation() final; 896 }; 897 } // namespace 898 899 /// Convert the given module containing PDL pattern operations into a PDL 900 /// Interpreter operations. 901 void PDLToPDLInterpPass::runOnOperation() { 902 ModuleOp module = getOperation(); 903 904 // Create the main matcher function This function contains all of the match 905 // related functionality from patterns in the module. 906 OpBuilder builder = OpBuilder::atBlockBegin(module.getBody()); 907 FuncOp matcherFunc = builder.create<FuncOp>( 908 module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(), 909 builder.getFunctionType(builder.getType<pdl::OperationType>(), 910 /*results=*/llvm::None), 911 /*attrs=*/llvm::None); 912 913 // Create a nested module to hold the functions invoked for rewriting the IR 914 // after a successful match. 915 ModuleOp rewriterModule = builder.create<ModuleOp>( 916 module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName()); 917 918 // Generate the code for the patterns within the module. 919 PatternLowering generator(matcherFunc, rewriterModule); 920 generator.lower(module); 921 922 // After generation, delete all of the pattern operations. 923 for (pdl::PatternOp pattern : 924 llvm::make_early_inc_range(module.getOps<pdl::PatternOp>())) 925 pattern.erase(); 926 } 927 928 std::unique_ptr<OperationPass<ModuleOp>> mlir::createPDLToPDLInterpPass() { 929 return std::make_unique<PDLToPDLInterpPass>(); 930 } 931