1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" 10 #include "../PassDetail.h" 11 #include "mlir/Analysis/DataLayoutAnalysis.h" 12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" 13 #include "mlir/Conversion/LLVMCommon/Pattern.h" 14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h" 16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/AffineMap.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 22 using namespace mlir; 23 24 namespace { 25 26 struct AllocOpLowering : public AllocLikeOpLLVMLowering { 27 AllocOpLowering(LLVMTypeConverter &converter) 28 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 29 converter) {} 30 31 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 32 Location loc, Value sizeBytes, 33 Operation *op) const override { 34 // Heap allocations. 35 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 36 MemRefType memRefType = allocOp.getType(); 37 38 Value alignment; 39 if (auto alignmentAttr = allocOp.alignment()) { 40 alignment = createIndexConstant(rewriter, loc, *alignmentAttr); 41 } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) { 42 // In the case where no alignment is specified, we may want to override 43 // `malloc's` behavior. `malloc` typically aligns at the size of the 44 // biggest scalar on a target HW. For non-scalars, use the natural 45 // alignment of the LLVM type given by the LLVM DataLayout. 46 alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter); 47 } 48 49 if (alignment) { 50 // Adjust the allocation size to consider alignment. 51 sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment); 52 } 53 54 // Allocate the underlying buffer and store a pointer to it in the MemRef 55 // descriptor. 56 Type elementPtrType = this->getElementPtrType(memRefType); 57 auto allocFuncOp = LLVM::lookupOrCreateMallocFn( 58 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 59 auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes}, 60 getVoidPtrType()); 61 Value allocatedPtr = 62 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 63 64 Value alignedPtr = allocatedPtr; 65 if (alignment) { 66 // Compute the aligned type pointer. 67 Value allocatedInt = 68 rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr); 69 Value alignmentInt = 70 createAligned(rewriter, loc, allocatedInt, alignment); 71 alignedPtr = 72 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt); 73 } 74 75 return std::make_tuple(allocatedPtr, alignedPtr); 76 } 77 }; 78 79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering { 80 AlignedAllocOpLowering(LLVMTypeConverter &converter) 81 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 82 converter) {} 83 84 /// Returns the memref's element size in bytes using the data layout active at 85 /// `op`. 86 // TODO: there are other places where this is used. Expose publicly? 87 unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const { 88 const DataLayout *layout = &defaultLayout; 89 if (const DataLayoutAnalysis *analysis = 90 getTypeConverter()->getDataLayoutAnalysis()) { 91 layout = &analysis->getAbove(op); 92 } 93 Type elementType = memRefType.getElementType(); 94 if (auto memRefElementType = elementType.dyn_cast<MemRefType>()) 95 return getTypeConverter()->getMemRefDescriptorSize(memRefElementType, 96 *layout); 97 if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>()) 98 return getTypeConverter()->getUnrankedMemRefDescriptorSize( 99 memRefElementType, *layout); 100 return layout->getTypeSize(elementType); 101 } 102 103 /// Returns true if the memref size in bytes is known to be a multiple of 104 /// factor assuming the data layout active at `op`. 105 bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor, 106 Operation *op) const { 107 uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op); 108 for (unsigned i = 0, e = type.getRank(); i < e; i++) { 109 if (type.isDynamic(type.getDimSize(i))) 110 continue; 111 sizeDivisor = sizeDivisor * type.getDimSize(i); 112 } 113 return sizeDivisor % factor == 0; 114 } 115 116 /// Returns the alignment to be used for the allocation call itself. 117 /// aligned_alloc requires the allocation size to be a power of two, and the 118 /// allocation size to be a multiple of alignment, 119 int64_t getAllocationAlignment(memref::AllocOp allocOp) const { 120 if (Optional<uint64_t> alignment = allocOp.alignment()) 121 return *alignment; 122 123 // Whenever we don't have alignment set, we will use an alignment 124 // consistent with the element type; since the allocation size has to be a 125 // power of two, we will bump to the next power of two if it already isn't. 126 auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp); 127 return std::max(kMinAlignedAllocAlignment, 128 llvm::PowerOf2Ceil(eltSizeBytes)); 129 } 130 131 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 132 Location loc, Value sizeBytes, 133 Operation *op) const override { 134 // Heap allocations. 135 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 136 MemRefType memRefType = allocOp.getType(); 137 int64_t alignment = getAllocationAlignment(allocOp); 138 Value allocAlignment = createIndexConstant(rewriter, loc, alignment); 139 140 // aligned_alloc requires size to be a multiple of alignment; we will pad 141 // the size to the next multiple if necessary. 142 if (!isMemRefSizeMultipleOf(memRefType, alignment, op)) 143 sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment); 144 145 Type elementPtrType = this->getElementPtrType(memRefType); 146 auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn( 147 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 148 auto results = 149 createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes}, 150 getVoidPtrType()); 151 Value allocatedPtr = 152 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 153 154 return std::make_tuple(allocatedPtr, allocatedPtr); 155 } 156 157 /// The minimum alignment to use with aligned_alloc (has to be a power of 2). 158 static constexpr uint64_t kMinAlignedAllocAlignment = 16UL; 159 160 /// Default layout to use in absence of the corresponding analysis. 161 DataLayout defaultLayout; 162 }; 163 164 // Out of line definition, required till C++17. 165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment; 166 167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering { 168 AllocaOpLowering(LLVMTypeConverter &converter) 169 : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(), 170 converter) {} 171 172 /// Allocates the underlying buffer using the right call. `allocatedBytePtr` 173 /// is set to null for stack allocations. `accessAlignment` is set if 174 /// alignment is needed post allocation (for eg. in conjunction with malloc). 175 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 176 Location loc, Value sizeBytes, 177 Operation *op) const override { 178 179 // With alloca, one gets a pointer to the element type right away. 180 // For stack allocations. 181 auto allocaOp = cast<memref::AllocaOp>(op); 182 auto elementPtrType = this->getElementPtrType(allocaOp.getType()); 183 184 auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>( 185 loc, elementPtrType, sizeBytes, 186 allocaOp.alignment() ? *allocaOp.alignment() : 0); 187 188 return std::make_tuple(allocatedElementPtr, allocatedElementPtr); 189 } 190 }; 191 192 struct AllocaScopeOpLowering 193 : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> { 194 using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern; 195 196 LogicalResult 197 matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor, 198 ConversionPatternRewriter &rewriter) const override { 199 OpBuilder::InsertionGuard guard(rewriter); 200 Location loc = allocaScopeOp.getLoc(); 201 202 // Split the current block before the AllocaScopeOp to create the inlining 203 // point. 204 auto *currentBlock = rewriter.getInsertionBlock(); 205 auto *remainingOpsBlock = 206 rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); 207 Block *continueBlock; 208 if (allocaScopeOp.getNumResults() == 0) { 209 continueBlock = remainingOpsBlock; 210 } else { 211 continueBlock = rewriter.createBlock(remainingOpsBlock, 212 allocaScopeOp.getResultTypes()); 213 rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock); 214 } 215 216 // Inline body region. 217 Block *beforeBody = &allocaScopeOp.bodyRegion().front(); 218 Block *afterBody = &allocaScopeOp.bodyRegion().back(); 219 rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock); 220 221 // Save stack and then branch into the body of the region. 222 rewriter.setInsertionPointToEnd(currentBlock); 223 auto stackSaveOp = 224 rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); 225 rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody); 226 227 // Replace the alloca_scope return with a branch that jumps out of the body. 228 // Stack restore before leaving the body region. 229 rewriter.setInsertionPointToEnd(afterBody); 230 auto returnOp = 231 cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator()); 232 auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>( 233 returnOp, returnOp.results(), continueBlock); 234 235 // Insert stack restore before jumping out the body of the region. 236 rewriter.setInsertionPoint(branchOp); 237 rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); 238 239 // Replace the op with values return from the body region. 240 rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments()); 241 242 return success(); 243 } 244 }; 245 246 struct AssumeAlignmentOpLowering 247 : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> { 248 using ConvertOpToLLVMPattern< 249 memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern; 250 251 LogicalResult 252 matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor, 253 ConversionPatternRewriter &rewriter) const override { 254 Value memref = adaptor.memref(); 255 unsigned alignment = op.alignment(); 256 auto loc = op.getLoc(); 257 258 MemRefDescriptor memRefDescriptor(memref); 259 Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc()); 260 261 // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that 262 // the asserted memref.alignedPtr isn't used anywhere else, as the real 263 // users like load/store/views always re-extract memref.alignedPtr as they 264 // get lowered. 265 // 266 // This relies on LLVM's CSE optimization (potentially after SROA), since 267 // after CSE all memref.alignedPtr instances get de-duplicated into the same 268 // pointer SSA value. 269 auto intPtrType = 270 getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace()); 271 Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0); 272 Value mask = 273 createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1); 274 Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr); 275 rewriter.create<LLVM::AssumeOp>( 276 loc, rewriter.create<LLVM::ICmpOp>( 277 loc, LLVM::ICmpPredicate::eq, 278 rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero)); 279 280 rewriter.eraseOp(op); 281 return success(); 282 } 283 }; 284 285 // A `dealloc` is converted into a call to `free` on the underlying data buffer. 286 // The memref descriptor being an SSA value, there is no need to clean it up 287 // in any way. 288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> { 289 using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern; 290 291 explicit DeallocOpLowering(LLVMTypeConverter &converter) 292 : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {} 293 294 LogicalResult 295 matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor, 296 ConversionPatternRewriter &rewriter) const override { 297 // Insert the `free` declaration if it is not already present. 298 auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>()); 299 MemRefDescriptor memref(adaptor.memref()); 300 Value casted = rewriter.create<LLVM::BitcastOp>( 301 op.getLoc(), getVoidPtrType(), 302 memref.allocatedPtr(rewriter, op.getLoc())); 303 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 304 op, TypeRange(), SymbolRefAttr::get(freeFunc), casted); 305 return success(); 306 } 307 }; 308 309 // A `dim` is converted to a constant for static sizes and to an access to the 310 // size stored in the memref descriptor for dynamic sizes. 311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> { 312 using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern; 313 314 LogicalResult 315 matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor, 316 ConversionPatternRewriter &rewriter) const override { 317 Type operandType = dimOp.source().getType(); 318 if (operandType.isa<UnrankedMemRefType>()) { 319 rewriter.replaceOp( 320 dimOp, {extractSizeOfUnrankedMemRef( 321 operandType, dimOp, adaptor.getOperands(), rewriter)}); 322 323 return success(); 324 } 325 if (operandType.isa<MemRefType>()) { 326 rewriter.replaceOp( 327 dimOp, {extractSizeOfRankedMemRef(operandType, dimOp, 328 adaptor.getOperands(), rewriter)}); 329 return success(); 330 } 331 llvm_unreachable("expected MemRefType or UnrankedMemRefType"); 332 } 333 334 private: 335 Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp, 336 OpAdaptor adaptor, 337 ConversionPatternRewriter &rewriter) const { 338 Location loc = dimOp.getLoc(); 339 340 auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>(); 341 auto scalarMemRefType = 342 MemRefType::get({}, unrankedMemRefType.getElementType()); 343 unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt(); 344 345 // Extract pointer to the underlying ranked descriptor and bitcast it to a 346 // memref<element_type> descriptor pointer to minimize the number of GEP 347 // operations. 348 UnrankedMemRefDescriptor unrankedDesc(adaptor.source()); 349 Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc); 350 Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>( 351 loc, 352 LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType), 353 addressSpace), 354 underlyingRankedDesc); 355 356 // Get pointer to offset field of memref<element_type> descriptor. 357 Type indexPtrTy = LLVM::LLVMPointerType::get( 358 getTypeConverter()->getIndexType(), addressSpace); 359 Value two = rewriter.create<LLVM::ConstantOp>( 360 loc, typeConverter->convertType(rewriter.getI32Type()), 361 rewriter.getI32IntegerAttr(2)); 362 Value offsetPtr = rewriter.create<LLVM::GEPOp>( 363 loc, indexPtrTy, scalarMemRefDescPtr, 364 ValueRange({createIndexConstant(rewriter, loc, 0), two})); 365 366 // The size value that we have to extract can be obtained using GEPop with 367 // `dimOp.index() + 1` index argument. 368 Value idxPlusOne = rewriter.create<LLVM::AddOp>( 369 loc, createIndexConstant(rewriter, loc, 1), adaptor.index()); 370 Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr, 371 ValueRange({idxPlusOne})); 372 return rewriter.create<LLVM::LoadOp>(loc, sizePtr); 373 } 374 375 Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const { 376 if (Optional<int64_t> idx = dimOp.getConstantIndex()) 377 return idx; 378 379 if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>()) 380 return constantOp.getValue() 381 .cast<IntegerAttr>() 382 .getValue() 383 .getSExtValue(); 384 385 return llvm::None; 386 } 387 388 Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp, 389 OpAdaptor adaptor, 390 ConversionPatternRewriter &rewriter) const { 391 Location loc = dimOp.getLoc(); 392 393 // Take advantage if index is constant. 394 MemRefType memRefType = operandType.cast<MemRefType>(); 395 if (Optional<int64_t> index = getConstantDimIndex(dimOp)) { 396 int64_t i = index.getValue(); 397 if (memRefType.isDynamicDim(i)) { 398 // extract dynamic size from the memref descriptor. 399 MemRefDescriptor descriptor(adaptor.source()); 400 return descriptor.size(rewriter, loc, i); 401 } 402 // Use constant for static size. 403 int64_t dimSize = memRefType.getDimSize(i); 404 return createIndexConstant(rewriter, loc, dimSize); 405 } 406 Value index = adaptor.index(); 407 int64_t rank = memRefType.getRank(); 408 MemRefDescriptor memrefDescriptor(adaptor.source()); 409 return memrefDescriptor.size(rewriter, loc, index, rank); 410 } 411 }; 412 413 /// Returns the LLVM type of the global variable given the memref type `type`. 414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type, 415 LLVMTypeConverter &typeConverter) { 416 // LLVM type for a global memref will be a multi-dimension array. For 417 // declarations or uninitialized global memrefs, we can potentially flatten 418 // this to a 1D array. However, for memref.global's with an initial value, 419 // we do not intend to flatten the ElementsAttribute when going from std -> 420 // LLVM dialect, so the LLVM type needs to me a multi-dimension array. 421 Type elementType = typeConverter.convertType(type.getElementType()); 422 Type arrayTy = elementType; 423 // Shape has the outermost dim at index 0, so need to walk it backwards 424 for (int64_t dim : llvm::reverse(type.getShape())) 425 arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim); 426 return arrayTy; 427 } 428 429 /// GlobalMemrefOp is lowered to a LLVM Global Variable. 430 struct GlobalMemrefOpLowering 431 : public ConvertOpToLLVMPattern<memref::GlobalOp> { 432 using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern; 433 434 LogicalResult 435 matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor, 436 ConversionPatternRewriter &rewriter) const override { 437 MemRefType type = global.type(); 438 if (!isConvertibleAndHasIdentityMaps(type)) 439 return failure(); 440 441 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 442 443 LLVM::Linkage linkage = 444 global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private; 445 446 Attribute initialValue = nullptr; 447 if (!global.isExternal() && !global.isUninitialized()) { 448 auto elementsAttr = global.initial_value()->cast<ElementsAttr>(); 449 initialValue = elementsAttr; 450 451 // For scalar memrefs, the global variable created is of the element type, 452 // so unpack the elements attribute to extract the value. 453 if (type.getRank() == 0) 454 initialValue = elementsAttr.getSplatValue<Attribute>(); 455 } 456 457 uint64_t alignment = global.alignment().getValueOr(0); 458 459 auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( 460 global, arrayTy, global.constant(), linkage, global.sym_name(), 461 initialValue, alignment, type.getMemorySpaceAsInt()); 462 if (!global.isExternal() && global.isUninitialized()) { 463 Block *blk = new Block(); 464 newGlobal.getInitializerRegion().push_back(blk); 465 rewriter.setInsertionPointToStart(blk); 466 Value undef[] = { 467 rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)}; 468 rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef); 469 } 470 return success(); 471 } 472 }; 473 474 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to 475 /// the first element stashed into the descriptor. This reuses 476 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction. 477 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering { 478 GetGlobalMemrefOpLowering(LLVMTypeConverter &converter) 479 : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(), 480 converter) {} 481 482 /// Buffer "allocation" for memref.get_global op is getting the address of 483 /// the global variable referenced. 484 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 485 Location loc, Value sizeBytes, 486 Operation *op) const override { 487 auto getGlobalOp = cast<memref::GetGlobalOp>(op); 488 MemRefType type = getGlobalOp.result().getType().cast<MemRefType>(); 489 unsigned memSpace = type.getMemorySpaceAsInt(); 490 491 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 492 auto addressOf = rewriter.create<LLVM::AddressOfOp>( 493 loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name()); 494 495 // Get the address of the first element in the array by creating a GEP with 496 // the address of the GV as the base, and (rank + 1) number of 0 indices. 497 Type elementType = typeConverter->convertType(type.getElementType()); 498 Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace); 499 500 SmallVector<Value, 4> operands = {addressOf}; 501 operands.insert(operands.end(), type.getRank() + 1, 502 createIndexConstant(rewriter, loc, 0)); 503 auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands); 504 505 // We do not expect the memref obtained using `memref.get_global` to be 506 // ever deallocated. Set the allocated pointer to be known bad value to 507 // help debug if that ever happens. 508 auto intPtrType = getIntPtrType(memSpace); 509 Value deadBeefConst = 510 createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef); 511 auto deadBeefPtr = 512 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst); 513 514 // Both allocated and aligned pointers are same. We could potentially stash 515 // a nullptr for the allocated pointer since we do not expect any dealloc. 516 return std::make_tuple(deadBeefPtr, gep); 517 } 518 }; 519 520 // Common base for load and store operations on MemRefs. Restricts the match 521 // to supported MemRef types. Provides functionality to emit code accessing a 522 // specific element of the underlying data buffer. 523 template <typename Derived> 524 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { 525 using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; 526 using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps; 527 using Base = LoadStoreOpLowering<Derived>; 528 529 LogicalResult match(Derived op) const override { 530 MemRefType type = op.getMemRefType(); 531 return isConvertibleAndHasIdentityMaps(type) ? success() : failure(); 532 } 533 }; 534 535 // Load operation is lowered to obtaining a pointer to the indexed element 536 // and loading it. 537 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> { 538 using Base::Base; 539 540 LogicalResult 541 matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor, 542 ConversionPatternRewriter &rewriter) const override { 543 auto type = loadOp.getMemRefType(); 544 545 Value dataPtr = getStridedElementPtr( 546 loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter); 547 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr); 548 return success(); 549 } 550 }; 551 552 // Store operation is lowered to obtaining a pointer to the indexed element, 553 // and storing the given value to it. 554 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> { 555 using Base::Base; 556 557 LogicalResult 558 matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor, 559 ConversionPatternRewriter &rewriter) const override { 560 auto type = op.getMemRefType(); 561 562 Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(), 563 adaptor.indices(), rewriter); 564 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr); 565 return success(); 566 } 567 }; 568 569 // The prefetch operation is lowered in a way similar to the load operation 570 // except that the llvm.prefetch operation is used for replacement. 571 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> { 572 using Base::Base; 573 574 LogicalResult 575 matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor, 576 ConversionPatternRewriter &rewriter) const override { 577 auto type = prefetchOp.getMemRefType(); 578 auto loc = prefetchOp.getLoc(); 579 580 Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(), 581 adaptor.indices(), rewriter); 582 583 // Replace with llvm.prefetch. 584 auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32)); 585 auto isWrite = rewriter.create<LLVM::ConstantOp>( 586 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite())); 587 auto localityHint = rewriter.create<LLVM::ConstantOp>( 588 loc, llvmI32Type, 589 rewriter.getI32IntegerAttr(prefetchOp.localityHint())); 590 auto isData = rewriter.create<LLVM::ConstantOp>( 591 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache())); 592 593 rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite, 594 localityHint, isData); 595 return success(); 596 } 597 }; 598 599 struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> { 600 using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern; 601 602 LogicalResult 603 matchAndRewrite(memref::RankOp op, OpAdaptor adaptor, 604 ConversionPatternRewriter &rewriter) const override { 605 Location loc = op.getLoc(); 606 Type operandType = op.memref().getType(); 607 if (auto unrankedMemRefType = operandType.dyn_cast<UnrankedMemRefType>()) { 608 UnrankedMemRefDescriptor desc(adaptor.memref()); 609 rewriter.replaceOp(op, {desc.rank(rewriter, loc)}); 610 return success(); 611 } 612 if (auto rankedMemRefType = operandType.dyn_cast<MemRefType>()) { 613 rewriter.replaceOp( 614 op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())}); 615 return success(); 616 } 617 return failure(); 618 } 619 }; 620 621 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> { 622 using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern; 623 624 LogicalResult match(memref::CastOp memRefCastOp) const override { 625 Type srcType = memRefCastOp.getOperand().getType(); 626 Type dstType = memRefCastOp.getType(); 627 628 // memref::CastOp reduce to bitcast in the ranked MemRef case and can be 629 // used for type erasure. For now they must preserve underlying element type 630 // and require source and result type to have the same rank. Therefore, 631 // perform a sanity check that the underlying structs are the same. Once op 632 // semantics are relaxed we can revisit. 633 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 634 return success(typeConverter->convertType(srcType) == 635 typeConverter->convertType(dstType)); 636 637 // At least one of the operands is unranked type 638 assert(srcType.isa<UnrankedMemRefType>() || 639 dstType.isa<UnrankedMemRefType>()); 640 641 // Unranked to unranked cast is disallowed 642 return !(srcType.isa<UnrankedMemRefType>() && 643 dstType.isa<UnrankedMemRefType>()) 644 ? success() 645 : failure(); 646 } 647 648 void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor, 649 ConversionPatternRewriter &rewriter) const override { 650 auto srcType = memRefCastOp.getOperand().getType(); 651 auto dstType = memRefCastOp.getType(); 652 auto targetStructType = typeConverter->convertType(memRefCastOp.getType()); 653 auto loc = memRefCastOp.getLoc(); 654 655 // For ranked/ranked case, just keep the original descriptor. 656 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 657 return rewriter.replaceOp(memRefCastOp, {adaptor.source()}); 658 659 if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) { 660 // Casting ranked to unranked memref type 661 // Set the rank in the destination from the memref type 662 // Allocate space on the stack and copy the src memref descriptor 663 // Set the ptr in the destination to the stack space 664 auto srcMemRefType = srcType.cast<MemRefType>(); 665 int64_t rank = srcMemRefType.getRank(); 666 // ptr = AllocaOp sizeof(MemRefDescriptor) 667 auto ptr = getTypeConverter()->promoteOneMemRefDescriptor( 668 loc, adaptor.source(), rewriter); 669 // voidptr = BitCastOp srcType* to void* 670 auto voidPtr = 671 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 672 .getResult(); 673 // rank = ConstantOp srcRank 674 auto rankVal = rewriter.create<LLVM::ConstantOp>( 675 loc, typeConverter->convertType(rewriter.getIntegerType(64)), 676 rewriter.getI64IntegerAttr(rank)); 677 // undef = UndefOp 678 UnrankedMemRefDescriptor memRefDesc = 679 UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType); 680 // d1 = InsertValueOp undef, rank, 0 681 memRefDesc.setRank(rewriter, loc, rankVal); 682 // d2 = InsertValueOp d1, voidptr, 1 683 memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr); 684 rewriter.replaceOp(memRefCastOp, (Value)memRefDesc); 685 686 } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) { 687 // Casting from unranked type to ranked. 688 // The operation is assumed to be doing a correct cast. If the destination 689 // type mismatches the unranked the type, it is undefined behavior. 690 UnrankedMemRefDescriptor memRefDesc(adaptor.source()); 691 // ptr = ExtractValueOp src, 1 692 auto ptr = memRefDesc.memRefDescPtr(rewriter, loc); 693 // castPtr = BitCastOp i8* to structTy* 694 auto castPtr = 695 rewriter 696 .create<LLVM::BitcastOp>( 697 loc, LLVM::LLVMPointerType::get(targetStructType), ptr) 698 .getResult(); 699 // struct = LoadOp castPtr 700 auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr); 701 rewriter.replaceOp(memRefCastOp, loadOp.getResult()); 702 } else { 703 llvm_unreachable("Unsupported unranked memref to unranked memref cast"); 704 } 705 } 706 }; 707 708 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> { 709 using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern; 710 711 LogicalResult 712 matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor, 713 ConversionPatternRewriter &rewriter) const override { 714 auto loc = op.getLoc(); 715 auto srcType = op.source().getType().cast<BaseMemRefType>(); 716 auto targetType = op.target().getType().cast<BaseMemRefType>(); 717 718 // First make sure we have an unranked memref descriptor representation. 719 auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) { 720 auto rank = rewriter.create<LLVM::ConstantOp>( 721 loc, getIndexType(), rewriter.getIndexAttr(type.getRank())); 722 auto *typeConverter = getTypeConverter(); 723 auto ptr = 724 typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter); 725 auto voidPtr = 726 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 727 .getResult(); 728 auto unrankedType = 729 UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace()); 730 return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter, 731 unrankedType, 732 ValueRange{rank, voidPtr}); 733 }; 734 735 Value unrankedSource = srcType.hasRank() 736 ? makeUnranked(adaptor.source(), srcType) 737 : adaptor.source(); 738 Value unrankedTarget = targetType.hasRank() 739 ? makeUnranked(adaptor.target(), targetType) 740 : adaptor.target(); 741 742 // Now promote the unranked descriptors to the stack. 743 auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), 744 rewriter.getIndexAttr(1)); 745 auto promote = [&](Value desc) { 746 auto ptrType = LLVM::LLVMPointerType::get(desc.getType()); 747 auto allocated = 748 rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one}); 749 rewriter.create<LLVM::StoreOp>(loc, desc, allocated); 750 return allocated; 751 }; 752 753 auto sourcePtr = promote(unrankedSource); 754 auto targetPtr = promote(unrankedTarget); 755 756 auto elemSize = rewriter.create<LLVM::ConstantOp>( 757 loc, getIndexType(), 758 rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8)); 759 auto copyFn = LLVM::lookupOrCreateMemRefCopyFn( 760 op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType()); 761 rewriter.create<LLVM::CallOp>(loc, copyFn, 762 ValueRange{elemSize, sourcePtr, targetPtr}); 763 rewriter.eraseOp(op); 764 765 return success(); 766 } 767 }; 768 769 /// Extracts allocated, aligned pointers and offset from a ranked or unranked 770 /// memref type. In unranked case, the fields are extracted from the underlying 771 /// ranked descriptor. 772 static void extractPointersAndOffset(Location loc, 773 ConversionPatternRewriter &rewriter, 774 LLVMTypeConverter &typeConverter, 775 Value originalOperand, 776 Value convertedOperand, 777 Value *allocatedPtr, Value *alignedPtr, 778 Value *offset = nullptr) { 779 Type operandType = originalOperand.getType(); 780 if (operandType.isa<MemRefType>()) { 781 MemRefDescriptor desc(convertedOperand); 782 *allocatedPtr = desc.allocatedPtr(rewriter, loc); 783 *alignedPtr = desc.alignedPtr(rewriter, loc); 784 if (offset != nullptr) 785 *offset = desc.offset(rewriter, loc); 786 return; 787 } 788 789 unsigned memorySpace = 790 operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 791 Type elementType = operandType.cast<UnrankedMemRefType>().getElementType(); 792 Type llvmElementType = typeConverter.convertType(elementType); 793 Type elementPtrPtrType = LLVM::LLVMPointerType::get( 794 LLVM::LLVMPointerType::get(llvmElementType, memorySpace)); 795 796 // Extract pointer to the underlying ranked memref descriptor and cast it to 797 // ElemType**. 798 UnrankedMemRefDescriptor unrankedDesc(convertedOperand); 799 Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc); 800 801 *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( 802 rewriter, loc, underlyingDescPtr, elementPtrPtrType); 803 *alignedPtr = UnrankedMemRefDescriptor::alignedPtr( 804 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 805 if (offset != nullptr) { 806 *offset = UnrankedMemRefDescriptor::offset( 807 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 808 } 809 } 810 811 struct MemRefReinterpretCastOpLowering 812 : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> { 813 using ConvertOpToLLVMPattern< 814 memref::ReinterpretCastOp>::ConvertOpToLLVMPattern; 815 816 LogicalResult 817 matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor, 818 ConversionPatternRewriter &rewriter) const override { 819 Type srcType = castOp.source().getType(); 820 821 Value descriptor; 822 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp, 823 adaptor, &descriptor))) 824 return failure(); 825 rewriter.replaceOp(castOp, {descriptor}); 826 return success(); 827 } 828 829 private: 830 LogicalResult convertSourceMemRefToDescriptor( 831 ConversionPatternRewriter &rewriter, Type srcType, 832 memref::ReinterpretCastOp castOp, 833 memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const { 834 MemRefType targetMemRefType = 835 castOp.getResult().getType().cast<MemRefType>(); 836 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 837 .dyn_cast_or_null<LLVM::LLVMStructType>(); 838 if (!llvmTargetDescriptorTy) 839 return failure(); 840 841 // Create descriptor. 842 Location loc = castOp.getLoc(); 843 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 844 845 // Set allocated and aligned pointers. 846 Value allocatedPtr, alignedPtr; 847 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 848 castOp.source(), adaptor.source(), &allocatedPtr, 849 &alignedPtr); 850 desc.setAllocatedPtr(rewriter, loc, allocatedPtr); 851 desc.setAlignedPtr(rewriter, loc, alignedPtr); 852 853 // Set offset. 854 if (castOp.isDynamicOffset(0)) 855 desc.setOffset(rewriter, loc, adaptor.offsets()[0]); 856 else 857 desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0)); 858 859 // Set sizes and strides. 860 unsigned dynSizeId = 0; 861 unsigned dynStrideId = 0; 862 for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) { 863 if (castOp.isDynamicSize(i)) 864 desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]); 865 else 866 desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i)); 867 868 if (castOp.isDynamicStride(i)) 869 desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]); 870 else 871 desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i)); 872 } 873 *descriptor = desc; 874 return success(); 875 } 876 }; 877 878 struct MemRefReshapeOpLowering 879 : public ConvertOpToLLVMPattern<memref::ReshapeOp> { 880 using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern; 881 882 LogicalResult 883 matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor, 884 ConversionPatternRewriter &rewriter) const override { 885 Type srcType = reshapeOp.source().getType(); 886 887 Value descriptor; 888 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp, 889 adaptor, &descriptor))) 890 return failure(); 891 rewriter.replaceOp(reshapeOp, {descriptor}); 892 return success(); 893 } 894 895 private: 896 LogicalResult 897 convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter, 898 Type srcType, memref::ReshapeOp reshapeOp, 899 memref::ReshapeOp::Adaptor adaptor, 900 Value *descriptor) const { 901 // Conversion for statically-known shape args is performed via 902 // `memref_reinterpret_cast`. 903 auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>(); 904 if (shapeMemRefType.hasStaticShape()) 905 return failure(); 906 907 // The shape is a rank-1 tensor with unknown length. 908 Location loc = reshapeOp.getLoc(); 909 MemRefDescriptor shapeDesc(adaptor.shape()); 910 Value resultRank = shapeDesc.size(rewriter, loc, 0); 911 912 // Extract address space and element type. 913 auto targetType = 914 reshapeOp.getResult().getType().cast<UnrankedMemRefType>(); 915 unsigned addressSpace = targetType.getMemorySpaceAsInt(); 916 Type elementType = targetType.getElementType(); 917 918 // Create the unranked memref descriptor that holds the ranked one. The 919 // inner descriptor is allocated on stack. 920 auto targetDesc = UnrankedMemRefDescriptor::undef( 921 rewriter, loc, typeConverter->convertType(targetType)); 922 targetDesc.setRank(rewriter, loc, resultRank); 923 SmallVector<Value, 4> sizes; 924 UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(), 925 targetDesc, sizes); 926 Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>( 927 loc, getVoidPtrType(), sizes.front(), llvm::None); 928 targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr); 929 930 // Extract pointers and offset from the source memref. 931 Value allocatedPtr, alignedPtr, offset; 932 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 933 reshapeOp.source(), adaptor.source(), 934 &allocatedPtr, &alignedPtr, &offset); 935 936 // Set pointers and offset. 937 Type llvmElementType = typeConverter->convertType(elementType); 938 auto elementPtrPtrType = LLVM::LLVMPointerType::get( 939 LLVM::LLVMPointerType::get(llvmElementType, addressSpace)); 940 UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr, 941 elementPtrPtrType, allocatedPtr); 942 UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(), 943 underlyingDescPtr, 944 elementPtrPtrType, alignedPtr); 945 UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(), 946 underlyingDescPtr, elementPtrPtrType, 947 offset); 948 949 // Use the offset pointer as base for further addressing. Copy over the new 950 // shape and compute strides. For this, we create a loop from rank-1 to 0. 951 Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr( 952 rewriter, loc, *getTypeConverter(), underlyingDescPtr, 953 elementPtrPtrType); 954 Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr( 955 rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank); 956 Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc); 957 Value oneIndex = createIndexConstant(rewriter, loc, 1); 958 Value resultRankMinusOne = 959 rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex); 960 961 Block *initBlock = rewriter.getInsertionBlock(); 962 Type indexType = getTypeConverter()->getIndexType(); 963 Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint()); 964 965 Block *condBlock = rewriter.createBlock(initBlock->getParent(), {}, 966 {indexType, indexType}); 967 968 // Move the remaining initBlock ops to condBlock. 969 Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt); 970 rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange()); 971 972 rewriter.setInsertionPointToEnd(initBlock); 973 rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}), 974 condBlock); 975 rewriter.setInsertionPointToStart(condBlock); 976 Value indexArg = condBlock->getArgument(0); 977 Value strideArg = condBlock->getArgument(1); 978 979 Value zeroIndex = createIndexConstant(rewriter, loc, 0); 980 Value pred = rewriter.create<LLVM::ICmpOp>( 981 loc, IntegerType::get(rewriter.getContext(), 1), 982 LLVM::ICmpPredicate::sge, indexArg, zeroIndex); 983 984 Block *bodyBlock = 985 rewriter.splitBlock(condBlock, rewriter.getInsertionPoint()); 986 rewriter.setInsertionPointToStart(bodyBlock); 987 988 // Copy size from shape to descriptor. 989 Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType); 990 Value sizeLoadGep = rewriter.create<LLVM::GEPOp>( 991 loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg}); 992 Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep); 993 UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(), 994 targetSizesBase, indexArg, size); 995 996 // Write stride value and compute next one. 997 UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(), 998 targetStridesBase, indexArg, strideArg); 999 Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size); 1000 1001 // Decrement loop counter and branch back. 1002 Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex); 1003 rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}), 1004 condBlock); 1005 1006 Block *remainder = 1007 rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint()); 1008 1009 // Hook up the cond exit to the remainder. 1010 rewriter.setInsertionPointToEnd(condBlock); 1011 rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder, 1012 llvm::None); 1013 1014 // Reset position to beginning of new remainder block. 1015 rewriter.setInsertionPointToStart(remainder); 1016 1017 *descriptor = targetDesc; 1018 return success(); 1019 } 1020 }; 1021 1022 /// Helper function to convert a vector of `OpFoldResult`s into a vector of 1023 /// `Value`s. 1024 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc, 1025 Type &llvmIndexType, 1026 ArrayRef<OpFoldResult> valueOrAttrVec) { 1027 return llvm::to_vector<4>( 1028 llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value { 1029 if (auto attr = value.dyn_cast<Attribute>()) 1030 return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr); 1031 return value.get<Value>(); 1032 })); 1033 } 1034 1035 /// Compute a map that for a given dimension of the expanded type gives the 1036 /// dimension in the collapsed type it maps to. Essentially its the inverse of 1037 /// the `reassocation` maps. 1038 static DenseMap<int64_t, int64_t> 1039 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) { 1040 llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim; 1041 for (auto &en : enumerate(reassociation)) { 1042 for (auto dim : en.value()) 1043 expandedDimToCollapsedDim[dim] = en.index(); 1044 } 1045 return expandedDimToCollapsedDim; 1046 } 1047 1048 static OpFoldResult 1049 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType, 1050 int64_t outDimIndex, ArrayRef<int64_t> outStaticShape, 1051 MemRefDescriptor &inDesc, 1052 ArrayRef<int64_t> inStaticShape, 1053 ArrayRef<ReassociationIndices> reassocation, 1054 DenseMap<int64_t, int64_t> &outDimToInDimMap) { 1055 int64_t outDimSize = outStaticShape[outDimIndex]; 1056 if (!ShapedType::isDynamic(outDimSize)) 1057 return b.getIndexAttr(outDimSize); 1058 1059 // Calculate the multiplication of all the out dim sizes except the 1060 // current dim. 1061 int64_t inDimIndex = outDimToInDimMap[outDimIndex]; 1062 int64_t otherDimSizesMul = 1; 1063 for (auto otherDimIndex : reassocation[inDimIndex]) { 1064 if (otherDimIndex == static_cast<unsigned>(outDimIndex)) 1065 continue; 1066 int64_t otherDimSize = outStaticShape[otherDimIndex]; 1067 assert(!ShapedType::isDynamic(otherDimSize) && 1068 "single dimension cannot be expanded into multiple dynamic " 1069 "dimensions"); 1070 otherDimSizesMul *= otherDimSize; 1071 } 1072 1073 // outDimSize = inDimSize / otherOutDimSizesMul 1074 int64_t inDimSize = inStaticShape[inDimIndex]; 1075 Value inDimSizeDynamic = 1076 ShapedType::isDynamic(inDimSize) 1077 ? inDesc.size(b, loc, inDimIndex) 1078 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1079 b.getIndexAttr(inDimSize)); 1080 Value outDimSizeDynamic = b.create<LLVM::SDivOp>( 1081 loc, inDimSizeDynamic, 1082 b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1083 b.getIndexAttr(otherDimSizesMul))); 1084 return outDimSizeDynamic; 1085 } 1086 1087 static OpFoldResult getCollapsedOutputDimSize( 1088 OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex, 1089 int64_t outDimSize, ArrayRef<int64_t> inStaticShape, 1090 MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) { 1091 if (!ShapedType::isDynamic(outDimSize)) 1092 return b.getIndexAttr(outDimSize); 1093 1094 Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1)); 1095 Value outDimSizeDynamic = c1; 1096 for (auto inDimIndex : reassocation[outDimIndex]) { 1097 int64_t inDimSize = inStaticShape[inDimIndex]; 1098 Value inDimSizeDynamic = 1099 ShapedType::isDynamic(inDimSize) 1100 ? inDesc.size(b, loc, inDimIndex) 1101 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1102 b.getIndexAttr(inDimSize)); 1103 outDimSizeDynamic = 1104 b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic); 1105 } 1106 return outDimSizeDynamic; 1107 } 1108 1109 static SmallVector<OpFoldResult, 4> 1110 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1111 ArrayRef<ReassociationIndices> reassocation, 1112 ArrayRef<int64_t> inStaticShape, 1113 MemRefDescriptor &inDesc, 1114 ArrayRef<int64_t> outStaticShape) { 1115 return llvm::to_vector<4>(llvm::map_range( 1116 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1117 return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1118 outStaticShape[outDimIndex], 1119 inStaticShape, inDesc, reassocation); 1120 })); 1121 } 1122 1123 static SmallVector<OpFoldResult, 4> 1124 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1125 ArrayRef<ReassociationIndices> reassocation, 1126 ArrayRef<int64_t> inStaticShape, 1127 MemRefDescriptor &inDesc, 1128 ArrayRef<int64_t> outStaticShape) { 1129 DenseMap<int64_t, int64_t> outDimToInDimMap = 1130 getExpandedDimToCollapsedDimMap(reassocation); 1131 return llvm::to_vector<4>(llvm::map_range( 1132 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1133 return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1134 outStaticShape, inDesc, inStaticShape, 1135 reassocation, outDimToInDimMap); 1136 })); 1137 } 1138 1139 static SmallVector<Value> 1140 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1141 ArrayRef<ReassociationIndices> reassocation, 1142 ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc, 1143 ArrayRef<int64_t> outStaticShape) { 1144 return outStaticShape.size() < inStaticShape.size() 1145 ? getAsValues(b, loc, llvmIndexType, 1146 getCollapsedOutputShape(b, loc, llvmIndexType, 1147 reassocation, inStaticShape, 1148 inDesc, outStaticShape)) 1149 : getAsValues(b, loc, llvmIndexType, 1150 getExpandedOutputShape(b, loc, llvmIndexType, 1151 reassocation, inStaticShape, 1152 inDesc, outStaticShape)); 1153 } 1154 1155 // ReshapeOp creates a new view descriptor of the proper rank. 1156 // For now, the only conversion supported is for target MemRef with static sizes 1157 // and strides. 1158 template <typename ReshapeOp> 1159 class ReassociatingReshapeOpConversion 1160 : public ConvertOpToLLVMPattern<ReshapeOp> { 1161 public: 1162 using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern; 1163 using ReshapeOpAdaptor = typename ReshapeOp::Adaptor; 1164 1165 LogicalResult 1166 matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor, 1167 ConversionPatternRewriter &rewriter) const override { 1168 MemRefType dstType = reshapeOp.getResultType(); 1169 MemRefType srcType = reshapeOp.getSrcType(); 1170 if (!srcType.getLayout().isIdentity() || 1171 !dstType.getLayout().isIdentity()) { 1172 return rewriter.notifyMatchFailure(reshapeOp, 1173 "only empty layout map is supported"); 1174 } 1175 1176 int64_t offset; 1177 SmallVector<int64_t, 4> strides; 1178 if (failed(getStridesAndOffset(dstType, strides, offset))) { 1179 return rewriter.notifyMatchFailure( 1180 reshapeOp, "failed to get stride and offset exprs"); 1181 } 1182 1183 MemRefDescriptor srcDesc(adaptor.src()); 1184 Location loc = reshapeOp->getLoc(); 1185 auto dstDesc = MemRefDescriptor::undef( 1186 rewriter, loc, this->typeConverter->convertType(dstType)); 1187 dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc)); 1188 dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc)); 1189 dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc)); 1190 1191 ArrayRef<int64_t> srcStaticShape = srcType.getShape(); 1192 ArrayRef<int64_t> dstStaticShape = dstType.getShape(); 1193 Type llvmIndexType = 1194 this->typeConverter->convertType(rewriter.getIndexType()); 1195 SmallVector<Value> dstShape = getDynamicOutputShape( 1196 rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(), 1197 srcStaticShape, srcDesc, dstStaticShape); 1198 for (auto &en : llvm::enumerate(dstShape)) 1199 dstDesc.setSize(rewriter, loc, en.index(), en.value()); 1200 1201 auto isStaticStride = [](int64_t stride) { 1202 return !ShapedType::isDynamicStrideOrOffset(stride); 1203 }; 1204 if (llvm::all_of(strides, isStaticStride)) { 1205 for (auto &en : llvm::enumerate(strides)) 1206 dstDesc.setConstantStride(rewriter, loc, en.index(), en.value()); 1207 } else { 1208 Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType, 1209 rewriter.getIndexAttr(1)); 1210 Value stride = c1; 1211 for (auto dimIndex : 1212 llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) { 1213 dstDesc.setStride(rewriter, loc, dimIndex, stride); 1214 stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride); 1215 } 1216 } 1217 rewriter.replaceOp(reshapeOp, {dstDesc}); 1218 return success(); 1219 } 1220 }; 1221 1222 /// Conversion pattern that transforms a subview op into: 1223 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1224 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1225 /// and stride. 1226 /// The subview op is replaced by the descriptor. 1227 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> { 1228 using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern; 1229 1230 LogicalResult 1231 matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor, 1232 ConversionPatternRewriter &rewriter) const override { 1233 auto loc = subViewOp.getLoc(); 1234 1235 auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>(); 1236 auto sourceElementTy = 1237 typeConverter->convertType(sourceMemRefType.getElementType()); 1238 1239 auto viewMemRefType = subViewOp.getType(); 1240 auto inferredType = memref::SubViewOp::inferResultType( 1241 subViewOp.getSourceType(), 1242 extractFromI64ArrayAttr(subViewOp.static_offsets()), 1243 extractFromI64ArrayAttr(subViewOp.static_sizes()), 1244 extractFromI64ArrayAttr(subViewOp.static_strides())) 1245 .cast<MemRefType>(); 1246 auto targetElementTy = 1247 typeConverter->convertType(viewMemRefType.getElementType()); 1248 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1249 if (!sourceElementTy || !targetDescTy || !targetElementTy || 1250 !LLVM::isCompatibleType(sourceElementTy) || 1251 !LLVM::isCompatibleType(targetElementTy) || 1252 !LLVM::isCompatibleType(targetDescTy)) 1253 return failure(); 1254 1255 // Extract the offset and strides from the type. 1256 int64_t offset; 1257 SmallVector<int64_t, 4> strides; 1258 auto successStrides = getStridesAndOffset(inferredType, strides, offset); 1259 if (failed(successStrides)) 1260 return failure(); 1261 1262 // Create the descriptor. 1263 if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType())) 1264 return failure(); 1265 MemRefDescriptor sourceMemRef(adaptor.getOperands().front()); 1266 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1267 1268 // Copy the buffer pointer from the old descriptor to the new one. 1269 Value extracted = sourceMemRef.allocatedPtr(rewriter, loc); 1270 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1271 loc, 1272 LLVM::LLVMPointerType::get(targetElementTy, 1273 viewMemRefType.getMemorySpaceAsInt()), 1274 extracted); 1275 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1276 1277 // Copy the aligned pointer from the old descriptor to the new one. 1278 extracted = sourceMemRef.alignedPtr(rewriter, loc); 1279 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1280 loc, 1281 LLVM::LLVMPointerType::get(targetElementTy, 1282 viewMemRefType.getMemorySpaceAsInt()), 1283 extracted); 1284 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1285 1286 size_t inferredShapeRank = inferredType.getRank(); 1287 size_t resultShapeRank = viewMemRefType.getRank(); 1288 1289 // Extract strides needed to compute offset. 1290 SmallVector<Value, 4> strideValues; 1291 strideValues.reserve(inferredShapeRank); 1292 for (unsigned i = 0; i < inferredShapeRank; ++i) 1293 strideValues.push_back(sourceMemRef.stride(rewriter, loc, i)); 1294 1295 // Offset. 1296 auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType()); 1297 if (!ShapedType::isDynamicStrideOrOffset(offset)) { 1298 targetMemRef.setConstantOffset(rewriter, loc, offset); 1299 } else { 1300 Value baseOffset = sourceMemRef.offset(rewriter, loc); 1301 // `inferredShapeRank` may be larger than the number of offset operands 1302 // because of trailing semantics. In this case, the offset is guaranteed 1303 // to be interpreted as 0 and we can just skip the extra dimensions. 1304 for (unsigned i = 0, e = std::min(inferredShapeRank, 1305 subViewOp.getMixedOffsets().size()); 1306 i < e; ++i) { 1307 Value offset = 1308 // TODO: need OpFoldResult ODS adaptor to clean this up. 1309 subViewOp.isDynamicOffset(i) 1310 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)] 1311 : rewriter.create<LLVM::ConstantOp>( 1312 loc, llvmIndexType, 1313 rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i))); 1314 Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]); 1315 baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul); 1316 } 1317 targetMemRef.setOffset(rewriter, loc, baseOffset); 1318 } 1319 1320 // Update sizes and strides. 1321 SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes(); 1322 SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides(); 1323 assert(mixedSizes.size() == mixedStrides.size() && 1324 "expected sizes and strides of equal length"); 1325 llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims(); 1326 for (int i = inferredShapeRank - 1, j = resultShapeRank - 1; 1327 i >= 0 && j >= 0; --i) { 1328 if (unusedDims.contains(i)) 1329 continue; 1330 1331 // `i` may overflow subViewOp.getMixedSizes because of trailing semantics. 1332 // In this case, the size is guaranteed to be interpreted as Dim and the 1333 // stride as 1. 1334 Value size, stride; 1335 if (static_cast<unsigned>(i) >= mixedSizes.size()) { 1336 // If the static size is available, use it directly. This is similar to 1337 // the folding of dim(constant-op) but removes the need for dim to be 1338 // aware of LLVM constants and for this pass to be aware of std 1339 // constants. 1340 int64_t staticSize = 1341 subViewOp.source().getType().cast<MemRefType>().getShape()[i]; 1342 if (staticSize != ShapedType::kDynamicSize) { 1343 size = rewriter.create<LLVM::ConstantOp>( 1344 loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize)); 1345 } else { 1346 Value pos = rewriter.create<LLVM::ConstantOp>( 1347 loc, llvmIndexType, rewriter.getI64IntegerAttr(i)); 1348 Value dim = 1349 rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos); 1350 auto cast = rewriter.create<UnrealizedConversionCastOp>( 1351 loc, llvmIndexType, dim); 1352 size = cast.getResult(0); 1353 } 1354 stride = rewriter.create<LLVM::ConstantOp>( 1355 loc, llvmIndexType, rewriter.getI64IntegerAttr(1)); 1356 } else { 1357 // TODO: need OpFoldResult ODS adaptor to clean this up. 1358 size = 1359 subViewOp.isDynamicSize(i) 1360 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)] 1361 : rewriter.create<LLVM::ConstantOp>( 1362 loc, llvmIndexType, 1363 rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i))); 1364 if (!ShapedType::isDynamicStrideOrOffset(strides[i])) { 1365 stride = rewriter.create<LLVM::ConstantOp>( 1366 loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i])); 1367 } else { 1368 stride = 1369 subViewOp.isDynamicStride(i) 1370 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)] 1371 : rewriter.create<LLVM::ConstantOp>( 1372 loc, llvmIndexType, 1373 rewriter.getI64IntegerAttr( 1374 subViewOp.getStaticStride(i))); 1375 stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]); 1376 } 1377 } 1378 targetMemRef.setSize(rewriter, loc, j, size); 1379 targetMemRef.setStride(rewriter, loc, j, stride); 1380 j--; 1381 } 1382 1383 rewriter.replaceOp(subViewOp, {targetMemRef}); 1384 return success(); 1385 } 1386 }; 1387 1388 /// Conversion pattern that transforms a transpose op into: 1389 /// 1. A function entry `alloca` operation to allocate a ViewDescriptor. 1390 /// 2. A load of the ViewDescriptor from the pointer allocated in 1. 1391 /// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size 1392 /// and stride. Size and stride are permutations of the original values. 1393 /// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer. 1394 /// The transpose op is replaced by the alloca'ed pointer. 1395 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> { 1396 public: 1397 using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern; 1398 1399 LogicalResult 1400 matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor, 1401 ConversionPatternRewriter &rewriter) const override { 1402 auto loc = transposeOp.getLoc(); 1403 MemRefDescriptor viewMemRef(adaptor.in()); 1404 1405 // No permutation, early exit. 1406 if (transposeOp.permutation().isIdentity()) 1407 return rewriter.replaceOp(transposeOp, {viewMemRef}), success(); 1408 1409 auto targetMemRef = MemRefDescriptor::undef( 1410 rewriter, loc, typeConverter->convertType(transposeOp.getShapedType())); 1411 1412 // Copy the base and aligned pointers from the old descriptor to the new 1413 // one. 1414 targetMemRef.setAllocatedPtr(rewriter, loc, 1415 viewMemRef.allocatedPtr(rewriter, loc)); 1416 targetMemRef.setAlignedPtr(rewriter, loc, 1417 viewMemRef.alignedPtr(rewriter, loc)); 1418 1419 // Copy the offset pointer from the old descriptor to the new one. 1420 targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc)); 1421 1422 // Iterate over the dimensions and apply size/stride permutation. 1423 for (const auto &en : 1424 llvm::enumerate(transposeOp.permutation().getResults())) { 1425 int sourcePos = en.index(); 1426 int targetPos = en.value().cast<AffineDimExpr>().getPosition(); 1427 targetMemRef.setSize(rewriter, loc, targetPos, 1428 viewMemRef.size(rewriter, loc, sourcePos)); 1429 targetMemRef.setStride(rewriter, loc, targetPos, 1430 viewMemRef.stride(rewriter, loc, sourcePos)); 1431 } 1432 1433 rewriter.replaceOp(transposeOp, {targetMemRef}); 1434 return success(); 1435 } 1436 }; 1437 1438 /// Conversion pattern that transforms an op into: 1439 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1440 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1441 /// and stride. 1442 /// The view op is replaced by the descriptor. 1443 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> { 1444 using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern; 1445 1446 // Build and return the value for the idx^th shape dimension, either by 1447 // returning the constant shape dimension or counting the proper dynamic size. 1448 Value getSize(ConversionPatternRewriter &rewriter, Location loc, 1449 ArrayRef<int64_t> shape, ValueRange dynamicSizes, 1450 unsigned idx) const { 1451 assert(idx < shape.size()); 1452 if (!ShapedType::isDynamic(shape[idx])) 1453 return createIndexConstant(rewriter, loc, shape[idx]); 1454 // Count the number of dynamic dims in range [0, idx] 1455 unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) { 1456 return ShapedType::isDynamic(v); 1457 }); 1458 return dynamicSizes[nDynamic]; 1459 } 1460 1461 // Build and return the idx^th stride, either by returning the constant stride 1462 // or by computing the dynamic stride from the current `runningStride` and 1463 // `nextSize`. The caller should keep a running stride and update it with the 1464 // result returned by this function. 1465 Value getStride(ConversionPatternRewriter &rewriter, Location loc, 1466 ArrayRef<int64_t> strides, Value nextSize, 1467 Value runningStride, unsigned idx) const { 1468 assert(idx < strides.size()); 1469 if (!MemRefType::isDynamicStrideOrOffset(strides[idx])) 1470 return createIndexConstant(rewriter, loc, strides[idx]); 1471 if (nextSize) 1472 return runningStride 1473 ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) 1474 : nextSize; 1475 assert(!runningStride); 1476 return createIndexConstant(rewriter, loc, 1); 1477 } 1478 1479 LogicalResult 1480 matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor, 1481 ConversionPatternRewriter &rewriter) const override { 1482 auto loc = viewOp.getLoc(); 1483 1484 auto viewMemRefType = viewOp.getType(); 1485 auto targetElementTy = 1486 typeConverter->convertType(viewMemRefType.getElementType()); 1487 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1488 if (!targetDescTy || !targetElementTy || 1489 !LLVM::isCompatibleType(targetElementTy) || 1490 !LLVM::isCompatibleType(targetDescTy)) 1491 return viewOp.emitWarning("Target descriptor type not converted to LLVM"), 1492 failure(); 1493 1494 int64_t offset; 1495 SmallVector<int64_t, 4> strides; 1496 auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); 1497 if (failed(successStrides)) 1498 return viewOp.emitWarning("cannot cast to non-strided shape"), failure(); 1499 assert(offset == 0 && "expected offset to be 0"); 1500 1501 // Create the descriptor. 1502 MemRefDescriptor sourceMemRef(adaptor.source()); 1503 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1504 1505 // Field 1: Copy the allocated pointer, used for malloc/free. 1506 Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc); 1507 auto srcMemRefType = viewOp.source().getType().cast<MemRefType>(); 1508 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1509 loc, 1510 LLVM::LLVMPointerType::get(targetElementTy, 1511 srcMemRefType.getMemorySpaceAsInt()), 1512 allocatedPtr); 1513 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1514 1515 // Field 2: Copy the actual aligned pointer to payload. 1516 Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc); 1517 alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(), 1518 alignedPtr, adaptor.byte_shift()); 1519 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1520 loc, 1521 LLVM::LLVMPointerType::get(targetElementTy, 1522 srcMemRefType.getMemorySpaceAsInt()), 1523 alignedPtr); 1524 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1525 1526 // Field 3: The offset in the resulting type must be 0. This is because of 1527 // the type change: an offset on srcType* may not be expressible as an 1528 // offset on dstType*. 1529 targetMemRef.setOffset(rewriter, loc, 1530 createIndexConstant(rewriter, loc, offset)); 1531 1532 // Early exit for 0-D corner case. 1533 if (viewMemRefType.getRank() == 0) 1534 return rewriter.replaceOp(viewOp, {targetMemRef}), success(); 1535 1536 // Fields 4 and 5: Update sizes and strides. 1537 if (strides.back() != 1) 1538 return viewOp.emitWarning("cannot cast to non-contiguous shape"), 1539 failure(); 1540 Value stride = nullptr, nextSize = nullptr; 1541 for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { 1542 // Update size. 1543 Value size = 1544 getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i); 1545 targetMemRef.setSize(rewriter, loc, i, size); 1546 // Update stride. 1547 stride = getStride(rewriter, loc, strides, nextSize, stride, i); 1548 targetMemRef.setStride(rewriter, loc, i, stride); 1549 nextSize = size; 1550 } 1551 1552 rewriter.replaceOp(viewOp, {targetMemRef}); 1553 return success(); 1554 } 1555 }; 1556 1557 //===----------------------------------------------------------------------===// 1558 // AtomicRMWOpLowering 1559 //===----------------------------------------------------------------------===// 1560 1561 /// Try to match the kind of a std.atomic_rmw to determine whether to use a 1562 /// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg. 1563 static Optional<LLVM::AtomicBinOp> 1564 matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) { 1565 switch (atomicOp.kind()) { 1566 case arith::AtomicRMWKind::addf: 1567 return LLVM::AtomicBinOp::fadd; 1568 case arith::AtomicRMWKind::addi: 1569 return LLVM::AtomicBinOp::add; 1570 case arith::AtomicRMWKind::assign: 1571 return LLVM::AtomicBinOp::xchg; 1572 case arith::AtomicRMWKind::maxs: 1573 return LLVM::AtomicBinOp::max; 1574 case arith::AtomicRMWKind::maxu: 1575 return LLVM::AtomicBinOp::umax; 1576 case arith::AtomicRMWKind::mins: 1577 return LLVM::AtomicBinOp::min; 1578 case arith::AtomicRMWKind::minu: 1579 return LLVM::AtomicBinOp::umin; 1580 case arith::AtomicRMWKind::ori: 1581 return LLVM::AtomicBinOp::_or; 1582 case arith::AtomicRMWKind::andi: 1583 return LLVM::AtomicBinOp::_and; 1584 default: 1585 return llvm::None; 1586 } 1587 llvm_unreachable("Invalid AtomicRMWKind"); 1588 } 1589 1590 struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> { 1591 using Base::Base; 1592 1593 LogicalResult 1594 matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor, 1595 ConversionPatternRewriter &rewriter) const override { 1596 if (failed(match(atomicOp))) 1597 return failure(); 1598 auto maybeKind = matchSimpleAtomicOp(atomicOp); 1599 if (!maybeKind) 1600 return failure(); 1601 auto resultType = adaptor.value().getType(); 1602 auto memRefType = atomicOp.getMemRefType(); 1603 auto dataPtr = 1604 getStridedElementPtr(atomicOp.getLoc(), memRefType, adaptor.memref(), 1605 adaptor.indices(), rewriter); 1606 rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>( 1607 atomicOp, resultType, *maybeKind, dataPtr, adaptor.value(), 1608 LLVM::AtomicOrdering::acq_rel); 1609 return success(); 1610 } 1611 }; 1612 1613 } // namespace 1614 1615 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter, 1616 RewritePatternSet &patterns) { 1617 // clang-format off 1618 patterns.add< 1619 AllocaOpLowering, 1620 AllocaScopeOpLowering, 1621 AtomicRMWOpLowering, 1622 AssumeAlignmentOpLowering, 1623 DimOpLowering, 1624 GlobalMemrefOpLowering, 1625 GetGlobalMemrefOpLowering, 1626 LoadOpLowering, 1627 MemRefCastOpLowering, 1628 MemRefCopyOpLowering, 1629 MemRefReinterpretCastOpLowering, 1630 MemRefReshapeOpLowering, 1631 PrefetchOpLowering, 1632 RankOpLowering, 1633 ReassociatingReshapeOpConversion<memref::ExpandShapeOp>, 1634 ReassociatingReshapeOpConversion<memref::CollapseShapeOp>, 1635 StoreOpLowering, 1636 SubViewOpLowering, 1637 TransposeOpLowering, 1638 ViewOpLowering>(converter); 1639 // clang-format on 1640 auto allocLowering = converter.getOptions().allocLowering; 1641 if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc) 1642 patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter); 1643 else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc) 1644 patterns.add<AllocOpLowering, DeallocOpLowering>(converter); 1645 } 1646 1647 namespace { 1648 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> { 1649 MemRefToLLVMPass() = default; 1650 1651 void runOnOperation() override { 1652 Operation *op = getOperation(); 1653 const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); 1654 LowerToLLVMOptions options(&getContext(), 1655 dataLayoutAnalysis.getAtOrAbove(op)); 1656 options.allocLowering = 1657 (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc 1658 : LowerToLLVMOptions::AllocLowering::Malloc); 1659 if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) 1660 options.overrideIndexBitwidth(indexBitwidth); 1661 1662 LLVMTypeConverter typeConverter(&getContext(), options, 1663 &dataLayoutAnalysis); 1664 RewritePatternSet patterns(&getContext()); 1665 populateMemRefToLLVMConversionPatterns(typeConverter, patterns); 1666 LLVMConversionTarget target(getContext()); 1667 target.addLegalOp<FuncOp>(); 1668 if (failed(applyPartialConversion(op, target, std::move(patterns)))) 1669 signalPassFailure(); 1670 } 1671 }; 1672 } // namespace 1673 1674 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() { 1675 return std::make_unique<MemRefToLLVMPass>(); 1676 } 1677