1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 
22 using namespace mlir;
23 
24 namespace {
25 
26 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
27   AllocOpLowering(LLVMTypeConverter &converter)
28       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
29                                 converter) {}
30 
31   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
32                                           Location loc, Value sizeBytes,
33                                           Operation *op) const override {
34     // Heap allocations.
35     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
36     MemRefType memRefType = allocOp.getType();
37 
38     Value alignment;
39     if (auto alignmentAttr = allocOp.alignment()) {
40       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
41     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
42       // In the case where no alignment is specified, we may want to override
43       // `malloc's` behavior. `malloc` typically aligns at the size of the
44       // biggest scalar on a target HW. For non-scalars, use the natural
45       // alignment of the LLVM type given by the LLVM DataLayout.
46       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
47     }
48 
49     if (alignment) {
50       // Adjust the allocation size to consider alignment.
51       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
52     }
53 
54     // Allocate the underlying buffer and store a pointer to it in the MemRef
55     // descriptor.
56     Type elementPtrType = this->getElementPtrType(memRefType);
57     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
58         allocOp->getParentOfType<ModuleOp>(), getIndexType());
59     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
60                                   getVoidPtrType());
61     Value allocatedPtr =
62         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
63 
64     Value alignedPtr = allocatedPtr;
65     if (alignment) {
66       // Compute the aligned type pointer.
67       Value allocatedInt =
68           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
69       Value alignmentInt =
70           createAligned(rewriter, loc, allocatedInt, alignment);
71       alignedPtr =
72           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
73     }
74 
75     return std::make_tuple(allocatedPtr, alignedPtr);
76   }
77 };
78 
79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
80   AlignedAllocOpLowering(LLVMTypeConverter &converter)
81       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
82                                 converter) {}
83 
84   /// Returns the memref's element size in bytes using the data layout active at
85   /// `op`.
86   // TODO: there are other places where this is used. Expose publicly?
87   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
88     const DataLayout *layout = &defaultLayout;
89     if (const DataLayoutAnalysis *analysis =
90             getTypeConverter()->getDataLayoutAnalysis()) {
91       layout = &analysis->getAbove(op);
92     }
93     Type elementType = memRefType.getElementType();
94     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
95       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
96                                                          *layout);
97     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
98       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
99           memRefElementType, *layout);
100     return layout->getTypeSize(elementType);
101   }
102 
103   /// Returns true if the memref size in bytes is known to be a multiple of
104   /// factor assuming the data layout active at `op`.
105   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
106                               Operation *op) const {
107     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
108     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
109       if (type.isDynamic(type.getDimSize(i)))
110         continue;
111       sizeDivisor = sizeDivisor * type.getDimSize(i);
112     }
113     return sizeDivisor % factor == 0;
114   }
115 
116   /// Returns the alignment to be used for the allocation call itself.
117   /// aligned_alloc requires the allocation size to be a power of two, and the
118   /// allocation size to be a multiple of alignment,
119   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
120     if (Optional<uint64_t> alignment = allocOp.alignment())
121       return *alignment;
122 
123     // Whenever we don't have alignment set, we will use an alignment
124     // consistent with the element type; since the allocation size has to be a
125     // power of two, we will bump to the next power of two if it already isn't.
126     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
127     return std::max(kMinAlignedAllocAlignment,
128                     llvm::PowerOf2Ceil(eltSizeBytes));
129   }
130 
131   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
132                                           Location loc, Value sizeBytes,
133                                           Operation *op) const override {
134     // Heap allocations.
135     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
136     MemRefType memRefType = allocOp.getType();
137     int64_t alignment = getAllocationAlignment(allocOp);
138     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
139 
140     // aligned_alloc requires size to be a multiple of alignment; we will pad
141     // the size to the next multiple if necessary.
142     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
143       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
144 
145     Type elementPtrType = this->getElementPtrType(memRefType);
146     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
147         allocOp->getParentOfType<ModuleOp>(), getIndexType());
148     auto results =
149         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
150                        getVoidPtrType());
151     Value allocatedPtr =
152         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
153 
154     return std::make_tuple(allocatedPtr, allocatedPtr);
155   }
156 
157   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
158   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
159 
160   /// Default layout to use in absence of the corresponding analysis.
161   DataLayout defaultLayout;
162 };
163 
164 // Out of line definition, required till C++17.
165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
166 
167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
168   AllocaOpLowering(LLVMTypeConverter &converter)
169       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
170                                 converter) {}
171 
172   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
173   /// is set to null for stack allocations. `accessAlignment` is set if
174   /// alignment is needed post allocation (for eg. in conjunction with malloc).
175   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
176                                           Location loc, Value sizeBytes,
177                                           Operation *op) const override {
178 
179     // With alloca, one gets a pointer to the element type right away.
180     // For stack allocations.
181     auto allocaOp = cast<memref::AllocaOp>(op);
182     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
183 
184     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
185         loc, elementPtrType, sizeBytes,
186         allocaOp.alignment() ? *allocaOp.alignment() : 0);
187 
188     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
189   }
190 };
191 
192 struct AllocaScopeOpLowering
193     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
194   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
195 
196   LogicalResult
197   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, ArrayRef<Value> operands,
198                   ConversionPatternRewriter &rewriter) const override {
199     OpBuilder::InsertionGuard guard(rewriter);
200     Location loc = allocaScopeOp.getLoc();
201 
202     // Split the current block before the AllocaScopeOp to create the inlining
203     // point.
204     auto *currentBlock = rewriter.getInsertionBlock();
205     auto *remainingOpsBlock =
206         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
207     Block *continueBlock;
208     if (allocaScopeOp.getNumResults() == 0) {
209       continueBlock = remainingOpsBlock;
210     } else {
211       continueBlock = rewriter.createBlock(remainingOpsBlock,
212                                            allocaScopeOp.getResultTypes());
213       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
214     }
215 
216     // Inline body region.
217     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
218     Block *afterBody = &allocaScopeOp.bodyRegion().back();
219     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
220 
221     // Save stack and then branch into the body of the region.
222     rewriter.setInsertionPointToEnd(currentBlock);
223     auto stackSaveOp =
224         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
225     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
226 
227     // Replace the alloca_scope return with a branch that jumps out of the body.
228     // Stack restore before leaving the body region.
229     rewriter.setInsertionPointToEnd(afterBody);
230     auto returnOp =
231         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
232     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
233         returnOp, returnOp.results(), continueBlock);
234 
235     // Insert stack restore before jumping out the body of the region.
236     rewriter.setInsertionPoint(branchOp);
237     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
238 
239     // Replace the op with values return from the body region.
240     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
241 
242     return success();
243   }
244 };
245 
246 struct AssumeAlignmentOpLowering
247     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
248   using ConvertOpToLLVMPattern<
249       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
250 
251   LogicalResult
252   matchAndRewrite(memref::AssumeAlignmentOp op, ArrayRef<Value> operands,
253                   ConversionPatternRewriter &rewriter) const override {
254     memref::AssumeAlignmentOp::Adaptor transformed(operands);
255     Value memref = transformed.memref();
256     unsigned alignment = op.alignment();
257     auto loc = op.getLoc();
258 
259     MemRefDescriptor memRefDescriptor(memref);
260     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
261 
262     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
263     // the asserted memref.alignedPtr isn't used anywhere else, as the real
264     // users like load/store/views always re-extract memref.alignedPtr as they
265     // get lowered.
266     //
267     // This relies on LLVM's CSE optimization (potentially after SROA), since
268     // after CSE all memref.alignedPtr instances get de-duplicated into the same
269     // pointer SSA value.
270     auto intPtrType =
271         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
272     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
273     Value mask =
274         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
275     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
276     rewriter.create<LLVM::AssumeOp>(
277         loc, rewriter.create<LLVM::ICmpOp>(
278                  loc, LLVM::ICmpPredicate::eq,
279                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
280 
281     rewriter.eraseOp(op);
282     return success();
283   }
284 };
285 
286 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
287 // The memref descriptor being an SSA value, there is no need to clean it up
288 // in any way.
289 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
290   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
291 
292   explicit DeallocOpLowering(LLVMTypeConverter &converter)
293       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
294 
295   LogicalResult
296   matchAndRewrite(memref::DeallocOp op, ArrayRef<Value> operands,
297                   ConversionPatternRewriter &rewriter) const override {
298     assert(operands.size() == 1 && "dealloc takes one operand");
299     memref::DeallocOp::Adaptor transformed(operands);
300 
301     // Insert the `free` declaration if it is not already present.
302     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
303     MemRefDescriptor memref(transformed.memref());
304     Value casted = rewriter.create<LLVM::BitcastOp>(
305         op.getLoc(), getVoidPtrType(),
306         memref.allocatedPtr(rewriter, op.getLoc()));
307     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
308         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
309     return success();
310   }
311 };
312 
313 // A `dim` is converted to a constant for static sizes and to an access to the
314 // size stored in the memref descriptor for dynamic sizes.
315 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
316   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
317 
318   LogicalResult
319   matchAndRewrite(memref::DimOp dimOp, ArrayRef<Value> operands,
320                   ConversionPatternRewriter &rewriter) const override {
321     Type operandType = dimOp.source().getType();
322     if (operandType.isa<UnrankedMemRefType>()) {
323       rewriter.replaceOp(dimOp, {extractSizeOfUnrankedMemRef(
324                                     operandType, dimOp, operands, rewriter)});
325 
326       return success();
327     }
328     if (operandType.isa<MemRefType>()) {
329       rewriter.replaceOp(dimOp, {extractSizeOfRankedMemRef(
330                                     operandType, dimOp, operands, rewriter)});
331       return success();
332     }
333     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
334   }
335 
336 private:
337   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
338                                     ArrayRef<Value> operands,
339                                     ConversionPatternRewriter &rewriter) const {
340     Location loc = dimOp.getLoc();
341     memref::DimOp::Adaptor transformed(operands);
342 
343     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
344     auto scalarMemRefType =
345         MemRefType::get({}, unrankedMemRefType.getElementType());
346     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
347 
348     // Extract pointer to the underlying ranked descriptor and bitcast it to a
349     // memref<element_type> descriptor pointer to minimize the number of GEP
350     // operations.
351     UnrankedMemRefDescriptor unrankedDesc(transformed.source());
352     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
353     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
354         loc,
355         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
356                                    addressSpace),
357         underlyingRankedDesc);
358 
359     // Get pointer to offset field of memref<element_type> descriptor.
360     Type indexPtrTy = LLVM::LLVMPointerType::get(
361         getTypeConverter()->getIndexType(), addressSpace);
362     Value two = rewriter.create<LLVM::ConstantOp>(
363         loc, typeConverter->convertType(rewriter.getI32Type()),
364         rewriter.getI32IntegerAttr(2));
365     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
366         loc, indexPtrTy, scalarMemRefDescPtr,
367         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
368 
369     // The size value that we have to extract can be obtained using GEPop with
370     // `dimOp.index() + 1` index argument.
371     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
372         loc, createIndexConstant(rewriter, loc, 1), transformed.index());
373     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
374                                                  ValueRange({idxPlusOne}));
375     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
376   }
377 
378   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
379     if (Optional<int64_t> idx = dimOp.getConstantIndex())
380       return idx;
381 
382     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
383       return constantOp.value().cast<IntegerAttr>().getValue().getSExtValue();
384 
385     return llvm::None;
386   }
387 
388   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
389                                   ArrayRef<Value> operands,
390                                   ConversionPatternRewriter &rewriter) const {
391     Location loc = dimOp.getLoc();
392     memref::DimOp::Adaptor transformed(operands);
393     // Take advantage if index is constant.
394     MemRefType memRefType = operandType.cast<MemRefType>();
395     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
396       int64_t i = index.getValue();
397       if (memRefType.isDynamicDim(i)) {
398         // extract dynamic size from the memref descriptor.
399         MemRefDescriptor descriptor(transformed.source());
400         return descriptor.size(rewriter, loc, i);
401       }
402       // Use constant for static size.
403       int64_t dimSize = memRefType.getDimSize(i);
404       return createIndexConstant(rewriter, loc, dimSize);
405     }
406     Value index = transformed.index();
407     int64_t rank = memRefType.getRank();
408     MemRefDescriptor memrefDescriptor(transformed.source());
409     return memrefDescriptor.size(rewriter, loc, index, rank);
410   }
411 };
412 
413 /// Returns the LLVM type of the global variable given the memref type `type`.
414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
415                                           LLVMTypeConverter &typeConverter) {
416   // LLVM type for a global memref will be a multi-dimension array. For
417   // declarations or uninitialized global memrefs, we can potentially flatten
418   // this to a 1D array. However, for memref.global's with an initial value,
419   // we do not intend to flatten the ElementsAttribute when going from std ->
420   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
421   Type elementType = typeConverter.convertType(type.getElementType());
422   Type arrayTy = elementType;
423   // Shape has the outermost dim at index 0, so need to walk it backwards
424   for (int64_t dim : llvm::reverse(type.getShape()))
425     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
426   return arrayTy;
427 }
428 
429 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
430 struct GlobalMemrefOpLowering
431     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
432   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
433 
434   LogicalResult
435   matchAndRewrite(memref::GlobalOp global, ArrayRef<Value> operands,
436                   ConversionPatternRewriter &rewriter) const override {
437     MemRefType type = global.type().cast<MemRefType>();
438     if (!isConvertibleAndHasIdentityMaps(type))
439       return failure();
440 
441     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
442 
443     LLVM::Linkage linkage =
444         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
445 
446     Attribute initialValue = nullptr;
447     if (!global.isExternal() && !global.isUninitialized()) {
448       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
449       initialValue = elementsAttr;
450 
451       // For scalar memrefs, the global variable created is of the element type,
452       // so unpack the elements attribute to extract the value.
453       if (type.getRank() == 0)
454         initialValue = elementsAttr.getValue({});
455     }
456 
457     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
458         global, arrayTy, global.constant(), linkage, global.sym_name(),
459         initialValue, /*alignment=*/0, type.getMemorySpaceAsInt());
460     if (!global.isExternal() && global.isUninitialized()) {
461       Block *blk = new Block();
462       newGlobal.getInitializerRegion().push_back(blk);
463       rewriter.setInsertionPointToStart(blk);
464       Value undef[] = {
465           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
466       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
467     }
468     return success();
469   }
470 };
471 
472 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
473 /// the first element stashed into the descriptor. This reuses
474 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
475 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
476   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
477       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
478                                 converter) {}
479 
480   /// Buffer "allocation" for memref.get_global op is getting the address of
481   /// the global variable referenced.
482   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
483                                           Location loc, Value sizeBytes,
484                                           Operation *op) const override {
485     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
486     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
487     unsigned memSpace = type.getMemorySpaceAsInt();
488 
489     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
490     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
491         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
492 
493     // Get the address of the first element in the array by creating a GEP with
494     // the address of the GV as the base, and (rank + 1) number of 0 indices.
495     Type elementType = typeConverter->convertType(type.getElementType());
496     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
497 
498     SmallVector<Value, 4> operands = {addressOf};
499     operands.insert(operands.end(), type.getRank() + 1,
500                     createIndexConstant(rewriter, loc, 0));
501     auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands);
502 
503     // We do not expect the memref obtained using `memref.get_global` to be
504     // ever deallocated. Set the allocated pointer to be known bad value to
505     // help debug if that ever happens.
506     auto intPtrType = getIntPtrType(memSpace);
507     Value deadBeefConst =
508         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
509     auto deadBeefPtr =
510         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
511 
512     // Both allocated and aligned pointers are same. We could potentially stash
513     // a nullptr for the allocated pointer since we do not expect any dealloc.
514     return std::make_tuple(deadBeefPtr, gep);
515   }
516 };
517 
518 // Common base for load and store operations on MemRefs. Restricts the match
519 // to supported MemRef types. Provides functionality to emit code accessing a
520 // specific element of the underlying data buffer.
521 template <typename Derived>
522 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
523   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
524   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
525   using Base = LoadStoreOpLowering<Derived>;
526 
527   LogicalResult match(Derived op) const override {
528     MemRefType type = op.getMemRefType();
529     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
530   }
531 };
532 
533 // Load operation is lowered to obtaining a pointer to the indexed element
534 // and loading it.
535 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
536   using Base::Base;
537 
538   LogicalResult
539   matchAndRewrite(memref::LoadOp loadOp, ArrayRef<Value> operands,
540                   ConversionPatternRewriter &rewriter) const override {
541     memref::LoadOp::Adaptor transformed(operands);
542     auto type = loadOp.getMemRefType();
543 
544     Value dataPtr =
545         getStridedElementPtr(loadOp.getLoc(), type, transformed.memref(),
546                              transformed.indices(), rewriter);
547     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
548     return success();
549   }
550 };
551 
552 // Store operation is lowered to obtaining a pointer to the indexed element,
553 // and storing the given value to it.
554 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
555   using Base::Base;
556 
557   LogicalResult
558   matchAndRewrite(memref::StoreOp op, ArrayRef<Value> operands,
559                   ConversionPatternRewriter &rewriter) const override {
560     auto type = op.getMemRefType();
561     memref::StoreOp::Adaptor transformed(operands);
562 
563     Value dataPtr =
564         getStridedElementPtr(op.getLoc(), type, transformed.memref(),
565                              transformed.indices(), rewriter);
566     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, transformed.value(),
567                                                dataPtr);
568     return success();
569   }
570 };
571 
572 // The prefetch operation is lowered in a way similar to the load operation
573 // except that the llvm.prefetch operation is used for replacement.
574 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
575   using Base::Base;
576 
577   LogicalResult
578   matchAndRewrite(memref::PrefetchOp prefetchOp, ArrayRef<Value> operands,
579                   ConversionPatternRewriter &rewriter) const override {
580     memref::PrefetchOp::Adaptor transformed(operands);
581     auto type = prefetchOp.getMemRefType();
582     auto loc = prefetchOp.getLoc();
583 
584     Value dataPtr = getStridedElementPtr(loc, type, transformed.memref(),
585                                          transformed.indices(), rewriter);
586 
587     // Replace with llvm.prefetch.
588     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
589     auto isWrite = rewriter.create<LLVM::ConstantOp>(
590         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
591     auto localityHint = rewriter.create<LLVM::ConstantOp>(
592         loc, llvmI32Type,
593         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
594     auto isData = rewriter.create<LLVM::ConstantOp>(
595         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
596 
597     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
598                                                 localityHint, isData);
599     return success();
600   }
601 };
602 
603 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
604   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
605 
606   LogicalResult match(memref::CastOp memRefCastOp) const override {
607     Type srcType = memRefCastOp.getOperand().getType();
608     Type dstType = memRefCastOp.getType();
609 
610     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
611     // used for type erasure. For now they must preserve underlying element type
612     // and require source and result type to have the same rank. Therefore,
613     // perform a sanity check that the underlying structs are the same. Once op
614     // semantics are relaxed we can revisit.
615     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
616       return success(typeConverter->convertType(srcType) ==
617                      typeConverter->convertType(dstType));
618 
619     // At least one of the operands is unranked type
620     assert(srcType.isa<UnrankedMemRefType>() ||
621            dstType.isa<UnrankedMemRefType>());
622 
623     // Unranked to unranked cast is disallowed
624     return !(srcType.isa<UnrankedMemRefType>() &&
625              dstType.isa<UnrankedMemRefType>())
626                ? success()
627                : failure();
628   }
629 
630   void rewrite(memref::CastOp memRefCastOp, ArrayRef<Value> operands,
631                ConversionPatternRewriter &rewriter) const override {
632     memref::CastOp::Adaptor transformed(operands);
633 
634     auto srcType = memRefCastOp.getOperand().getType();
635     auto dstType = memRefCastOp.getType();
636     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
637     auto loc = memRefCastOp.getLoc();
638 
639     // For ranked/ranked case, just keep the original descriptor.
640     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
641       return rewriter.replaceOp(memRefCastOp, {transformed.source()});
642 
643     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
644       // Casting ranked to unranked memref type
645       // Set the rank in the destination from the memref type
646       // Allocate space on the stack and copy the src memref descriptor
647       // Set the ptr in the destination to the stack space
648       auto srcMemRefType = srcType.cast<MemRefType>();
649       int64_t rank = srcMemRefType.getRank();
650       // ptr = AllocaOp sizeof(MemRefDescriptor)
651       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
652           loc, transformed.source(), rewriter);
653       // voidptr = BitCastOp srcType* to void*
654       auto voidPtr =
655           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
656               .getResult();
657       // rank = ConstantOp srcRank
658       auto rankVal = rewriter.create<LLVM::ConstantOp>(
659           loc, typeConverter->convertType(rewriter.getIntegerType(64)),
660           rewriter.getI64IntegerAttr(rank));
661       // undef = UndefOp
662       UnrankedMemRefDescriptor memRefDesc =
663           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
664       // d1 = InsertValueOp undef, rank, 0
665       memRefDesc.setRank(rewriter, loc, rankVal);
666       // d2 = InsertValueOp d1, voidptr, 1
667       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
668       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
669 
670     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
671       // Casting from unranked type to ranked.
672       // The operation is assumed to be doing a correct cast. If the destination
673       // type mismatches the unranked the type, it is undefined behavior.
674       UnrankedMemRefDescriptor memRefDesc(transformed.source());
675       // ptr = ExtractValueOp src, 1
676       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
677       // castPtr = BitCastOp i8* to structTy*
678       auto castPtr =
679           rewriter
680               .create<LLVM::BitcastOp>(
681                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
682               .getResult();
683       // struct = LoadOp castPtr
684       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
685       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
686     } else {
687       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
688     }
689   }
690 };
691 
692 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
693   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
694 
695   LogicalResult
696   matchAndRewrite(memref::CopyOp op, ArrayRef<Value> operands,
697                   ConversionPatternRewriter &rewriter) const override {
698     auto loc = op.getLoc();
699     memref::CopyOp::Adaptor adaptor(operands);
700     auto srcType = op.source().getType().cast<BaseMemRefType>();
701     auto targetType = op.target().getType().cast<BaseMemRefType>();
702 
703     // First make sure we have an unranked memref descriptor representation.
704     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
705       auto rank = rewriter.create<LLVM::ConstantOp>(
706           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
707       auto *typeConverter = getTypeConverter();
708       auto ptr =
709           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
710       auto voidPtr =
711           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
712               .getResult();
713       auto unrankedType =
714           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
715       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
716                                             unrankedType,
717                                             ValueRange{rank, voidPtr});
718     };
719 
720     Value unrankedSource = srcType.hasRank()
721                                ? makeUnranked(adaptor.source(), srcType)
722                                : adaptor.source();
723     Value unrankedTarget = targetType.hasRank()
724                                ? makeUnranked(adaptor.target(), targetType)
725                                : adaptor.target();
726 
727     // Now promote the unranked descriptors to the stack.
728     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
729                                                  rewriter.getIndexAttr(1));
730     auto promote = [&](Value desc) {
731       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
732       auto allocated =
733           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
734       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
735       return allocated;
736     };
737 
738     auto sourcePtr = promote(unrankedSource);
739     auto targetPtr = promote(unrankedTarget);
740 
741     auto elemSize = rewriter.create<LLVM::ConstantOp>(
742         loc, getIndexType(),
743         rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8));
744     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
745         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
746     rewriter.create<LLVM::CallOp>(loc, copyFn,
747                                   ValueRange{elemSize, sourcePtr, targetPtr});
748     rewriter.eraseOp(op);
749 
750     return success();
751   }
752 };
753 
754 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
755 /// memref type. In unranked case, the fields are extracted from the underlying
756 /// ranked descriptor.
757 static void extractPointersAndOffset(Location loc,
758                                      ConversionPatternRewriter &rewriter,
759                                      LLVMTypeConverter &typeConverter,
760                                      Value originalOperand,
761                                      Value convertedOperand,
762                                      Value *allocatedPtr, Value *alignedPtr,
763                                      Value *offset = nullptr) {
764   Type operandType = originalOperand.getType();
765   if (operandType.isa<MemRefType>()) {
766     MemRefDescriptor desc(convertedOperand);
767     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
768     *alignedPtr = desc.alignedPtr(rewriter, loc);
769     if (offset != nullptr)
770       *offset = desc.offset(rewriter, loc);
771     return;
772   }
773 
774   unsigned memorySpace =
775       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
776   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
777   Type llvmElementType = typeConverter.convertType(elementType);
778   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
779       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
780 
781   // Extract pointer to the underlying ranked memref descriptor and cast it to
782   // ElemType**.
783   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
784   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
785 
786   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
787       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
788   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
789       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
790   if (offset != nullptr) {
791     *offset = UnrankedMemRefDescriptor::offset(
792         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
793   }
794 }
795 
796 struct MemRefReinterpretCastOpLowering
797     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
798   using ConvertOpToLLVMPattern<
799       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
800 
801   LogicalResult
802   matchAndRewrite(memref::ReinterpretCastOp castOp, ArrayRef<Value> operands,
803                   ConversionPatternRewriter &rewriter) const override {
804     memref::ReinterpretCastOp::Adaptor adaptor(operands,
805                                                castOp->getAttrDictionary());
806     Type srcType = castOp.source().getType();
807 
808     Value descriptor;
809     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
810                                                adaptor, &descriptor)))
811       return failure();
812     rewriter.replaceOp(castOp, {descriptor});
813     return success();
814   }
815 
816 private:
817   LogicalResult convertSourceMemRefToDescriptor(
818       ConversionPatternRewriter &rewriter, Type srcType,
819       memref::ReinterpretCastOp castOp,
820       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
821     MemRefType targetMemRefType =
822         castOp.getResult().getType().cast<MemRefType>();
823     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
824                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
825     if (!llvmTargetDescriptorTy)
826       return failure();
827 
828     // Create descriptor.
829     Location loc = castOp.getLoc();
830     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
831 
832     // Set allocated and aligned pointers.
833     Value allocatedPtr, alignedPtr;
834     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
835                              castOp.source(), adaptor.source(), &allocatedPtr,
836                              &alignedPtr);
837     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
838     desc.setAlignedPtr(rewriter, loc, alignedPtr);
839 
840     // Set offset.
841     if (castOp.isDynamicOffset(0))
842       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
843     else
844       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
845 
846     // Set sizes and strides.
847     unsigned dynSizeId = 0;
848     unsigned dynStrideId = 0;
849     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
850       if (castOp.isDynamicSize(i))
851         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
852       else
853         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
854 
855       if (castOp.isDynamicStride(i))
856         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
857       else
858         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
859     }
860     *descriptor = desc;
861     return success();
862   }
863 };
864 
865 struct MemRefReshapeOpLowering
866     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
867   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
868 
869   LogicalResult
870   matchAndRewrite(memref::ReshapeOp reshapeOp, ArrayRef<Value> operands,
871                   ConversionPatternRewriter &rewriter) const override {
872     auto *op = reshapeOp.getOperation();
873     memref::ReshapeOp::Adaptor adaptor(operands, op->getAttrDictionary());
874     Type srcType = reshapeOp.source().getType();
875 
876     Value descriptor;
877     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
878                                                adaptor, &descriptor)))
879       return failure();
880     rewriter.replaceOp(op, {descriptor});
881     return success();
882   }
883 
884 private:
885   LogicalResult
886   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
887                                   Type srcType, memref::ReshapeOp reshapeOp,
888                                   memref::ReshapeOp::Adaptor adaptor,
889                                   Value *descriptor) const {
890     // Conversion for statically-known shape args is performed via
891     // `memref_reinterpret_cast`.
892     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
893     if (shapeMemRefType.hasStaticShape())
894       return failure();
895 
896     // The shape is a rank-1 tensor with unknown length.
897     Location loc = reshapeOp.getLoc();
898     MemRefDescriptor shapeDesc(adaptor.shape());
899     Value resultRank = shapeDesc.size(rewriter, loc, 0);
900 
901     // Extract address space and element type.
902     auto targetType =
903         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
904     unsigned addressSpace = targetType.getMemorySpaceAsInt();
905     Type elementType = targetType.getElementType();
906 
907     // Create the unranked memref descriptor that holds the ranked one. The
908     // inner descriptor is allocated on stack.
909     auto targetDesc = UnrankedMemRefDescriptor::undef(
910         rewriter, loc, typeConverter->convertType(targetType));
911     targetDesc.setRank(rewriter, loc, resultRank);
912     SmallVector<Value, 4> sizes;
913     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
914                                            targetDesc, sizes);
915     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
916         loc, getVoidPtrType(), sizes.front(), llvm::None);
917     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
918 
919     // Extract pointers and offset from the source memref.
920     Value allocatedPtr, alignedPtr, offset;
921     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
922                              reshapeOp.source(), adaptor.source(),
923                              &allocatedPtr, &alignedPtr, &offset);
924 
925     // Set pointers and offset.
926     Type llvmElementType = typeConverter->convertType(elementType);
927     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
928         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
929     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
930                                               elementPtrPtrType, allocatedPtr);
931     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
932                                             underlyingDescPtr,
933                                             elementPtrPtrType, alignedPtr);
934     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
935                                         underlyingDescPtr, elementPtrPtrType,
936                                         offset);
937 
938     // Use the offset pointer as base for further addressing. Copy over the new
939     // shape and compute strides. For this, we create a loop from rank-1 to 0.
940     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
941         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
942         elementPtrPtrType);
943     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
944         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
945     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
946     Value oneIndex = createIndexConstant(rewriter, loc, 1);
947     Value resultRankMinusOne =
948         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
949 
950     Block *initBlock = rewriter.getInsertionBlock();
951     Type indexType = getTypeConverter()->getIndexType();
952     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
953 
954     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
955                                             {indexType, indexType});
956 
957     // Move the remaining initBlock ops to condBlock.
958     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
959     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
960 
961     rewriter.setInsertionPointToEnd(initBlock);
962     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
963                                 condBlock);
964     rewriter.setInsertionPointToStart(condBlock);
965     Value indexArg = condBlock->getArgument(0);
966     Value strideArg = condBlock->getArgument(1);
967 
968     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
969     Value pred = rewriter.create<LLVM::ICmpOp>(
970         loc, IntegerType::get(rewriter.getContext(), 1),
971         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
972 
973     Block *bodyBlock =
974         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
975     rewriter.setInsertionPointToStart(bodyBlock);
976 
977     // Copy size from shape to descriptor.
978     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
979     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
980         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
981     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
982     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
983                                       targetSizesBase, indexArg, size);
984 
985     // Write stride value and compute next one.
986     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
987                                         targetStridesBase, indexArg, strideArg);
988     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
989 
990     // Decrement loop counter and branch back.
991     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
992     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
993                                 condBlock);
994 
995     Block *remainder =
996         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
997 
998     // Hook up the cond exit to the remainder.
999     rewriter.setInsertionPointToEnd(condBlock);
1000     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
1001                                     llvm::None);
1002 
1003     // Reset position to beginning of new remainder block.
1004     rewriter.setInsertionPointToStart(remainder);
1005 
1006     *descriptor = targetDesc;
1007     return success();
1008   }
1009 };
1010 
1011 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
1012 /// `Value`s.
1013 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
1014                                       Type &llvmIndexType,
1015                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1016   return llvm::to_vector<4>(
1017       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1018         if (auto attr = value.dyn_cast<Attribute>())
1019           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1020         return value.get<Value>();
1021       }));
1022 }
1023 
1024 /// Compute a map that for a given dimension of the expanded type gives the
1025 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1026 /// the `reassocation` maps.
1027 static DenseMap<int64_t, int64_t>
1028 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1029   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1030   for (auto &en : enumerate(reassociation)) {
1031     for (auto dim : en.value())
1032       expandedDimToCollapsedDim[dim] = en.index();
1033   }
1034   return expandedDimToCollapsedDim;
1035 }
1036 
1037 static OpFoldResult
1038 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1039                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1040                          MemRefDescriptor &inDesc,
1041                          ArrayRef<int64_t> inStaticShape,
1042                          ArrayRef<ReassociationIndices> reassocation,
1043                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1044   int64_t outDimSize = outStaticShape[outDimIndex];
1045   if (!ShapedType::isDynamic(outDimSize))
1046     return b.getIndexAttr(outDimSize);
1047 
1048   // Calculate the multiplication of all the out dim sizes except the
1049   // current dim.
1050   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1051   int64_t otherDimSizesMul = 1;
1052   for (auto otherDimIndex : reassocation[inDimIndex]) {
1053     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1054       continue;
1055     int64_t otherDimSize = outStaticShape[otherDimIndex];
1056     assert(!ShapedType::isDynamic(otherDimSize) &&
1057            "single dimension cannot be expanded into multiple dynamic "
1058            "dimensions");
1059     otherDimSizesMul *= otherDimSize;
1060   }
1061 
1062   // outDimSize = inDimSize / otherOutDimSizesMul
1063   int64_t inDimSize = inStaticShape[inDimIndex];
1064   Value inDimSizeDynamic =
1065       ShapedType::isDynamic(inDimSize)
1066           ? inDesc.size(b, loc, inDimIndex)
1067           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1068                                        b.getIndexAttr(inDimSize));
1069   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1070       loc, inDimSizeDynamic,
1071       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1072                                  b.getIndexAttr(otherDimSizesMul)));
1073   return outDimSizeDynamic;
1074 }
1075 
1076 static OpFoldResult getCollapsedOutputDimSize(
1077     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1078     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1079     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1080   if (!ShapedType::isDynamic(outDimSize))
1081     return b.getIndexAttr(outDimSize);
1082 
1083   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1084   Value outDimSizeDynamic = c1;
1085   for (auto inDimIndex : reassocation[outDimIndex]) {
1086     int64_t inDimSize = inStaticShape[inDimIndex];
1087     Value inDimSizeDynamic =
1088         ShapedType::isDynamic(inDimSize)
1089             ? inDesc.size(b, loc, inDimIndex)
1090             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1091                                          b.getIndexAttr(inDimSize));
1092     outDimSizeDynamic =
1093         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1094   }
1095   return outDimSizeDynamic;
1096 }
1097 
1098 static SmallVector<OpFoldResult, 4>
1099 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1100                         ArrayRef<ReassociationIndices> reassocation,
1101                         ArrayRef<int64_t> inStaticShape,
1102                         MemRefDescriptor &inDesc,
1103                         ArrayRef<int64_t> outStaticShape) {
1104   return llvm::to_vector<4>(llvm::map_range(
1105       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1106         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1107                                          outStaticShape[outDimIndex],
1108                                          inStaticShape, inDesc, reassocation);
1109       }));
1110 }
1111 
1112 static SmallVector<OpFoldResult, 4>
1113 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1114                        ArrayRef<ReassociationIndices> reassocation,
1115                        ArrayRef<int64_t> inStaticShape,
1116                        MemRefDescriptor &inDesc,
1117                        ArrayRef<int64_t> outStaticShape) {
1118   DenseMap<int64_t, int64_t> outDimToInDimMap =
1119       getExpandedDimToCollapsedDimMap(reassocation);
1120   return llvm::to_vector<4>(llvm::map_range(
1121       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1122         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1123                                         outStaticShape, inDesc, inStaticShape,
1124                                         reassocation, outDimToInDimMap);
1125       }));
1126 }
1127 
1128 static SmallVector<Value>
1129 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1130                       ArrayRef<ReassociationIndices> reassocation,
1131                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1132                       ArrayRef<int64_t> outStaticShape) {
1133   return outStaticShape.size() < inStaticShape.size()
1134              ? getAsValues(b, loc, llvmIndexType,
1135                            getCollapsedOutputShape(b, loc, llvmIndexType,
1136                                                    reassocation, inStaticShape,
1137                                                    inDesc, outStaticShape))
1138              : getAsValues(b, loc, llvmIndexType,
1139                            getExpandedOutputShape(b, loc, llvmIndexType,
1140                                                   reassocation, inStaticShape,
1141                                                   inDesc, outStaticShape));
1142 }
1143 
1144 // ReshapeOp creates a new view descriptor of the proper rank.
1145 // For now, the only conversion supported is for target MemRef with static sizes
1146 // and strides.
1147 template <typename ReshapeOp>
1148 class ReassociatingReshapeOpConversion
1149     : public ConvertOpToLLVMPattern<ReshapeOp> {
1150 public:
1151   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1152   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1153 
1154   LogicalResult
1155   matchAndRewrite(ReshapeOp reshapeOp, ArrayRef<Value> operands,
1156                   ConversionPatternRewriter &rewriter) const override {
1157     MemRefType dstType = reshapeOp.getResultType();
1158     MemRefType srcType = reshapeOp.getSrcType();
1159     if (!srcType.getAffineMaps().empty() || !dstType.getAffineMaps().empty()) {
1160       return rewriter.notifyMatchFailure(reshapeOp,
1161                                          "only empty layout map is supported");
1162     }
1163 
1164     int64_t offset;
1165     SmallVector<int64_t, 4> strides;
1166     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1167       return rewriter.notifyMatchFailure(
1168           reshapeOp, "failed to get stride and offset exprs");
1169     }
1170 
1171     ReshapeOpAdaptor adaptor(operands);
1172     MemRefDescriptor srcDesc(adaptor.src());
1173     Location loc = reshapeOp->getLoc();
1174     auto dstDesc = MemRefDescriptor::undef(
1175         rewriter, loc, this->typeConverter->convertType(dstType));
1176     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1177     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1178     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1179 
1180     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1181     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1182     Type llvmIndexType =
1183         this->typeConverter->convertType(rewriter.getIndexType());
1184     SmallVector<Value> dstShape = getDynamicOutputShape(
1185         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1186         srcStaticShape, srcDesc, dstStaticShape);
1187     for (auto &en : llvm::enumerate(dstShape))
1188       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1189 
1190     auto isStaticStride = [](int64_t stride) {
1191       return !ShapedType::isDynamicStrideOrOffset(stride);
1192     };
1193     if (llvm::all_of(strides, isStaticStride)) {
1194       for (auto &en : llvm::enumerate(strides))
1195         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1196     } else {
1197       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1198                                                    rewriter.getIndexAttr(1));
1199       Value stride = c1;
1200       for (auto dimIndex :
1201            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1202         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1203         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1204       }
1205     }
1206     rewriter.replaceOp(reshapeOp, {dstDesc});
1207     return success();
1208   }
1209 };
1210 
1211 /// Conversion pattern that transforms a subview op into:
1212 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1213 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1214 ///      and stride.
1215 /// The subview op is replaced by the descriptor.
1216 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1217   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1218 
1219   LogicalResult
1220   matchAndRewrite(memref::SubViewOp subViewOp, ArrayRef<Value> operands,
1221                   ConversionPatternRewriter &rewriter) const override {
1222     auto loc = subViewOp.getLoc();
1223 
1224     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1225     auto sourceElementTy =
1226         typeConverter->convertType(sourceMemRefType.getElementType());
1227 
1228     auto viewMemRefType = subViewOp.getType();
1229     auto inferredType = memref::SubViewOp::inferResultType(
1230                             subViewOp.getSourceType(),
1231                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1232                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1233                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1234                             .cast<MemRefType>();
1235     auto targetElementTy =
1236         typeConverter->convertType(viewMemRefType.getElementType());
1237     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1238     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1239         !LLVM::isCompatibleType(sourceElementTy) ||
1240         !LLVM::isCompatibleType(targetElementTy) ||
1241         !LLVM::isCompatibleType(targetDescTy))
1242       return failure();
1243 
1244     // Extract the offset and strides from the type.
1245     int64_t offset;
1246     SmallVector<int64_t, 4> strides;
1247     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1248     if (failed(successStrides))
1249       return failure();
1250 
1251     // Create the descriptor.
1252     if (!LLVM::isCompatibleType(operands.front().getType()))
1253       return failure();
1254     MemRefDescriptor sourceMemRef(operands.front());
1255     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1256 
1257     // Copy the buffer pointer from the old descriptor to the new one.
1258     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1259     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1260         loc,
1261         LLVM::LLVMPointerType::get(targetElementTy,
1262                                    viewMemRefType.getMemorySpaceAsInt()),
1263         extracted);
1264     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1265 
1266     // Copy the aligned pointer from the old descriptor to the new one.
1267     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1268     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1269         loc,
1270         LLVM::LLVMPointerType::get(targetElementTy,
1271                                    viewMemRefType.getMemorySpaceAsInt()),
1272         extracted);
1273     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1274 
1275     auto shape = viewMemRefType.getShape();
1276     auto inferredShape = inferredType.getShape();
1277     size_t inferredShapeRank = inferredShape.size();
1278     size_t resultShapeRank = shape.size();
1279     llvm::SmallDenseSet<unsigned> unusedDims =
1280         computeRankReductionMask(inferredShape, shape).getValue();
1281 
1282     // Extract strides needed to compute offset.
1283     SmallVector<Value, 4> strideValues;
1284     strideValues.reserve(inferredShapeRank);
1285     for (unsigned i = 0; i < inferredShapeRank; ++i)
1286       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1287 
1288     // Offset.
1289     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1290     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1291       targetMemRef.setConstantOffset(rewriter, loc, offset);
1292     } else {
1293       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1294       // `inferredShapeRank` may be larger than the number of offset operands
1295       // because of trailing semantics. In this case, the offset is guaranteed
1296       // to be interpreted as 0 and we can just skip the extra dimensions.
1297       for (unsigned i = 0, e = std::min(inferredShapeRank,
1298                                         subViewOp.getMixedOffsets().size());
1299            i < e; ++i) {
1300         Value offset =
1301             // TODO: need OpFoldResult ODS adaptor to clean this up.
1302             subViewOp.isDynamicOffset(i)
1303                 ? operands[subViewOp.getIndexOfDynamicOffset(i)]
1304                 : rewriter.create<LLVM::ConstantOp>(
1305                       loc, llvmIndexType,
1306                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1307         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1308         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1309       }
1310       targetMemRef.setOffset(rewriter, loc, baseOffset);
1311     }
1312 
1313     // Update sizes and strides.
1314     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1315     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1316     assert(mixedSizes.size() == mixedStrides.size() &&
1317            "expected sizes and strides of equal length");
1318     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1319          i >= 0 && j >= 0; --i) {
1320       if (unusedDims.contains(i))
1321         continue;
1322 
1323       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1324       // In this case, the size is guaranteed to be interpreted as Dim and the
1325       // stride as 1.
1326       Value size, stride;
1327       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1328         // If the static size is available, use it directly. This is similar to
1329         // the folding of dim(constant-op) but removes the need for dim to be
1330         // aware of LLVM constants and for this pass to be aware of std
1331         // constants.
1332         int64_t staticSize =
1333             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1334         if (staticSize != ShapedType::kDynamicSize) {
1335           size = rewriter.create<LLVM::ConstantOp>(
1336               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1337         } else {
1338           Value pos = rewriter.create<LLVM::ConstantOp>(
1339               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1340           Value dim =
1341               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1342           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1343               loc, llvmIndexType, dim);
1344           size = cast.getResult(0);
1345         }
1346         stride = rewriter.create<LLVM::ConstantOp>(
1347             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1348       } else {
1349         // TODO: need OpFoldResult ODS adaptor to clean this up.
1350         size =
1351             subViewOp.isDynamicSize(i)
1352                 ? operands[subViewOp.getIndexOfDynamicSize(i)]
1353                 : rewriter.create<LLVM::ConstantOp>(
1354                       loc, llvmIndexType,
1355                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1356         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1357           stride = rewriter.create<LLVM::ConstantOp>(
1358               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1359         } else {
1360           stride = subViewOp.isDynamicStride(i)
1361                        ? operands[subViewOp.getIndexOfDynamicStride(i)]
1362                        : rewriter.create<LLVM::ConstantOp>(
1363                              loc, llvmIndexType,
1364                              rewriter.getI64IntegerAttr(
1365                                  subViewOp.getStaticStride(i)));
1366           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1367         }
1368       }
1369       targetMemRef.setSize(rewriter, loc, j, size);
1370       targetMemRef.setStride(rewriter, loc, j, stride);
1371       j--;
1372     }
1373 
1374     rewriter.replaceOp(subViewOp, {targetMemRef});
1375     return success();
1376   }
1377 };
1378 
1379 /// Conversion pattern that transforms a transpose op into:
1380 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1381 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1382 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1383 ///      and stride. Size and stride are permutations of the original values.
1384 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1385 /// The transpose op is replaced by the alloca'ed pointer.
1386 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1387 public:
1388   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1389 
1390   LogicalResult
1391   matchAndRewrite(memref::TransposeOp transposeOp, ArrayRef<Value> operands,
1392                   ConversionPatternRewriter &rewriter) const override {
1393     auto loc = transposeOp.getLoc();
1394     memref::TransposeOpAdaptor adaptor(operands);
1395     MemRefDescriptor viewMemRef(adaptor.in());
1396 
1397     // No permutation, early exit.
1398     if (transposeOp.permutation().isIdentity())
1399       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1400 
1401     auto targetMemRef = MemRefDescriptor::undef(
1402         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1403 
1404     // Copy the base and aligned pointers from the old descriptor to the new
1405     // one.
1406     targetMemRef.setAllocatedPtr(rewriter, loc,
1407                                  viewMemRef.allocatedPtr(rewriter, loc));
1408     targetMemRef.setAlignedPtr(rewriter, loc,
1409                                viewMemRef.alignedPtr(rewriter, loc));
1410 
1411     // Copy the offset pointer from the old descriptor to the new one.
1412     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1413 
1414     // Iterate over the dimensions and apply size/stride permutation.
1415     for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
1416       int sourcePos = en.index();
1417       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1418       targetMemRef.setSize(rewriter, loc, targetPos,
1419                            viewMemRef.size(rewriter, loc, sourcePos));
1420       targetMemRef.setStride(rewriter, loc, targetPos,
1421                              viewMemRef.stride(rewriter, loc, sourcePos));
1422     }
1423 
1424     rewriter.replaceOp(transposeOp, {targetMemRef});
1425     return success();
1426   }
1427 };
1428 
1429 /// Conversion pattern that transforms an op into:
1430 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1431 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1432 ///      and stride.
1433 /// The view op is replaced by the descriptor.
1434 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1435   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1436 
1437   // Build and return the value for the idx^th shape dimension, either by
1438   // returning the constant shape dimension or counting the proper dynamic size.
1439   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1440                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1441                 unsigned idx) const {
1442     assert(idx < shape.size());
1443     if (!ShapedType::isDynamic(shape[idx]))
1444       return createIndexConstant(rewriter, loc, shape[idx]);
1445     // Count the number of dynamic dims in range [0, idx]
1446     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1447       return ShapedType::isDynamic(v);
1448     });
1449     return dynamicSizes[nDynamic];
1450   }
1451 
1452   // Build and return the idx^th stride, either by returning the constant stride
1453   // or by computing the dynamic stride from the current `runningStride` and
1454   // `nextSize`. The caller should keep a running stride and update it with the
1455   // result returned by this function.
1456   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1457                   ArrayRef<int64_t> strides, Value nextSize,
1458                   Value runningStride, unsigned idx) const {
1459     assert(idx < strides.size());
1460     if (!MemRefType::isDynamicStrideOrOffset(strides[idx]))
1461       return createIndexConstant(rewriter, loc, strides[idx]);
1462     if (nextSize)
1463       return runningStride
1464                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1465                  : nextSize;
1466     assert(!runningStride);
1467     return createIndexConstant(rewriter, loc, 1);
1468   }
1469 
1470   LogicalResult
1471   matchAndRewrite(memref::ViewOp viewOp, ArrayRef<Value> operands,
1472                   ConversionPatternRewriter &rewriter) const override {
1473     auto loc = viewOp.getLoc();
1474     memref::ViewOpAdaptor adaptor(operands);
1475 
1476     auto viewMemRefType = viewOp.getType();
1477     auto targetElementTy =
1478         typeConverter->convertType(viewMemRefType.getElementType());
1479     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1480     if (!targetDescTy || !targetElementTy ||
1481         !LLVM::isCompatibleType(targetElementTy) ||
1482         !LLVM::isCompatibleType(targetDescTy))
1483       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1484              failure();
1485 
1486     int64_t offset;
1487     SmallVector<int64_t, 4> strides;
1488     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1489     if (failed(successStrides))
1490       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1491     assert(offset == 0 && "expected offset to be 0");
1492 
1493     // Create the descriptor.
1494     MemRefDescriptor sourceMemRef(adaptor.source());
1495     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1496 
1497     // Field 1: Copy the allocated pointer, used for malloc/free.
1498     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1499     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1500     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1501         loc,
1502         LLVM::LLVMPointerType::get(targetElementTy,
1503                                    srcMemRefType.getMemorySpaceAsInt()),
1504         allocatedPtr);
1505     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1506 
1507     // Field 2: Copy the actual aligned pointer to payload.
1508     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1509     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1510                                               alignedPtr, adaptor.byte_shift());
1511     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1512         loc,
1513         LLVM::LLVMPointerType::get(targetElementTy,
1514                                    srcMemRefType.getMemorySpaceAsInt()),
1515         alignedPtr);
1516     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1517 
1518     // Field 3: The offset in the resulting type must be 0. This is because of
1519     // the type change: an offset on srcType* may not be expressible as an
1520     // offset on dstType*.
1521     targetMemRef.setOffset(rewriter, loc,
1522                            createIndexConstant(rewriter, loc, offset));
1523 
1524     // Early exit for 0-D corner case.
1525     if (viewMemRefType.getRank() == 0)
1526       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1527 
1528     // Fields 4 and 5: Update sizes and strides.
1529     if (strides.back() != 1)
1530       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1531              failure();
1532     Value stride = nullptr, nextSize = nullptr;
1533     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1534       // Update size.
1535       Value size =
1536           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1537       targetMemRef.setSize(rewriter, loc, i, size);
1538       // Update stride.
1539       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1540       targetMemRef.setStride(rewriter, loc, i, stride);
1541       nextSize = size;
1542     }
1543 
1544     rewriter.replaceOp(viewOp, {targetMemRef});
1545     return success();
1546   }
1547 };
1548 
1549 } // namespace
1550 
1551 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1552                                                   RewritePatternSet &patterns) {
1553   // clang-format off
1554   patterns.add<
1555       AllocaOpLowering,
1556       AllocaScopeOpLowering,
1557       AssumeAlignmentOpLowering,
1558       DimOpLowering,
1559       GlobalMemrefOpLowering,
1560       GetGlobalMemrefOpLowering,
1561       LoadOpLowering,
1562       MemRefCastOpLowering,
1563       MemRefCopyOpLowering,
1564       MemRefReinterpretCastOpLowering,
1565       MemRefReshapeOpLowering,
1566       PrefetchOpLowering,
1567       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1568       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1569       StoreOpLowering,
1570       SubViewOpLowering,
1571       TransposeOpLowering,
1572       ViewOpLowering>(converter);
1573   // clang-format on
1574   auto allocLowering = converter.getOptions().allocLowering;
1575   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1576     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1577   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1578     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1579 }
1580 
1581 namespace {
1582 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1583   MemRefToLLVMPass() = default;
1584 
1585   void runOnOperation() override {
1586     Operation *op = getOperation();
1587     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1588     LowerToLLVMOptions options(&getContext(),
1589                                dataLayoutAnalysis.getAtOrAbove(op));
1590     options.allocLowering =
1591         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1592                          : LowerToLLVMOptions::AllocLowering::Malloc);
1593     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1594       options.overrideIndexBitwidth(indexBitwidth);
1595 
1596     LLVMTypeConverter typeConverter(&getContext(), options,
1597                                     &dataLayoutAnalysis);
1598     RewritePatternSet patterns(&getContext());
1599     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1600     LLVMConversionTarget target(getContext());
1601     target.addLegalOp<FuncOp>();
1602     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1603       signalPassFailure();
1604   }
1605 };
1606 } // namespace
1607 
1608 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1609   return std::make_unique<MemRefToLLVMPass>();
1610 }
1611