1 //===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h"
10 #include "../PassDetail.h"
11 #include "PredicateTree.h"
12 #include "mlir/Dialect/PDL/IR/PDL.h"
13 #include "mlir/Dialect/PDL/IR/PDLTypes.h"
14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
15 #include "mlir/Pass/Pass.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/TypeSwitch.h"
22 
23 using namespace mlir;
24 using namespace mlir::pdl_to_pdl_interp;
25 
26 //===----------------------------------------------------------------------===//
27 // PatternLowering
28 //===----------------------------------------------------------------------===//
29 
30 namespace {
31 /// This class generators operations within the PDL Interpreter dialect from a
32 /// given module containing PDL pattern operations.
33 struct PatternLowering {
34 public:
35   PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule);
36 
37   /// Generate code for matching and rewriting based on the pattern operations
38   /// within the module.
39   void lower(ModuleOp module);
40 
41 private:
42   using ValueMap = llvm::ScopedHashTable<Position *, Value>;
43   using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>;
44 
45   /// Generate interpreter operations for the tree rooted at the given matcher
46   /// node, in the specified region.
47   Block *generateMatcher(MatcherNode &node, Region &region);
48 
49   /// Get or create an access to the provided positional value in the current
50   /// block. This operation may mutate the provided block pointer if nested
51   /// regions (i.e., pdl_interp.iterate) are required.
52   Value getValueAt(Block *&currentBlock, Position *pos);
53 
54   /// Create the interpreter predicate operations. This operation may mutate the
55   /// provided current block pointer if nested regions (iterates) are required.
56   void generate(BoolNode *boolNode, Block *&currentBlock, Value val);
57 
58   /// Create the interpreter switch / predicate operations, with several case
59   /// destinations. This operation never mutates the provided current block
60   /// pointer, because the switch operation does not need Values beyond `val`.
61   void generate(SwitchNode *switchNode, Block *currentBlock, Value val);
62 
63   /// Create the interpreter operations to record a successful pattern match
64   /// using the contained root operation. This operation may mutate the current
65   /// block pointer if nested regions (i.e., pdl_interp.iterate) are required.
66   void generate(SuccessNode *successNode, Block *&currentBlock);
67 
68   /// Generate a rewriter function for the given pattern operation, and returns
69   /// a reference to that function.
70   SymbolRefAttr generateRewriter(pdl::PatternOp pattern,
71                                  SmallVectorImpl<Position *> &usedMatchValues);
72 
73   /// Generate the rewriter code for the given operation.
74   void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp,
75                         DenseMap<Value, Value> &rewriteValues,
76                         function_ref<Value(Value)> mapRewriteValue);
77   void generateRewriter(pdl::AttributeOp attrOp,
78                         DenseMap<Value, Value> &rewriteValues,
79                         function_ref<Value(Value)> mapRewriteValue);
80   void generateRewriter(pdl::EraseOp eraseOp,
81                         DenseMap<Value, Value> &rewriteValues,
82                         function_ref<Value(Value)> mapRewriteValue);
83   void generateRewriter(pdl::OperationOp operationOp,
84                         DenseMap<Value, Value> &rewriteValues,
85                         function_ref<Value(Value)> mapRewriteValue);
86   void generateRewriter(pdl::ReplaceOp replaceOp,
87                         DenseMap<Value, Value> &rewriteValues,
88                         function_ref<Value(Value)> mapRewriteValue);
89   void generateRewriter(pdl::ResultOp resultOp,
90                         DenseMap<Value, Value> &rewriteValues,
91                         function_ref<Value(Value)> mapRewriteValue);
92   void generateRewriter(pdl::ResultsOp resultOp,
93                         DenseMap<Value, Value> &rewriteValues,
94                         function_ref<Value(Value)> mapRewriteValue);
95   void generateRewriter(pdl::TypeOp typeOp,
96                         DenseMap<Value, Value> &rewriteValues,
97                         function_ref<Value(Value)> mapRewriteValue);
98   void generateRewriter(pdl::TypesOp typeOp,
99                         DenseMap<Value, Value> &rewriteValues,
100                         function_ref<Value(Value)> mapRewriteValue);
101 
102   /// Generate the values used for resolving the result types of an operation
103   /// created within a dag rewriter region.
104   void generateOperationResultTypeRewriter(
105       pdl::OperationOp op, SmallVectorImpl<Value> &types,
106       DenseMap<Value, Value> &rewriteValues,
107       function_ref<Value(Value)> mapRewriteValue);
108 
109   /// A builder to use when generating interpreter operations.
110   OpBuilder builder;
111 
112   /// The matcher function used for all match related logic within PDL patterns.
113   FuncOp matcherFunc;
114 
115   /// The rewriter module containing the all rewrite related logic within PDL
116   /// patterns.
117   ModuleOp rewriterModule;
118 
119   /// The symbol table of the rewriter module used for insertion.
120   SymbolTable rewriterSymbolTable;
121 
122   /// A scoped map connecting a position with the corresponding interpreter
123   /// value.
124   ValueMap values;
125 
126   /// A stack of blocks used as the failure destination for matcher nodes that
127   /// don't have an explicit failure path.
128   SmallVector<Block *, 8> failureBlockStack;
129 
130   /// A mapping between values defined in a pattern match, and the corresponding
131   /// positional value.
132   DenseMap<Value, Position *> valueToPosition;
133 
134   /// The set of operation values whose whose location will be used for newly
135   /// generated operations.
136   SetVector<Value> locOps;
137 };
138 } // namespace
139 
140 PatternLowering::PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule)
141     : builder(matcherFunc.getContext()), matcherFunc(matcherFunc),
142       rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule) {}
143 
144 void PatternLowering::lower(ModuleOp module) {
145   PredicateUniquer predicateUniquer;
146   PredicateBuilder predicateBuilder(predicateUniquer, module.getContext());
147 
148   // Define top-level scope for the arguments to the matcher function.
149   ValueMapScope topLevelValueScope(values);
150 
151   // Insert the root operation, i.e. argument to the matcher, at the root
152   // position.
153   Block *matcherEntryBlock = matcherFunc.addEntryBlock();
154   values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0));
155 
156   // Generate a root matcher node from the provided PDL module.
157   std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree(
158       module, predicateBuilder, valueToPosition);
159   Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody());
160   assert(failureBlockStack.empty() && "failed to empty the stack");
161 
162   // After generation, merged the first matched block into the entry.
163   matcherEntryBlock->getOperations().splice(matcherEntryBlock->end(),
164                                             firstMatcherBlock->getOperations());
165   firstMatcherBlock->erase();
166 }
167 
168 Block *PatternLowering::generateMatcher(MatcherNode &node, Region &region) {
169   // Push a new scope for the values used by this matcher.
170   Block *block = &region.emplaceBlock();
171   ValueMapScope scope(values);
172 
173   // If this is the return node, simply insert the corresponding interpreter
174   // finalize.
175   if (isa<ExitNode>(node)) {
176     builder.setInsertionPointToEnd(block);
177     builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc());
178     return block;
179   }
180 
181   // Get the next block in the match sequence.
182   // This is intentionally executed first, before we get the value for the
183   // position associated with the node, so that we preserve an "there exist"
184   // semantics: if getting a value requires an upward traversal (going from a
185   // value to its consumers), we want to perform the check on all the consumers
186   // before we pass control to the failure node.
187   std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode();
188   Block *failureBlock;
189   if (failureNode) {
190     failureBlock = generateMatcher(*failureNode, region);
191     failureBlockStack.push_back(failureBlock);
192   } else {
193     assert(!failureBlockStack.empty() && "expected valid failure block");
194     failureBlock = failureBlockStack.back();
195   }
196 
197   // If this node contains a position, get the corresponding value for this
198   // block.
199   Block *currentBlock = block;
200   Position *position = node.getPosition();
201   Value val = position ? getValueAt(currentBlock, position) : Value();
202 
203   // If this value corresponds to an operation, record that we are going to use
204   // its location as part of a fused location.
205   bool isOperationValue = val && val.getType().isa<pdl::OperationType>();
206   if (isOperationValue)
207     locOps.insert(val);
208 
209   // Dispatch to the correct method based on derived node type.
210   TypeSwitch<MatcherNode *>(&node)
211       .Case<BoolNode, SwitchNode>([&](auto *derivedNode) {
212         this->generate(derivedNode, currentBlock, val);
213       })
214       .Case([&](SuccessNode *successNode) {
215         generate(successNode, currentBlock);
216       });
217 
218   // Pop all the failure blocks that were inserted due to nesting of
219   // pdl_interp.iterate.
220   while (failureBlockStack.back() != failureBlock) {
221     failureBlockStack.pop_back();
222     assert(!failureBlockStack.empty() && "unable to locate failure block");
223   }
224 
225   // Pop the new failure block.
226   if (failureNode)
227     failureBlockStack.pop_back();
228 
229   if (isOperationValue)
230     locOps.remove(val);
231 
232   return block;
233 }
234 
235 Value PatternLowering::getValueAt(Block *&currentBlock, Position *pos) {
236   if (Value val = values.lookup(pos))
237     return val;
238 
239   // Get the value for the parent position.
240   Value parentVal;
241   if (Position *parent = pos->getParent())
242     parentVal = getValueAt(currentBlock, pos->getParent());
243 
244   // TODO: Use a location from the position.
245   Location loc = parentVal ? parentVal.getLoc() : builder.getUnknownLoc();
246   builder.setInsertionPointToEnd(currentBlock);
247   Value value;
248   switch (pos->getKind()) {
249   case Predicates::OperationPos: {
250     auto *operationPos = cast<OperationPosition>(pos);
251     if (!operationPos->isUpward()) {
252       // Standard (downward) traversal which directly follows the defining op.
253       value = builder.create<pdl_interp::GetDefiningOpOp>(
254           loc, builder.getType<pdl::OperationType>(), parentVal);
255       break;
256     }
257 
258     // The first operation retrieves the representative value of a range.
259     // This applies only when the parent is a range of values.
260     if (parentVal.getType().isa<pdl::RangeType>())
261       value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0);
262     else
263       value = parentVal;
264 
265     // The second operation retrieves the users.
266     value = builder.create<pdl_interp::GetUsersOp>(loc, value);
267 
268     // The third operation iterates over them.
269     assert(!failureBlockStack.empty() && "expected valid failure block");
270     auto foreach = builder.create<pdl_interp::ForEachOp>(
271         loc, value, failureBlockStack.back(), /*initLoop=*/true);
272     value = foreach.getLoopVariable();
273 
274     // Create the success and continuation blocks.
275     Block *successBlock = builder.createBlock(&foreach.region());
276     Block *continueBlock = builder.createBlock(successBlock);
277     builder.create<pdl_interp::ContinueOp>(loc);
278     failureBlockStack.push_back(continueBlock);
279 
280     // The fourth operation extracts the operand(s) of the user at the specified
281     // index (which can be None, indicating all operands).
282     builder.setInsertionPointToStart(&foreach.region().front());
283     Value operands = builder.create<pdl_interp::GetOperandsOp>(
284         loc, parentVal.getType(), value, operationPos->getIndex());
285 
286     // The fifth operation compares the operands to the parent value / range.
287     builder.create<pdl_interp::AreEqualOp>(loc, parentVal, operands,
288                                            successBlock, continueBlock);
289     currentBlock = successBlock;
290     break;
291   }
292   case Predicates::OperandPos: {
293     auto *operandPos = cast<OperandPosition>(pos);
294     value = builder.create<pdl_interp::GetOperandOp>(
295         loc, builder.getType<pdl::ValueType>(), parentVal,
296         operandPos->getOperandNumber());
297     break;
298   }
299   case Predicates::OperandGroupPos: {
300     auto *operandPos = cast<OperandGroupPosition>(pos);
301     Type valueTy = builder.getType<pdl::ValueType>();
302     value = builder.create<pdl_interp::GetOperandsOp>(
303         loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy,
304         parentVal, operandPos->getOperandGroupNumber());
305     break;
306   }
307   case Predicates::AttributePos: {
308     auto *attrPos = cast<AttributePosition>(pos);
309     value = builder.create<pdl_interp::GetAttributeOp>(
310         loc, builder.getType<pdl::AttributeType>(), parentVal,
311         attrPos->getName().strref());
312     break;
313   }
314   case Predicates::TypePos: {
315     if (parentVal.getType().isa<pdl::AttributeType>())
316       value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal);
317     else
318       value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal);
319     break;
320   }
321   case Predicates::ResultPos: {
322     auto *resPos = cast<ResultPosition>(pos);
323     value = builder.create<pdl_interp::GetResultOp>(
324         loc, builder.getType<pdl::ValueType>(), parentVal,
325         resPos->getResultNumber());
326     break;
327   }
328   case Predicates::ResultGroupPos: {
329     auto *resPos = cast<ResultGroupPosition>(pos);
330     Type valueTy = builder.getType<pdl::ValueType>();
331     value = builder.create<pdl_interp::GetResultsOp>(
332         loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy,
333         parentVal, resPos->getResultGroupNumber());
334     break;
335   }
336   case Predicates::AttributeLiteralPos: {
337     auto *attrPos = cast<AttributeLiteralPosition>(pos);
338     value =
339         builder.create<pdl_interp::CreateAttributeOp>(loc, attrPos->getValue());
340     break;
341   }
342   case Predicates::TypeLiteralPos: {
343     auto *typePos = cast<TypeLiteralPosition>(pos);
344     Attribute rawTypeAttr = typePos->getValue();
345     if (TypeAttr typeAttr = rawTypeAttr.dyn_cast<TypeAttr>())
346       value = builder.create<pdl_interp::CreateTypeOp>(loc, typeAttr);
347     else
348       value = builder.create<pdl_interp::CreateTypesOp>(
349           loc, rawTypeAttr.cast<ArrayAttr>());
350     break;
351   }
352   default:
353     llvm_unreachable("Generating unknown Position getter");
354     break;
355   }
356 
357   values.insert(pos, value);
358   return value;
359 }
360 
361 void PatternLowering::generate(BoolNode *boolNode, Block *&currentBlock,
362                                Value val) {
363   Location loc = val.getLoc();
364   Qualifier *question = boolNode->getQuestion();
365   Qualifier *answer = boolNode->getAnswer();
366   Region *region = currentBlock->getParent();
367 
368   // Execute the getValue queries first, so that we create success
369   // matcher in the correct (possibly nested) region.
370   SmallVector<Value> args;
371   if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(question)) {
372     args = {getValueAt(currentBlock, equalToQuestion->getValue())};
373   } else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(question)) {
374     for (Position *position : cstQuestion->getArgs())
375       args.push_back(getValueAt(currentBlock, position));
376   }
377 
378   // Generate the matcher in the current (potentially nested) region
379   // and get the failure successor.
380   Block *success = generateMatcher(*boolNode->getSuccessNode(), *region);
381   Block *failure = failureBlockStack.back();
382 
383   // Finally, create the predicate.
384   builder.setInsertionPointToEnd(currentBlock);
385   Predicates::Kind kind = question->getKind();
386   switch (kind) {
387   case Predicates::IsNotNullQuestion:
388     builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure);
389     break;
390   case Predicates::OperationNameQuestion: {
391     auto *opNameAnswer = cast<OperationNameAnswer>(answer);
392     builder.create<pdl_interp::CheckOperationNameOp>(
393         loc, val, opNameAnswer->getValue().getStringRef(), success, failure);
394     break;
395   }
396   case Predicates::TypeQuestion: {
397     auto *ans = cast<TypeAnswer>(answer);
398     if (val.getType().isa<pdl::RangeType>())
399       builder.create<pdl_interp::CheckTypesOp>(
400           loc, val, ans->getValue().cast<ArrayAttr>(), success, failure);
401     else
402       builder.create<pdl_interp::CheckTypeOp>(
403           loc, val, ans->getValue().cast<TypeAttr>(), success, failure);
404     break;
405   }
406   case Predicates::AttributeQuestion: {
407     auto *ans = cast<AttributeAnswer>(answer);
408     builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(),
409                                                  success, failure);
410     break;
411   }
412   case Predicates::OperandCountAtLeastQuestion:
413   case Predicates::OperandCountQuestion:
414     builder.create<pdl_interp::CheckOperandCountOp>(
415         loc, val, cast<UnsignedAnswer>(answer)->getValue(),
416         /*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion,
417         success, failure);
418     break;
419   case Predicates::ResultCountAtLeastQuestion:
420   case Predicates::ResultCountQuestion:
421     builder.create<pdl_interp::CheckResultCountOp>(
422         loc, val, cast<UnsignedAnswer>(answer)->getValue(),
423         /*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion,
424         success, failure);
425     break;
426   case Predicates::EqualToQuestion: {
427     bool trueAnswer = isa<TrueAnswer>(answer);
428     builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(),
429                                            trueAnswer ? success : failure,
430                                            trueAnswer ? failure : success);
431     break;
432   }
433   case Predicates::ConstraintQuestion: {
434     auto *cstQuestion = cast<ConstraintQuestion>(question);
435     builder.create<pdl_interp::ApplyConstraintOp>(
436         loc, cstQuestion->getName(), args, cstQuestion->getParams(), success,
437         failure);
438     break;
439   }
440   default:
441     llvm_unreachable("Generating unknown Predicate operation");
442   }
443 }
444 
445 template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy>
446 static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder,
447                            llvm::MapVector<Qualifier *, Block *> &dests) {
448   std::vector<ValT> values;
449   std::vector<Block *> blocks;
450   values.reserve(dests.size());
451   blocks.reserve(dests.size());
452   for (const auto &it : dests) {
453     blocks.push_back(it.second);
454     values.push_back(cast<PredT>(it.first)->getValue());
455   }
456   builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks);
457 }
458 
459 void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock,
460                                Value val) {
461   Qualifier *question = switchNode->getQuestion();
462   Region *region = currentBlock->getParent();
463   Block *defaultDest = failureBlockStack.back();
464 
465   // If the switch question is not an exact answer, i.e. for the `at_least`
466   // cases, we generate a special block sequence.
467   Predicates::Kind kind = question->getKind();
468   if (kind == Predicates::OperandCountAtLeastQuestion ||
469       kind == Predicates::ResultCountAtLeastQuestion) {
470     // Order the children such that the cases are in reverse numerical order.
471     SmallVector<unsigned> sortedChildren = llvm::to_vector<16>(
472         llvm::seq<unsigned>(0, switchNode->getChildren().size()));
473     llvm::sort(sortedChildren, [&](unsigned lhs, unsigned rhs) {
474       return cast<UnsignedAnswer>(switchNode->getChild(lhs).first)->getValue() >
475              cast<UnsignedAnswer>(switchNode->getChild(rhs).first)->getValue();
476     });
477 
478     // Build the destination for each child using the next highest child as a
479     // a failure destination. This essentially creates the following control
480     // flow:
481     //
482     // if (operand_count < 1)
483     //   goto failure
484     // if (child1.match())
485     //   ...
486     //
487     // if (operand_count < 2)
488     //   goto failure
489     // if (child2.match())
490     //   ...
491     //
492     // failure:
493     //   ...
494     //
495     failureBlockStack.push_back(defaultDest);
496     Location loc = val.getLoc();
497     for (unsigned idx : sortedChildren) {
498       auto &child = switchNode->getChild(idx);
499       Block *childBlock = generateMatcher(*child.second, *region);
500       Block *predicateBlock = builder.createBlock(childBlock);
501       builder.setInsertionPointToEnd(predicateBlock);
502       unsigned ans = cast<UnsignedAnswer>(child.first)->getValue();
503       switch (kind) {
504       case Predicates::OperandCountAtLeastQuestion:
505         builder.create<pdl_interp::CheckOperandCountOp>(
506             loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest);
507         break;
508       case Predicates::ResultCountAtLeastQuestion:
509         builder.create<pdl_interp::CheckResultCountOp>(
510             loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest);
511         break;
512       default:
513         llvm_unreachable("Generating invalid AtLeast operation");
514       }
515       failureBlockStack.back() = predicateBlock;
516     }
517     Block *firstPredicateBlock = failureBlockStack.pop_back_val();
518     currentBlock->getOperations().splice(currentBlock->end(),
519                                          firstPredicateBlock->getOperations());
520     firstPredicateBlock->erase();
521     return;
522   }
523 
524   // Otherwise, generate each of the children and generate an interpreter
525   // switch.
526   llvm::MapVector<Qualifier *, Block *> children;
527   for (auto &it : switchNode->getChildren())
528     children.insert({it.first, generateMatcher(*it.second, *region)});
529   builder.setInsertionPointToEnd(currentBlock);
530 
531   switch (question->getKind()) {
532   case Predicates::OperandCountQuestion:
533     return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer,
534                           int32_t>(val, defaultDest, builder, children);
535   case Predicates::ResultCountQuestion:
536     return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer,
537                           int32_t>(val, defaultDest, builder, children);
538   case Predicates::OperationNameQuestion:
539     return createSwitchOp<pdl_interp::SwitchOperationNameOp,
540                           OperationNameAnswer>(val, defaultDest, builder,
541                                                children);
542   case Predicates::TypeQuestion:
543     if (val.getType().isa<pdl::RangeType>()) {
544       return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>(
545           val, defaultDest, builder, children);
546     }
547     return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>(
548         val, defaultDest, builder, children);
549   case Predicates::AttributeQuestion:
550     return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>(
551         val, defaultDest, builder, children);
552   default:
553     llvm_unreachable("Generating unknown switch predicate.");
554   }
555 }
556 
557 void PatternLowering::generate(SuccessNode *successNode, Block *&currentBlock) {
558   pdl::PatternOp pattern = successNode->getPattern();
559   Value root = successNode->getRoot();
560 
561   // Generate a rewriter for the pattern this success node represents, and track
562   // any values used from the match region.
563   SmallVector<Position *, 8> usedMatchValues;
564   SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues);
565 
566   // Process any values used in the rewrite that are defined in the match.
567   std::vector<Value> mappedMatchValues;
568   mappedMatchValues.reserve(usedMatchValues.size());
569   for (Position *position : usedMatchValues)
570     mappedMatchValues.push_back(getValueAt(currentBlock, position));
571 
572   // Collect the set of operations generated by the rewriter.
573   SmallVector<StringRef, 4> generatedOps;
574   for (auto op : pattern.getRewriter().body().getOps<pdl::OperationOp>())
575     generatedOps.push_back(*op.name());
576   ArrayAttr generatedOpsAttr;
577   if (!generatedOps.empty())
578     generatedOpsAttr = builder.getStrArrayAttr(generatedOps);
579 
580   // Grab the root kind if present.
581   StringAttr rootKindAttr;
582   if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>())
583     if (Optional<StringRef> rootKind = rootOp.name())
584       rootKindAttr = builder.getStringAttr(*rootKind);
585 
586   builder.setInsertionPointToEnd(currentBlock);
587   builder.create<pdl_interp::RecordMatchOp>(
588       pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(),
589       rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.benefitAttr(),
590       failureBlockStack.back());
591 }
592 
593 SymbolRefAttr PatternLowering::generateRewriter(
594     pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) {
595   FuncOp rewriterFunc =
596       FuncOp::create(pattern.getLoc(), "pdl_generated_rewriter",
597                      builder.getFunctionType(llvm::None, llvm::None));
598   rewriterSymbolTable.insert(rewriterFunc);
599 
600   // Generate the rewriter function body.
601   builder.setInsertionPointToEnd(rewriterFunc.addEntryBlock());
602 
603   // Map an input operand of the pattern to a generated interpreter value.
604   DenseMap<Value, Value> rewriteValues;
605   auto mapRewriteValue = [&](Value oldValue) {
606     Value &newValue = rewriteValues[oldValue];
607     if (newValue)
608       return newValue;
609 
610     // Prefer materializing constants directly when possible.
611     Operation *oldOp = oldValue.getDefiningOp();
612     if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) {
613       if (Attribute value = attrOp.valueAttr()) {
614         return newValue = builder.create<pdl_interp::CreateAttributeOp>(
615                    attrOp.getLoc(), value);
616       }
617     } else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) {
618       if (TypeAttr type = typeOp.typeAttr()) {
619         return newValue = builder.create<pdl_interp::CreateTypeOp>(
620                    typeOp.getLoc(), type);
621       }
622     } else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) {
623       if (ArrayAttr type = typeOp.typesAttr()) {
624         return newValue = builder.create<pdl_interp::CreateTypesOp>(
625                    typeOp.getLoc(), typeOp.getType(), type);
626       }
627     }
628 
629     // Otherwise, add this as an input to the rewriter.
630     Position *inputPos = valueToPosition.lookup(oldValue);
631     assert(inputPos && "expected value to be a pattern input");
632     usedMatchValues.push_back(inputPos);
633     return newValue = rewriterFunc.front().addArgument(oldValue.getType());
634   };
635 
636   // If this is a custom rewriter, simply dispatch to the registered rewrite
637   // method.
638   pdl::RewriteOp rewriter = pattern.getRewriter();
639   if (StringAttr rewriteName = rewriter.nameAttr()) {
640     SmallVector<Value> args;
641     if (rewriter.root())
642       args.push_back(mapRewriteValue(rewriter.root()));
643     auto mappedArgs = llvm::map_range(rewriter.externalArgs(), mapRewriteValue);
644     args.append(mappedArgs.begin(), mappedArgs.end());
645     builder.create<pdl_interp::ApplyRewriteOp>(
646         rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args,
647         rewriter.externalConstParamsAttr());
648   } else {
649     // Otherwise this is a dag rewriter defined using PDL operations.
650     for (Operation &rewriteOp : *rewriter.getBody()) {
651       llvm::TypeSwitch<Operation *>(&rewriteOp)
652           .Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp,
653                 pdl::OperationOp, pdl::ReplaceOp, pdl::ResultOp, pdl::ResultsOp,
654                 pdl::TypeOp, pdl::TypesOp>([&](auto op) {
655             this->generateRewriter(op, rewriteValues, mapRewriteValue);
656           });
657     }
658   }
659 
660   // Update the signature of the rewrite function.
661   rewriterFunc.setType(builder.getFunctionType(
662       llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()),
663       /*results=*/llvm::None));
664 
665   builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc());
666   return SymbolRefAttr::get(
667       builder.getContext(),
668       pdl_interp::PDLInterpDialect::getRewriterModuleName(),
669       SymbolRefAttr::get(rewriterFunc));
670 }
671 
672 void PatternLowering::generateRewriter(
673     pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues,
674     function_ref<Value(Value)> mapRewriteValue) {
675   SmallVector<Value, 2> arguments;
676   for (Value argument : rewriteOp.args())
677     arguments.push_back(mapRewriteValue(argument));
678   auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>(
679       rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.nameAttr(),
680       arguments, rewriteOp.constParamsAttr());
681   for (auto it : llvm::zip(rewriteOp.results(), interpOp.results()))
682     rewriteValues[std::get<0>(it)] = std::get<1>(it);
683 }
684 
685 void PatternLowering::generateRewriter(
686     pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues,
687     function_ref<Value(Value)> mapRewriteValue) {
688   Value newAttr = builder.create<pdl_interp::CreateAttributeOp>(
689       attrOp.getLoc(), attrOp.valueAttr());
690   rewriteValues[attrOp] = newAttr;
691 }
692 
693 void PatternLowering::generateRewriter(
694     pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues,
695     function_ref<Value(Value)> mapRewriteValue) {
696   builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(),
697                                       mapRewriteValue(eraseOp.operation()));
698 }
699 
700 void PatternLowering::generateRewriter(
701     pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues,
702     function_ref<Value(Value)> mapRewriteValue) {
703   SmallVector<Value, 4> operands;
704   for (Value operand : operationOp.operands())
705     operands.push_back(mapRewriteValue(operand));
706 
707   SmallVector<Value, 4> attributes;
708   for (Value attr : operationOp.attributes())
709     attributes.push_back(mapRewriteValue(attr));
710 
711   SmallVector<Value, 2> types;
712   generateOperationResultTypeRewriter(operationOp, types, rewriteValues,
713                                       mapRewriteValue);
714 
715   // Create the new operation.
716   Location loc = operationOp.getLoc();
717   Value createdOp = builder.create<pdl_interp::CreateOperationOp>(
718       loc, *operationOp.name(), types, operands, attributes,
719       operationOp.attributeNames());
720   rewriteValues[operationOp.op()] = createdOp;
721 
722   // Generate accesses for any results that have their types constrained.
723   // Handle the case where there is a single range representing all of the
724   // result types.
725   OperandRange resultTys = operationOp.types();
726   if (resultTys.size() == 1 && resultTys[0].getType().isa<pdl::RangeType>()) {
727     Value &type = rewriteValues[resultTys[0]];
728     if (!type) {
729       auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp);
730       type = builder.create<pdl_interp::GetValueTypeOp>(loc, results);
731     }
732     return;
733   }
734 
735   // Otherwise, populate the individual results.
736   bool seenVariableLength = false;
737   Type valueTy = builder.getType<pdl::ValueType>();
738   Type valueRangeTy = pdl::RangeType::get(valueTy);
739   for (auto it : llvm::enumerate(resultTys)) {
740     Value &type = rewriteValues[it.value()];
741     if (type)
742       continue;
743     bool isVariadic = it.value().getType().isa<pdl::RangeType>();
744     seenVariableLength |= isVariadic;
745 
746     // After a variable length result has been seen, we need to use result
747     // groups because the exact index of the result is not statically known.
748     Value resultVal;
749     if (seenVariableLength)
750       resultVal = builder.create<pdl_interp::GetResultsOp>(
751           loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index());
752     else
753       resultVal = builder.create<pdl_interp::GetResultOp>(
754           loc, valueTy, createdOp, it.index());
755     type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal);
756   }
757 }
758 
759 void PatternLowering::generateRewriter(
760     pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues,
761     function_ref<Value(Value)> mapRewriteValue) {
762   SmallVector<Value, 4> replOperands;
763 
764   // If the replacement was another operation, get its results. `pdl` allows
765   // for using an operation for simplicitly, but the interpreter isn't as
766   // user facing.
767   if (Value replOp = replaceOp.replOperation()) {
768     // Don't use replace if we know the replaced operation has no results.
769     auto opOp = replaceOp.operation().getDefiningOp<pdl::OperationOp>();
770     if (!opOp || !opOp.types().empty()) {
771       replOperands.push_back(builder.create<pdl_interp::GetResultsOp>(
772           replOp.getLoc(), mapRewriteValue(replOp)));
773     }
774   } else {
775     for (Value operand : replaceOp.replValues())
776       replOperands.push_back(mapRewriteValue(operand));
777   }
778 
779   // If there are no replacement values, just create an erase instead.
780   if (replOperands.empty()) {
781     builder.create<pdl_interp::EraseOp>(replaceOp.getLoc(),
782                                         mapRewriteValue(replaceOp.operation()));
783     return;
784   }
785 
786   builder.create<pdl_interp::ReplaceOp>(
787       replaceOp.getLoc(), mapRewriteValue(replaceOp.operation()), replOperands);
788 }
789 
790 void PatternLowering::generateRewriter(
791     pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues,
792     function_ref<Value(Value)> mapRewriteValue) {
793   rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>(
794       resultOp.getLoc(), builder.getType<pdl::ValueType>(),
795       mapRewriteValue(resultOp.parent()), resultOp.index());
796 }
797 
798 void PatternLowering::generateRewriter(
799     pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues,
800     function_ref<Value(Value)> mapRewriteValue) {
801   rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>(
802       resultOp.getLoc(), resultOp.getType(), mapRewriteValue(resultOp.parent()),
803       resultOp.index());
804 }
805 
806 void PatternLowering::generateRewriter(
807     pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues,
808     function_ref<Value(Value)> mapRewriteValue) {
809   // If the type isn't constant, the users (e.g. OperationOp) will resolve this
810   // type.
811   if (TypeAttr typeAttr = typeOp.typeAttr()) {
812     rewriteValues[typeOp] =
813         builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr);
814   }
815 }
816 
817 void PatternLowering::generateRewriter(
818     pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues,
819     function_ref<Value(Value)> mapRewriteValue) {
820   // If the type isn't constant, the users (e.g. OperationOp) will resolve this
821   // type.
822   if (ArrayAttr typeAttr = typeOp.typesAttr()) {
823     rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>(
824         typeOp.getLoc(), typeOp.getType(), typeAttr);
825   }
826 }
827 
828 void PatternLowering::generateOperationResultTypeRewriter(
829     pdl::OperationOp op, SmallVectorImpl<Value> &types,
830     DenseMap<Value, Value> &rewriteValues,
831     function_ref<Value(Value)> mapRewriteValue) {
832   // Look for an operation that was replaced by `op`. The result types will be
833   // inferred from the results that were replaced.
834   Block *rewriterBlock = op->getBlock();
835   Value replacedOp;
836   for (OpOperand &use : op.op().getUses()) {
837     // Check that the use corresponds to a ReplaceOp and that it is the
838     // replacement value, not the operation being replaced.
839     pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner());
840     if (!replOpUser || use.getOperandNumber() == 0)
841       continue;
842     // Make sure the replaced operation was defined before this one.
843     Value replOpVal = replOpUser.operation();
844     Operation *replacedOp = replOpVal.getDefiningOp();
845     if (replacedOp->getBlock() == rewriterBlock &&
846         !replacedOp->isBeforeInBlock(op))
847       continue;
848 
849     Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>(
850         replacedOp->getLoc(), mapRewriteValue(replOpVal));
851     types.push_back(builder.create<pdl_interp::GetValueTypeOp>(
852         replacedOp->getLoc(), replacedOpResults));
853     return;
854   }
855 
856   // Check if the operation has type inference support.
857   if (op.hasTypeInference()) {
858     types.push_back(builder.create<pdl_interp::InferredTypesOp>(op.getLoc()));
859     return;
860   }
861 
862   // Otherwise, handle inference for each of the result types individually.
863   OperandRange resultTypeValues = op.types();
864   types.reserve(resultTypeValues.size());
865   for (auto it : llvm::enumerate(resultTypeValues)) {
866     Value resultType = it.value();
867 
868     // Check for an already translated value.
869     if (Value existingRewriteValue = rewriteValues.lookup(resultType)) {
870       types.push_back(existingRewriteValue);
871       continue;
872     }
873 
874     // Check for an input from the matcher.
875     if (resultType.getDefiningOp()->getBlock() != rewriterBlock) {
876       types.push_back(mapRewriteValue(resultType));
877       continue;
878     }
879 
880     // The verifier asserts that the result types of each pdl.operation can be
881     // inferred. If we reach here, there is a bug either in the logic above or
882     // in the verifier for pdl.operation.
883     op->emitOpError() << "unable to infer result type for operation";
884     llvm_unreachable("unable to infer result type for operation");
885   }
886 }
887 
888 //===----------------------------------------------------------------------===//
889 // Conversion Pass
890 //===----------------------------------------------------------------------===//
891 
892 namespace {
893 struct PDLToPDLInterpPass
894     : public ConvertPDLToPDLInterpBase<PDLToPDLInterpPass> {
895   void runOnOperation() final;
896 };
897 } // namespace
898 
899 /// Convert the given module containing PDL pattern operations into a PDL
900 /// Interpreter operations.
901 void PDLToPDLInterpPass::runOnOperation() {
902   ModuleOp module = getOperation();
903 
904   // Create the main matcher function This function contains all of the match
905   // related functionality from patterns in the module.
906   OpBuilder builder = OpBuilder::atBlockBegin(module.getBody());
907   FuncOp matcherFunc = builder.create<FuncOp>(
908       module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(),
909       builder.getFunctionType(builder.getType<pdl::OperationType>(),
910                               /*results=*/llvm::None),
911       /*attrs=*/llvm::None);
912 
913   // Create a nested module to hold the functions invoked for rewriting the IR
914   // after a successful match.
915   ModuleOp rewriterModule = builder.create<ModuleOp>(
916       module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName());
917 
918   // Generate the code for the patterns within the module.
919   PatternLowering generator(matcherFunc, rewriterModule);
920   generator.lower(module);
921 
922   // After generation, delete all of the pattern operations.
923   for (pdl::PatternOp pattern :
924        llvm::make_early_inc_range(module.getOps<pdl::PatternOp>()))
925     pattern.erase();
926 }
927 
928 std::unique_ptr<OperationPass<ModuleOp>> mlir::createPDLToPDLInterpPass() {
929   return std::make_unique<PDLToPDLInterpPass>();
930 }
931