1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" 10 #include "../PassDetail.h" 11 #include "mlir/Analysis/DataLayoutAnalysis.h" 12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" 13 #include "mlir/Conversion/LLVMCommon/Pattern.h" 14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h" 16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/AffineMap.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 22 using namespace mlir; 23 24 namespace { 25 26 struct AllocOpLowering : public AllocLikeOpLLVMLowering { 27 AllocOpLowering(LLVMTypeConverter &converter) 28 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 29 converter) {} 30 31 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 32 Location loc, Value sizeBytes, 33 Operation *op) const override { 34 // Heap allocations. 35 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 36 MemRefType memRefType = allocOp.getType(); 37 38 Value alignment; 39 if (auto alignmentAttr = allocOp.alignment()) { 40 alignment = createIndexConstant(rewriter, loc, *alignmentAttr); 41 } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) { 42 // In the case where no alignment is specified, we may want to override 43 // `malloc's` behavior. `malloc` typically aligns at the size of the 44 // biggest scalar on a target HW. For non-scalars, use the natural 45 // alignment of the LLVM type given by the LLVM DataLayout. 46 alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter); 47 } 48 49 if (alignment) { 50 // Adjust the allocation size to consider alignment. 51 sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment); 52 } 53 54 // Allocate the underlying buffer and store a pointer to it in the MemRef 55 // descriptor. 56 Type elementPtrType = this->getElementPtrType(memRefType); 57 auto allocFuncOp = LLVM::lookupOrCreateMallocFn( 58 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 59 auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes}, 60 getVoidPtrType()); 61 Value allocatedPtr = 62 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 63 64 Value alignedPtr = allocatedPtr; 65 if (alignment) { 66 // Compute the aligned type pointer. 67 Value allocatedInt = 68 rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr); 69 Value alignmentInt = 70 createAligned(rewriter, loc, allocatedInt, alignment); 71 alignedPtr = 72 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt); 73 } 74 75 return std::make_tuple(allocatedPtr, alignedPtr); 76 } 77 }; 78 79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering { 80 AlignedAllocOpLowering(LLVMTypeConverter &converter) 81 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 82 converter) {} 83 84 /// Returns the memref's element size in bytes using the data layout active at 85 /// `op`. 86 // TODO: there are other places where this is used. Expose publicly? 87 unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const { 88 const DataLayout *layout = &defaultLayout; 89 if (const DataLayoutAnalysis *analysis = 90 getTypeConverter()->getDataLayoutAnalysis()) { 91 layout = &analysis->getAbove(op); 92 } 93 Type elementType = memRefType.getElementType(); 94 if (auto memRefElementType = elementType.dyn_cast<MemRefType>()) 95 return getTypeConverter()->getMemRefDescriptorSize(memRefElementType, 96 *layout); 97 if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>()) 98 return getTypeConverter()->getUnrankedMemRefDescriptorSize( 99 memRefElementType, *layout); 100 return layout->getTypeSize(elementType); 101 } 102 103 /// Returns true if the memref size in bytes is known to be a multiple of 104 /// factor assuming the data layout active at `op`. 105 bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor, 106 Operation *op) const { 107 uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op); 108 for (unsigned i = 0, e = type.getRank(); i < e; i++) { 109 if (type.isDynamic(type.getDimSize(i))) 110 continue; 111 sizeDivisor = sizeDivisor * type.getDimSize(i); 112 } 113 return sizeDivisor % factor == 0; 114 } 115 116 /// Returns the alignment to be used for the allocation call itself. 117 /// aligned_alloc requires the allocation size to be a power of two, and the 118 /// allocation size to be a multiple of alignment, 119 int64_t getAllocationAlignment(memref::AllocOp allocOp) const { 120 if (Optional<uint64_t> alignment = allocOp.alignment()) 121 return *alignment; 122 123 // Whenever we don't have alignment set, we will use an alignment 124 // consistent with the element type; since the allocation size has to be a 125 // power of two, we will bump to the next power of two if it already isn't. 126 auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp); 127 return std::max(kMinAlignedAllocAlignment, 128 llvm::PowerOf2Ceil(eltSizeBytes)); 129 } 130 131 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 132 Location loc, Value sizeBytes, 133 Operation *op) const override { 134 // Heap allocations. 135 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 136 MemRefType memRefType = allocOp.getType(); 137 int64_t alignment = getAllocationAlignment(allocOp); 138 Value allocAlignment = createIndexConstant(rewriter, loc, alignment); 139 140 // aligned_alloc requires size to be a multiple of alignment; we will pad 141 // the size to the next multiple if necessary. 142 if (!isMemRefSizeMultipleOf(memRefType, alignment, op)) 143 sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment); 144 145 Type elementPtrType = this->getElementPtrType(memRefType); 146 auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn( 147 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 148 auto results = 149 createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes}, 150 getVoidPtrType()); 151 Value allocatedPtr = 152 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 153 154 return std::make_tuple(allocatedPtr, allocatedPtr); 155 } 156 157 /// The minimum alignment to use with aligned_alloc (has to be a power of 2). 158 static constexpr uint64_t kMinAlignedAllocAlignment = 16UL; 159 160 /// Default layout to use in absence of the corresponding analysis. 161 DataLayout defaultLayout; 162 }; 163 164 // Out of line definition, required till C++17. 165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment; 166 167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering { 168 AllocaOpLowering(LLVMTypeConverter &converter) 169 : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(), 170 converter) {} 171 172 /// Allocates the underlying buffer using the right call. `allocatedBytePtr` 173 /// is set to null for stack allocations. `accessAlignment` is set if 174 /// alignment is needed post allocation (for eg. in conjunction with malloc). 175 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 176 Location loc, Value sizeBytes, 177 Operation *op) const override { 178 179 // With alloca, one gets a pointer to the element type right away. 180 // For stack allocations. 181 auto allocaOp = cast<memref::AllocaOp>(op); 182 auto elementPtrType = this->getElementPtrType(allocaOp.getType()); 183 184 auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>( 185 loc, elementPtrType, sizeBytes, 186 allocaOp.alignment() ? *allocaOp.alignment() : 0); 187 188 return std::make_tuple(allocatedElementPtr, allocatedElementPtr); 189 } 190 }; 191 192 struct AllocaScopeOpLowering 193 : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> { 194 using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern; 195 196 LogicalResult 197 matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, ArrayRef<Value> operands, 198 ConversionPatternRewriter &rewriter) const override { 199 OpBuilder::InsertionGuard guard(rewriter); 200 Location loc = allocaScopeOp.getLoc(); 201 202 // Split the current block before the AllocaScopeOp to create the inlining 203 // point. 204 auto *currentBlock = rewriter.getInsertionBlock(); 205 auto *remainingOpsBlock = 206 rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); 207 Block *continueBlock; 208 if (allocaScopeOp.getNumResults() == 0) { 209 continueBlock = remainingOpsBlock; 210 } else { 211 continueBlock = rewriter.createBlock(remainingOpsBlock, 212 allocaScopeOp.getResultTypes()); 213 rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock); 214 } 215 216 // Inline body region. 217 Block *beforeBody = &allocaScopeOp.bodyRegion().front(); 218 Block *afterBody = &allocaScopeOp.bodyRegion().back(); 219 rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock); 220 221 // Save stack and then branch into the body of the region. 222 rewriter.setInsertionPointToEnd(currentBlock); 223 auto stackSaveOp = 224 rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); 225 rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody); 226 227 // Replace the alloca_scope return with a branch that jumps out of the body. 228 // Stack restore before leaving the body region. 229 rewriter.setInsertionPointToEnd(afterBody); 230 auto returnOp = 231 cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator()); 232 auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>( 233 returnOp, returnOp.results(), continueBlock); 234 235 // Insert stack restore before jumping out the body of the region. 236 rewriter.setInsertionPoint(branchOp); 237 rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); 238 239 // Replace the op with values return from the body region. 240 rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments()); 241 242 return success(); 243 } 244 }; 245 246 struct AssumeAlignmentOpLowering 247 : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> { 248 using ConvertOpToLLVMPattern< 249 memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern; 250 251 LogicalResult 252 matchAndRewrite(memref::AssumeAlignmentOp op, ArrayRef<Value> operands, 253 ConversionPatternRewriter &rewriter) const override { 254 memref::AssumeAlignmentOp::Adaptor transformed(operands); 255 Value memref = transformed.memref(); 256 unsigned alignment = op.alignment(); 257 auto loc = op.getLoc(); 258 259 MemRefDescriptor memRefDescriptor(memref); 260 Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc()); 261 262 // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that 263 // the asserted memref.alignedPtr isn't used anywhere else, as the real 264 // users like load/store/views always re-extract memref.alignedPtr as they 265 // get lowered. 266 // 267 // This relies on LLVM's CSE optimization (potentially after SROA), since 268 // after CSE all memref.alignedPtr instances get de-duplicated into the same 269 // pointer SSA value. 270 auto intPtrType = 271 getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace()); 272 Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0); 273 Value mask = 274 createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1); 275 Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr); 276 rewriter.create<LLVM::AssumeOp>( 277 loc, rewriter.create<LLVM::ICmpOp>( 278 loc, LLVM::ICmpPredicate::eq, 279 rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero)); 280 281 rewriter.eraseOp(op); 282 return success(); 283 } 284 }; 285 286 // A `dealloc` is converted into a call to `free` on the underlying data buffer. 287 // The memref descriptor being an SSA value, there is no need to clean it up 288 // in any way. 289 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> { 290 using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern; 291 292 explicit DeallocOpLowering(LLVMTypeConverter &converter) 293 : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {} 294 295 LogicalResult 296 matchAndRewrite(memref::DeallocOp op, ArrayRef<Value> operands, 297 ConversionPatternRewriter &rewriter) const override { 298 assert(operands.size() == 1 && "dealloc takes one operand"); 299 memref::DeallocOp::Adaptor transformed(operands); 300 301 // Insert the `free` declaration if it is not already present. 302 auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>()); 303 MemRefDescriptor memref(transformed.memref()); 304 Value casted = rewriter.create<LLVM::BitcastOp>( 305 op.getLoc(), getVoidPtrType(), 306 memref.allocatedPtr(rewriter, op.getLoc())); 307 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 308 op, TypeRange(), SymbolRefAttr::get(freeFunc), casted); 309 return success(); 310 } 311 }; 312 313 // A `dim` is converted to a constant for static sizes and to an access to the 314 // size stored in the memref descriptor for dynamic sizes. 315 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> { 316 using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern; 317 318 LogicalResult 319 matchAndRewrite(memref::DimOp dimOp, ArrayRef<Value> operands, 320 ConversionPatternRewriter &rewriter) const override { 321 Type operandType = dimOp.source().getType(); 322 if (operandType.isa<UnrankedMemRefType>()) { 323 rewriter.replaceOp(dimOp, {extractSizeOfUnrankedMemRef( 324 operandType, dimOp, operands, rewriter)}); 325 326 return success(); 327 } 328 if (operandType.isa<MemRefType>()) { 329 rewriter.replaceOp(dimOp, {extractSizeOfRankedMemRef( 330 operandType, dimOp, operands, rewriter)}); 331 return success(); 332 } 333 llvm_unreachable("expected MemRefType or UnrankedMemRefType"); 334 } 335 336 private: 337 Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp, 338 ArrayRef<Value> operands, 339 ConversionPatternRewriter &rewriter) const { 340 Location loc = dimOp.getLoc(); 341 memref::DimOp::Adaptor transformed(operands); 342 343 auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>(); 344 auto scalarMemRefType = 345 MemRefType::get({}, unrankedMemRefType.getElementType()); 346 unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt(); 347 348 // Extract pointer to the underlying ranked descriptor and bitcast it to a 349 // memref<element_type> descriptor pointer to minimize the number of GEP 350 // operations. 351 UnrankedMemRefDescriptor unrankedDesc(transformed.source()); 352 Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc); 353 Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>( 354 loc, 355 LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType), 356 addressSpace), 357 underlyingRankedDesc); 358 359 // Get pointer to offset field of memref<element_type> descriptor. 360 Type indexPtrTy = LLVM::LLVMPointerType::get( 361 getTypeConverter()->getIndexType(), addressSpace); 362 Value two = rewriter.create<LLVM::ConstantOp>( 363 loc, typeConverter->convertType(rewriter.getI32Type()), 364 rewriter.getI32IntegerAttr(2)); 365 Value offsetPtr = rewriter.create<LLVM::GEPOp>( 366 loc, indexPtrTy, scalarMemRefDescPtr, 367 ValueRange({createIndexConstant(rewriter, loc, 0), two})); 368 369 // The size value that we have to extract can be obtained using GEPop with 370 // `dimOp.index() + 1` index argument. 371 Value idxPlusOne = rewriter.create<LLVM::AddOp>( 372 loc, createIndexConstant(rewriter, loc, 1), transformed.index()); 373 Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr, 374 ValueRange({idxPlusOne})); 375 return rewriter.create<LLVM::LoadOp>(loc, sizePtr); 376 } 377 378 Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const { 379 if (Optional<int64_t> idx = dimOp.getConstantIndex()) 380 return idx; 381 382 if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>()) 383 return constantOp.value().cast<IntegerAttr>().getValue().getSExtValue(); 384 385 return llvm::None; 386 } 387 388 Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp, 389 ArrayRef<Value> operands, 390 ConversionPatternRewriter &rewriter) const { 391 Location loc = dimOp.getLoc(); 392 memref::DimOp::Adaptor transformed(operands); 393 // Take advantage if index is constant. 394 MemRefType memRefType = operandType.cast<MemRefType>(); 395 if (Optional<int64_t> index = getConstantDimIndex(dimOp)) { 396 int64_t i = index.getValue(); 397 if (memRefType.isDynamicDim(i)) { 398 // extract dynamic size from the memref descriptor. 399 MemRefDescriptor descriptor(transformed.source()); 400 return descriptor.size(rewriter, loc, i); 401 } 402 // Use constant for static size. 403 int64_t dimSize = memRefType.getDimSize(i); 404 return createIndexConstant(rewriter, loc, dimSize); 405 } 406 Value index = transformed.index(); 407 int64_t rank = memRefType.getRank(); 408 MemRefDescriptor memrefDescriptor(transformed.source()); 409 return memrefDescriptor.size(rewriter, loc, index, rank); 410 } 411 }; 412 413 /// Returns the LLVM type of the global variable given the memref type `type`. 414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type, 415 LLVMTypeConverter &typeConverter) { 416 // LLVM type for a global memref will be a multi-dimension array. For 417 // declarations or uninitialized global memrefs, we can potentially flatten 418 // this to a 1D array. However, for memref.global's with an initial value, 419 // we do not intend to flatten the ElementsAttribute when going from std -> 420 // LLVM dialect, so the LLVM type needs to me a multi-dimension array. 421 Type elementType = typeConverter.convertType(type.getElementType()); 422 Type arrayTy = elementType; 423 // Shape has the outermost dim at index 0, so need to walk it backwards 424 for (int64_t dim : llvm::reverse(type.getShape())) 425 arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim); 426 return arrayTy; 427 } 428 429 /// GlobalMemrefOp is lowered to a LLVM Global Variable. 430 struct GlobalMemrefOpLowering 431 : public ConvertOpToLLVMPattern<memref::GlobalOp> { 432 using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern; 433 434 LogicalResult 435 matchAndRewrite(memref::GlobalOp global, ArrayRef<Value> operands, 436 ConversionPatternRewriter &rewriter) const override { 437 MemRefType type = global.type().cast<MemRefType>(); 438 if (!isConvertibleAndHasIdentityMaps(type)) 439 return failure(); 440 441 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 442 443 LLVM::Linkage linkage = 444 global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private; 445 446 Attribute initialValue = nullptr; 447 if (!global.isExternal() && !global.isUninitialized()) { 448 auto elementsAttr = global.initial_value()->cast<ElementsAttr>(); 449 initialValue = elementsAttr; 450 451 // For scalar memrefs, the global variable created is of the element type, 452 // so unpack the elements attribute to extract the value. 453 if (type.getRank() == 0) 454 initialValue = elementsAttr.getValue({}); 455 } 456 457 auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( 458 global, arrayTy, global.constant(), linkage, global.sym_name(), 459 initialValue, /*alignment=*/0, type.getMemorySpaceAsInt()); 460 if (!global.isExternal() && global.isUninitialized()) { 461 Block *blk = new Block(); 462 newGlobal.getInitializerRegion().push_back(blk); 463 rewriter.setInsertionPointToStart(blk); 464 Value undef[] = { 465 rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)}; 466 rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef); 467 } 468 return success(); 469 } 470 }; 471 472 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to 473 /// the first element stashed into the descriptor. This reuses 474 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction. 475 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering { 476 GetGlobalMemrefOpLowering(LLVMTypeConverter &converter) 477 : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(), 478 converter) {} 479 480 /// Buffer "allocation" for memref.get_global op is getting the address of 481 /// the global variable referenced. 482 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 483 Location loc, Value sizeBytes, 484 Operation *op) const override { 485 auto getGlobalOp = cast<memref::GetGlobalOp>(op); 486 MemRefType type = getGlobalOp.result().getType().cast<MemRefType>(); 487 unsigned memSpace = type.getMemorySpaceAsInt(); 488 489 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 490 auto addressOf = rewriter.create<LLVM::AddressOfOp>( 491 loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name()); 492 493 // Get the address of the first element in the array by creating a GEP with 494 // the address of the GV as the base, and (rank + 1) number of 0 indices. 495 Type elementType = typeConverter->convertType(type.getElementType()); 496 Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace); 497 498 SmallVector<Value, 4> operands = {addressOf}; 499 operands.insert(operands.end(), type.getRank() + 1, 500 createIndexConstant(rewriter, loc, 0)); 501 auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands); 502 503 // We do not expect the memref obtained using `memref.get_global` to be 504 // ever deallocated. Set the allocated pointer to be known bad value to 505 // help debug if that ever happens. 506 auto intPtrType = getIntPtrType(memSpace); 507 Value deadBeefConst = 508 createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef); 509 auto deadBeefPtr = 510 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst); 511 512 // Both allocated and aligned pointers are same. We could potentially stash 513 // a nullptr for the allocated pointer since we do not expect any dealloc. 514 return std::make_tuple(deadBeefPtr, gep); 515 } 516 }; 517 518 // Common base for load and store operations on MemRefs. Restricts the match 519 // to supported MemRef types. Provides functionality to emit code accessing a 520 // specific element of the underlying data buffer. 521 template <typename Derived> 522 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { 523 using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; 524 using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps; 525 using Base = LoadStoreOpLowering<Derived>; 526 527 LogicalResult match(Derived op) const override { 528 MemRefType type = op.getMemRefType(); 529 return isConvertibleAndHasIdentityMaps(type) ? success() : failure(); 530 } 531 }; 532 533 // Load operation is lowered to obtaining a pointer to the indexed element 534 // and loading it. 535 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> { 536 using Base::Base; 537 538 LogicalResult 539 matchAndRewrite(memref::LoadOp loadOp, ArrayRef<Value> operands, 540 ConversionPatternRewriter &rewriter) const override { 541 memref::LoadOp::Adaptor transformed(operands); 542 auto type = loadOp.getMemRefType(); 543 544 Value dataPtr = 545 getStridedElementPtr(loadOp.getLoc(), type, transformed.memref(), 546 transformed.indices(), rewriter); 547 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr); 548 return success(); 549 } 550 }; 551 552 // Store operation is lowered to obtaining a pointer to the indexed element, 553 // and storing the given value to it. 554 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> { 555 using Base::Base; 556 557 LogicalResult 558 matchAndRewrite(memref::StoreOp op, ArrayRef<Value> operands, 559 ConversionPatternRewriter &rewriter) const override { 560 auto type = op.getMemRefType(); 561 memref::StoreOp::Adaptor transformed(operands); 562 563 Value dataPtr = 564 getStridedElementPtr(op.getLoc(), type, transformed.memref(), 565 transformed.indices(), rewriter); 566 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, transformed.value(), 567 dataPtr); 568 return success(); 569 } 570 }; 571 572 // The prefetch operation is lowered in a way similar to the load operation 573 // except that the llvm.prefetch operation is used for replacement. 574 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> { 575 using Base::Base; 576 577 LogicalResult 578 matchAndRewrite(memref::PrefetchOp prefetchOp, ArrayRef<Value> operands, 579 ConversionPatternRewriter &rewriter) const override { 580 memref::PrefetchOp::Adaptor transformed(operands); 581 auto type = prefetchOp.getMemRefType(); 582 auto loc = prefetchOp.getLoc(); 583 584 Value dataPtr = getStridedElementPtr(loc, type, transformed.memref(), 585 transformed.indices(), rewriter); 586 587 // Replace with llvm.prefetch. 588 auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32)); 589 auto isWrite = rewriter.create<LLVM::ConstantOp>( 590 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite())); 591 auto localityHint = rewriter.create<LLVM::ConstantOp>( 592 loc, llvmI32Type, 593 rewriter.getI32IntegerAttr(prefetchOp.localityHint())); 594 auto isData = rewriter.create<LLVM::ConstantOp>( 595 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache())); 596 597 rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite, 598 localityHint, isData); 599 return success(); 600 } 601 }; 602 603 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> { 604 using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern; 605 606 LogicalResult match(memref::CastOp memRefCastOp) const override { 607 Type srcType = memRefCastOp.getOperand().getType(); 608 Type dstType = memRefCastOp.getType(); 609 610 // memref::CastOp reduce to bitcast in the ranked MemRef case and can be 611 // used for type erasure. For now they must preserve underlying element type 612 // and require source and result type to have the same rank. Therefore, 613 // perform a sanity check that the underlying structs are the same. Once op 614 // semantics are relaxed we can revisit. 615 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 616 return success(typeConverter->convertType(srcType) == 617 typeConverter->convertType(dstType)); 618 619 // At least one of the operands is unranked type 620 assert(srcType.isa<UnrankedMemRefType>() || 621 dstType.isa<UnrankedMemRefType>()); 622 623 // Unranked to unranked cast is disallowed 624 return !(srcType.isa<UnrankedMemRefType>() && 625 dstType.isa<UnrankedMemRefType>()) 626 ? success() 627 : failure(); 628 } 629 630 void rewrite(memref::CastOp memRefCastOp, ArrayRef<Value> operands, 631 ConversionPatternRewriter &rewriter) const override { 632 memref::CastOp::Adaptor transformed(operands); 633 634 auto srcType = memRefCastOp.getOperand().getType(); 635 auto dstType = memRefCastOp.getType(); 636 auto targetStructType = typeConverter->convertType(memRefCastOp.getType()); 637 auto loc = memRefCastOp.getLoc(); 638 639 // For ranked/ranked case, just keep the original descriptor. 640 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 641 return rewriter.replaceOp(memRefCastOp, {transformed.source()}); 642 643 if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) { 644 // Casting ranked to unranked memref type 645 // Set the rank in the destination from the memref type 646 // Allocate space on the stack and copy the src memref descriptor 647 // Set the ptr in the destination to the stack space 648 auto srcMemRefType = srcType.cast<MemRefType>(); 649 int64_t rank = srcMemRefType.getRank(); 650 // ptr = AllocaOp sizeof(MemRefDescriptor) 651 auto ptr = getTypeConverter()->promoteOneMemRefDescriptor( 652 loc, transformed.source(), rewriter); 653 // voidptr = BitCastOp srcType* to void* 654 auto voidPtr = 655 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 656 .getResult(); 657 // rank = ConstantOp srcRank 658 auto rankVal = rewriter.create<LLVM::ConstantOp>( 659 loc, typeConverter->convertType(rewriter.getIntegerType(64)), 660 rewriter.getI64IntegerAttr(rank)); 661 // undef = UndefOp 662 UnrankedMemRefDescriptor memRefDesc = 663 UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType); 664 // d1 = InsertValueOp undef, rank, 0 665 memRefDesc.setRank(rewriter, loc, rankVal); 666 // d2 = InsertValueOp d1, voidptr, 1 667 memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr); 668 rewriter.replaceOp(memRefCastOp, (Value)memRefDesc); 669 670 } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) { 671 // Casting from unranked type to ranked. 672 // The operation is assumed to be doing a correct cast. If the destination 673 // type mismatches the unranked the type, it is undefined behavior. 674 UnrankedMemRefDescriptor memRefDesc(transformed.source()); 675 // ptr = ExtractValueOp src, 1 676 auto ptr = memRefDesc.memRefDescPtr(rewriter, loc); 677 // castPtr = BitCastOp i8* to structTy* 678 auto castPtr = 679 rewriter 680 .create<LLVM::BitcastOp>( 681 loc, LLVM::LLVMPointerType::get(targetStructType), ptr) 682 .getResult(); 683 // struct = LoadOp castPtr 684 auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr); 685 rewriter.replaceOp(memRefCastOp, loadOp.getResult()); 686 } else { 687 llvm_unreachable("Unsupported unranked memref to unranked memref cast"); 688 } 689 } 690 }; 691 692 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> { 693 using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern; 694 695 LogicalResult 696 matchAndRewrite(memref::CopyOp op, ArrayRef<Value> operands, 697 ConversionPatternRewriter &rewriter) const override { 698 auto loc = op.getLoc(); 699 memref::CopyOp::Adaptor adaptor(operands); 700 auto srcType = op.source().getType().cast<BaseMemRefType>(); 701 auto targetType = op.target().getType().cast<BaseMemRefType>(); 702 703 // First make sure we have an unranked memref descriptor representation. 704 auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) { 705 auto rank = rewriter.create<LLVM::ConstantOp>( 706 loc, getIndexType(), rewriter.getIndexAttr(type.getRank())); 707 auto *typeConverter = getTypeConverter(); 708 auto ptr = 709 typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter); 710 auto voidPtr = 711 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 712 .getResult(); 713 auto unrankedType = 714 UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace()); 715 return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter, 716 unrankedType, 717 ValueRange{rank, voidPtr}); 718 }; 719 720 Value unrankedSource = srcType.hasRank() 721 ? makeUnranked(adaptor.source(), srcType) 722 : adaptor.source(); 723 Value unrankedTarget = targetType.hasRank() 724 ? makeUnranked(adaptor.target(), targetType) 725 : adaptor.target(); 726 727 // Now promote the unranked descriptors to the stack. 728 auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), 729 rewriter.getIndexAttr(1)); 730 auto promote = [&](Value desc) { 731 auto ptrType = LLVM::LLVMPointerType::get(desc.getType()); 732 auto allocated = 733 rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one}); 734 rewriter.create<LLVM::StoreOp>(loc, desc, allocated); 735 return allocated; 736 }; 737 738 auto sourcePtr = promote(unrankedSource); 739 auto targetPtr = promote(unrankedTarget); 740 741 auto elemSize = rewriter.create<LLVM::ConstantOp>( 742 loc, getIndexType(), 743 rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8)); 744 auto copyFn = LLVM::lookupOrCreateMemRefCopyFn( 745 op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType()); 746 rewriter.create<LLVM::CallOp>(loc, copyFn, 747 ValueRange{elemSize, sourcePtr, targetPtr}); 748 rewriter.eraseOp(op); 749 750 return success(); 751 } 752 }; 753 754 /// Extracts allocated, aligned pointers and offset from a ranked or unranked 755 /// memref type. In unranked case, the fields are extracted from the underlying 756 /// ranked descriptor. 757 static void extractPointersAndOffset(Location loc, 758 ConversionPatternRewriter &rewriter, 759 LLVMTypeConverter &typeConverter, 760 Value originalOperand, 761 Value convertedOperand, 762 Value *allocatedPtr, Value *alignedPtr, 763 Value *offset = nullptr) { 764 Type operandType = originalOperand.getType(); 765 if (operandType.isa<MemRefType>()) { 766 MemRefDescriptor desc(convertedOperand); 767 *allocatedPtr = desc.allocatedPtr(rewriter, loc); 768 *alignedPtr = desc.alignedPtr(rewriter, loc); 769 if (offset != nullptr) 770 *offset = desc.offset(rewriter, loc); 771 return; 772 } 773 774 unsigned memorySpace = 775 operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 776 Type elementType = operandType.cast<UnrankedMemRefType>().getElementType(); 777 Type llvmElementType = typeConverter.convertType(elementType); 778 Type elementPtrPtrType = LLVM::LLVMPointerType::get( 779 LLVM::LLVMPointerType::get(llvmElementType, memorySpace)); 780 781 // Extract pointer to the underlying ranked memref descriptor and cast it to 782 // ElemType**. 783 UnrankedMemRefDescriptor unrankedDesc(convertedOperand); 784 Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc); 785 786 *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( 787 rewriter, loc, underlyingDescPtr, elementPtrPtrType); 788 *alignedPtr = UnrankedMemRefDescriptor::alignedPtr( 789 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 790 if (offset != nullptr) { 791 *offset = UnrankedMemRefDescriptor::offset( 792 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 793 } 794 } 795 796 struct MemRefReinterpretCastOpLowering 797 : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> { 798 using ConvertOpToLLVMPattern< 799 memref::ReinterpretCastOp>::ConvertOpToLLVMPattern; 800 801 LogicalResult 802 matchAndRewrite(memref::ReinterpretCastOp castOp, ArrayRef<Value> operands, 803 ConversionPatternRewriter &rewriter) const override { 804 memref::ReinterpretCastOp::Adaptor adaptor(operands, 805 castOp->getAttrDictionary()); 806 Type srcType = castOp.source().getType(); 807 808 Value descriptor; 809 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp, 810 adaptor, &descriptor))) 811 return failure(); 812 rewriter.replaceOp(castOp, {descriptor}); 813 return success(); 814 } 815 816 private: 817 LogicalResult convertSourceMemRefToDescriptor( 818 ConversionPatternRewriter &rewriter, Type srcType, 819 memref::ReinterpretCastOp castOp, 820 memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const { 821 MemRefType targetMemRefType = 822 castOp.getResult().getType().cast<MemRefType>(); 823 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 824 .dyn_cast_or_null<LLVM::LLVMStructType>(); 825 if (!llvmTargetDescriptorTy) 826 return failure(); 827 828 // Create descriptor. 829 Location loc = castOp.getLoc(); 830 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 831 832 // Set allocated and aligned pointers. 833 Value allocatedPtr, alignedPtr; 834 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 835 castOp.source(), adaptor.source(), &allocatedPtr, 836 &alignedPtr); 837 desc.setAllocatedPtr(rewriter, loc, allocatedPtr); 838 desc.setAlignedPtr(rewriter, loc, alignedPtr); 839 840 // Set offset. 841 if (castOp.isDynamicOffset(0)) 842 desc.setOffset(rewriter, loc, adaptor.offsets()[0]); 843 else 844 desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0)); 845 846 // Set sizes and strides. 847 unsigned dynSizeId = 0; 848 unsigned dynStrideId = 0; 849 for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) { 850 if (castOp.isDynamicSize(i)) 851 desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]); 852 else 853 desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i)); 854 855 if (castOp.isDynamicStride(i)) 856 desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]); 857 else 858 desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i)); 859 } 860 *descriptor = desc; 861 return success(); 862 } 863 }; 864 865 struct MemRefReshapeOpLowering 866 : public ConvertOpToLLVMPattern<memref::ReshapeOp> { 867 using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern; 868 869 LogicalResult 870 matchAndRewrite(memref::ReshapeOp reshapeOp, ArrayRef<Value> operands, 871 ConversionPatternRewriter &rewriter) const override { 872 auto *op = reshapeOp.getOperation(); 873 memref::ReshapeOp::Adaptor adaptor(operands, op->getAttrDictionary()); 874 Type srcType = reshapeOp.source().getType(); 875 876 Value descriptor; 877 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp, 878 adaptor, &descriptor))) 879 return failure(); 880 rewriter.replaceOp(op, {descriptor}); 881 return success(); 882 } 883 884 private: 885 LogicalResult 886 convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter, 887 Type srcType, memref::ReshapeOp reshapeOp, 888 memref::ReshapeOp::Adaptor adaptor, 889 Value *descriptor) const { 890 // Conversion for statically-known shape args is performed via 891 // `memref_reinterpret_cast`. 892 auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>(); 893 if (shapeMemRefType.hasStaticShape()) 894 return failure(); 895 896 // The shape is a rank-1 tensor with unknown length. 897 Location loc = reshapeOp.getLoc(); 898 MemRefDescriptor shapeDesc(adaptor.shape()); 899 Value resultRank = shapeDesc.size(rewriter, loc, 0); 900 901 // Extract address space and element type. 902 auto targetType = 903 reshapeOp.getResult().getType().cast<UnrankedMemRefType>(); 904 unsigned addressSpace = targetType.getMemorySpaceAsInt(); 905 Type elementType = targetType.getElementType(); 906 907 // Create the unranked memref descriptor that holds the ranked one. The 908 // inner descriptor is allocated on stack. 909 auto targetDesc = UnrankedMemRefDescriptor::undef( 910 rewriter, loc, typeConverter->convertType(targetType)); 911 targetDesc.setRank(rewriter, loc, resultRank); 912 SmallVector<Value, 4> sizes; 913 UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(), 914 targetDesc, sizes); 915 Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>( 916 loc, getVoidPtrType(), sizes.front(), llvm::None); 917 targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr); 918 919 // Extract pointers and offset from the source memref. 920 Value allocatedPtr, alignedPtr, offset; 921 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 922 reshapeOp.source(), adaptor.source(), 923 &allocatedPtr, &alignedPtr, &offset); 924 925 // Set pointers and offset. 926 Type llvmElementType = typeConverter->convertType(elementType); 927 auto elementPtrPtrType = LLVM::LLVMPointerType::get( 928 LLVM::LLVMPointerType::get(llvmElementType, addressSpace)); 929 UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr, 930 elementPtrPtrType, allocatedPtr); 931 UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(), 932 underlyingDescPtr, 933 elementPtrPtrType, alignedPtr); 934 UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(), 935 underlyingDescPtr, elementPtrPtrType, 936 offset); 937 938 // Use the offset pointer as base for further addressing. Copy over the new 939 // shape and compute strides. For this, we create a loop from rank-1 to 0. 940 Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr( 941 rewriter, loc, *getTypeConverter(), underlyingDescPtr, 942 elementPtrPtrType); 943 Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr( 944 rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank); 945 Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc); 946 Value oneIndex = createIndexConstant(rewriter, loc, 1); 947 Value resultRankMinusOne = 948 rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex); 949 950 Block *initBlock = rewriter.getInsertionBlock(); 951 Type indexType = getTypeConverter()->getIndexType(); 952 Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint()); 953 954 Block *condBlock = rewriter.createBlock(initBlock->getParent(), {}, 955 {indexType, indexType}); 956 957 // Move the remaining initBlock ops to condBlock. 958 Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt); 959 rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange()); 960 961 rewriter.setInsertionPointToEnd(initBlock); 962 rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}), 963 condBlock); 964 rewriter.setInsertionPointToStart(condBlock); 965 Value indexArg = condBlock->getArgument(0); 966 Value strideArg = condBlock->getArgument(1); 967 968 Value zeroIndex = createIndexConstant(rewriter, loc, 0); 969 Value pred = rewriter.create<LLVM::ICmpOp>( 970 loc, IntegerType::get(rewriter.getContext(), 1), 971 LLVM::ICmpPredicate::sge, indexArg, zeroIndex); 972 973 Block *bodyBlock = 974 rewriter.splitBlock(condBlock, rewriter.getInsertionPoint()); 975 rewriter.setInsertionPointToStart(bodyBlock); 976 977 // Copy size from shape to descriptor. 978 Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType); 979 Value sizeLoadGep = rewriter.create<LLVM::GEPOp>( 980 loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg}); 981 Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep); 982 UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(), 983 targetSizesBase, indexArg, size); 984 985 // Write stride value and compute next one. 986 UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(), 987 targetStridesBase, indexArg, strideArg); 988 Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size); 989 990 // Decrement loop counter and branch back. 991 Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex); 992 rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}), 993 condBlock); 994 995 Block *remainder = 996 rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint()); 997 998 // Hook up the cond exit to the remainder. 999 rewriter.setInsertionPointToEnd(condBlock); 1000 rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder, 1001 llvm::None); 1002 1003 // Reset position to beginning of new remainder block. 1004 rewriter.setInsertionPointToStart(remainder); 1005 1006 *descriptor = targetDesc; 1007 return success(); 1008 } 1009 }; 1010 1011 /// Helper function to convert a vector of `OpFoldResult`s into a vector of 1012 /// `Value`s. 1013 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc, 1014 Type &llvmIndexType, 1015 ArrayRef<OpFoldResult> valueOrAttrVec) { 1016 return llvm::to_vector<4>( 1017 llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value { 1018 if (auto attr = value.dyn_cast<Attribute>()) 1019 return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr); 1020 return value.get<Value>(); 1021 })); 1022 } 1023 1024 /// Compute a map that for a given dimension of the expanded type gives the 1025 /// dimension in the collapsed type it maps to. Essentially its the inverse of 1026 /// the `reassocation` maps. 1027 static DenseMap<int64_t, int64_t> 1028 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) { 1029 llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim; 1030 for (auto &en : enumerate(reassociation)) { 1031 for (auto dim : en.value()) 1032 expandedDimToCollapsedDim[dim] = en.index(); 1033 } 1034 return expandedDimToCollapsedDim; 1035 } 1036 1037 static OpFoldResult 1038 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType, 1039 int64_t outDimIndex, ArrayRef<int64_t> outStaticShape, 1040 MemRefDescriptor &inDesc, 1041 ArrayRef<int64_t> inStaticShape, 1042 ArrayRef<ReassociationIndices> reassocation, 1043 DenseMap<int64_t, int64_t> &outDimToInDimMap) { 1044 int64_t outDimSize = outStaticShape[outDimIndex]; 1045 if (!ShapedType::isDynamic(outDimSize)) 1046 return b.getIndexAttr(outDimSize); 1047 1048 // Calculate the multiplication of all the out dim sizes except the 1049 // current dim. 1050 int64_t inDimIndex = outDimToInDimMap[outDimIndex]; 1051 int64_t otherDimSizesMul = 1; 1052 for (auto otherDimIndex : reassocation[inDimIndex]) { 1053 if (otherDimIndex == static_cast<unsigned>(outDimIndex)) 1054 continue; 1055 int64_t otherDimSize = outStaticShape[otherDimIndex]; 1056 assert(!ShapedType::isDynamic(otherDimSize) && 1057 "single dimension cannot be expanded into multiple dynamic " 1058 "dimensions"); 1059 otherDimSizesMul *= otherDimSize; 1060 } 1061 1062 // outDimSize = inDimSize / otherOutDimSizesMul 1063 int64_t inDimSize = inStaticShape[inDimIndex]; 1064 Value inDimSizeDynamic = 1065 ShapedType::isDynamic(inDimSize) 1066 ? inDesc.size(b, loc, inDimIndex) 1067 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1068 b.getIndexAttr(inDimSize)); 1069 Value outDimSizeDynamic = b.create<LLVM::SDivOp>( 1070 loc, inDimSizeDynamic, 1071 b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1072 b.getIndexAttr(otherDimSizesMul))); 1073 return outDimSizeDynamic; 1074 } 1075 1076 static OpFoldResult getCollapsedOutputDimSize( 1077 OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex, 1078 int64_t outDimSize, ArrayRef<int64_t> inStaticShape, 1079 MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) { 1080 if (!ShapedType::isDynamic(outDimSize)) 1081 return b.getIndexAttr(outDimSize); 1082 1083 Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1)); 1084 Value outDimSizeDynamic = c1; 1085 for (auto inDimIndex : reassocation[outDimIndex]) { 1086 int64_t inDimSize = inStaticShape[inDimIndex]; 1087 Value inDimSizeDynamic = 1088 ShapedType::isDynamic(inDimSize) 1089 ? inDesc.size(b, loc, inDimIndex) 1090 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1091 b.getIndexAttr(inDimSize)); 1092 outDimSizeDynamic = 1093 b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic); 1094 } 1095 return outDimSizeDynamic; 1096 } 1097 1098 static SmallVector<OpFoldResult, 4> 1099 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1100 ArrayRef<ReassociationIndices> reassocation, 1101 ArrayRef<int64_t> inStaticShape, 1102 MemRefDescriptor &inDesc, 1103 ArrayRef<int64_t> outStaticShape) { 1104 return llvm::to_vector<4>(llvm::map_range( 1105 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1106 return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1107 outStaticShape[outDimIndex], 1108 inStaticShape, inDesc, reassocation); 1109 })); 1110 } 1111 1112 static SmallVector<OpFoldResult, 4> 1113 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1114 ArrayRef<ReassociationIndices> reassocation, 1115 ArrayRef<int64_t> inStaticShape, 1116 MemRefDescriptor &inDesc, 1117 ArrayRef<int64_t> outStaticShape) { 1118 DenseMap<int64_t, int64_t> outDimToInDimMap = 1119 getExpandedDimToCollapsedDimMap(reassocation); 1120 return llvm::to_vector<4>(llvm::map_range( 1121 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1122 return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1123 outStaticShape, inDesc, inStaticShape, 1124 reassocation, outDimToInDimMap); 1125 })); 1126 } 1127 1128 static SmallVector<Value> 1129 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1130 ArrayRef<ReassociationIndices> reassocation, 1131 ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc, 1132 ArrayRef<int64_t> outStaticShape) { 1133 return outStaticShape.size() < inStaticShape.size() 1134 ? getAsValues(b, loc, llvmIndexType, 1135 getCollapsedOutputShape(b, loc, llvmIndexType, 1136 reassocation, inStaticShape, 1137 inDesc, outStaticShape)) 1138 : getAsValues(b, loc, llvmIndexType, 1139 getExpandedOutputShape(b, loc, llvmIndexType, 1140 reassocation, inStaticShape, 1141 inDesc, outStaticShape)); 1142 } 1143 1144 // ReshapeOp creates a new view descriptor of the proper rank. 1145 // For now, the only conversion supported is for target MemRef with static sizes 1146 // and strides. 1147 template <typename ReshapeOp> 1148 class ReassociatingReshapeOpConversion 1149 : public ConvertOpToLLVMPattern<ReshapeOp> { 1150 public: 1151 using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern; 1152 using ReshapeOpAdaptor = typename ReshapeOp::Adaptor; 1153 1154 LogicalResult 1155 matchAndRewrite(ReshapeOp reshapeOp, ArrayRef<Value> operands, 1156 ConversionPatternRewriter &rewriter) const override { 1157 MemRefType dstType = reshapeOp.getResultType(); 1158 MemRefType srcType = reshapeOp.getSrcType(); 1159 if (!srcType.getAffineMaps().empty() || !dstType.getAffineMaps().empty()) { 1160 return rewriter.notifyMatchFailure(reshapeOp, 1161 "only empty layout map is supported"); 1162 } 1163 1164 int64_t offset; 1165 SmallVector<int64_t, 4> strides; 1166 if (failed(getStridesAndOffset(dstType, strides, offset))) { 1167 return rewriter.notifyMatchFailure( 1168 reshapeOp, "failed to get stride and offset exprs"); 1169 } 1170 1171 ReshapeOpAdaptor adaptor(operands); 1172 MemRefDescriptor srcDesc(adaptor.src()); 1173 Location loc = reshapeOp->getLoc(); 1174 auto dstDesc = MemRefDescriptor::undef( 1175 rewriter, loc, this->typeConverter->convertType(dstType)); 1176 dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc)); 1177 dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc)); 1178 dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc)); 1179 1180 ArrayRef<int64_t> srcStaticShape = srcType.getShape(); 1181 ArrayRef<int64_t> dstStaticShape = dstType.getShape(); 1182 Type llvmIndexType = 1183 this->typeConverter->convertType(rewriter.getIndexType()); 1184 SmallVector<Value> dstShape = getDynamicOutputShape( 1185 rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(), 1186 srcStaticShape, srcDesc, dstStaticShape); 1187 for (auto &en : llvm::enumerate(dstShape)) 1188 dstDesc.setSize(rewriter, loc, en.index(), en.value()); 1189 1190 auto isStaticStride = [](int64_t stride) { 1191 return !ShapedType::isDynamicStrideOrOffset(stride); 1192 }; 1193 if (llvm::all_of(strides, isStaticStride)) { 1194 for (auto &en : llvm::enumerate(strides)) 1195 dstDesc.setConstantStride(rewriter, loc, en.index(), en.value()); 1196 } else { 1197 Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType, 1198 rewriter.getIndexAttr(1)); 1199 Value stride = c1; 1200 for (auto dimIndex : 1201 llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) { 1202 dstDesc.setStride(rewriter, loc, dimIndex, stride); 1203 stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride); 1204 } 1205 } 1206 rewriter.replaceOp(reshapeOp, {dstDesc}); 1207 return success(); 1208 } 1209 }; 1210 1211 /// Conversion pattern that transforms a subview op into: 1212 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1213 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1214 /// and stride. 1215 /// The subview op is replaced by the descriptor. 1216 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> { 1217 using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern; 1218 1219 LogicalResult 1220 matchAndRewrite(memref::SubViewOp subViewOp, ArrayRef<Value> operands, 1221 ConversionPatternRewriter &rewriter) const override { 1222 auto loc = subViewOp.getLoc(); 1223 1224 auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>(); 1225 auto sourceElementTy = 1226 typeConverter->convertType(sourceMemRefType.getElementType()); 1227 1228 auto viewMemRefType = subViewOp.getType(); 1229 auto inferredType = memref::SubViewOp::inferResultType( 1230 subViewOp.getSourceType(), 1231 extractFromI64ArrayAttr(subViewOp.static_offsets()), 1232 extractFromI64ArrayAttr(subViewOp.static_sizes()), 1233 extractFromI64ArrayAttr(subViewOp.static_strides())) 1234 .cast<MemRefType>(); 1235 auto targetElementTy = 1236 typeConverter->convertType(viewMemRefType.getElementType()); 1237 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1238 if (!sourceElementTy || !targetDescTy || !targetElementTy || 1239 !LLVM::isCompatibleType(sourceElementTy) || 1240 !LLVM::isCompatibleType(targetElementTy) || 1241 !LLVM::isCompatibleType(targetDescTy)) 1242 return failure(); 1243 1244 // Extract the offset and strides from the type. 1245 int64_t offset; 1246 SmallVector<int64_t, 4> strides; 1247 auto successStrides = getStridesAndOffset(inferredType, strides, offset); 1248 if (failed(successStrides)) 1249 return failure(); 1250 1251 // Create the descriptor. 1252 if (!LLVM::isCompatibleType(operands.front().getType())) 1253 return failure(); 1254 MemRefDescriptor sourceMemRef(operands.front()); 1255 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1256 1257 // Copy the buffer pointer from the old descriptor to the new one. 1258 Value extracted = sourceMemRef.allocatedPtr(rewriter, loc); 1259 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1260 loc, 1261 LLVM::LLVMPointerType::get(targetElementTy, 1262 viewMemRefType.getMemorySpaceAsInt()), 1263 extracted); 1264 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1265 1266 // Copy the aligned pointer from the old descriptor to the new one. 1267 extracted = sourceMemRef.alignedPtr(rewriter, loc); 1268 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1269 loc, 1270 LLVM::LLVMPointerType::get(targetElementTy, 1271 viewMemRefType.getMemorySpaceAsInt()), 1272 extracted); 1273 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1274 1275 auto shape = viewMemRefType.getShape(); 1276 auto inferredShape = inferredType.getShape(); 1277 size_t inferredShapeRank = inferredShape.size(); 1278 size_t resultShapeRank = shape.size(); 1279 llvm::SmallDenseSet<unsigned> unusedDims = 1280 computeRankReductionMask(inferredShape, shape).getValue(); 1281 1282 // Extract strides needed to compute offset. 1283 SmallVector<Value, 4> strideValues; 1284 strideValues.reserve(inferredShapeRank); 1285 for (unsigned i = 0; i < inferredShapeRank; ++i) 1286 strideValues.push_back(sourceMemRef.stride(rewriter, loc, i)); 1287 1288 // Offset. 1289 auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType()); 1290 if (!ShapedType::isDynamicStrideOrOffset(offset)) { 1291 targetMemRef.setConstantOffset(rewriter, loc, offset); 1292 } else { 1293 Value baseOffset = sourceMemRef.offset(rewriter, loc); 1294 // `inferredShapeRank` may be larger than the number of offset operands 1295 // because of trailing semantics. In this case, the offset is guaranteed 1296 // to be interpreted as 0 and we can just skip the extra dimensions. 1297 for (unsigned i = 0, e = std::min(inferredShapeRank, 1298 subViewOp.getMixedOffsets().size()); 1299 i < e; ++i) { 1300 Value offset = 1301 // TODO: need OpFoldResult ODS adaptor to clean this up. 1302 subViewOp.isDynamicOffset(i) 1303 ? operands[subViewOp.getIndexOfDynamicOffset(i)] 1304 : rewriter.create<LLVM::ConstantOp>( 1305 loc, llvmIndexType, 1306 rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i))); 1307 Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]); 1308 baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul); 1309 } 1310 targetMemRef.setOffset(rewriter, loc, baseOffset); 1311 } 1312 1313 // Update sizes and strides. 1314 SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes(); 1315 SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides(); 1316 assert(mixedSizes.size() == mixedStrides.size() && 1317 "expected sizes and strides of equal length"); 1318 for (int i = inferredShapeRank - 1, j = resultShapeRank - 1; 1319 i >= 0 && j >= 0; --i) { 1320 if (unusedDims.contains(i)) 1321 continue; 1322 1323 // `i` may overflow subViewOp.getMixedSizes because of trailing semantics. 1324 // In this case, the size is guaranteed to be interpreted as Dim and the 1325 // stride as 1. 1326 Value size, stride; 1327 if (static_cast<unsigned>(i) >= mixedSizes.size()) { 1328 // If the static size is available, use it directly. This is similar to 1329 // the folding of dim(constant-op) but removes the need for dim to be 1330 // aware of LLVM constants and for this pass to be aware of std 1331 // constants. 1332 int64_t staticSize = 1333 subViewOp.source().getType().cast<MemRefType>().getShape()[i]; 1334 if (staticSize != ShapedType::kDynamicSize) { 1335 size = rewriter.create<LLVM::ConstantOp>( 1336 loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize)); 1337 } else { 1338 Value pos = rewriter.create<LLVM::ConstantOp>( 1339 loc, llvmIndexType, rewriter.getI64IntegerAttr(i)); 1340 Value dim = 1341 rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos); 1342 auto cast = rewriter.create<UnrealizedConversionCastOp>( 1343 loc, llvmIndexType, dim); 1344 size = cast.getResult(0); 1345 } 1346 stride = rewriter.create<LLVM::ConstantOp>( 1347 loc, llvmIndexType, rewriter.getI64IntegerAttr(1)); 1348 } else { 1349 // TODO: need OpFoldResult ODS adaptor to clean this up. 1350 size = 1351 subViewOp.isDynamicSize(i) 1352 ? operands[subViewOp.getIndexOfDynamicSize(i)] 1353 : rewriter.create<LLVM::ConstantOp>( 1354 loc, llvmIndexType, 1355 rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i))); 1356 if (!ShapedType::isDynamicStrideOrOffset(strides[i])) { 1357 stride = rewriter.create<LLVM::ConstantOp>( 1358 loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i])); 1359 } else { 1360 stride = subViewOp.isDynamicStride(i) 1361 ? operands[subViewOp.getIndexOfDynamicStride(i)] 1362 : rewriter.create<LLVM::ConstantOp>( 1363 loc, llvmIndexType, 1364 rewriter.getI64IntegerAttr( 1365 subViewOp.getStaticStride(i))); 1366 stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]); 1367 } 1368 } 1369 targetMemRef.setSize(rewriter, loc, j, size); 1370 targetMemRef.setStride(rewriter, loc, j, stride); 1371 j--; 1372 } 1373 1374 rewriter.replaceOp(subViewOp, {targetMemRef}); 1375 return success(); 1376 } 1377 }; 1378 1379 /// Conversion pattern that transforms a transpose op into: 1380 /// 1. A function entry `alloca` operation to allocate a ViewDescriptor. 1381 /// 2. A load of the ViewDescriptor from the pointer allocated in 1. 1382 /// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size 1383 /// and stride. Size and stride are permutations of the original values. 1384 /// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer. 1385 /// The transpose op is replaced by the alloca'ed pointer. 1386 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> { 1387 public: 1388 using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern; 1389 1390 LogicalResult 1391 matchAndRewrite(memref::TransposeOp transposeOp, ArrayRef<Value> operands, 1392 ConversionPatternRewriter &rewriter) const override { 1393 auto loc = transposeOp.getLoc(); 1394 memref::TransposeOpAdaptor adaptor(operands); 1395 MemRefDescriptor viewMemRef(adaptor.in()); 1396 1397 // No permutation, early exit. 1398 if (transposeOp.permutation().isIdentity()) 1399 return rewriter.replaceOp(transposeOp, {viewMemRef}), success(); 1400 1401 auto targetMemRef = MemRefDescriptor::undef( 1402 rewriter, loc, typeConverter->convertType(transposeOp.getShapedType())); 1403 1404 // Copy the base and aligned pointers from the old descriptor to the new 1405 // one. 1406 targetMemRef.setAllocatedPtr(rewriter, loc, 1407 viewMemRef.allocatedPtr(rewriter, loc)); 1408 targetMemRef.setAlignedPtr(rewriter, loc, 1409 viewMemRef.alignedPtr(rewriter, loc)); 1410 1411 // Copy the offset pointer from the old descriptor to the new one. 1412 targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc)); 1413 1414 // Iterate over the dimensions and apply size/stride permutation. 1415 for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) { 1416 int sourcePos = en.index(); 1417 int targetPos = en.value().cast<AffineDimExpr>().getPosition(); 1418 targetMemRef.setSize(rewriter, loc, targetPos, 1419 viewMemRef.size(rewriter, loc, sourcePos)); 1420 targetMemRef.setStride(rewriter, loc, targetPos, 1421 viewMemRef.stride(rewriter, loc, sourcePos)); 1422 } 1423 1424 rewriter.replaceOp(transposeOp, {targetMemRef}); 1425 return success(); 1426 } 1427 }; 1428 1429 /// Conversion pattern that transforms an op into: 1430 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1431 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1432 /// and stride. 1433 /// The view op is replaced by the descriptor. 1434 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> { 1435 using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern; 1436 1437 // Build and return the value for the idx^th shape dimension, either by 1438 // returning the constant shape dimension or counting the proper dynamic size. 1439 Value getSize(ConversionPatternRewriter &rewriter, Location loc, 1440 ArrayRef<int64_t> shape, ValueRange dynamicSizes, 1441 unsigned idx) const { 1442 assert(idx < shape.size()); 1443 if (!ShapedType::isDynamic(shape[idx])) 1444 return createIndexConstant(rewriter, loc, shape[idx]); 1445 // Count the number of dynamic dims in range [0, idx] 1446 unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) { 1447 return ShapedType::isDynamic(v); 1448 }); 1449 return dynamicSizes[nDynamic]; 1450 } 1451 1452 // Build and return the idx^th stride, either by returning the constant stride 1453 // or by computing the dynamic stride from the current `runningStride` and 1454 // `nextSize`. The caller should keep a running stride and update it with the 1455 // result returned by this function. 1456 Value getStride(ConversionPatternRewriter &rewriter, Location loc, 1457 ArrayRef<int64_t> strides, Value nextSize, 1458 Value runningStride, unsigned idx) const { 1459 assert(idx < strides.size()); 1460 if (!MemRefType::isDynamicStrideOrOffset(strides[idx])) 1461 return createIndexConstant(rewriter, loc, strides[idx]); 1462 if (nextSize) 1463 return runningStride 1464 ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) 1465 : nextSize; 1466 assert(!runningStride); 1467 return createIndexConstant(rewriter, loc, 1); 1468 } 1469 1470 LogicalResult 1471 matchAndRewrite(memref::ViewOp viewOp, ArrayRef<Value> operands, 1472 ConversionPatternRewriter &rewriter) const override { 1473 auto loc = viewOp.getLoc(); 1474 memref::ViewOpAdaptor adaptor(operands); 1475 1476 auto viewMemRefType = viewOp.getType(); 1477 auto targetElementTy = 1478 typeConverter->convertType(viewMemRefType.getElementType()); 1479 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1480 if (!targetDescTy || !targetElementTy || 1481 !LLVM::isCompatibleType(targetElementTy) || 1482 !LLVM::isCompatibleType(targetDescTy)) 1483 return viewOp.emitWarning("Target descriptor type not converted to LLVM"), 1484 failure(); 1485 1486 int64_t offset; 1487 SmallVector<int64_t, 4> strides; 1488 auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); 1489 if (failed(successStrides)) 1490 return viewOp.emitWarning("cannot cast to non-strided shape"), failure(); 1491 assert(offset == 0 && "expected offset to be 0"); 1492 1493 // Create the descriptor. 1494 MemRefDescriptor sourceMemRef(adaptor.source()); 1495 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1496 1497 // Field 1: Copy the allocated pointer, used for malloc/free. 1498 Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc); 1499 auto srcMemRefType = viewOp.source().getType().cast<MemRefType>(); 1500 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1501 loc, 1502 LLVM::LLVMPointerType::get(targetElementTy, 1503 srcMemRefType.getMemorySpaceAsInt()), 1504 allocatedPtr); 1505 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1506 1507 // Field 2: Copy the actual aligned pointer to payload. 1508 Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc); 1509 alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(), 1510 alignedPtr, adaptor.byte_shift()); 1511 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1512 loc, 1513 LLVM::LLVMPointerType::get(targetElementTy, 1514 srcMemRefType.getMemorySpaceAsInt()), 1515 alignedPtr); 1516 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1517 1518 // Field 3: The offset in the resulting type must be 0. This is because of 1519 // the type change: an offset on srcType* may not be expressible as an 1520 // offset on dstType*. 1521 targetMemRef.setOffset(rewriter, loc, 1522 createIndexConstant(rewriter, loc, offset)); 1523 1524 // Early exit for 0-D corner case. 1525 if (viewMemRefType.getRank() == 0) 1526 return rewriter.replaceOp(viewOp, {targetMemRef}), success(); 1527 1528 // Fields 4 and 5: Update sizes and strides. 1529 if (strides.back() != 1) 1530 return viewOp.emitWarning("cannot cast to non-contiguous shape"), 1531 failure(); 1532 Value stride = nullptr, nextSize = nullptr; 1533 for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { 1534 // Update size. 1535 Value size = 1536 getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i); 1537 targetMemRef.setSize(rewriter, loc, i, size); 1538 // Update stride. 1539 stride = getStride(rewriter, loc, strides, nextSize, stride, i); 1540 targetMemRef.setStride(rewriter, loc, i, stride); 1541 nextSize = size; 1542 } 1543 1544 rewriter.replaceOp(viewOp, {targetMemRef}); 1545 return success(); 1546 } 1547 }; 1548 1549 } // namespace 1550 1551 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter, 1552 RewritePatternSet &patterns) { 1553 // clang-format off 1554 patterns.add< 1555 AllocaOpLowering, 1556 AllocaScopeOpLowering, 1557 AssumeAlignmentOpLowering, 1558 DimOpLowering, 1559 GlobalMemrefOpLowering, 1560 GetGlobalMemrefOpLowering, 1561 LoadOpLowering, 1562 MemRefCastOpLowering, 1563 MemRefCopyOpLowering, 1564 MemRefReinterpretCastOpLowering, 1565 MemRefReshapeOpLowering, 1566 PrefetchOpLowering, 1567 ReassociatingReshapeOpConversion<memref::ExpandShapeOp>, 1568 ReassociatingReshapeOpConversion<memref::CollapseShapeOp>, 1569 StoreOpLowering, 1570 SubViewOpLowering, 1571 TransposeOpLowering, 1572 ViewOpLowering>(converter); 1573 // clang-format on 1574 auto allocLowering = converter.getOptions().allocLowering; 1575 if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc) 1576 patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter); 1577 else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc) 1578 patterns.add<AllocOpLowering, DeallocOpLowering>(converter); 1579 } 1580 1581 namespace { 1582 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> { 1583 MemRefToLLVMPass() = default; 1584 1585 void runOnOperation() override { 1586 Operation *op = getOperation(); 1587 const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); 1588 LowerToLLVMOptions options(&getContext(), 1589 dataLayoutAnalysis.getAtOrAbove(op)); 1590 options.allocLowering = 1591 (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc 1592 : LowerToLLVMOptions::AllocLowering::Malloc); 1593 if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) 1594 options.overrideIndexBitwidth(indexBitwidth); 1595 1596 LLVMTypeConverter typeConverter(&getContext(), options, 1597 &dataLayoutAnalysis); 1598 RewritePatternSet patterns(&getContext()); 1599 populateMemRefToLLVMConversionPatterns(typeConverter, patterns); 1600 LLVMConversionTarget target(getContext()); 1601 target.addLegalOp<FuncOp>(); 1602 if (failed(applyPartialConversion(op, target, std::move(patterns)))) 1603 signalPassFailure(); 1604 } 1605 }; 1606 } // namespace 1607 1608 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() { 1609 return std::make_unique<MemRefToLLVMPass>(); 1610 } 1611