1 //===- PDLToPDLInterp.cpp - Lower a PDL module to the interpreter ---------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/PDLToPDLInterp/PDLToPDLInterp.h"
10 #include "../PassDetail.h"
11 #include "PredicateTree.h"
12 #include "mlir/Dialect/PDL/IR/PDL.h"
13 #include "mlir/Dialect/PDL/IR/PDLTypes.h"
14 #include "mlir/Dialect/PDLInterp/IR/PDLInterp.h"
15 #include "mlir/Pass/Pass.h"
16 #include "llvm/ADT/MapVector.h"
17 #include "llvm/ADT/ScopedHashTable.h"
18 #include "llvm/ADT/Sequence.h"
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/TypeSwitch.h"
22 
23 using namespace mlir;
24 using namespace mlir::pdl_to_pdl_interp;
25 
26 //===----------------------------------------------------------------------===//
27 // PatternLowering
28 //===----------------------------------------------------------------------===//
29 
30 namespace {
31 /// This class generators operations within the PDL Interpreter dialect from a
32 /// given module containing PDL pattern operations.
33 struct PatternLowering {
34 public:
35   PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule);
36 
37   /// Generate code for matching and rewriting based on the pattern operations
38   /// within the module.
39   void lower(ModuleOp module);
40 
41 private:
42   using ValueMap = llvm::ScopedHashTable<Position *, Value>;
43   using ValueMapScope = llvm::ScopedHashTableScope<Position *, Value>;
44 
45   /// Generate interpreter operations for the tree rooted at the given matcher
46   /// node, in the specified region.
47   Block *generateMatcher(MatcherNode &node, Region &region);
48 
49   /// Get or create an access to the provided positional value in the current
50   /// block. This operation may mutate the provided block pointer if nested
51   /// regions (i.e., pdl_interp.iterate) are required.
52   Value getValueAt(Block *&currentBlock, Position *pos);
53 
54   /// Create the interpreter predicate operations. This operation may mutate the
55   /// provided current block pointer if nested regions (iterates) are required.
56   void generate(BoolNode *boolNode, Block *&currentBlock, Value val);
57 
58   /// Create the interpreter switch / predicate operations, with several case
59   /// destinations. This operation never mutates the provided current block
60   /// pointer, because the switch operation does not need Values beyond `val`.
61   void generate(SwitchNode *switchNode, Block *currentBlock, Value val);
62 
63   /// Create the interpreter operations to record a successful pattern match
64   /// using the contained root operation. This operation may mutate the current
65   /// block pointer if nested regions (i.e., pdl_interp.iterate) are required.
66   void generate(SuccessNode *successNode, Block *&currentBlock);
67 
68   /// Generate a rewriter function for the given pattern operation, and returns
69   /// a reference to that function.
70   SymbolRefAttr generateRewriter(pdl::PatternOp pattern,
71                                  SmallVectorImpl<Position *> &usedMatchValues);
72 
73   /// Generate the rewriter code for the given operation.
74   void generateRewriter(pdl::ApplyNativeRewriteOp rewriteOp,
75                         DenseMap<Value, Value> &rewriteValues,
76                         function_ref<Value(Value)> mapRewriteValue);
77   void generateRewriter(pdl::AttributeOp attrOp,
78                         DenseMap<Value, Value> &rewriteValues,
79                         function_ref<Value(Value)> mapRewriteValue);
80   void generateRewriter(pdl::EraseOp eraseOp,
81                         DenseMap<Value, Value> &rewriteValues,
82                         function_ref<Value(Value)> mapRewriteValue);
83   void generateRewriter(pdl::OperationOp operationOp,
84                         DenseMap<Value, Value> &rewriteValues,
85                         function_ref<Value(Value)> mapRewriteValue);
86   void generateRewriter(pdl::ReplaceOp replaceOp,
87                         DenseMap<Value, Value> &rewriteValues,
88                         function_ref<Value(Value)> mapRewriteValue);
89   void generateRewriter(pdl::ResultOp resultOp,
90                         DenseMap<Value, Value> &rewriteValues,
91                         function_ref<Value(Value)> mapRewriteValue);
92   void generateRewriter(pdl::ResultsOp resultOp,
93                         DenseMap<Value, Value> &rewriteValues,
94                         function_ref<Value(Value)> mapRewriteValue);
95   void generateRewriter(pdl::TypeOp typeOp,
96                         DenseMap<Value, Value> &rewriteValues,
97                         function_ref<Value(Value)> mapRewriteValue);
98   void generateRewriter(pdl::TypesOp typeOp,
99                         DenseMap<Value, Value> &rewriteValues,
100                         function_ref<Value(Value)> mapRewriteValue);
101 
102   /// Generate the values used for resolving the result types of an operation
103   /// created within a dag rewriter region.
104   void generateOperationResultTypeRewriter(
105       pdl::OperationOp op, SmallVectorImpl<Value> &types,
106       DenseMap<Value, Value> &rewriteValues,
107       function_ref<Value(Value)> mapRewriteValue);
108 
109   /// A builder to use when generating interpreter operations.
110   OpBuilder builder;
111 
112   /// The matcher function used for all match related logic within PDL patterns.
113   FuncOp matcherFunc;
114 
115   /// The rewriter module containing the all rewrite related logic within PDL
116   /// patterns.
117   ModuleOp rewriterModule;
118 
119   /// The symbol table of the rewriter module used for insertion.
120   SymbolTable rewriterSymbolTable;
121 
122   /// A scoped map connecting a position with the corresponding interpreter
123   /// value.
124   ValueMap values;
125 
126   /// A stack of blocks used as the failure destination for matcher nodes that
127   /// don't have an explicit failure path.
128   SmallVector<Block *, 8> failureBlockStack;
129 
130   /// A mapping between values defined in a pattern match, and the corresponding
131   /// positional value.
132   DenseMap<Value, Position *> valueToPosition;
133 
134   /// The set of operation values whose whose location will be used for newly
135   /// generated operations.
136   SetVector<Value> locOps;
137 };
138 } // end anonymous namespace
139 
140 PatternLowering::PatternLowering(FuncOp matcherFunc, ModuleOp rewriterModule)
141     : builder(matcherFunc.getContext()), matcherFunc(matcherFunc),
142       rewriterModule(rewriterModule), rewriterSymbolTable(rewriterModule) {}
143 
144 void PatternLowering::lower(ModuleOp module) {
145   PredicateUniquer predicateUniquer;
146   PredicateBuilder predicateBuilder(predicateUniquer, module.getContext());
147 
148   // Define top-level scope for the arguments to the matcher function.
149   ValueMapScope topLevelValueScope(values);
150 
151   // Insert the root operation, i.e. argument to the matcher, at the root
152   // position.
153   Block *matcherEntryBlock = matcherFunc.addEntryBlock();
154   values.insert(predicateBuilder.getRoot(), matcherEntryBlock->getArgument(0));
155 
156   // Generate a root matcher node from the provided PDL module.
157   std::unique_ptr<MatcherNode> root = MatcherNode::generateMatcherTree(
158       module, predicateBuilder, valueToPosition);
159   Block *firstMatcherBlock = generateMatcher(*root, matcherFunc.getBody());
160   assert(failureBlockStack.empty() && "failed to empty the stack");
161 
162   // After generation, merged the first matched block into the entry.
163   matcherEntryBlock->getOperations().splice(matcherEntryBlock->end(),
164                                             firstMatcherBlock->getOperations());
165   firstMatcherBlock->erase();
166 }
167 
168 Block *PatternLowering::generateMatcher(MatcherNode &node, Region &region) {
169   // Push a new scope for the values used by this matcher.
170   Block *block = &region.emplaceBlock();
171   ValueMapScope scope(values);
172 
173   // If this is the return node, simply insert the corresponding interpreter
174   // finalize.
175   if (isa<ExitNode>(node)) {
176     builder.setInsertionPointToEnd(block);
177     builder.create<pdl_interp::FinalizeOp>(matcherFunc.getLoc());
178     return block;
179   }
180 
181   // Get the next block in the match sequence.
182   // This is intentionally executed first, before we get the value for the
183   // position associated with the node, so that we preserve an "there exist"
184   // semantics: if getting a value requires an upward traversal (going from a
185   // value to its consumers), we want to perform the check on all the consumers
186   // before we pass control to the failure node.
187   std::unique_ptr<MatcherNode> &failureNode = node.getFailureNode();
188   Block *failureBlock;
189   if (failureNode) {
190     failureBlock = generateMatcher(*failureNode, region);
191     failureBlockStack.push_back(failureBlock);
192   } else {
193     assert(!failureBlockStack.empty() && "expected valid failure block");
194     failureBlock = failureBlockStack.back();
195   }
196 
197   // If this node contains a position, get the corresponding value for this
198   // block.
199   Block *currentBlock = block;
200   Position *position = node.getPosition();
201   Value val = position ? getValueAt(currentBlock, position) : Value();
202 
203   // If this value corresponds to an operation, record that we are going to use
204   // its location as part of a fused location.
205   bool isOperationValue = val && val.getType().isa<pdl::OperationType>();
206   if (isOperationValue)
207     locOps.insert(val);
208 
209   // Dispatch to the correct method based on derived node type.
210   TypeSwitch<MatcherNode *>(&node)
211       .Case<BoolNode, SwitchNode>([&](auto *derivedNode) {
212         this->generate(derivedNode, currentBlock, val);
213       })
214       .Case([&](SuccessNode *successNode) {
215         generate(successNode, currentBlock);
216       });
217 
218   // Pop all the failure blocks that were inserted due to nesting of
219   // pdl_interp.iterate.
220   while (failureBlockStack.back() != failureBlock) {
221     failureBlockStack.pop_back();
222     assert(!failureBlockStack.empty() && "unable to locate failure block");
223   }
224 
225   // Pop the new failure block.
226   if (failureNode)
227     failureBlockStack.pop_back();
228 
229   if (isOperationValue)
230     locOps.remove(val);
231 
232   return block;
233 }
234 
235 Value PatternLowering::getValueAt(Block *&currentBlock, Position *pos) {
236   if (Value val = values.lookup(pos))
237     return val;
238 
239   // Get the value for the parent position.
240   Value parentVal = getValueAt(currentBlock, pos->getParent());
241 
242   // TODO: Use a location from the position.
243   Location loc = parentVal.getLoc();
244   builder.setInsertionPointToEnd(currentBlock);
245   Value value;
246   switch (pos->getKind()) {
247   case Predicates::OperationPos: {
248     auto *operationPos = cast<OperationPosition>(pos);
249     if (!operationPos->isUpward()) {
250       // Standard (downward) traversal which directly follows the defining op.
251       value = builder.create<pdl_interp::GetDefiningOpOp>(
252           loc, builder.getType<pdl::OperationType>(), parentVal);
253       break;
254     }
255 
256     // The first operation retrieves the representative value of a range.
257     // This applies only when the parent is a range of values.
258     if (parentVal.getType().isa<pdl::RangeType>())
259       value = builder.create<pdl_interp::ExtractOp>(loc, parentVal, 0);
260     else
261       value = parentVal;
262 
263     // The second operation retrieves the users.
264     value = builder.create<pdl_interp::GetUsersOp>(loc, value);
265 
266     // The third operation iterates over them.
267     assert(!failureBlockStack.empty() && "expected valid failure block");
268     auto foreach = builder.create<pdl_interp::ForEachOp>(
269         loc, value, failureBlockStack.back(), /*initLoop=*/true);
270     value = foreach.getLoopVariable();
271 
272     // Create the success and continuation blocks.
273     Block *successBlock = builder.createBlock(&foreach.region());
274     Block *continueBlock = builder.createBlock(successBlock);
275     builder.create<pdl_interp::ContinueOp>(loc);
276     failureBlockStack.push_back(continueBlock);
277 
278     // The fourth operation extracts the operand(s) of the user at the specified
279     // index (which can be None, indicating all operands).
280     builder.setInsertionPointToStart(&foreach.region().front());
281     Value operands = builder.create<pdl_interp::GetOperandsOp>(
282         loc, parentVal.getType(), value, operationPos->getIndex());
283 
284     // The fifth operation compares the operands to the parent value / range.
285     builder.create<pdl_interp::AreEqualOp>(loc, parentVal, operands,
286                                            successBlock, continueBlock);
287     currentBlock = successBlock;
288     break;
289   }
290   case Predicates::OperandPos: {
291     auto *operandPos = cast<OperandPosition>(pos);
292     value = builder.create<pdl_interp::GetOperandOp>(
293         loc, builder.getType<pdl::ValueType>(), parentVal,
294         operandPos->getOperandNumber());
295     break;
296   }
297   case Predicates::OperandGroupPos: {
298     auto *operandPos = cast<OperandGroupPosition>(pos);
299     Type valueTy = builder.getType<pdl::ValueType>();
300     value = builder.create<pdl_interp::GetOperandsOp>(
301         loc, operandPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy,
302         parentVal, operandPos->getOperandGroupNumber());
303     break;
304   }
305   case Predicates::AttributePos: {
306     auto *attrPos = cast<AttributePosition>(pos);
307     value = builder.create<pdl_interp::GetAttributeOp>(
308         loc, builder.getType<pdl::AttributeType>(), parentVal,
309         attrPos->getName().strref());
310     break;
311   }
312   case Predicates::TypePos: {
313     if (parentVal.getType().isa<pdl::AttributeType>())
314       value = builder.create<pdl_interp::GetAttributeTypeOp>(loc, parentVal);
315     else
316       value = builder.create<pdl_interp::GetValueTypeOp>(loc, parentVal);
317     break;
318   }
319   case Predicates::ResultPos: {
320     auto *resPos = cast<ResultPosition>(pos);
321     value = builder.create<pdl_interp::GetResultOp>(
322         loc, builder.getType<pdl::ValueType>(), parentVal,
323         resPos->getResultNumber());
324     break;
325   }
326   case Predicates::ResultGroupPos: {
327     auto *resPos = cast<ResultGroupPosition>(pos);
328     Type valueTy = builder.getType<pdl::ValueType>();
329     value = builder.create<pdl_interp::GetResultsOp>(
330         loc, resPos->isVariadic() ? pdl::RangeType::get(valueTy) : valueTy,
331         parentVal, resPos->getResultGroupNumber());
332     break;
333   }
334   default:
335     llvm_unreachable("Generating unknown Position getter");
336     break;
337   }
338 
339   values.insert(pos, value);
340   return value;
341 }
342 
343 void PatternLowering::generate(BoolNode *boolNode, Block *&currentBlock,
344                                Value val) {
345   Location loc = val.getLoc();
346   Qualifier *question = boolNode->getQuestion();
347   Qualifier *answer = boolNode->getAnswer();
348   Region *region = currentBlock->getParent();
349 
350   // Execute the getValue queries first, so that we create success
351   // matcher in the correct (possibly nested) region.
352   SmallVector<Value> args;
353   if (auto *equalToQuestion = dyn_cast<EqualToQuestion>(question)) {
354     args = {getValueAt(currentBlock, equalToQuestion->getValue())};
355   } else if (auto *cstQuestion = dyn_cast<ConstraintQuestion>(question)) {
356     for (Position *position : std::get<1>(cstQuestion->getValue()))
357       args.push_back(getValueAt(currentBlock, position));
358   }
359 
360   // Generate the matcher in the current (potentially nested) region
361   // and get the failure successor.
362   Block *success = generateMatcher(*boolNode->getSuccessNode(), *region);
363   Block *failure = failureBlockStack.back();
364 
365   // Finally, create the predicate.
366   builder.setInsertionPointToEnd(currentBlock);
367   Predicates::Kind kind = question->getKind();
368   switch (kind) {
369   case Predicates::IsNotNullQuestion:
370     builder.create<pdl_interp::IsNotNullOp>(loc, val, success, failure);
371     break;
372   case Predicates::OperationNameQuestion: {
373     auto *opNameAnswer = cast<OperationNameAnswer>(answer);
374     builder.create<pdl_interp::CheckOperationNameOp>(
375         loc, val, opNameAnswer->getValue().getStringRef(), success, failure);
376     break;
377   }
378   case Predicates::TypeQuestion: {
379     auto *ans = cast<TypeAnswer>(answer);
380     if (val.getType().isa<pdl::RangeType>())
381       builder.create<pdl_interp::CheckTypesOp>(
382           loc, val, ans->getValue().cast<ArrayAttr>(), success, failure);
383     else
384       builder.create<pdl_interp::CheckTypeOp>(
385           loc, val, ans->getValue().cast<TypeAttr>(), success, failure);
386     break;
387   }
388   case Predicates::AttributeQuestion: {
389     auto *ans = cast<AttributeAnswer>(answer);
390     builder.create<pdl_interp::CheckAttributeOp>(loc, val, ans->getValue(),
391                                                  success, failure);
392     break;
393   }
394   case Predicates::OperandCountAtLeastQuestion:
395   case Predicates::OperandCountQuestion:
396     builder.create<pdl_interp::CheckOperandCountOp>(
397         loc, val, cast<UnsignedAnswer>(answer)->getValue(),
398         /*compareAtLeast=*/kind == Predicates::OperandCountAtLeastQuestion,
399         success, failure);
400     break;
401   case Predicates::ResultCountAtLeastQuestion:
402   case Predicates::ResultCountQuestion:
403     builder.create<pdl_interp::CheckResultCountOp>(
404         loc, val, cast<UnsignedAnswer>(answer)->getValue(),
405         /*compareAtLeast=*/kind == Predicates::ResultCountAtLeastQuestion,
406         success, failure);
407     break;
408   case Predicates::EqualToQuestion: {
409     bool trueAnswer = isa<TrueAnswer>(answer);
410     builder.create<pdl_interp::AreEqualOp>(loc, val, args.front(),
411                                            trueAnswer ? success : failure,
412                                            trueAnswer ? failure : success);
413     break;
414   }
415   case Predicates::ConstraintQuestion: {
416     auto value = cast<ConstraintQuestion>(question)->getValue();
417     builder.create<pdl_interp::ApplyConstraintOp>(
418         loc, std::get<0>(value), args, std::get<2>(value).cast<ArrayAttr>(),
419         success, failure);
420     break;
421   }
422   default:
423     llvm_unreachable("Generating unknown Predicate operation");
424   }
425 }
426 
427 template <typename OpT, typename PredT, typename ValT = typename PredT::KeyTy>
428 static void createSwitchOp(Value val, Block *defaultDest, OpBuilder &builder,
429                            llvm::MapVector<Qualifier *, Block *> &dests) {
430   std::vector<ValT> values;
431   std::vector<Block *> blocks;
432   values.reserve(dests.size());
433   blocks.reserve(dests.size());
434   for (const auto &it : dests) {
435     blocks.push_back(it.second);
436     values.push_back(cast<PredT>(it.first)->getValue());
437   }
438   builder.create<OpT>(val.getLoc(), val, values, defaultDest, blocks);
439 }
440 
441 void PatternLowering::generate(SwitchNode *switchNode, Block *currentBlock,
442                                Value val) {
443   Qualifier *question = switchNode->getQuestion();
444   Region *region = currentBlock->getParent();
445   Block *defaultDest = failureBlockStack.back();
446 
447   // If the switch question is not an exact answer, i.e. for the `at_least`
448   // cases, we generate a special block sequence.
449   Predicates::Kind kind = question->getKind();
450   if (kind == Predicates::OperandCountAtLeastQuestion ||
451       kind == Predicates::ResultCountAtLeastQuestion) {
452     // Order the children such that the cases are in reverse numerical order.
453     SmallVector<unsigned> sortedChildren = llvm::to_vector<16>(
454         llvm::seq<unsigned>(0, switchNode->getChildren().size()));
455     llvm::sort(sortedChildren, [&](unsigned lhs, unsigned rhs) {
456       return cast<UnsignedAnswer>(switchNode->getChild(lhs).first)->getValue() >
457              cast<UnsignedAnswer>(switchNode->getChild(rhs).first)->getValue();
458     });
459 
460     // Build the destination for each child using the next highest child as a
461     // a failure destination. This essentially creates the following control
462     // flow:
463     //
464     // if (operand_count < 1)
465     //   goto failure
466     // if (child1.match())
467     //   ...
468     //
469     // if (operand_count < 2)
470     //   goto failure
471     // if (child2.match())
472     //   ...
473     //
474     // failure:
475     //   ...
476     //
477     failureBlockStack.push_back(defaultDest);
478     Location loc = val.getLoc();
479     for (unsigned idx : sortedChildren) {
480       auto &child = switchNode->getChild(idx);
481       Block *childBlock = generateMatcher(*child.second, *region);
482       Block *predicateBlock = builder.createBlock(childBlock);
483       builder.setInsertionPointToEnd(predicateBlock);
484       unsigned ans = cast<UnsignedAnswer>(child.first)->getValue();
485       switch (kind) {
486       case Predicates::OperandCountAtLeastQuestion:
487         builder.create<pdl_interp::CheckOperandCountOp>(
488             loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest);
489         break;
490       case Predicates::ResultCountAtLeastQuestion:
491         builder.create<pdl_interp::CheckResultCountOp>(
492             loc, val, ans, /*compareAtLeast=*/true, childBlock, defaultDest);
493         break;
494       default:
495         llvm_unreachable("Generating invalid AtLeast operation");
496       }
497       failureBlockStack.back() = predicateBlock;
498     }
499     Block *firstPredicateBlock = failureBlockStack.pop_back_val();
500     currentBlock->getOperations().splice(currentBlock->end(),
501                                          firstPredicateBlock->getOperations());
502     firstPredicateBlock->erase();
503     return;
504   }
505 
506   // Otherwise, generate each of the children and generate an interpreter
507   // switch.
508   llvm::MapVector<Qualifier *, Block *> children;
509   for (auto &it : switchNode->getChildren())
510     children.insert({it.first, generateMatcher(*it.second, *region)});
511   builder.setInsertionPointToEnd(currentBlock);
512 
513   switch (question->getKind()) {
514   case Predicates::OperandCountQuestion:
515     return createSwitchOp<pdl_interp::SwitchOperandCountOp, UnsignedAnswer,
516                           int32_t>(val, defaultDest, builder, children);
517   case Predicates::ResultCountQuestion:
518     return createSwitchOp<pdl_interp::SwitchResultCountOp, UnsignedAnswer,
519                           int32_t>(val, defaultDest, builder, children);
520   case Predicates::OperationNameQuestion:
521     return createSwitchOp<pdl_interp::SwitchOperationNameOp,
522                           OperationNameAnswer>(val, defaultDest, builder,
523                                                children);
524   case Predicates::TypeQuestion:
525     if (val.getType().isa<pdl::RangeType>()) {
526       return createSwitchOp<pdl_interp::SwitchTypesOp, TypeAnswer>(
527           val, defaultDest, builder, children);
528     }
529     return createSwitchOp<pdl_interp::SwitchTypeOp, TypeAnswer>(
530         val, defaultDest, builder, children);
531   case Predicates::AttributeQuestion:
532     return createSwitchOp<pdl_interp::SwitchAttributeOp, AttributeAnswer>(
533         val, defaultDest, builder, children);
534   default:
535     llvm_unreachable("Generating unknown switch predicate.");
536   }
537 }
538 
539 void PatternLowering::generate(SuccessNode *successNode, Block *&currentBlock) {
540   pdl::PatternOp pattern = successNode->getPattern();
541   Value root = successNode->getRoot();
542 
543   // Generate a rewriter for the pattern this success node represents, and track
544   // any values used from the match region.
545   SmallVector<Position *, 8> usedMatchValues;
546   SymbolRefAttr rewriterFuncRef = generateRewriter(pattern, usedMatchValues);
547 
548   // Process any values used in the rewrite that are defined in the match.
549   std::vector<Value> mappedMatchValues;
550   mappedMatchValues.reserve(usedMatchValues.size());
551   for (Position *position : usedMatchValues)
552     mappedMatchValues.push_back(getValueAt(currentBlock, position));
553 
554   // Collect the set of operations generated by the rewriter.
555   SmallVector<StringRef, 4> generatedOps;
556   for (auto op : pattern.getRewriter().body().getOps<pdl::OperationOp>())
557     generatedOps.push_back(*op.name());
558   ArrayAttr generatedOpsAttr;
559   if (!generatedOps.empty())
560     generatedOpsAttr = builder.getStrArrayAttr(generatedOps);
561 
562   // Grab the root kind if present.
563   StringAttr rootKindAttr;
564   if (pdl::OperationOp rootOp = root.getDefiningOp<pdl::OperationOp>())
565     if (Optional<StringRef> rootKind = rootOp.name())
566       rootKindAttr = builder.getStringAttr(*rootKind);
567 
568   builder.setInsertionPointToEnd(currentBlock);
569   builder.create<pdl_interp::RecordMatchOp>(
570       pattern.getLoc(), mappedMatchValues, locOps.getArrayRef(),
571       rewriterFuncRef, rootKindAttr, generatedOpsAttr, pattern.benefitAttr(),
572       failureBlockStack.back());
573 }
574 
575 SymbolRefAttr PatternLowering::generateRewriter(
576     pdl::PatternOp pattern, SmallVectorImpl<Position *> &usedMatchValues) {
577   FuncOp rewriterFunc =
578       FuncOp::create(pattern.getLoc(), "pdl_generated_rewriter",
579                      builder.getFunctionType(llvm::None, llvm::None));
580   rewriterSymbolTable.insert(rewriterFunc);
581 
582   // Generate the rewriter function body.
583   builder.setInsertionPointToEnd(rewriterFunc.addEntryBlock());
584 
585   // Map an input operand of the pattern to a generated interpreter value.
586   DenseMap<Value, Value> rewriteValues;
587   auto mapRewriteValue = [&](Value oldValue) {
588     Value &newValue = rewriteValues[oldValue];
589     if (newValue)
590       return newValue;
591 
592     // Prefer materializing constants directly when possible.
593     Operation *oldOp = oldValue.getDefiningOp();
594     if (pdl::AttributeOp attrOp = dyn_cast<pdl::AttributeOp>(oldOp)) {
595       if (Attribute value = attrOp.valueAttr()) {
596         return newValue = builder.create<pdl_interp::CreateAttributeOp>(
597                    attrOp.getLoc(), value);
598       }
599     } else if (pdl::TypeOp typeOp = dyn_cast<pdl::TypeOp>(oldOp)) {
600       if (TypeAttr type = typeOp.typeAttr()) {
601         return newValue = builder.create<pdl_interp::CreateTypeOp>(
602                    typeOp.getLoc(), type);
603       }
604     } else if (pdl::TypesOp typeOp = dyn_cast<pdl::TypesOp>(oldOp)) {
605       if (ArrayAttr type = typeOp.typesAttr()) {
606         return newValue = builder.create<pdl_interp::CreateTypesOp>(
607                    typeOp.getLoc(), typeOp.getType(), type);
608       }
609     }
610 
611     // Otherwise, add this as an input to the rewriter.
612     Position *inputPos = valueToPosition.lookup(oldValue);
613     assert(inputPos && "expected value to be a pattern input");
614     usedMatchValues.push_back(inputPos);
615     return newValue = rewriterFunc.front().addArgument(oldValue.getType());
616   };
617 
618   // If this is a custom rewriter, simply dispatch to the registered rewrite
619   // method.
620   pdl::RewriteOp rewriter = pattern.getRewriter();
621   if (StringAttr rewriteName = rewriter.nameAttr()) {
622     SmallVector<Value> args;
623     if (rewriter.root())
624       args.push_back(mapRewriteValue(rewriter.root()));
625     auto mappedArgs = llvm::map_range(rewriter.externalArgs(), mapRewriteValue);
626     args.append(mappedArgs.begin(), mappedArgs.end());
627     builder.create<pdl_interp::ApplyRewriteOp>(
628         rewriter.getLoc(), /*resultTypes=*/TypeRange(), rewriteName, args,
629         rewriter.externalConstParamsAttr());
630   } else {
631     // Otherwise this is a dag rewriter defined using PDL operations.
632     for (Operation &rewriteOp : *rewriter.getBody()) {
633       llvm::TypeSwitch<Operation *>(&rewriteOp)
634           .Case<pdl::ApplyNativeRewriteOp, pdl::AttributeOp, pdl::EraseOp,
635                 pdl::OperationOp, pdl::ReplaceOp, pdl::ResultOp, pdl::ResultsOp,
636                 pdl::TypeOp, pdl::TypesOp>([&](auto op) {
637             this->generateRewriter(op, rewriteValues, mapRewriteValue);
638           });
639     }
640   }
641 
642   // Update the signature of the rewrite function.
643   rewriterFunc.setType(builder.getFunctionType(
644       llvm::to_vector<8>(rewriterFunc.front().getArgumentTypes()),
645       /*results=*/llvm::None));
646 
647   builder.create<pdl_interp::FinalizeOp>(rewriter.getLoc());
648   return SymbolRefAttr::get(
649       builder.getContext(),
650       pdl_interp::PDLInterpDialect::getRewriterModuleName(),
651       SymbolRefAttr::get(rewriterFunc));
652 }
653 
654 void PatternLowering::generateRewriter(
655     pdl::ApplyNativeRewriteOp rewriteOp, DenseMap<Value, Value> &rewriteValues,
656     function_ref<Value(Value)> mapRewriteValue) {
657   SmallVector<Value, 2> arguments;
658   for (Value argument : rewriteOp.args())
659     arguments.push_back(mapRewriteValue(argument));
660   auto interpOp = builder.create<pdl_interp::ApplyRewriteOp>(
661       rewriteOp.getLoc(), rewriteOp.getResultTypes(), rewriteOp.nameAttr(),
662       arguments, rewriteOp.constParamsAttr());
663   for (auto it : llvm::zip(rewriteOp.results(), interpOp.results()))
664     rewriteValues[std::get<0>(it)] = std::get<1>(it);
665 }
666 
667 void PatternLowering::generateRewriter(
668     pdl::AttributeOp attrOp, DenseMap<Value, Value> &rewriteValues,
669     function_ref<Value(Value)> mapRewriteValue) {
670   Value newAttr = builder.create<pdl_interp::CreateAttributeOp>(
671       attrOp.getLoc(), attrOp.valueAttr());
672   rewriteValues[attrOp] = newAttr;
673 }
674 
675 void PatternLowering::generateRewriter(
676     pdl::EraseOp eraseOp, DenseMap<Value, Value> &rewriteValues,
677     function_ref<Value(Value)> mapRewriteValue) {
678   builder.create<pdl_interp::EraseOp>(eraseOp.getLoc(),
679                                       mapRewriteValue(eraseOp.operation()));
680 }
681 
682 void PatternLowering::generateRewriter(
683     pdl::OperationOp operationOp, DenseMap<Value, Value> &rewriteValues,
684     function_ref<Value(Value)> mapRewriteValue) {
685   SmallVector<Value, 4> operands;
686   for (Value operand : operationOp.operands())
687     operands.push_back(mapRewriteValue(operand));
688 
689   SmallVector<Value, 4> attributes;
690   for (Value attr : operationOp.attributes())
691     attributes.push_back(mapRewriteValue(attr));
692 
693   SmallVector<Value, 2> types;
694   generateOperationResultTypeRewriter(operationOp, types, rewriteValues,
695                                       mapRewriteValue);
696 
697   // Create the new operation.
698   Location loc = operationOp.getLoc();
699   Value createdOp = builder.create<pdl_interp::CreateOperationOp>(
700       loc, *operationOp.name(), types, operands, attributes,
701       operationOp.attributeNames());
702   rewriteValues[operationOp.op()] = createdOp;
703 
704   // Generate accesses for any results that have their types constrained.
705   // Handle the case where there is a single range representing all of the
706   // result types.
707   OperandRange resultTys = operationOp.types();
708   if (resultTys.size() == 1 && resultTys[0].getType().isa<pdl::RangeType>()) {
709     Value &type = rewriteValues[resultTys[0]];
710     if (!type) {
711       auto results = builder.create<pdl_interp::GetResultsOp>(loc, createdOp);
712       type = builder.create<pdl_interp::GetValueTypeOp>(loc, results);
713     }
714     return;
715   }
716 
717   // Otherwise, populate the individual results.
718   bool seenVariableLength = false;
719   Type valueTy = builder.getType<pdl::ValueType>();
720   Type valueRangeTy = pdl::RangeType::get(valueTy);
721   for (auto it : llvm::enumerate(resultTys)) {
722     Value &type = rewriteValues[it.value()];
723     if (type)
724       continue;
725     bool isVariadic = it.value().getType().isa<pdl::RangeType>();
726     seenVariableLength |= isVariadic;
727 
728     // After a variable length result has been seen, we need to use result
729     // groups because the exact index of the result is not statically known.
730     Value resultVal;
731     if (seenVariableLength)
732       resultVal = builder.create<pdl_interp::GetResultsOp>(
733           loc, isVariadic ? valueRangeTy : valueTy, createdOp, it.index());
734     else
735       resultVal = builder.create<pdl_interp::GetResultOp>(
736           loc, valueTy, createdOp, it.index());
737     type = builder.create<pdl_interp::GetValueTypeOp>(loc, resultVal);
738   }
739 }
740 
741 void PatternLowering::generateRewriter(
742     pdl::ReplaceOp replaceOp, DenseMap<Value, Value> &rewriteValues,
743     function_ref<Value(Value)> mapRewriteValue) {
744   SmallVector<Value, 4> replOperands;
745 
746   // If the replacement was another operation, get its results. `pdl` allows
747   // for using an operation for simplicitly, but the interpreter isn't as
748   // user facing.
749   if (Value replOp = replaceOp.replOperation()) {
750     // Don't use replace if we know the replaced operation has no results.
751     auto opOp = replaceOp.operation().getDefiningOp<pdl::OperationOp>();
752     if (!opOp || !opOp.types().empty()) {
753       replOperands.push_back(builder.create<pdl_interp::GetResultsOp>(
754           replOp.getLoc(), mapRewriteValue(replOp)));
755     }
756   } else {
757     for (Value operand : replaceOp.replValues())
758       replOperands.push_back(mapRewriteValue(operand));
759   }
760 
761   // If there are no replacement values, just create an erase instead.
762   if (replOperands.empty()) {
763     builder.create<pdl_interp::EraseOp>(replaceOp.getLoc(),
764                                         mapRewriteValue(replaceOp.operation()));
765     return;
766   }
767 
768   builder.create<pdl_interp::ReplaceOp>(
769       replaceOp.getLoc(), mapRewriteValue(replaceOp.operation()), replOperands);
770 }
771 
772 void PatternLowering::generateRewriter(
773     pdl::ResultOp resultOp, DenseMap<Value, Value> &rewriteValues,
774     function_ref<Value(Value)> mapRewriteValue) {
775   rewriteValues[resultOp] = builder.create<pdl_interp::GetResultOp>(
776       resultOp.getLoc(), builder.getType<pdl::ValueType>(),
777       mapRewriteValue(resultOp.parent()), resultOp.index());
778 }
779 
780 void PatternLowering::generateRewriter(
781     pdl::ResultsOp resultOp, DenseMap<Value, Value> &rewriteValues,
782     function_ref<Value(Value)> mapRewriteValue) {
783   rewriteValues[resultOp] = builder.create<pdl_interp::GetResultsOp>(
784       resultOp.getLoc(), resultOp.getType(), mapRewriteValue(resultOp.parent()),
785       resultOp.index());
786 }
787 
788 void PatternLowering::generateRewriter(
789     pdl::TypeOp typeOp, DenseMap<Value, Value> &rewriteValues,
790     function_ref<Value(Value)> mapRewriteValue) {
791   // If the type isn't constant, the users (e.g. OperationOp) will resolve this
792   // type.
793   if (TypeAttr typeAttr = typeOp.typeAttr()) {
794     rewriteValues[typeOp] =
795         builder.create<pdl_interp::CreateTypeOp>(typeOp.getLoc(), typeAttr);
796   }
797 }
798 
799 void PatternLowering::generateRewriter(
800     pdl::TypesOp typeOp, DenseMap<Value, Value> &rewriteValues,
801     function_ref<Value(Value)> mapRewriteValue) {
802   // If the type isn't constant, the users (e.g. OperationOp) will resolve this
803   // type.
804   if (ArrayAttr typeAttr = typeOp.typesAttr()) {
805     rewriteValues[typeOp] = builder.create<pdl_interp::CreateTypesOp>(
806         typeOp.getLoc(), typeOp.getType(), typeAttr);
807   }
808 }
809 
810 void PatternLowering::generateOperationResultTypeRewriter(
811     pdl::OperationOp op, SmallVectorImpl<Value> &types,
812     DenseMap<Value, Value> &rewriteValues,
813     function_ref<Value(Value)> mapRewriteValue) {
814   // Look for an operation that was replaced by `op`. The result types will be
815   // inferred from the results that were replaced.
816   Block *rewriterBlock = op->getBlock();
817   Value replacedOp;
818   for (OpOperand &use : op.op().getUses()) {
819     // Check that the use corresponds to a ReplaceOp and that it is the
820     // replacement value, not the operation being replaced.
821     pdl::ReplaceOp replOpUser = dyn_cast<pdl::ReplaceOp>(use.getOwner());
822     if (!replOpUser || use.getOperandNumber() == 0)
823       continue;
824     // Make sure the replaced operation was defined before this one.
825     Value replOpVal = replOpUser.operation();
826     Operation *replacedOp = replOpVal.getDefiningOp();
827     if (replacedOp->getBlock() == rewriterBlock &&
828         !replacedOp->isBeforeInBlock(op))
829       continue;
830 
831     Value replacedOpResults = builder.create<pdl_interp::GetResultsOp>(
832         replacedOp->getLoc(), mapRewriteValue(replOpVal));
833     types.push_back(builder.create<pdl_interp::GetValueTypeOp>(
834         replacedOp->getLoc(), replacedOpResults));
835     return;
836   }
837 
838   // Check if the operation has type inference support.
839   if (op.hasTypeInference()) {
840     types.push_back(builder.create<pdl_interp::InferredTypesOp>(op.getLoc()));
841     return;
842   }
843 
844   // Otherwise, handle inference for each of the result types individually.
845   OperandRange resultTypeValues = op.types();
846   types.reserve(resultTypeValues.size());
847   for (auto it : llvm::enumerate(resultTypeValues)) {
848     Value resultType = it.value();
849 
850     // Check for an already translated value.
851     if (Value existingRewriteValue = rewriteValues.lookup(resultType)) {
852       types.push_back(existingRewriteValue);
853       continue;
854     }
855 
856     // Check for an input from the matcher.
857     if (resultType.getDefiningOp()->getBlock() != rewriterBlock) {
858       types.push_back(mapRewriteValue(resultType));
859       continue;
860     }
861 
862     // The verifier asserts that the result types of each pdl.operation can be
863     // inferred. If we reach here, there is a bug either in the logic above or
864     // in the verifier for pdl.operation.
865     op->emitOpError() << "unable to infer result type for operation";
866     llvm_unreachable("unable to infer result type for operation");
867   }
868 }
869 
870 //===----------------------------------------------------------------------===//
871 // Conversion Pass
872 //===----------------------------------------------------------------------===//
873 
874 namespace {
875 struct PDLToPDLInterpPass
876     : public ConvertPDLToPDLInterpBase<PDLToPDLInterpPass> {
877   void runOnOperation() final;
878 };
879 } // namespace
880 
881 /// Convert the given module containing PDL pattern operations into a PDL
882 /// Interpreter operations.
883 void PDLToPDLInterpPass::runOnOperation() {
884   ModuleOp module = getOperation();
885 
886   // Create the main matcher function This function contains all of the match
887   // related functionality from patterns in the module.
888   OpBuilder builder = OpBuilder::atBlockBegin(module.getBody());
889   FuncOp matcherFunc = builder.create<FuncOp>(
890       module.getLoc(), pdl_interp::PDLInterpDialect::getMatcherFunctionName(),
891       builder.getFunctionType(builder.getType<pdl::OperationType>(),
892                               /*results=*/llvm::None),
893       /*attrs=*/llvm::None);
894 
895   // Create a nested module to hold the functions invoked for rewriting the IR
896   // after a successful match.
897   ModuleOp rewriterModule = builder.create<ModuleOp>(
898       module.getLoc(), pdl_interp::PDLInterpDialect::getRewriterModuleName());
899 
900   // Generate the code for the patterns within the module.
901   PatternLowering generator(matcherFunc, rewriterModule);
902   generator.lower(module);
903 
904   // After generation, delete all of the pattern operations.
905   for (pdl::PatternOp pattern :
906        llvm::make_early_inc_range(module.getOps<pdl::PatternOp>()))
907     pattern.erase();
908 }
909 
910 std::unique_ptr<OperationPass<ModuleOp>> mlir::createPDLToPDLInterpPass() {
911   return std::make_unique<PDLToPDLInterpPass>();
912 }
913