1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 
22 using namespace mlir;
23 
24 namespace {
25 
26 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
27   AllocOpLowering(LLVMTypeConverter &converter)
28       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
29                                 converter) {}
30 
31   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
32                                           Location loc, Value sizeBytes,
33                                           Operation *op) const override {
34     // Heap allocations.
35     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
36     MemRefType memRefType = allocOp.getType();
37 
38     Value alignment;
39     if (auto alignmentAttr = allocOp.alignment()) {
40       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
41     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
42       // In the case where no alignment is specified, we may want to override
43       // `malloc's` behavior. `malloc` typically aligns at the size of the
44       // biggest scalar on a target HW. For non-scalars, use the natural
45       // alignment of the LLVM type given by the LLVM DataLayout.
46       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
47     }
48 
49     if (alignment) {
50       // Adjust the allocation size to consider alignment.
51       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
52     }
53 
54     // Allocate the underlying buffer and store a pointer to it in the MemRef
55     // descriptor.
56     Type elementPtrType = this->getElementPtrType(memRefType);
57     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
58         allocOp->getParentOfType<ModuleOp>(), getIndexType());
59     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
60                                   getVoidPtrType());
61     Value allocatedPtr =
62         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
63 
64     Value alignedPtr = allocatedPtr;
65     if (alignment) {
66       // Compute the aligned type pointer.
67       Value allocatedInt =
68           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
69       Value alignmentInt =
70           createAligned(rewriter, loc, allocatedInt, alignment);
71       alignedPtr =
72           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
73     }
74 
75     return std::make_tuple(allocatedPtr, alignedPtr);
76   }
77 };
78 
79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
80   AlignedAllocOpLowering(LLVMTypeConverter &converter)
81       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
82                                 converter) {}
83 
84   /// Returns the memref's element size in bytes using the data layout active at
85   /// `op`.
86   // TODO: there are other places where this is used. Expose publicly?
87   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
88     const DataLayout *layout = &defaultLayout;
89     if (const DataLayoutAnalysis *analysis =
90             getTypeConverter()->getDataLayoutAnalysis()) {
91       layout = &analysis->getAbove(op);
92     }
93     Type elementType = memRefType.getElementType();
94     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
95       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
96                                                          *layout);
97     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
98       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
99           memRefElementType, *layout);
100     return layout->getTypeSize(elementType);
101   }
102 
103   /// Returns true if the memref size in bytes is known to be a multiple of
104   /// factor assuming the data layout active at `op`.
105   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
106                               Operation *op) const {
107     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
108     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
109       if (type.isDynamic(type.getDimSize(i)))
110         continue;
111       sizeDivisor = sizeDivisor * type.getDimSize(i);
112     }
113     return sizeDivisor % factor == 0;
114   }
115 
116   /// Returns the alignment to be used for the allocation call itself.
117   /// aligned_alloc requires the allocation size to be a power of two, and the
118   /// allocation size to be a multiple of alignment,
119   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
120     if (Optional<uint64_t> alignment = allocOp.alignment())
121       return *alignment;
122 
123     // Whenever we don't have alignment set, we will use an alignment
124     // consistent with the element type; since the allocation size has to be a
125     // power of two, we will bump to the next power of two if it already isn't.
126     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
127     return std::max(kMinAlignedAllocAlignment,
128                     llvm::PowerOf2Ceil(eltSizeBytes));
129   }
130 
131   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
132                                           Location loc, Value sizeBytes,
133                                           Operation *op) const override {
134     // Heap allocations.
135     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
136     MemRefType memRefType = allocOp.getType();
137     int64_t alignment = getAllocationAlignment(allocOp);
138     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
139 
140     // aligned_alloc requires size to be a multiple of alignment; we will pad
141     // the size to the next multiple if necessary.
142     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
143       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
144 
145     Type elementPtrType = this->getElementPtrType(memRefType);
146     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
147         allocOp->getParentOfType<ModuleOp>(), getIndexType());
148     auto results =
149         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
150                        getVoidPtrType());
151     Value allocatedPtr =
152         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
153 
154     return std::make_tuple(allocatedPtr, allocatedPtr);
155   }
156 
157   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
158   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
159 
160   /// Default layout to use in absence of the corresponding analysis.
161   DataLayout defaultLayout;
162 };
163 
164 // Out of line definition, required till C++17.
165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
166 
167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
168   AllocaOpLowering(LLVMTypeConverter &converter)
169       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
170                                 converter) {}
171 
172   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
173   /// is set to null for stack allocations. `accessAlignment` is set if
174   /// alignment is needed post allocation (for eg. in conjunction with malloc).
175   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
176                                           Location loc, Value sizeBytes,
177                                           Operation *op) const override {
178 
179     // With alloca, one gets a pointer to the element type right away.
180     // For stack allocations.
181     auto allocaOp = cast<memref::AllocaOp>(op);
182     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
183 
184     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
185         loc, elementPtrType, sizeBytes,
186         allocaOp.alignment() ? *allocaOp.alignment() : 0);
187 
188     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
189   }
190 };
191 
192 struct AllocaScopeOpLowering
193     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
194   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
195 
196   LogicalResult
197   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
198                   ConversionPatternRewriter &rewriter) const override {
199     OpBuilder::InsertionGuard guard(rewriter);
200     Location loc = allocaScopeOp.getLoc();
201 
202     // Split the current block before the AllocaScopeOp to create the inlining
203     // point.
204     auto *currentBlock = rewriter.getInsertionBlock();
205     auto *remainingOpsBlock =
206         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
207     Block *continueBlock;
208     if (allocaScopeOp.getNumResults() == 0) {
209       continueBlock = remainingOpsBlock;
210     } else {
211       continueBlock = rewriter.createBlock(remainingOpsBlock,
212                                            allocaScopeOp.getResultTypes());
213       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
214     }
215 
216     // Inline body region.
217     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
218     Block *afterBody = &allocaScopeOp.bodyRegion().back();
219     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
220 
221     // Save stack and then branch into the body of the region.
222     rewriter.setInsertionPointToEnd(currentBlock);
223     auto stackSaveOp =
224         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
225     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
226 
227     // Replace the alloca_scope return with a branch that jumps out of the body.
228     // Stack restore before leaving the body region.
229     rewriter.setInsertionPointToEnd(afterBody);
230     auto returnOp =
231         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
232     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
233         returnOp, returnOp.results(), continueBlock);
234 
235     // Insert stack restore before jumping out the body of the region.
236     rewriter.setInsertionPoint(branchOp);
237     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
238 
239     // Replace the op with values return from the body region.
240     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
241 
242     return success();
243   }
244 };
245 
246 struct AssumeAlignmentOpLowering
247     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
248   using ConvertOpToLLVMPattern<
249       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
250 
251   LogicalResult
252   matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
253                   ConversionPatternRewriter &rewriter) const override {
254     Value memref = adaptor.memref();
255     unsigned alignment = op.alignment();
256     auto loc = op.getLoc();
257 
258     MemRefDescriptor memRefDescriptor(memref);
259     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
260 
261     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
262     // the asserted memref.alignedPtr isn't used anywhere else, as the real
263     // users like load/store/views always re-extract memref.alignedPtr as they
264     // get lowered.
265     //
266     // This relies on LLVM's CSE optimization (potentially after SROA), since
267     // after CSE all memref.alignedPtr instances get de-duplicated into the same
268     // pointer SSA value.
269     auto intPtrType =
270         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
271     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
272     Value mask =
273         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
274     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
275     rewriter.create<LLVM::AssumeOp>(
276         loc, rewriter.create<LLVM::ICmpOp>(
277                  loc, LLVM::ICmpPredicate::eq,
278                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
279 
280     rewriter.eraseOp(op);
281     return success();
282   }
283 };
284 
285 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
286 // The memref descriptor being an SSA value, there is no need to clean it up
287 // in any way.
288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
289   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
290 
291   explicit DeallocOpLowering(LLVMTypeConverter &converter)
292       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
293 
294   LogicalResult
295   matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
296                   ConversionPatternRewriter &rewriter) const override {
297     // Insert the `free` declaration if it is not already present.
298     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
299     MemRefDescriptor memref(adaptor.memref());
300     Value casted = rewriter.create<LLVM::BitcastOp>(
301         op.getLoc(), getVoidPtrType(),
302         memref.allocatedPtr(rewriter, op.getLoc()));
303     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
304         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
305     return success();
306   }
307 };
308 
309 // A `dim` is converted to a constant for static sizes and to an access to the
310 // size stored in the memref descriptor for dynamic sizes.
311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
312   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
313 
314   LogicalResult
315   matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
316                   ConversionPatternRewriter &rewriter) const override {
317     Type operandType = dimOp.source().getType();
318     if (operandType.isa<UnrankedMemRefType>()) {
319       rewriter.replaceOp(
320           dimOp, {extractSizeOfUnrankedMemRef(
321                      operandType, dimOp, adaptor.getOperands(), rewriter)});
322 
323       return success();
324     }
325     if (operandType.isa<MemRefType>()) {
326       rewriter.replaceOp(
327           dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
328                                             adaptor.getOperands(), rewriter)});
329       return success();
330     }
331     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
332   }
333 
334 private:
335   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
336                                     OpAdaptor adaptor,
337                                     ConversionPatternRewriter &rewriter) const {
338     Location loc = dimOp.getLoc();
339 
340     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
341     auto scalarMemRefType =
342         MemRefType::get({}, unrankedMemRefType.getElementType());
343     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
344 
345     // Extract pointer to the underlying ranked descriptor and bitcast it to a
346     // memref<element_type> descriptor pointer to minimize the number of GEP
347     // operations.
348     UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
349     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
350     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
351         loc,
352         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
353                                    addressSpace),
354         underlyingRankedDesc);
355 
356     // Get pointer to offset field of memref<element_type> descriptor.
357     Type indexPtrTy = LLVM::LLVMPointerType::get(
358         getTypeConverter()->getIndexType(), addressSpace);
359     Value two = rewriter.create<LLVM::ConstantOp>(
360         loc, typeConverter->convertType(rewriter.getI32Type()),
361         rewriter.getI32IntegerAttr(2));
362     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
363         loc, indexPtrTy, scalarMemRefDescPtr,
364         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
365 
366     // The size value that we have to extract can be obtained using GEPop with
367     // `dimOp.index() + 1` index argument.
368     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
369         loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
370     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
371                                                  ValueRange({idxPlusOne}));
372     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
373   }
374 
375   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
376     if (Optional<int64_t> idx = dimOp.getConstantIndex())
377       return idx;
378 
379     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
380       return constantOp.getValue()
381           .cast<IntegerAttr>()
382           .getValue()
383           .getSExtValue();
384 
385     return llvm::None;
386   }
387 
388   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
389                                   OpAdaptor adaptor,
390                                   ConversionPatternRewriter &rewriter) const {
391     Location loc = dimOp.getLoc();
392 
393     // Take advantage if index is constant.
394     MemRefType memRefType = operandType.cast<MemRefType>();
395     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
396       int64_t i = index.getValue();
397       if (memRefType.isDynamicDim(i)) {
398         // extract dynamic size from the memref descriptor.
399         MemRefDescriptor descriptor(adaptor.source());
400         return descriptor.size(rewriter, loc, i);
401       }
402       // Use constant for static size.
403       int64_t dimSize = memRefType.getDimSize(i);
404       return createIndexConstant(rewriter, loc, dimSize);
405     }
406     Value index = adaptor.index();
407     int64_t rank = memRefType.getRank();
408     MemRefDescriptor memrefDescriptor(adaptor.source());
409     return memrefDescriptor.size(rewriter, loc, index, rank);
410   }
411 };
412 
413 /// Returns the LLVM type of the global variable given the memref type `type`.
414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
415                                           LLVMTypeConverter &typeConverter) {
416   // LLVM type for a global memref will be a multi-dimension array. For
417   // declarations or uninitialized global memrefs, we can potentially flatten
418   // this to a 1D array. However, for memref.global's with an initial value,
419   // we do not intend to flatten the ElementsAttribute when going from std ->
420   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
421   Type elementType = typeConverter.convertType(type.getElementType());
422   Type arrayTy = elementType;
423   // Shape has the outermost dim at index 0, so need to walk it backwards
424   for (int64_t dim : llvm::reverse(type.getShape()))
425     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
426   return arrayTy;
427 }
428 
429 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
430 struct GlobalMemrefOpLowering
431     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
432   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
433 
434   LogicalResult
435   matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
436                   ConversionPatternRewriter &rewriter) const override {
437     MemRefType type = global.type();
438     if (!isConvertibleAndHasIdentityMaps(type))
439       return failure();
440 
441     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
442 
443     LLVM::Linkage linkage =
444         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
445 
446     Attribute initialValue = nullptr;
447     if (!global.isExternal() && !global.isUninitialized()) {
448       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
449       initialValue = elementsAttr;
450 
451       // For scalar memrefs, the global variable created is of the element type,
452       // so unpack the elements attribute to extract the value.
453       if (type.getRank() == 0)
454         initialValue = elementsAttr.getSplatValue<Attribute>();
455     }
456 
457     uint64_t alignment = global.alignment().getValueOr(0);
458 
459     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
460         global, arrayTy, global.constant(), linkage, global.sym_name(),
461         initialValue, alignment, type.getMemorySpaceAsInt());
462     if (!global.isExternal() && global.isUninitialized()) {
463       Block *blk = new Block();
464       newGlobal.getInitializerRegion().push_back(blk);
465       rewriter.setInsertionPointToStart(blk);
466       Value undef[] = {
467           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
468       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
469     }
470     return success();
471   }
472 };
473 
474 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
475 /// the first element stashed into the descriptor. This reuses
476 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
477 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
478   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
479       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
480                                 converter) {}
481 
482   /// Buffer "allocation" for memref.get_global op is getting the address of
483   /// the global variable referenced.
484   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
485                                           Location loc, Value sizeBytes,
486                                           Operation *op) const override {
487     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
488     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
489     unsigned memSpace = type.getMemorySpaceAsInt();
490 
491     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
492     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
493         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
494 
495     // Get the address of the first element in the array by creating a GEP with
496     // the address of the GV as the base, and (rank + 1) number of 0 indices.
497     Type elementType = typeConverter->convertType(type.getElementType());
498     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
499 
500     SmallVector<Value, 4> operands = {addressOf};
501     operands.insert(operands.end(), type.getRank() + 1,
502                     createIndexConstant(rewriter, loc, 0));
503     auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands);
504 
505     // We do not expect the memref obtained using `memref.get_global` to be
506     // ever deallocated. Set the allocated pointer to be known bad value to
507     // help debug if that ever happens.
508     auto intPtrType = getIntPtrType(memSpace);
509     Value deadBeefConst =
510         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
511     auto deadBeefPtr =
512         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
513 
514     // Both allocated and aligned pointers are same. We could potentially stash
515     // a nullptr for the allocated pointer since we do not expect any dealloc.
516     return std::make_tuple(deadBeefPtr, gep);
517   }
518 };
519 
520 // Common base for load and store operations on MemRefs. Restricts the match
521 // to supported MemRef types. Provides functionality to emit code accessing a
522 // specific element of the underlying data buffer.
523 template <typename Derived>
524 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
525   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
526   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
527   using Base = LoadStoreOpLowering<Derived>;
528 
529   LogicalResult match(Derived op) const override {
530     MemRefType type = op.getMemRefType();
531     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
532   }
533 };
534 
535 // Load operation is lowered to obtaining a pointer to the indexed element
536 // and loading it.
537 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
538   using Base::Base;
539 
540   LogicalResult
541   matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
542                   ConversionPatternRewriter &rewriter) const override {
543     auto type = loadOp.getMemRefType();
544 
545     Value dataPtr = getStridedElementPtr(
546         loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
547     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
548     return success();
549   }
550 };
551 
552 // Store operation is lowered to obtaining a pointer to the indexed element,
553 // and storing the given value to it.
554 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
555   using Base::Base;
556 
557   LogicalResult
558   matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
559                   ConversionPatternRewriter &rewriter) const override {
560     auto type = op.getMemRefType();
561 
562     Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
563                                          adaptor.indices(), rewriter);
564     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
565     return success();
566   }
567 };
568 
569 // The prefetch operation is lowered in a way similar to the load operation
570 // except that the llvm.prefetch operation is used for replacement.
571 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
572   using Base::Base;
573 
574   LogicalResult
575   matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
576                   ConversionPatternRewriter &rewriter) const override {
577     auto type = prefetchOp.getMemRefType();
578     auto loc = prefetchOp.getLoc();
579 
580     Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
581                                          adaptor.indices(), rewriter);
582 
583     // Replace with llvm.prefetch.
584     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
585     auto isWrite = rewriter.create<LLVM::ConstantOp>(
586         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
587     auto localityHint = rewriter.create<LLVM::ConstantOp>(
588         loc, llvmI32Type,
589         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
590     auto isData = rewriter.create<LLVM::ConstantOp>(
591         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
592 
593     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
594                                                 localityHint, isData);
595     return success();
596   }
597 };
598 
599 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
600   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
601 
602   LogicalResult match(memref::CastOp memRefCastOp) const override {
603     Type srcType = memRefCastOp.getOperand().getType();
604     Type dstType = memRefCastOp.getType();
605 
606     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
607     // used for type erasure. For now they must preserve underlying element type
608     // and require source and result type to have the same rank. Therefore,
609     // perform a sanity check that the underlying structs are the same. Once op
610     // semantics are relaxed we can revisit.
611     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
612       return success(typeConverter->convertType(srcType) ==
613                      typeConverter->convertType(dstType));
614 
615     // At least one of the operands is unranked type
616     assert(srcType.isa<UnrankedMemRefType>() ||
617            dstType.isa<UnrankedMemRefType>());
618 
619     // Unranked to unranked cast is disallowed
620     return !(srcType.isa<UnrankedMemRefType>() &&
621              dstType.isa<UnrankedMemRefType>())
622                ? success()
623                : failure();
624   }
625 
626   void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
627                ConversionPatternRewriter &rewriter) const override {
628     auto srcType = memRefCastOp.getOperand().getType();
629     auto dstType = memRefCastOp.getType();
630     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
631     auto loc = memRefCastOp.getLoc();
632 
633     // For ranked/ranked case, just keep the original descriptor.
634     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
635       return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
636 
637     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
638       // Casting ranked to unranked memref type
639       // Set the rank in the destination from the memref type
640       // Allocate space on the stack and copy the src memref descriptor
641       // Set the ptr in the destination to the stack space
642       auto srcMemRefType = srcType.cast<MemRefType>();
643       int64_t rank = srcMemRefType.getRank();
644       // ptr = AllocaOp sizeof(MemRefDescriptor)
645       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
646           loc, adaptor.source(), rewriter);
647       // voidptr = BitCastOp srcType* to void*
648       auto voidPtr =
649           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
650               .getResult();
651       // rank = ConstantOp srcRank
652       auto rankVal = rewriter.create<LLVM::ConstantOp>(
653           loc, typeConverter->convertType(rewriter.getIntegerType(64)),
654           rewriter.getI64IntegerAttr(rank));
655       // undef = UndefOp
656       UnrankedMemRefDescriptor memRefDesc =
657           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
658       // d1 = InsertValueOp undef, rank, 0
659       memRefDesc.setRank(rewriter, loc, rankVal);
660       // d2 = InsertValueOp d1, voidptr, 1
661       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
662       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
663 
664     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
665       // Casting from unranked type to ranked.
666       // The operation is assumed to be doing a correct cast. If the destination
667       // type mismatches the unranked the type, it is undefined behavior.
668       UnrankedMemRefDescriptor memRefDesc(adaptor.source());
669       // ptr = ExtractValueOp src, 1
670       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
671       // castPtr = BitCastOp i8* to structTy*
672       auto castPtr =
673           rewriter
674               .create<LLVM::BitcastOp>(
675                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
676               .getResult();
677       // struct = LoadOp castPtr
678       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
679       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
680     } else {
681       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
682     }
683   }
684 };
685 
686 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
687   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
688 
689   LogicalResult
690   matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
691                   ConversionPatternRewriter &rewriter) const override {
692     auto loc = op.getLoc();
693     auto srcType = op.source().getType().cast<BaseMemRefType>();
694     auto targetType = op.target().getType().cast<BaseMemRefType>();
695 
696     // First make sure we have an unranked memref descriptor representation.
697     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
698       auto rank = rewriter.create<LLVM::ConstantOp>(
699           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
700       auto *typeConverter = getTypeConverter();
701       auto ptr =
702           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
703       auto voidPtr =
704           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
705               .getResult();
706       auto unrankedType =
707           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
708       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
709                                             unrankedType,
710                                             ValueRange{rank, voidPtr});
711     };
712 
713     Value unrankedSource = srcType.hasRank()
714                                ? makeUnranked(adaptor.source(), srcType)
715                                : adaptor.source();
716     Value unrankedTarget = targetType.hasRank()
717                                ? makeUnranked(adaptor.target(), targetType)
718                                : adaptor.target();
719 
720     // Now promote the unranked descriptors to the stack.
721     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
722                                                  rewriter.getIndexAttr(1));
723     auto promote = [&](Value desc) {
724       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
725       auto allocated =
726           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
727       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
728       return allocated;
729     };
730 
731     auto sourcePtr = promote(unrankedSource);
732     auto targetPtr = promote(unrankedTarget);
733 
734     auto elemSize = rewriter.create<LLVM::ConstantOp>(
735         loc, getIndexType(),
736         rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8));
737     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
738         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
739     rewriter.create<LLVM::CallOp>(loc, copyFn,
740                                   ValueRange{elemSize, sourcePtr, targetPtr});
741     rewriter.eraseOp(op);
742 
743     return success();
744   }
745 };
746 
747 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
748 /// memref type. In unranked case, the fields are extracted from the underlying
749 /// ranked descriptor.
750 static void extractPointersAndOffset(Location loc,
751                                      ConversionPatternRewriter &rewriter,
752                                      LLVMTypeConverter &typeConverter,
753                                      Value originalOperand,
754                                      Value convertedOperand,
755                                      Value *allocatedPtr, Value *alignedPtr,
756                                      Value *offset = nullptr) {
757   Type operandType = originalOperand.getType();
758   if (operandType.isa<MemRefType>()) {
759     MemRefDescriptor desc(convertedOperand);
760     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
761     *alignedPtr = desc.alignedPtr(rewriter, loc);
762     if (offset != nullptr)
763       *offset = desc.offset(rewriter, loc);
764     return;
765   }
766 
767   unsigned memorySpace =
768       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
769   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
770   Type llvmElementType = typeConverter.convertType(elementType);
771   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
772       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
773 
774   // Extract pointer to the underlying ranked memref descriptor and cast it to
775   // ElemType**.
776   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
777   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
778 
779   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
780       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
781   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
782       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
783   if (offset != nullptr) {
784     *offset = UnrankedMemRefDescriptor::offset(
785         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
786   }
787 }
788 
789 struct MemRefReinterpretCastOpLowering
790     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
791   using ConvertOpToLLVMPattern<
792       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
793 
794   LogicalResult
795   matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
796                   ConversionPatternRewriter &rewriter) const override {
797     Type srcType = castOp.source().getType();
798 
799     Value descriptor;
800     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
801                                                adaptor, &descriptor)))
802       return failure();
803     rewriter.replaceOp(castOp, {descriptor});
804     return success();
805   }
806 
807 private:
808   LogicalResult convertSourceMemRefToDescriptor(
809       ConversionPatternRewriter &rewriter, Type srcType,
810       memref::ReinterpretCastOp castOp,
811       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
812     MemRefType targetMemRefType =
813         castOp.getResult().getType().cast<MemRefType>();
814     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
815                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
816     if (!llvmTargetDescriptorTy)
817       return failure();
818 
819     // Create descriptor.
820     Location loc = castOp.getLoc();
821     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
822 
823     // Set allocated and aligned pointers.
824     Value allocatedPtr, alignedPtr;
825     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
826                              castOp.source(), adaptor.source(), &allocatedPtr,
827                              &alignedPtr);
828     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
829     desc.setAlignedPtr(rewriter, loc, alignedPtr);
830 
831     // Set offset.
832     if (castOp.isDynamicOffset(0))
833       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
834     else
835       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
836 
837     // Set sizes and strides.
838     unsigned dynSizeId = 0;
839     unsigned dynStrideId = 0;
840     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
841       if (castOp.isDynamicSize(i))
842         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
843       else
844         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
845 
846       if (castOp.isDynamicStride(i))
847         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
848       else
849         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
850     }
851     *descriptor = desc;
852     return success();
853   }
854 };
855 
856 struct MemRefReshapeOpLowering
857     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
858   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
859 
860   LogicalResult
861   matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
862                   ConversionPatternRewriter &rewriter) const override {
863     Type srcType = reshapeOp.source().getType();
864 
865     Value descriptor;
866     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
867                                                adaptor, &descriptor)))
868       return failure();
869     rewriter.replaceOp(reshapeOp, {descriptor});
870     return success();
871   }
872 
873 private:
874   LogicalResult
875   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
876                                   Type srcType, memref::ReshapeOp reshapeOp,
877                                   memref::ReshapeOp::Adaptor adaptor,
878                                   Value *descriptor) const {
879     // Conversion for statically-known shape args is performed via
880     // `memref_reinterpret_cast`.
881     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
882     if (shapeMemRefType.hasStaticShape())
883       return failure();
884 
885     // The shape is a rank-1 tensor with unknown length.
886     Location loc = reshapeOp.getLoc();
887     MemRefDescriptor shapeDesc(adaptor.shape());
888     Value resultRank = shapeDesc.size(rewriter, loc, 0);
889 
890     // Extract address space and element type.
891     auto targetType =
892         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
893     unsigned addressSpace = targetType.getMemorySpaceAsInt();
894     Type elementType = targetType.getElementType();
895 
896     // Create the unranked memref descriptor that holds the ranked one. The
897     // inner descriptor is allocated on stack.
898     auto targetDesc = UnrankedMemRefDescriptor::undef(
899         rewriter, loc, typeConverter->convertType(targetType));
900     targetDesc.setRank(rewriter, loc, resultRank);
901     SmallVector<Value, 4> sizes;
902     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
903                                            targetDesc, sizes);
904     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
905         loc, getVoidPtrType(), sizes.front(), llvm::None);
906     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
907 
908     // Extract pointers and offset from the source memref.
909     Value allocatedPtr, alignedPtr, offset;
910     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
911                              reshapeOp.source(), adaptor.source(),
912                              &allocatedPtr, &alignedPtr, &offset);
913 
914     // Set pointers and offset.
915     Type llvmElementType = typeConverter->convertType(elementType);
916     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
917         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
918     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
919                                               elementPtrPtrType, allocatedPtr);
920     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
921                                             underlyingDescPtr,
922                                             elementPtrPtrType, alignedPtr);
923     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
924                                         underlyingDescPtr, elementPtrPtrType,
925                                         offset);
926 
927     // Use the offset pointer as base for further addressing. Copy over the new
928     // shape and compute strides. For this, we create a loop from rank-1 to 0.
929     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
930         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
931         elementPtrPtrType);
932     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
933         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
934     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
935     Value oneIndex = createIndexConstant(rewriter, loc, 1);
936     Value resultRankMinusOne =
937         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
938 
939     Block *initBlock = rewriter.getInsertionBlock();
940     Type indexType = getTypeConverter()->getIndexType();
941     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
942 
943     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
944                                             {indexType, indexType});
945 
946     // Move the remaining initBlock ops to condBlock.
947     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
948     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
949 
950     rewriter.setInsertionPointToEnd(initBlock);
951     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
952                                 condBlock);
953     rewriter.setInsertionPointToStart(condBlock);
954     Value indexArg = condBlock->getArgument(0);
955     Value strideArg = condBlock->getArgument(1);
956 
957     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
958     Value pred = rewriter.create<LLVM::ICmpOp>(
959         loc, IntegerType::get(rewriter.getContext(), 1),
960         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
961 
962     Block *bodyBlock =
963         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
964     rewriter.setInsertionPointToStart(bodyBlock);
965 
966     // Copy size from shape to descriptor.
967     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
968     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
969         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
970     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
971     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
972                                       targetSizesBase, indexArg, size);
973 
974     // Write stride value and compute next one.
975     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
976                                         targetStridesBase, indexArg, strideArg);
977     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
978 
979     // Decrement loop counter and branch back.
980     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
981     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
982                                 condBlock);
983 
984     Block *remainder =
985         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
986 
987     // Hook up the cond exit to the remainder.
988     rewriter.setInsertionPointToEnd(condBlock);
989     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
990                                     llvm::None);
991 
992     // Reset position to beginning of new remainder block.
993     rewriter.setInsertionPointToStart(remainder);
994 
995     *descriptor = targetDesc;
996     return success();
997   }
998 };
999 
1000 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
1001 /// `Value`s.
1002 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
1003                                       Type &llvmIndexType,
1004                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1005   return llvm::to_vector<4>(
1006       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1007         if (auto attr = value.dyn_cast<Attribute>())
1008           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1009         return value.get<Value>();
1010       }));
1011 }
1012 
1013 /// Compute a map that for a given dimension of the expanded type gives the
1014 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1015 /// the `reassocation` maps.
1016 static DenseMap<int64_t, int64_t>
1017 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1018   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1019   for (auto &en : enumerate(reassociation)) {
1020     for (auto dim : en.value())
1021       expandedDimToCollapsedDim[dim] = en.index();
1022   }
1023   return expandedDimToCollapsedDim;
1024 }
1025 
1026 static OpFoldResult
1027 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1028                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1029                          MemRefDescriptor &inDesc,
1030                          ArrayRef<int64_t> inStaticShape,
1031                          ArrayRef<ReassociationIndices> reassocation,
1032                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1033   int64_t outDimSize = outStaticShape[outDimIndex];
1034   if (!ShapedType::isDynamic(outDimSize))
1035     return b.getIndexAttr(outDimSize);
1036 
1037   // Calculate the multiplication of all the out dim sizes except the
1038   // current dim.
1039   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1040   int64_t otherDimSizesMul = 1;
1041   for (auto otherDimIndex : reassocation[inDimIndex]) {
1042     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1043       continue;
1044     int64_t otherDimSize = outStaticShape[otherDimIndex];
1045     assert(!ShapedType::isDynamic(otherDimSize) &&
1046            "single dimension cannot be expanded into multiple dynamic "
1047            "dimensions");
1048     otherDimSizesMul *= otherDimSize;
1049   }
1050 
1051   // outDimSize = inDimSize / otherOutDimSizesMul
1052   int64_t inDimSize = inStaticShape[inDimIndex];
1053   Value inDimSizeDynamic =
1054       ShapedType::isDynamic(inDimSize)
1055           ? inDesc.size(b, loc, inDimIndex)
1056           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1057                                        b.getIndexAttr(inDimSize));
1058   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1059       loc, inDimSizeDynamic,
1060       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1061                                  b.getIndexAttr(otherDimSizesMul)));
1062   return outDimSizeDynamic;
1063 }
1064 
1065 static OpFoldResult getCollapsedOutputDimSize(
1066     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1067     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1068     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1069   if (!ShapedType::isDynamic(outDimSize))
1070     return b.getIndexAttr(outDimSize);
1071 
1072   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1073   Value outDimSizeDynamic = c1;
1074   for (auto inDimIndex : reassocation[outDimIndex]) {
1075     int64_t inDimSize = inStaticShape[inDimIndex];
1076     Value inDimSizeDynamic =
1077         ShapedType::isDynamic(inDimSize)
1078             ? inDesc.size(b, loc, inDimIndex)
1079             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1080                                          b.getIndexAttr(inDimSize));
1081     outDimSizeDynamic =
1082         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1083   }
1084   return outDimSizeDynamic;
1085 }
1086 
1087 static SmallVector<OpFoldResult, 4>
1088 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1089                         ArrayRef<ReassociationIndices> reassocation,
1090                         ArrayRef<int64_t> inStaticShape,
1091                         MemRefDescriptor &inDesc,
1092                         ArrayRef<int64_t> outStaticShape) {
1093   return llvm::to_vector<4>(llvm::map_range(
1094       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1095         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1096                                          outStaticShape[outDimIndex],
1097                                          inStaticShape, inDesc, reassocation);
1098       }));
1099 }
1100 
1101 static SmallVector<OpFoldResult, 4>
1102 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1103                        ArrayRef<ReassociationIndices> reassocation,
1104                        ArrayRef<int64_t> inStaticShape,
1105                        MemRefDescriptor &inDesc,
1106                        ArrayRef<int64_t> outStaticShape) {
1107   DenseMap<int64_t, int64_t> outDimToInDimMap =
1108       getExpandedDimToCollapsedDimMap(reassocation);
1109   return llvm::to_vector<4>(llvm::map_range(
1110       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1111         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1112                                         outStaticShape, inDesc, inStaticShape,
1113                                         reassocation, outDimToInDimMap);
1114       }));
1115 }
1116 
1117 static SmallVector<Value>
1118 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1119                       ArrayRef<ReassociationIndices> reassocation,
1120                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1121                       ArrayRef<int64_t> outStaticShape) {
1122   return outStaticShape.size() < inStaticShape.size()
1123              ? getAsValues(b, loc, llvmIndexType,
1124                            getCollapsedOutputShape(b, loc, llvmIndexType,
1125                                                    reassocation, inStaticShape,
1126                                                    inDesc, outStaticShape))
1127              : getAsValues(b, loc, llvmIndexType,
1128                            getExpandedOutputShape(b, loc, llvmIndexType,
1129                                                   reassocation, inStaticShape,
1130                                                   inDesc, outStaticShape));
1131 }
1132 
1133 // ReshapeOp creates a new view descriptor of the proper rank.
1134 // For now, the only conversion supported is for target MemRef with static sizes
1135 // and strides.
1136 template <typename ReshapeOp>
1137 class ReassociatingReshapeOpConversion
1138     : public ConvertOpToLLVMPattern<ReshapeOp> {
1139 public:
1140   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1141   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1142 
1143   LogicalResult
1144   matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
1145                   ConversionPatternRewriter &rewriter) const override {
1146     MemRefType dstType = reshapeOp.getResultType();
1147     MemRefType srcType = reshapeOp.getSrcType();
1148     if (!srcType.getLayout().isIdentity() ||
1149         !dstType.getLayout().isIdentity()) {
1150       return rewriter.notifyMatchFailure(reshapeOp,
1151                                          "only empty layout map is supported");
1152     }
1153 
1154     int64_t offset;
1155     SmallVector<int64_t, 4> strides;
1156     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1157       return rewriter.notifyMatchFailure(
1158           reshapeOp, "failed to get stride and offset exprs");
1159     }
1160 
1161     MemRefDescriptor srcDesc(adaptor.src());
1162     Location loc = reshapeOp->getLoc();
1163     auto dstDesc = MemRefDescriptor::undef(
1164         rewriter, loc, this->typeConverter->convertType(dstType));
1165     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1166     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1167     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1168 
1169     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1170     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1171     Type llvmIndexType =
1172         this->typeConverter->convertType(rewriter.getIndexType());
1173     SmallVector<Value> dstShape = getDynamicOutputShape(
1174         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1175         srcStaticShape, srcDesc, dstStaticShape);
1176     for (auto &en : llvm::enumerate(dstShape))
1177       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1178 
1179     auto isStaticStride = [](int64_t stride) {
1180       return !ShapedType::isDynamicStrideOrOffset(stride);
1181     };
1182     if (llvm::all_of(strides, isStaticStride)) {
1183       for (auto &en : llvm::enumerate(strides))
1184         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1185     } else {
1186       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1187                                                    rewriter.getIndexAttr(1));
1188       Value stride = c1;
1189       for (auto dimIndex :
1190            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1191         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1192         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1193       }
1194     }
1195     rewriter.replaceOp(reshapeOp, {dstDesc});
1196     return success();
1197   }
1198 };
1199 
1200 /// Conversion pattern that transforms a subview op into:
1201 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1202 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1203 ///      and stride.
1204 /// The subview op is replaced by the descriptor.
1205 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1206   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1207 
1208   LogicalResult
1209   matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
1210                   ConversionPatternRewriter &rewriter) const override {
1211     auto loc = subViewOp.getLoc();
1212 
1213     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1214     auto sourceElementTy =
1215         typeConverter->convertType(sourceMemRefType.getElementType());
1216 
1217     auto viewMemRefType = subViewOp.getType();
1218     auto inferredType = memref::SubViewOp::inferResultType(
1219                             subViewOp.getSourceType(),
1220                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1221                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1222                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1223                             .cast<MemRefType>();
1224     auto targetElementTy =
1225         typeConverter->convertType(viewMemRefType.getElementType());
1226     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1227     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1228         !LLVM::isCompatibleType(sourceElementTy) ||
1229         !LLVM::isCompatibleType(targetElementTy) ||
1230         !LLVM::isCompatibleType(targetDescTy))
1231       return failure();
1232 
1233     // Extract the offset and strides from the type.
1234     int64_t offset;
1235     SmallVector<int64_t, 4> strides;
1236     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1237     if (failed(successStrides))
1238       return failure();
1239 
1240     // Create the descriptor.
1241     if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
1242       return failure();
1243     MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
1244     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1245 
1246     // Copy the buffer pointer from the old descriptor to the new one.
1247     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1248     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1249         loc,
1250         LLVM::LLVMPointerType::get(targetElementTy,
1251                                    viewMemRefType.getMemorySpaceAsInt()),
1252         extracted);
1253     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1254 
1255     // Copy the aligned pointer from the old descriptor to the new one.
1256     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1257     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1258         loc,
1259         LLVM::LLVMPointerType::get(targetElementTy,
1260                                    viewMemRefType.getMemorySpaceAsInt()),
1261         extracted);
1262     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1263 
1264     size_t inferredShapeRank = inferredType.getRank();
1265     size_t resultShapeRank = viewMemRefType.getRank();
1266 
1267     // Extract strides needed to compute offset.
1268     SmallVector<Value, 4> strideValues;
1269     strideValues.reserve(inferredShapeRank);
1270     for (unsigned i = 0; i < inferredShapeRank; ++i)
1271       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1272 
1273     // Offset.
1274     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1275     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1276       targetMemRef.setConstantOffset(rewriter, loc, offset);
1277     } else {
1278       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1279       // `inferredShapeRank` may be larger than the number of offset operands
1280       // because of trailing semantics. In this case, the offset is guaranteed
1281       // to be interpreted as 0 and we can just skip the extra dimensions.
1282       for (unsigned i = 0, e = std::min(inferredShapeRank,
1283                                         subViewOp.getMixedOffsets().size());
1284            i < e; ++i) {
1285         Value offset =
1286             // TODO: need OpFoldResult ODS adaptor to clean this up.
1287             subViewOp.isDynamicOffset(i)
1288                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
1289                 : rewriter.create<LLVM::ConstantOp>(
1290                       loc, llvmIndexType,
1291                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1292         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1293         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1294       }
1295       targetMemRef.setOffset(rewriter, loc, baseOffset);
1296     }
1297 
1298     // Update sizes and strides.
1299     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1300     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1301     assert(mixedSizes.size() == mixedStrides.size() &&
1302            "expected sizes and strides of equal length");
1303     llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims();
1304     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1305          i >= 0 && j >= 0; --i) {
1306       if (unusedDims.contains(i))
1307         continue;
1308 
1309       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1310       // In this case, the size is guaranteed to be interpreted as Dim and the
1311       // stride as 1.
1312       Value size, stride;
1313       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1314         // If the static size is available, use it directly. This is similar to
1315         // the folding of dim(constant-op) but removes the need for dim to be
1316         // aware of LLVM constants and for this pass to be aware of std
1317         // constants.
1318         int64_t staticSize =
1319             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1320         if (staticSize != ShapedType::kDynamicSize) {
1321           size = rewriter.create<LLVM::ConstantOp>(
1322               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1323         } else {
1324           Value pos = rewriter.create<LLVM::ConstantOp>(
1325               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1326           Value dim =
1327               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1328           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1329               loc, llvmIndexType, dim);
1330           size = cast.getResult(0);
1331         }
1332         stride = rewriter.create<LLVM::ConstantOp>(
1333             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1334       } else {
1335         // TODO: need OpFoldResult ODS adaptor to clean this up.
1336         size =
1337             subViewOp.isDynamicSize(i)
1338                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
1339                 : rewriter.create<LLVM::ConstantOp>(
1340                       loc, llvmIndexType,
1341                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1342         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1343           stride = rewriter.create<LLVM::ConstantOp>(
1344               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1345         } else {
1346           stride =
1347               subViewOp.isDynamicStride(i)
1348                   ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
1349                   : rewriter.create<LLVM::ConstantOp>(
1350                         loc, llvmIndexType,
1351                         rewriter.getI64IntegerAttr(
1352                             subViewOp.getStaticStride(i)));
1353           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1354         }
1355       }
1356       targetMemRef.setSize(rewriter, loc, j, size);
1357       targetMemRef.setStride(rewriter, loc, j, stride);
1358       j--;
1359     }
1360 
1361     rewriter.replaceOp(subViewOp, {targetMemRef});
1362     return success();
1363   }
1364 };
1365 
1366 /// Conversion pattern that transforms a transpose op into:
1367 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1368 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1369 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1370 ///      and stride. Size and stride are permutations of the original values.
1371 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1372 /// The transpose op is replaced by the alloca'ed pointer.
1373 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1374 public:
1375   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1376 
1377   LogicalResult
1378   matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
1379                   ConversionPatternRewriter &rewriter) const override {
1380     auto loc = transposeOp.getLoc();
1381     MemRefDescriptor viewMemRef(adaptor.in());
1382 
1383     // No permutation, early exit.
1384     if (transposeOp.permutation().isIdentity())
1385       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1386 
1387     auto targetMemRef = MemRefDescriptor::undef(
1388         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1389 
1390     // Copy the base and aligned pointers from the old descriptor to the new
1391     // one.
1392     targetMemRef.setAllocatedPtr(rewriter, loc,
1393                                  viewMemRef.allocatedPtr(rewriter, loc));
1394     targetMemRef.setAlignedPtr(rewriter, loc,
1395                                viewMemRef.alignedPtr(rewriter, loc));
1396 
1397     // Copy the offset pointer from the old descriptor to the new one.
1398     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1399 
1400     // Iterate over the dimensions and apply size/stride permutation.
1401     for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
1402       int sourcePos = en.index();
1403       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1404       targetMemRef.setSize(rewriter, loc, targetPos,
1405                            viewMemRef.size(rewriter, loc, sourcePos));
1406       targetMemRef.setStride(rewriter, loc, targetPos,
1407                              viewMemRef.stride(rewriter, loc, sourcePos));
1408     }
1409 
1410     rewriter.replaceOp(transposeOp, {targetMemRef});
1411     return success();
1412   }
1413 };
1414 
1415 /// Conversion pattern that transforms an op into:
1416 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1417 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1418 ///      and stride.
1419 /// The view op is replaced by the descriptor.
1420 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1421   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1422 
1423   // Build and return the value for the idx^th shape dimension, either by
1424   // returning the constant shape dimension or counting the proper dynamic size.
1425   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1426                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1427                 unsigned idx) const {
1428     assert(idx < shape.size());
1429     if (!ShapedType::isDynamic(shape[idx]))
1430       return createIndexConstant(rewriter, loc, shape[idx]);
1431     // Count the number of dynamic dims in range [0, idx]
1432     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1433       return ShapedType::isDynamic(v);
1434     });
1435     return dynamicSizes[nDynamic];
1436   }
1437 
1438   // Build and return the idx^th stride, either by returning the constant stride
1439   // or by computing the dynamic stride from the current `runningStride` and
1440   // `nextSize`. The caller should keep a running stride and update it with the
1441   // result returned by this function.
1442   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1443                   ArrayRef<int64_t> strides, Value nextSize,
1444                   Value runningStride, unsigned idx) const {
1445     assert(idx < strides.size());
1446     if (!MemRefType::isDynamicStrideOrOffset(strides[idx]))
1447       return createIndexConstant(rewriter, loc, strides[idx]);
1448     if (nextSize)
1449       return runningStride
1450                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1451                  : nextSize;
1452     assert(!runningStride);
1453     return createIndexConstant(rewriter, loc, 1);
1454   }
1455 
1456   LogicalResult
1457   matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
1458                   ConversionPatternRewriter &rewriter) const override {
1459     auto loc = viewOp.getLoc();
1460 
1461     auto viewMemRefType = viewOp.getType();
1462     auto targetElementTy =
1463         typeConverter->convertType(viewMemRefType.getElementType());
1464     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1465     if (!targetDescTy || !targetElementTy ||
1466         !LLVM::isCompatibleType(targetElementTy) ||
1467         !LLVM::isCompatibleType(targetDescTy))
1468       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1469              failure();
1470 
1471     int64_t offset;
1472     SmallVector<int64_t, 4> strides;
1473     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1474     if (failed(successStrides))
1475       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1476     assert(offset == 0 && "expected offset to be 0");
1477 
1478     // Create the descriptor.
1479     MemRefDescriptor sourceMemRef(adaptor.source());
1480     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1481 
1482     // Field 1: Copy the allocated pointer, used for malloc/free.
1483     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1484     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1485     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1486         loc,
1487         LLVM::LLVMPointerType::get(targetElementTy,
1488                                    srcMemRefType.getMemorySpaceAsInt()),
1489         allocatedPtr);
1490     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1491 
1492     // Field 2: Copy the actual aligned pointer to payload.
1493     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1494     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1495                                               alignedPtr, adaptor.byte_shift());
1496     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1497         loc,
1498         LLVM::LLVMPointerType::get(targetElementTy,
1499                                    srcMemRefType.getMemorySpaceAsInt()),
1500         alignedPtr);
1501     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1502 
1503     // Field 3: The offset in the resulting type must be 0. This is because of
1504     // the type change: an offset on srcType* may not be expressible as an
1505     // offset on dstType*.
1506     targetMemRef.setOffset(rewriter, loc,
1507                            createIndexConstant(rewriter, loc, offset));
1508 
1509     // Early exit for 0-D corner case.
1510     if (viewMemRefType.getRank() == 0)
1511       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1512 
1513     // Fields 4 and 5: Update sizes and strides.
1514     if (strides.back() != 1)
1515       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1516              failure();
1517     Value stride = nullptr, nextSize = nullptr;
1518     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1519       // Update size.
1520       Value size =
1521           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1522       targetMemRef.setSize(rewriter, loc, i, size);
1523       // Update stride.
1524       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1525       targetMemRef.setStride(rewriter, loc, i, stride);
1526       nextSize = size;
1527     }
1528 
1529     rewriter.replaceOp(viewOp, {targetMemRef});
1530     return success();
1531   }
1532 };
1533 
1534 } // namespace
1535 
1536 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1537                                                   RewritePatternSet &patterns) {
1538   // clang-format off
1539   patterns.add<
1540       AllocaOpLowering,
1541       AllocaScopeOpLowering,
1542       AssumeAlignmentOpLowering,
1543       DimOpLowering,
1544       GlobalMemrefOpLowering,
1545       GetGlobalMemrefOpLowering,
1546       LoadOpLowering,
1547       MemRefCastOpLowering,
1548       MemRefCopyOpLowering,
1549       MemRefReinterpretCastOpLowering,
1550       MemRefReshapeOpLowering,
1551       PrefetchOpLowering,
1552       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1553       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1554       StoreOpLowering,
1555       SubViewOpLowering,
1556       TransposeOpLowering,
1557       ViewOpLowering>(converter);
1558   // clang-format on
1559   auto allocLowering = converter.getOptions().allocLowering;
1560   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1561     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1562   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1563     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1564 }
1565 
1566 namespace {
1567 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1568   MemRefToLLVMPass() = default;
1569 
1570   void runOnOperation() override {
1571     Operation *op = getOperation();
1572     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1573     LowerToLLVMOptions options(&getContext(),
1574                                dataLayoutAnalysis.getAtOrAbove(op));
1575     options.allocLowering =
1576         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1577                          : LowerToLLVMOptions::AllocLowering::Malloc);
1578     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1579       options.overrideIndexBitwidth(indexBitwidth);
1580 
1581     LLVMTypeConverter typeConverter(&getContext(), options,
1582                                     &dataLayoutAnalysis);
1583     RewritePatternSet patterns(&getContext());
1584     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1585     LLVMConversionTarget target(getContext());
1586     target.addLegalOp<FuncOp>();
1587     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1588       signalPassFailure();
1589   }
1590 };
1591 } // namespace
1592 
1593 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1594   return std::make_unique<MemRefToLLVMPass>();
1595 }
1596