1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" 10 #include "../PassDetail.h" 11 #include "mlir/Analysis/DataLayoutAnalysis.h" 12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" 13 #include "mlir/Conversion/LLVMCommon/Pattern.h" 14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h" 16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/AffineMap.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 22 using namespace mlir; 23 24 namespace { 25 26 struct AllocOpLowering : public AllocLikeOpLLVMLowering { 27 AllocOpLowering(LLVMTypeConverter &converter) 28 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 29 converter) {} 30 31 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 32 Location loc, Value sizeBytes, 33 Operation *op) const override { 34 // Heap allocations. 35 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 36 MemRefType memRefType = allocOp.getType(); 37 38 Value alignment; 39 if (auto alignmentAttr = allocOp.alignment()) { 40 alignment = createIndexConstant(rewriter, loc, *alignmentAttr); 41 } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) { 42 // In the case where no alignment is specified, we may want to override 43 // `malloc's` behavior. `malloc` typically aligns at the size of the 44 // biggest scalar on a target HW. For non-scalars, use the natural 45 // alignment of the LLVM type given by the LLVM DataLayout. 46 alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter); 47 } 48 49 if (alignment) { 50 // Adjust the allocation size to consider alignment. 51 sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment); 52 } 53 54 // Allocate the underlying buffer and store a pointer to it in the MemRef 55 // descriptor. 56 Type elementPtrType = this->getElementPtrType(memRefType); 57 auto allocFuncOp = LLVM::lookupOrCreateMallocFn( 58 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 59 auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes}, 60 getVoidPtrType()); 61 Value allocatedPtr = 62 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 63 64 Value alignedPtr = allocatedPtr; 65 if (alignment) { 66 // Compute the aligned type pointer. 67 Value allocatedInt = 68 rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr); 69 Value alignmentInt = 70 createAligned(rewriter, loc, allocatedInt, alignment); 71 alignedPtr = 72 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt); 73 } 74 75 return std::make_tuple(allocatedPtr, alignedPtr); 76 } 77 }; 78 79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering { 80 AlignedAllocOpLowering(LLVMTypeConverter &converter) 81 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 82 converter) {} 83 84 /// Returns the memref's element size in bytes using the data layout active at 85 /// `op`. 86 // TODO: there are other places where this is used. Expose publicly? 87 unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const { 88 const DataLayout *layout = &defaultLayout; 89 if (const DataLayoutAnalysis *analysis = 90 getTypeConverter()->getDataLayoutAnalysis()) { 91 layout = &analysis->getAbove(op); 92 } 93 Type elementType = memRefType.getElementType(); 94 if (auto memRefElementType = elementType.dyn_cast<MemRefType>()) 95 return getTypeConverter()->getMemRefDescriptorSize(memRefElementType, 96 *layout); 97 if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>()) 98 return getTypeConverter()->getUnrankedMemRefDescriptorSize( 99 memRefElementType, *layout); 100 return layout->getTypeSize(elementType); 101 } 102 103 /// Returns true if the memref size in bytes is known to be a multiple of 104 /// factor assuming the data layout active at `op`. 105 bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor, 106 Operation *op) const { 107 uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op); 108 for (unsigned i = 0, e = type.getRank(); i < e; i++) { 109 if (type.isDynamic(type.getDimSize(i))) 110 continue; 111 sizeDivisor = sizeDivisor * type.getDimSize(i); 112 } 113 return sizeDivisor % factor == 0; 114 } 115 116 /// Returns the alignment to be used for the allocation call itself. 117 /// aligned_alloc requires the allocation size to be a power of two, and the 118 /// allocation size to be a multiple of alignment, 119 int64_t getAllocationAlignment(memref::AllocOp allocOp) const { 120 if (Optional<uint64_t> alignment = allocOp.alignment()) 121 return *alignment; 122 123 // Whenever we don't have alignment set, we will use an alignment 124 // consistent with the element type; since the allocation size has to be a 125 // power of two, we will bump to the next power of two if it already isn't. 126 auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp); 127 return std::max(kMinAlignedAllocAlignment, 128 llvm::PowerOf2Ceil(eltSizeBytes)); 129 } 130 131 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 132 Location loc, Value sizeBytes, 133 Operation *op) const override { 134 // Heap allocations. 135 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 136 MemRefType memRefType = allocOp.getType(); 137 int64_t alignment = getAllocationAlignment(allocOp); 138 Value allocAlignment = createIndexConstant(rewriter, loc, alignment); 139 140 // aligned_alloc requires size to be a multiple of alignment; we will pad 141 // the size to the next multiple if necessary. 142 if (!isMemRefSizeMultipleOf(memRefType, alignment, op)) 143 sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment); 144 145 Type elementPtrType = this->getElementPtrType(memRefType); 146 auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn( 147 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 148 auto results = 149 createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes}, 150 getVoidPtrType()); 151 Value allocatedPtr = 152 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 153 154 return std::make_tuple(allocatedPtr, allocatedPtr); 155 } 156 157 /// The minimum alignment to use with aligned_alloc (has to be a power of 2). 158 static constexpr uint64_t kMinAlignedAllocAlignment = 16UL; 159 160 /// Default layout to use in absence of the corresponding analysis. 161 DataLayout defaultLayout; 162 }; 163 164 // Out of line definition, required till C++17. 165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment; 166 167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering { 168 AllocaOpLowering(LLVMTypeConverter &converter) 169 : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(), 170 converter) {} 171 172 /// Allocates the underlying buffer using the right call. `allocatedBytePtr` 173 /// is set to null for stack allocations. `accessAlignment` is set if 174 /// alignment is needed post allocation (for eg. in conjunction with malloc). 175 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 176 Location loc, Value sizeBytes, 177 Operation *op) const override { 178 179 // With alloca, one gets a pointer to the element type right away. 180 // For stack allocations. 181 auto allocaOp = cast<memref::AllocaOp>(op); 182 auto elementPtrType = this->getElementPtrType(allocaOp.getType()); 183 184 auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>( 185 loc, elementPtrType, sizeBytes, 186 allocaOp.alignment() ? *allocaOp.alignment() : 0); 187 188 return std::make_tuple(allocatedElementPtr, allocatedElementPtr); 189 } 190 }; 191 192 struct AllocaScopeOpLowering 193 : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> { 194 using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern; 195 196 LogicalResult 197 matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor, 198 ConversionPatternRewriter &rewriter) const override { 199 OpBuilder::InsertionGuard guard(rewriter); 200 Location loc = allocaScopeOp.getLoc(); 201 202 // Split the current block before the AllocaScopeOp to create the inlining 203 // point. 204 auto *currentBlock = rewriter.getInsertionBlock(); 205 auto *remainingOpsBlock = 206 rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); 207 Block *continueBlock; 208 if (allocaScopeOp.getNumResults() == 0) { 209 continueBlock = remainingOpsBlock; 210 } else { 211 continueBlock = rewriter.createBlock(remainingOpsBlock, 212 allocaScopeOp.getResultTypes()); 213 rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock); 214 } 215 216 // Inline body region. 217 Block *beforeBody = &allocaScopeOp.bodyRegion().front(); 218 Block *afterBody = &allocaScopeOp.bodyRegion().back(); 219 rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock); 220 221 // Save stack and then branch into the body of the region. 222 rewriter.setInsertionPointToEnd(currentBlock); 223 auto stackSaveOp = 224 rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); 225 rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody); 226 227 // Replace the alloca_scope return with a branch that jumps out of the body. 228 // Stack restore before leaving the body region. 229 rewriter.setInsertionPointToEnd(afterBody); 230 auto returnOp = 231 cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator()); 232 auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>( 233 returnOp, returnOp.results(), continueBlock); 234 235 // Insert stack restore before jumping out the body of the region. 236 rewriter.setInsertionPoint(branchOp); 237 rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); 238 239 // Replace the op with values return from the body region. 240 rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments()); 241 242 return success(); 243 } 244 }; 245 246 struct AssumeAlignmentOpLowering 247 : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> { 248 using ConvertOpToLLVMPattern< 249 memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern; 250 251 LogicalResult 252 matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor, 253 ConversionPatternRewriter &rewriter) const override { 254 Value memref = adaptor.memref(); 255 unsigned alignment = op.alignment(); 256 auto loc = op.getLoc(); 257 258 MemRefDescriptor memRefDescriptor(memref); 259 Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc()); 260 261 // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that 262 // the asserted memref.alignedPtr isn't used anywhere else, as the real 263 // users like load/store/views always re-extract memref.alignedPtr as they 264 // get lowered. 265 // 266 // This relies on LLVM's CSE optimization (potentially after SROA), since 267 // after CSE all memref.alignedPtr instances get de-duplicated into the same 268 // pointer SSA value. 269 auto intPtrType = 270 getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace()); 271 Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0); 272 Value mask = 273 createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1); 274 Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr); 275 rewriter.create<LLVM::AssumeOp>( 276 loc, rewriter.create<LLVM::ICmpOp>( 277 loc, LLVM::ICmpPredicate::eq, 278 rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero)); 279 280 rewriter.eraseOp(op); 281 return success(); 282 } 283 }; 284 285 // A `dealloc` is converted into a call to `free` on the underlying data buffer. 286 // The memref descriptor being an SSA value, there is no need to clean it up 287 // in any way. 288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> { 289 using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern; 290 291 explicit DeallocOpLowering(LLVMTypeConverter &converter) 292 : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {} 293 294 LogicalResult 295 matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor, 296 ConversionPatternRewriter &rewriter) const override { 297 // Insert the `free` declaration if it is not already present. 298 auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>()); 299 MemRefDescriptor memref(adaptor.memref()); 300 Value casted = rewriter.create<LLVM::BitcastOp>( 301 op.getLoc(), getVoidPtrType(), 302 memref.allocatedPtr(rewriter, op.getLoc())); 303 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 304 op, TypeRange(), SymbolRefAttr::get(freeFunc), casted); 305 return success(); 306 } 307 }; 308 309 // A `dim` is converted to a constant for static sizes and to an access to the 310 // size stored in the memref descriptor for dynamic sizes. 311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> { 312 using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern; 313 314 LogicalResult 315 matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor, 316 ConversionPatternRewriter &rewriter) const override { 317 Type operandType = dimOp.source().getType(); 318 if (operandType.isa<UnrankedMemRefType>()) { 319 rewriter.replaceOp( 320 dimOp, {extractSizeOfUnrankedMemRef( 321 operandType, dimOp, adaptor.getOperands(), rewriter)}); 322 323 return success(); 324 } 325 if (operandType.isa<MemRefType>()) { 326 rewriter.replaceOp( 327 dimOp, {extractSizeOfRankedMemRef(operandType, dimOp, 328 adaptor.getOperands(), rewriter)}); 329 return success(); 330 } 331 llvm_unreachable("expected MemRefType or UnrankedMemRefType"); 332 } 333 334 private: 335 Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp, 336 OpAdaptor adaptor, 337 ConversionPatternRewriter &rewriter) const { 338 Location loc = dimOp.getLoc(); 339 340 auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>(); 341 auto scalarMemRefType = 342 MemRefType::get({}, unrankedMemRefType.getElementType()); 343 unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt(); 344 345 // Extract pointer to the underlying ranked descriptor and bitcast it to a 346 // memref<element_type> descriptor pointer to minimize the number of GEP 347 // operations. 348 UnrankedMemRefDescriptor unrankedDesc(adaptor.source()); 349 Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc); 350 Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>( 351 loc, 352 LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType), 353 addressSpace), 354 underlyingRankedDesc); 355 356 // Get pointer to offset field of memref<element_type> descriptor. 357 Type indexPtrTy = LLVM::LLVMPointerType::get( 358 getTypeConverter()->getIndexType(), addressSpace); 359 Value two = rewriter.create<LLVM::ConstantOp>( 360 loc, typeConverter->convertType(rewriter.getI32Type()), 361 rewriter.getI32IntegerAttr(2)); 362 Value offsetPtr = rewriter.create<LLVM::GEPOp>( 363 loc, indexPtrTy, scalarMemRefDescPtr, 364 ValueRange({createIndexConstant(rewriter, loc, 0), two})); 365 366 // The size value that we have to extract can be obtained using GEPop with 367 // `dimOp.index() + 1` index argument. 368 Value idxPlusOne = rewriter.create<LLVM::AddOp>( 369 loc, createIndexConstant(rewriter, loc, 1), adaptor.index()); 370 Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr, 371 ValueRange({idxPlusOne})); 372 return rewriter.create<LLVM::LoadOp>(loc, sizePtr); 373 } 374 375 Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const { 376 if (Optional<int64_t> idx = dimOp.getConstantIndex()) 377 return idx; 378 379 if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>()) 380 return constantOp.getValue() 381 .cast<IntegerAttr>() 382 .getValue() 383 .getSExtValue(); 384 385 return llvm::None; 386 } 387 388 Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp, 389 OpAdaptor adaptor, 390 ConversionPatternRewriter &rewriter) const { 391 Location loc = dimOp.getLoc(); 392 393 // Take advantage if index is constant. 394 MemRefType memRefType = operandType.cast<MemRefType>(); 395 if (Optional<int64_t> index = getConstantDimIndex(dimOp)) { 396 int64_t i = index.getValue(); 397 if (memRefType.isDynamicDim(i)) { 398 // extract dynamic size from the memref descriptor. 399 MemRefDescriptor descriptor(adaptor.source()); 400 return descriptor.size(rewriter, loc, i); 401 } 402 // Use constant for static size. 403 int64_t dimSize = memRefType.getDimSize(i); 404 return createIndexConstant(rewriter, loc, dimSize); 405 } 406 Value index = adaptor.index(); 407 int64_t rank = memRefType.getRank(); 408 MemRefDescriptor memrefDescriptor(adaptor.source()); 409 return memrefDescriptor.size(rewriter, loc, index, rank); 410 } 411 }; 412 413 /// Returns the LLVM type of the global variable given the memref type `type`. 414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type, 415 LLVMTypeConverter &typeConverter) { 416 // LLVM type for a global memref will be a multi-dimension array. For 417 // declarations or uninitialized global memrefs, we can potentially flatten 418 // this to a 1D array. However, for memref.global's with an initial value, 419 // we do not intend to flatten the ElementsAttribute when going from std -> 420 // LLVM dialect, so the LLVM type needs to me a multi-dimension array. 421 Type elementType = typeConverter.convertType(type.getElementType()); 422 Type arrayTy = elementType; 423 // Shape has the outermost dim at index 0, so need to walk it backwards 424 for (int64_t dim : llvm::reverse(type.getShape())) 425 arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim); 426 return arrayTy; 427 } 428 429 /// GlobalMemrefOp is lowered to a LLVM Global Variable. 430 struct GlobalMemrefOpLowering 431 : public ConvertOpToLLVMPattern<memref::GlobalOp> { 432 using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern; 433 434 LogicalResult 435 matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor, 436 ConversionPatternRewriter &rewriter) const override { 437 MemRefType type = global.type(); 438 if (!isConvertibleAndHasIdentityMaps(type)) 439 return failure(); 440 441 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 442 443 LLVM::Linkage linkage = 444 global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private; 445 446 Attribute initialValue = nullptr; 447 if (!global.isExternal() && !global.isUninitialized()) { 448 auto elementsAttr = global.initial_value()->cast<ElementsAttr>(); 449 initialValue = elementsAttr; 450 451 // For scalar memrefs, the global variable created is of the element type, 452 // so unpack the elements attribute to extract the value. 453 if (type.getRank() == 0) 454 initialValue = elementsAttr.getSplatValue<Attribute>(); 455 } 456 457 uint64_t alignment = global.alignment().getValueOr(0); 458 459 auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( 460 global, arrayTy, global.constant(), linkage, global.sym_name(), 461 initialValue, alignment, type.getMemorySpaceAsInt()); 462 if (!global.isExternal() && global.isUninitialized()) { 463 Block *blk = new Block(); 464 newGlobal.getInitializerRegion().push_back(blk); 465 rewriter.setInsertionPointToStart(blk); 466 Value undef[] = { 467 rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)}; 468 rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef); 469 } 470 return success(); 471 } 472 }; 473 474 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to 475 /// the first element stashed into the descriptor. This reuses 476 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction. 477 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering { 478 GetGlobalMemrefOpLowering(LLVMTypeConverter &converter) 479 : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(), 480 converter) {} 481 482 /// Buffer "allocation" for memref.get_global op is getting the address of 483 /// the global variable referenced. 484 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 485 Location loc, Value sizeBytes, 486 Operation *op) const override { 487 auto getGlobalOp = cast<memref::GetGlobalOp>(op); 488 MemRefType type = getGlobalOp.result().getType().cast<MemRefType>(); 489 unsigned memSpace = type.getMemorySpaceAsInt(); 490 491 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 492 auto addressOf = rewriter.create<LLVM::AddressOfOp>( 493 loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name()); 494 495 // Get the address of the first element in the array by creating a GEP with 496 // the address of the GV as the base, and (rank + 1) number of 0 indices. 497 Type elementType = typeConverter->convertType(type.getElementType()); 498 Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace); 499 500 SmallVector<Value, 4> operands = {addressOf}; 501 operands.insert(operands.end(), type.getRank() + 1, 502 createIndexConstant(rewriter, loc, 0)); 503 auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands); 504 505 // We do not expect the memref obtained using `memref.get_global` to be 506 // ever deallocated. Set the allocated pointer to be known bad value to 507 // help debug if that ever happens. 508 auto intPtrType = getIntPtrType(memSpace); 509 Value deadBeefConst = 510 createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef); 511 auto deadBeefPtr = 512 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst); 513 514 // Both allocated and aligned pointers are same. We could potentially stash 515 // a nullptr for the allocated pointer since we do not expect any dealloc. 516 return std::make_tuple(deadBeefPtr, gep); 517 } 518 }; 519 520 // Common base for load and store operations on MemRefs. Restricts the match 521 // to supported MemRef types. Provides functionality to emit code accessing a 522 // specific element of the underlying data buffer. 523 template <typename Derived> 524 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { 525 using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; 526 using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps; 527 using Base = LoadStoreOpLowering<Derived>; 528 529 LogicalResult match(Derived op) const override { 530 MemRefType type = op.getMemRefType(); 531 return isConvertibleAndHasIdentityMaps(type) ? success() : failure(); 532 } 533 }; 534 535 // Load operation is lowered to obtaining a pointer to the indexed element 536 // and loading it. 537 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> { 538 using Base::Base; 539 540 LogicalResult 541 matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor, 542 ConversionPatternRewriter &rewriter) const override { 543 auto type = loadOp.getMemRefType(); 544 545 Value dataPtr = getStridedElementPtr( 546 loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter); 547 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr); 548 return success(); 549 } 550 }; 551 552 // Store operation is lowered to obtaining a pointer to the indexed element, 553 // and storing the given value to it. 554 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> { 555 using Base::Base; 556 557 LogicalResult 558 matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor, 559 ConversionPatternRewriter &rewriter) const override { 560 auto type = op.getMemRefType(); 561 562 Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(), 563 adaptor.indices(), rewriter); 564 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr); 565 return success(); 566 } 567 }; 568 569 // The prefetch operation is lowered in a way similar to the load operation 570 // except that the llvm.prefetch operation is used for replacement. 571 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> { 572 using Base::Base; 573 574 LogicalResult 575 matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor, 576 ConversionPatternRewriter &rewriter) const override { 577 auto type = prefetchOp.getMemRefType(); 578 auto loc = prefetchOp.getLoc(); 579 580 Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(), 581 adaptor.indices(), rewriter); 582 583 // Replace with llvm.prefetch. 584 auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32)); 585 auto isWrite = rewriter.create<LLVM::ConstantOp>( 586 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite())); 587 auto localityHint = rewriter.create<LLVM::ConstantOp>( 588 loc, llvmI32Type, 589 rewriter.getI32IntegerAttr(prefetchOp.localityHint())); 590 auto isData = rewriter.create<LLVM::ConstantOp>( 591 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache())); 592 593 rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite, 594 localityHint, isData); 595 return success(); 596 } 597 }; 598 599 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> { 600 using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern; 601 602 LogicalResult match(memref::CastOp memRefCastOp) const override { 603 Type srcType = memRefCastOp.getOperand().getType(); 604 Type dstType = memRefCastOp.getType(); 605 606 // memref::CastOp reduce to bitcast in the ranked MemRef case and can be 607 // used for type erasure. For now they must preserve underlying element type 608 // and require source and result type to have the same rank. Therefore, 609 // perform a sanity check that the underlying structs are the same. Once op 610 // semantics are relaxed we can revisit. 611 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 612 return success(typeConverter->convertType(srcType) == 613 typeConverter->convertType(dstType)); 614 615 // At least one of the operands is unranked type 616 assert(srcType.isa<UnrankedMemRefType>() || 617 dstType.isa<UnrankedMemRefType>()); 618 619 // Unranked to unranked cast is disallowed 620 return !(srcType.isa<UnrankedMemRefType>() && 621 dstType.isa<UnrankedMemRefType>()) 622 ? success() 623 : failure(); 624 } 625 626 void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor, 627 ConversionPatternRewriter &rewriter) const override { 628 auto srcType = memRefCastOp.getOperand().getType(); 629 auto dstType = memRefCastOp.getType(); 630 auto targetStructType = typeConverter->convertType(memRefCastOp.getType()); 631 auto loc = memRefCastOp.getLoc(); 632 633 // For ranked/ranked case, just keep the original descriptor. 634 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 635 return rewriter.replaceOp(memRefCastOp, {adaptor.source()}); 636 637 if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) { 638 // Casting ranked to unranked memref type 639 // Set the rank in the destination from the memref type 640 // Allocate space on the stack and copy the src memref descriptor 641 // Set the ptr in the destination to the stack space 642 auto srcMemRefType = srcType.cast<MemRefType>(); 643 int64_t rank = srcMemRefType.getRank(); 644 // ptr = AllocaOp sizeof(MemRefDescriptor) 645 auto ptr = getTypeConverter()->promoteOneMemRefDescriptor( 646 loc, adaptor.source(), rewriter); 647 // voidptr = BitCastOp srcType* to void* 648 auto voidPtr = 649 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 650 .getResult(); 651 // rank = ConstantOp srcRank 652 auto rankVal = rewriter.create<LLVM::ConstantOp>( 653 loc, typeConverter->convertType(rewriter.getIntegerType(64)), 654 rewriter.getI64IntegerAttr(rank)); 655 // undef = UndefOp 656 UnrankedMemRefDescriptor memRefDesc = 657 UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType); 658 // d1 = InsertValueOp undef, rank, 0 659 memRefDesc.setRank(rewriter, loc, rankVal); 660 // d2 = InsertValueOp d1, voidptr, 1 661 memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr); 662 rewriter.replaceOp(memRefCastOp, (Value)memRefDesc); 663 664 } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) { 665 // Casting from unranked type to ranked. 666 // The operation is assumed to be doing a correct cast. If the destination 667 // type mismatches the unranked the type, it is undefined behavior. 668 UnrankedMemRefDescriptor memRefDesc(adaptor.source()); 669 // ptr = ExtractValueOp src, 1 670 auto ptr = memRefDesc.memRefDescPtr(rewriter, loc); 671 // castPtr = BitCastOp i8* to structTy* 672 auto castPtr = 673 rewriter 674 .create<LLVM::BitcastOp>( 675 loc, LLVM::LLVMPointerType::get(targetStructType), ptr) 676 .getResult(); 677 // struct = LoadOp castPtr 678 auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr); 679 rewriter.replaceOp(memRefCastOp, loadOp.getResult()); 680 } else { 681 llvm_unreachable("Unsupported unranked memref to unranked memref cast"); 682 } 683 } 684 }; 685 686 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> { 687 using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern; 688 689 LogicalResult 690 matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor, 691 ConversionPatternRewriter &rewriter) const override { 692 auto loc = op.getLoc(); 693 auto srcType = op.source().getType().cast<BaseMemRefType>(); 694 auto targetType = op.target().getType().cast<BaseMemRefType>(); 695 696 // First make sure we have an unranked memref descriptor representation. 697 auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) { 698 auto rank = rewriter.create<LLVM::ConstantOp>( 699 loc, getIndexType(), rewriter.getIndexAttr(type.getRank())); 700 auto *typeConverter = getTypeConverter(); 701 auto ptr = 702 typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter); 703 auto voidPtr = 704 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 705 .getResult(); 706 auto unrankedType = 707 UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace()); 708 return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter, 709 unrankedType, 710 ValueRange{rank, voidPtr}); 711 }; 712 713 Value unrankedSource = srcType.hasRank() 714 ? makeUnranked(adaptor.source(), srcType) 715 : adaptor.source(); 716 Value unrankedTarget = targetType.hasRank() 717 ? makeUnranked(adaptor.target(), targetType) 718 : adaptor.target(); 719 720 // Now promote the unranked descriptors to the stack. 721 auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), 722 rewriter.getIndexAttr(1)); 723 auto promote = [&](Value desc) { 724 auto ptrType = LLVM::LLVMPointerType::get(desc.getType()); 725 auto allocated = 726 rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one}); 727 rewriter.create<LLVM::StoreOp>(loc, desc, allocated); 728 return allocated; 729 }; 730 731 auto sourcePtr = promote(unrankedSource); 732 auto targetPtr = promote(unrankedTarget); 733 734 auto elemSize = rewriter.create<LLVM::ConstantOp>( 735 loc, getIndexType(), 736 rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8)); 737 auto copyFn = LLVM::lookupOrCreateMemRefCopyFn( 738 op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType()); 739 rewriter.create<LLVM::CallOp>(loc, copyFn, 740 ValueRange{elemSize, sourcePtr, targetPtr}); 741 rewriter.eraseOp(op); 742 743 return success(); 744 } 745 }; 746 747 /// Extracts allocated, aligned pointers and offset from a ranked or unranked 748 /// memref type. In unranked case, the fields are extracted from the underlying 749 /// ranked descriptor. 750 static void extractPointersAndOffset(Location loc, 751 ConversionPatternRewriter &rewriter, 752 LLVMTypeConverter &typeConverter, 753 Value originalOperand, 754 Value convertedOperand, 755 Value *allocatedPtr, Value *alignedPtr, 756 Value *offset = nullptr) { 757 Type operandType = originalOperand.getType(); 758 if (operandType.isa<MemRefType>()) { 759 MemRefDescriptor desc(convertedOperand); 760 *allocatedPtr = desc.allocatedPtr(rewriter, loc); 761 *alignedPtr = desc.alignedPtr(rewriter, loc); 762 if (offset != nullptr) 763 *offset = desc.offset(rewriter, loc); 764 return; 765 } 766 767 unsigned memorySpace = 768 operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 769 Type elementType = operandType.cast<UnrankedMemRefType>().getElementType(); 770 Type llvmElementType = typeConverter.convertType(elementType); 771 Type elementPtrPtrType = LLVM::LLVMPointerType::get( 772 LLVM::LLVMPointerType::get(llvmElementType, memorySpace)); 773 774 // Extract pointer to the underlying ranked memref descriptor and cast it to 775 // ElemType**. 776 UnrankedMemRefDescriptor unrankedDesc(convertedOperand); 777 Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc); 778 779 *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( 780 rewriter, loc, underlyingDescPtr, elementPtrPtrType); 781 *alignedPtr = UnrankedMemRefDescriptor::alignedPtr( 782 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 783 if (offset != nullptr) { 784 *offset = UnrankedMemRefDescriptor::offset( 785 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 786 } 787 } 788 789 struct MemRefReinterpretCastOpLowering 790 : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> { 791 using ConvertOpToLLVMPattern< 792 memref::ReinterpretCastOp>::ConvertOpToLLVMPattern; 793 794 LogicalResult 795 matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor, 796 ConversionPatternRewriter &rewriter) const override { 797 Type srcType = castOp.source().getType(); 798 799 Value descriptor; 800 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp, 801 adaptor, &descriptor))) 802 return failure(); 803 rewriter.replaceOp(castOp, {descriptor}); 804 return success(); 805 } 806 807 private: 808 LogicalResult convertSourceMemRefToDescriptor( 809 ConversionPatternRewriter &rewriter, Type srcType, 810 memref::ReinterpretCastOp castOp, 811 memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const { 812 MemRefType targetMemRefType = 813 castOp.getResult().getType().cast<MemRefType>(); 814 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 815 .dyn_cast_or_null<LLVM::LLVMStructType>(); 816 if (!llvmTargetDescriptorTy) 817 return failure(); 818 819 // Create descriptor. 820 Location loc = castOp.getLoc(); 821 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 822 823 // Set allocated and aligned pointers. 824 Value allocatedPtr, alignedPtr; 825 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 826 castOp.source(), adaptor.source(), &allocatedPtr, 827 &alignedPtr); 828 desc.setAllocatedPtr(rewriter, loc, allocatedPtr); 829 desc.setAlignedPtr(rewriter, loc, alignedPtr); 830 831 // Set offset. 832 if (castOp.isDynamicOffset(0)) 833 desc.setOffset(rewriter, loc, adaptor.offsets()[0]); 834 else 835 desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0)); 836 837 // Set sizes and strides. 838 unsigned dynSizeId = 0; 839 unsigned dynStrideId = 0; 840 for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) { 841 if (castOp.isDynamicSize(i)) 842 desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]); 843 else 844 desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i)); 845 846 if (castOp.isDynamicStride(i)) 847 desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]); 848 else 849 desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i)); 850 } 851 *descriptor = desc; 852 return success(); 853 } 854 }; 855 856 struct MemRefReshapeOpLowering 857 : public ConvertOpToLLVMPattern<memref::ReshapeOp> { 858 using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern; 859 860 LogicalResult 861 matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor, 862 ConversionPatternRewriter &rewriter) const override { 863 Type srcType = reshapeOp.source().getType(); 864 865 Value descriptor; 866 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp, 867 adaptor, &descriptor))) 868 return failure(); 869 rewriter.replaceOp(reshapeOp, {descriptor}); 870 return success(); 871 } 872 873 private: 874 LogicalResult 875 convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter, 876 Type srcType, memref::ReshapeOp reshapeOp, 877 memref::ReshapeOp::Adaptor adaptor, 878 Value *descriptor) const { 879 // Conversion for statically-known shape args is performed via 880 // `memref_reinterpret_cast`. 881 auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>(); 882 if (shapeMemRefType.hasStaticShape()) 883 return failure(); 884 885 // The shape is a rank-1 tensor with unknown length. 886 Location loc = reshapeOp.getLoc(); 887 MemRefDescriptor shapeDesc(adaptor.shape()); 888 Value resultRank = shapeDesc.size(rewriter, loc, 0); 889 890 // Extract address space and element type. 891 auto targetType = 892 reshapeOp.getResult().getType().cast<UnrankedMemRefType>(); 893 unsigned addressSpace = targetType.getMemorySpaceAsInt(); 894 Type elementType = targetType.getElementType(); 895 896 // Create the unranked memref descriptor that holds the ranked one. The 897 // inner descriptor is allocated on stack. 898 auto targetDesc = UnrankedMemRefDescriptor::undef( 899 rewriter, loc, typeConverter->convertType(targetType)); 900 targetDesc.setRank(rewriter, loc, resultRank); 901 SmallVector<Value, 4> sizes; 902 UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(), 903 targetDesc, sizes); 904 Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>( 905 loc, getVoidPtrType(), sizes.front(), llvm::None); 906 targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr); 907 908 // Extract pointers and offset from the source memref. 909 Value allocatedPtr, alignedPtr, offset; 910 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 911 reshapeOp.source(), adaptor.source(), 912 &allocatedPtr, &alignedPtr, &offset); 913 914 // Set pointers and offset. 915 Type llvmElementType = typeConverter->convertType(elementType); 916 auto elementPtrPtrType = LLVM::LLVMPointerType::get( 917 LLVM::LLVMPointerType::get(llvmElementType, addressSpace)); 918 UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr, 919 elementPtrPtrType, allocatedPtr); 920 UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(), 921 underlyingDescPtr, 922 elementPtrPtrType, alignedPtr); 923 UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(), 924 underlyingDescPtr, elementPtrPtrType, 925 offset); 926 927 // Use the offset pointer as base for further addressing. Copy over the new 928 // shape and compute strides. For this, we create a loop from rank-1 to 0. 929 Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr( 930 rewriter, loc, *getTypeConverter(), underlyingDescPtr, 931 elementPtrPtrType); 932 Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr( 933 rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank); 934 Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc); 935 Value oneIndex = createIndexConstant(rewriter, loc, 1); 936 Value resultRankMinusOne = 937 rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex); 938 939 Block *initBlock = rewriter.getInsertionBlock(); 940 Type indexType = getTypeConverter()->getIndexType(); 941 Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint()); 942 943 Block *condBlock = rewriter.createBlock(initBlock->getParent(), {}, 944 {indexType, indexType}); 945 946 // Move the remaining initBlock ops to condBlock. 947 Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt); 948 rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange()); 949 950 rewriter.setInsertionPointToEnd(initBlock); 951 rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}), 952 condBlock); 953 rewriter.setInsertionPointToStart(condBlock); 954 Value indexArg = condBlock->getArgument(0); 955 Value strideArg = condBlock->getArgument(1); 956 957 Value zeroIndex = createIndexConstant(rewriter, loc, 0); 958 Value pred = rewriter.create<LLVM::ICmpOp>( 959 loc, IntegerType::get(rewriter.getContext(), 1), 960 LLVM::ICmpPredicate::sge, indexArg, zeroIndex); 961 962 Block *bodyBlock = 963 rewriter.splitBlock(condBlock, rewriter.getInsertionPoint()); 964 rewriter.setInsertionPointToStart(bodyBlock); 965 966 // Copy size from shape to descriptor. 967 Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType); 968 Value sizeLoadGep = rewriter.create<LLVM::GEPOp>( 969 loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg}); 970 Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep); 971 UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(), 972 targetSizesBase, indexArg, size); 973 974 // Write stride value and compute next one. 975 UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(), 976 targetStridesBase, indexArg, strideArg); 977 Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size); 978 979 // Decrement loop counter and branch back. 980 Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex); 981 rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}), 982 condBlock); 983 984 Block *remainder = 985 rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint()); 986 987 // Hook up the cond exit to the remainder. 988 rewriter.setInsertionPointToEnd(condBlock); 989 rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder, 990 llvm::None); 991 992 // Reset position to beginning of new remainder block. 993 rewriter.setInsertionPointToStart(remainder); 994 995 *descriptor = targetDesc; 996 return success(); 997 } 998 }; 999 1000 /// Helper function to convert a vector of `OpFoldResult`s into a vector of 1001 /// `Value`s. 1002 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc, 1003 Type &llvmIndexType, 1004 ArrayRef<OpFoldResult> valueOrAttrVec) { 1005 return llvm::to_vector<4>( 1006 llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value { 1007 if (auto attr = value.dyn_cast<Attribute>()) 1008 return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr); 1009 return value.get<Value>(); 1010 })); 1011 } 1012 1013 /// Compute a map that for a given dimension of the expanded type gives the 1014 /// dimension in the collapsed type it maps to. Essentially its the inverse of 1015 /// the `reassocation` maps. 1016 static DenseMap<int64_t, int64_t> 1017 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) { 1018 llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim; 1019 for (auto &en : enumerate(reassociation)) { 1020 for (auto dim : en.value()) 1021 expandedDimToCollapsedDim[dim] = en.index(); 1022 } 1023 return expandedDimToCollapsedDim; 1024 } 1025 1026 static OpFoldResult 1027 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType, 1028 int64_t outDimIndex, ArrayRef<int64_t> outStaticShape, 1029 MemRefDescriptor &inDesc, 1030 ArrayRef<int64_t> inStaticShape, 1031 ArrayRef<ReassociationIndices> reassocation, 1032 DenseMap<int64_t, int64_t> &outDimToInDimMap) { 1033 int64_t outDimSize = outStaticShape[outDimIndex]; 1034 if (!ShapedType::isDynamic(outDimSize)) 1035 return b.getIndexAttr(outDimSize); 1036 1037 // Calculate the multiplication of all the out dim sizes except the 1038 // current dim. 1039 int64_t inDimIndex = outDimToInDimMap[outDimIndex]; 1040 int64_t otherDimSizesMul = 1; 1041 for (auto otherDimIndex : reassocation[inDimIndex]) { 1042 if (otherDimIndex == static_cast<unsigned>(outDimIndex)) 1043 continue; 1044 int64_t otherDimSize = outStaticShape[otherDimIndex]; 1045 assert(!ShapedType::isDynamic(otherDimSize) && 1046 "single dimension cannot be expanded into multiple dynamic " 1047 "dimensions"); 1048 otherDimSizesMul *= otherDimSize; 1049 } 1050 1051 // outDimSize = inDimSize / otherOutDimSizesMul 1052 int64_t inDimSize = inStaticShape[inDimIndex]; 1053 Value inDimSizeDynamic = 1054 ShapedType::isDynamic(inDimSize) 1055 ? inDesc.size(b, loc, inDimIndex) 1056 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1057 b.getIndexAttr(inDimSize)); 1058 Value outDimSizeDynamic = b.create<LLVM::SDivOp>( 1059 loc, inDimSizeDynamic, 1060 b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1061 b.getIndexAttr(otherDimSizesMul))); 1062 return outDimSizeDynamic; 1063 } 1064 1065 static OpFoldResult getCollapsedOutputDimSize( 1066 OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex, 1067 int64_t outDimSize, ArrayRef<int64_t> inStaticShape, 1068 MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) { 1069 if (!ShapedType::isDynamic(outDimSize)) 1070 return b.getIndexAttr(outDimSize); 1071 1072 Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1)); 1073 Value outDimSizeDynamic = c1; 1074 for (auto inDimIndex : reassocation[outDimIndex]) { 1075 int64_t inDimSize = inStaticShape[inDimIndex]; 1076 Value inDimSizeDynamic = 1077 ShapedType::isDynamic(inDimSize) 1078 ? inDesc.size(b, loc, inDimIndex) 1079 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1080 b.getIndexAttr(inDimSize)); 1081 outDimSizeDynamic = 1082 b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic); 1083 } 1084 return outDimSizeDynamic; 1085 } 1086 1087 static SmallVector<OpFoldResult, 4> 1088 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1089 ArrayRef<ReassociationIndices> reassocation, 1090 ArrayRef<int64_t> inStaticShape, 1091 MemRefDescriptor &inDesc, 1092 ArrayRef<int64_t> outStaticShape) { 1093 return llvm::to_vector<4>(llvm::map_range( 1094 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1095 return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1096 outStaticShape[outDimIndex], 1097 inStaticShape, inDesc, reassocation); 1098 })); 1099 } 1100 1101 static SmallVector<OpFoldResult, 4> 1102 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1103 ArrayRef<ReassociationIndices> reassocation, 1104 ArrayRef<int64_t> inStaticShape, 1105 MemRefDescriptor &inDesc, 1106 ArrayRef<int64_t> outStaticShape) { 1107 DenseMap<int64_t, int64_t> outDimToInDimMap = 1108 getExpandedDimToCollapsedDimMap(reassocation); 1109 return llvm::to_vector<4>(llvm::map_range( 1110 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1111 return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1112 outStaticShape, inDesc, inStaticShape, 1113 reassocation, outDimToInDimMap); 1114 })); 1115 } 1116 1117 static SmallVector<Value> 1118 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1119 ArrayRef<ReassociationIndices> reassocation, 1120 ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc, 1121 ArrayRef<int64_t> outStaticShape) { 1122 return outStaticShape.size() < inStaticShape.size() 1123 ? getAsValues(b, loc, llvmIndexType, 1124 getCollapsedOutputShape(b, loc, llvmIndexType, 1125 reassocation, inStaticShape, 1126 inDesc, outStaticShape)) 1127 : getAsValues(b, loc, llvmIndexType, 1128 getExpandedOutputShape(b, loc, llvmIndexType, 1129 reassocation, inStaticShape, 1130 inDesc, outStaticShape)); 1131 } 1132 1133 // ReshapeOp creates a new view descriptor of the proper rank. 1134 // For now, the only conversion supported is for target MemRef with static sizes 1135 // and strides. 1136 template <typename ReshapeOp> 1137 class ReassociatingReshapeOpConversion 1138 : public ConvertOpToLLVMPattern<ReshapeOp> { 1139 public: 1140 using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern; 1141 using ReshapeOpAdaptor = typename ReshapeOp::Adaptor; 1142 1143 LogicalResult 1144 matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor, 1145 ConversionPatternRewriter &rewriter) const override { 1146 MemRefType dstType = reshapeOp.getResultType(); 1147 MemRefType srcType = reshapeOp.getSrcType(); 1148 if (!srcType.getLayout().isIdentity() || 1149 !dstType.getLayout().isIdentity()) { 1150 return rewriter.notifyMatchFailure(reshapeOp, 1151 "only empty layout map is supported"); 1152 } 1153 1154 int64_t offset; 1155 SmallVector<int64_t, 4> strides; 1156 if (failed(getStridesAndOffset(dstType, strides, offset))) { 1157 return rewriter.notifyMatchFailure( 1158 reshapeOp, "failed to get stride and offset exprs"); 1159 } 1160 1161 MemRefDescriptor srcDesc(adaptor.src()); 1162 Location loc = reshapeOp->getLoc(); 1163 auto dstDesc = MemRefDescriptor::undef( 1164 rewriter, loc, this->typeConverter->convertType(dstType)); 1165 dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc)); 1166 dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc)); 1167 dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc)); 1168 1169 ArrayRef<int64_t> srcStaticShape = srcType.getShape(); 1170 ArrayRef<int64_t> dstStaticShape = dstType.getShape(); 1171 Type llvmIndexType = 1172 this->typeConverter->convertType(rewriter.getIndexType()); 1173 SmallVector<Value> dstShape = getDynamicOutputShape( 1174 rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(), 1175 srcStaticShape, srcDesc, dstStaticShape); 1176 for (auto &en : llvm::enumerate(dstShape)) 1177 dstDesc.setSize(rewriter, loc, en.index(), en.value()); 1178 1179 auto isStaticStride = [](int64_t stride) { 1180 return !ShapedType::isDynamicStrideOrOffset(stride); 1181 }; 1182 if (llvm::all_of(strides, isStaticStride)) { 1183 for (auto &en : llvm::enumerate(strides)) 1184 dstDesc.setConstantStride(rewriter, loc, en.index(), en.value()); 1185 } else { 1186 Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType, 1187 rewriter.getIndexAttr(1)); 1188 Value stride = c1; 1189 for (auto dimIndex : 1190 llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) { 1191 dstDesc.setStride(rewriter, loc, dimIndex, stride); 1192 stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride); 1193 } 1194 } 1195 rewriter.replaceOp(reshapeOp, {dstDesc}); 1196 return success(); 1197 } 1198 }; 1199 1200 /// Conversion pattern that transforms a subview op into: 1201 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1202 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1203 /// and stride. 1204 /// The subview op is replaced by the descriptor. 1205 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> { 1206 using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern; 1207 1208 LogicalResult 1209 matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor, 1210 ConversionPatternRewriter &rewriter) const override { 1211 auto loc = subViewOp.getLoc(); 1212 1213 auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>(); 1214 auto sourceElementTy = 1215 typeConverter->convertType(sourceMemRefType.getElementType()); 1216 1217 auto viewMemRefType = subViewOp.getType(); 1218 auto inferredType = memref::SubViewOp::inferResultType( 1219 subViewOp.getSourceType(), 1220 extractFromI64ArrayAttr(subViewOp.static_offsets()), 1221 extractFromI64ArrayAttr(subViewOp.static_sizes()), 1222 extractFromI64ArrayAttr(subViewOp.static_strides())) 1223 .cast<MemRefType>(); 1224 auto targetElementTy = 1225 typeConverter->convertType(viewMemRefType.getElementType()); 1226 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1227 if (!sourceElementTy || !targetDescTy || !targetElementTy || 1228 !LLVM::isCompatibleType(sourceElementTy) || 1229 !LLVM::isCompatibleType(targetElementTy) || 1230 !LLVM::isCompatibleType(targetDescTy)) 1231 return failure(); 1232 1233 // Extract the offset and strides from the type. 1234 int64_t offset; 1235 SmallVector<int64_t, 4> strides; 1236 auto successStrides = getStridesAndOffset(inferredType, strides, offset); 1237 if (failed(successStrides)) 1238 return failure(); 1239 1240 // Create the descriptor. 1241 if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType())) 1242 return failure(); 1243 MemRefDescriptor sourceMemRef(adaptor.getOperands().front()); 1244 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1245 1246 // Copy the buffer pointer from the old descriptor to the new one. 1247 Value extracted = sourceMemRef.allocatedPtr(rewriter, loc); 1248 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1249 loc, 1250 LLVM::LLVMPointerType::get(targetElementTy, 1251 viewMemRefType.getMemorySpaceAsInt()), 1252 extracted); 1253 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1254 1255 // Copy the aligned pointer from the old descriptor to the new one. 1256 extracted = sourceMemRef.alignedPtr(rewriter, loc); 1257 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1258 loc, 1259 LLVM::LLVMPointerType::get(targetElementTy, 1260 viewMemRefType.getMemorySpaceAsInt()), 1261 extracted); 1262 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1263 1264 size_t inferredShapeRank = inferredType.getRank(); 1265 size_t resultShapeRank = viewMemRefType.getRank(); 1266 1267 // Extract strides needed to compute offset. 1268 SmallVector<Value, 4> strideValues; 1269 strideValues.reserve(inferredShapeRank); 1270 for (unsigned i = 0; i < inferredShapeRank; ++i) 1271 strideValues.push_back(sourceMemRef.stride(rewriter, loc, i)); 1272 1273 // Offset. 1274 auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType()); 1275 if (!ShapedType::isDynamicStrideOrOffset(offset)) { 1276 targetMemRef.setConstantOffset(rewriter, loc, offset); 1277 } else { 1278 Value baseOffset = sourceMemRef.offset(rewriter, loc); 1279 // `inferredShapeRank` may be larger than the number of offset operands 1280 // because of trailing semantics. In this case, the offset is guaranteed 1281 // to be interpreted as 0 and we can just skip the extra dimensions. 1282 for (unsigned i = 0, e = std::min(inferredShapeRank, 1283 subViewOp.getMixedOffsets().size()); 1284 i < e; ++i) { 1285 Value offset = 1286 // TODO: need OpFoldResult ODS adaptor to clean this up. 1287 subViewOp.isDynamicOffset(i) 1288 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)] 1289 : rewriter.create<LLVM::ConstantOp>( 1290 loc, llvmIndexType, 1291 rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i))); 1292 Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]); 1293 baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul); 1294 } 1295 targetMemRef.setOffset(rewriter, loc, baseOffset); 1296 } 1297 1298 // Update sizes and strides. 1299 SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes(); 1300 SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides(); 1301 assert(mixedSizes.size() == mixedStrides.size() && 1302 "expected sizes and strides of equal length"); 1303 llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims(); 1304 for (int i = inferredShapeRank - 1, j = resultShapeRank - 1; 1305 i >= 0 && j >= 0; --i) { 1306 if (unusedDims.contains(i)) 1307 continue; 1308 1309 // `i` may overflow subViewOp.getMixedSizes because of trailing semantics. 1310 // In this case, the size is guaranteed to be interpreted as Dim and the 1311 // stride as 1. 1312 Value size, stride; 1313 if (static_cast<unsigned>(i) >= mixedSizes.size()) { 1314 // If the static size is available, use it directly. This is similar to 1315 // the folding of dim(constant-op) but removes the need for dim to be 1316 // aware of LLVM constants and for this pass to be aware of std 1317 // constants. 1318 int64_t staticSize = 1319 subViewOp.source().getType().cast<MemRefType>().getShape()[i]; 1320 if (staticSize != ShapedType::kDynamicSize) { 1321 size = rewriter.create<LLVM::ConstantOp>( 1322 loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize)); 1323 } else { 1324 Value pos = rewriter.create<LLVM::ConstantOp>( 1325 loc, llvmIndexType, rewriter.getI64IntegerAttr(i)); 1326 Value dim = 1327 rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos); 1328 auto cast = rewriter.create<UnrealizedConversionCastOp>( 1329 loc, llvmIndexType, dim); 1330 size = cast.getResult(0); 1331 } 1332 stride = rewriter.create<LLVM::ConstantOp>( 1333 loc, llvmIndexType, rewriter.getI64IntegerAttr(1)); 1334 } else { 1335 // TODO: need OpFoldResult ODS adaptor to clean this up. 1336 size = 1337 subViewOp.isDynamicSize(i) 1338 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)] 1339 : rewriter.create<LLVM::ConstantOp>( 1340 loc, llvmIndexType, 1341 rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i))); 1342 if (!ShapedType::isDynamicStrideOrOffset(strides[i])) { 1343 stride = rewriter.create<LLVM::ConstantOp>( 1344 loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i])); 1345 } else { 1346 stride = 1347 subViewOp.isDynamicStride(i) 1348 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)] 1349 : rewriter.create<LLVM::ConstantOp>( 1350 loc, llvmIndexType, 1351 rewriter.getI64IntegerAttr( 1352 subViewOp.getStaticStride(i))); 1353 stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]); 1354 } 1355 } 1356 targetMemRef.setSize(rewriter, loc, j, size); 1357 targetMemRef.setStride(rewriter, loc, j, stride); 1358 j--; 1359 } 1360 1361 rewriter.replaceOp(subViewOp, {targetMemRef}); 1362 return success(); 1363 } 1364 }; 1365 1366 /// Conversion pattern that transforms a transpose op into: 1367 /// 1. A function entry `alloca` operation to allocate a ViewDescriptor. 1368 /// 2. A load of the ViewDescriptor from the pointer allocated in 1. 1369 /// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size 1370 /// and stride. Size and stride are permutations of the original values. 1371 /// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer. 1372 /// The transpose op is replaced by the alloca'ed pointer. 1373 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> { 1374 public: 1375 using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern; 1376 1377 LogicalResult 1378 matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor, 1379 ConversionPatternRewriter &rewriter) const override { 1380 auto loc = transposeOp.getLoc(); 1381 MemRefDescriptor viewMemRef(adaptor.in()); 1382 1383 // No permutation, early exit. 1384 if (transposeOp.permutation().isIdentity()) 1385 return rewriter.replaceOp(transposeOp, {viewMemRef}), success(); 1386 1387 auto targetMemRef = MemRefDescriptor::undef( 1388 rewriter, loc, typeConverter->convertType(transposeOp.getShapedType())); 1389 1390 // Copy the base and aligned pointers from the old descriptor to the new 1391 // one. 1392 targetMemRef.setAllocatedPtr(rewriter, loc, 1393 viewMemRef.allocatedPtr(rewriter, loc)); 1394 targetMemRef.setAlignedPtr(rewriter, loc, 1395 viewMemRef.alignedPtr(rewriter, loc)); 1396 1397 // Copy the offset pointer from the old descriptor to the new one. 1398 targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc)); 1399 1400 // Iterate over the dimensions and apply size/stride permutation. 1401 for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) { 1402 int sourcePos = en.index(); 1403 int targetPos = en.value().cast<AffineDimExpr>().getPosition(); 1404 targetMemRef.setSize(rewriter, loc, targetPos, 1405 viewMemRef.size(rewriter, loc, sourcePos)); 1406 targetMemRef.setStride(rewriter, loc, targetPos, 1407 viewMemRef.stride(rewriter, loc, sourcePos)); 1408 } 1409 1410 rewriter.replaceOp(transposeOp, {targetMemRef}); 1411 return success(); 1412 } 1413 }; 1414 1415 /// Conversion pattern that transforms an op into: 1416 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1417 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1418 /// and stride. 1419 /// The view op is replaced by the descriptor. 1420 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> { 1421 using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern; 1422 1423 // Build and return the value for the idx^th shape dimension, either by 1424 // returning the constant shape dimension or counting the proper dynamic size. 1425 Value getSize(ConversionPatternRewriter &rewriter, Location loc, 1426 ArrayRef<int64_t> shape, ValueRange dynamicSizes, 1427 unsigned idx) const { 1428 assert(idx < shape.size()); 1429 if (!ShapedType::isDynamic(shape[idx])) 1430 return createIndexConstant(rewriter, loc, shape[idx]); 1431 // Count the number of dynamic dims in range [0, idx] 1432 unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) { 1433 return ShapedType::isDynamic(v); 1434 }); 1435 return dynamicSizes[nDynamic]; 1436 } 1437 1438 // Build and return the idx^th stride, either by returning the constant stride 1439 // or by computing the dynamic stride from the current `runningStride` and 1440 // `nextSize`. The caller should keep a running stride and update it with the 1441 // result returned by this function. 1442 Value getStride(ConversionPatternRewriter &rewriter, Location loc, 1443 ArrayRef<int64_t> strides, Value nextSize, 1444 Value runningStride, unsigned idx) const { 1445 assert(idx < strides.size()); 1446 if (!MemRefType::isDynamicStrideOrOffset(strides[idx])) 1447 return createIndexConstant(rewriter, loc, strides[idx]); 1448 if (nextSize) 1449 return runningStride 1450 ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) 1451 : nextSize; 1452 assert(!runningStride); 1453 return createIndexConstant(rewriter, loc, 1); 1454 } 1455 1456 LogicalResult 1457 matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor, 1458 ConversionPatternRewriter &rewriter) const override { 1459 auto loc = viewOp.getLoc(); 1460 1461 auto viewMemRefType = viewOp.getType(); 1462 auto targetElementTy = 1463 typeConverter->convertType(viewMemRefType.getElementType()); 1464 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1465 if (!targetDescTy || !targetElementTy || 1466 !LLVM::isCompatibleType(targetElementTy) || 1467 !LLVM::isCompatibleType(targetDescTy)) 1468 return viewOp.emitWarning("Target descriptor type not converted to LLVM"), 1469 failure(); 1470 1471 int64_t offset; 1472 SmallVector<int64_t, 4> strides; 1473 auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); 1474 if (failed(successStrides)) 1475 return viewOp.emitWarning("cannot cast to non-strided shape"), failure(); 1476 assert(offset == 0 && "expected offset to be 0"); 1477 1478 // Create the descriptor. 1479 MemRefDescriptor sourceMemRef(adaptor.source()); 1480 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1481 1482 // Field 1: Copy the allocated pointer, used for malloc/free. 1483 Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc); 1484 auto srcMemRefType = viewOp.source().getType().cast<MemRefType>(); 1485 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1486 loc, 1487 LLVM::LLVMPointerType::get(targetElementTy, 1488 srcMemRefType.getMemorySpaceAsInt()), 1489 allocatedPtr); 1490 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1491 1492 // Field 2: Copy the actual aligned pointer to payload. 1493 Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc); 1494 alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(), 1495 alignedPtr, adaptor.byte_shift()); 1496 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1497 loc, 1498 LLVM::LLVMPointerType::get(targetElementTy, 1499 srcMemRefType.getMemorySpaceAsInt()), 1500 alignedPtr); 1501 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1502 1503 // Field 3: The offset in the resulting type must be 0. This is because of 1504 // the type change: an offset on srcType* may not be expressible as an 1505 // offset on dstType*. 1506 targetMemRef.setOffset(rewriter, loc, 1507 createIndexConstant(rewriter, loc, offset)); 1508 1509 // Early exit for 0-D corner case. 1510 if (viewMemRefType.getRank() == 0) 1511 return rewriter.replaceOp(viewOp, {targetMemRef}), success(); 1512 1513 // Fields 4 and 5: Update sizes and strides. 1514 if (strides.back() != 1) 1515 return viewOp.emitWarning("cannot cast to non-contiguous shape"), 1516 failure(); 1517 Value stride = nullptr, nextSize = nullptr; 1518 for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { 1519 // Update size. 1520 Value size = 1521 getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i); 1522 targetMemRef.setSize(rewriter, loc, i, size); 1523 // Update stride. 1524 stride = getStride(rewriter, loc, strides, nextSize, stride, i); 1525 targetMemRef.setStride(rewriter, loc, i, stride); 1526 nextSize = size; 1527 } 1528 1529 rewriter.replaceOp(viewOp, {targetMemRef}); 1530 return success(); 1531 } 1532 }; 1533 1534 } // namespace 1535 1536 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter, 1537 RewritePatternSet &patterns) { 1538 // clang-format off 1539 patterns.add< 1540 AllocaOpLowering, 1541 AllocaScopeOpLowering, 1542 AssumeAlignmentOpLowering, 1543 DimOpLowering, 1544 GlobalMemrefOpLowering, 1545 GetGlobalMemrefOpLowering, 1546 LoadOpLowering, 1547 MemRefCastOpLowering, 1548 MemRefCopyOpLowering, 1549 MemRefReinterpretCastOpLowering, 1550 MemRefReshapeOpLowering, 1551 PrefetchOpLowering, 1552 ReassociatingReshapeOpConversion<memref::ExpandShapeOp>, 1553 ReassociatingReshapeOpConversion<memref::CollapseShapeOp>, 1554 StoreOpLowering, 1555 SubViewOpLowering, 1556 TransposeOpLowering, 1557 ViewOpLowering>(converter); 1558 // clang-format on 1559 auto allocLowering = converter.getOptions().allocLowering; 1560 if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc) 1561 patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter); 1562 else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc) 1563 patterns.add<AllocOpLowering, DeallocOpLowering>(converter); 1564 } 1565 1566 namespace { 1567 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> { 1568 MemRefToLLVMPass() = default; 1569 1570 void runOnOperation() override { 1571 Operation *op = getOperation(); 1572 const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); 1573 LowerToLLVMOptions options(&getContext(), 1574 dataLayoutAnalysis.getAtOrAbove(op)); 1575 options.allocLowering = 1576 (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc 1577 : LowerToLLVMOptions::AllocLowering::Malloc); 1578 if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) 1579 options.overrideIndexBitwidth(indexBitwidth); 1580 1581 LLVMTypeConverter typeConverter(&getContext(), options, 1582 &dataLayoutAnalysis); 1583 RewritePatternSet patterns(&getContext()); 1584 populateMemRefToLLVMConversionPatterns(typeConverter, patterns); 1585 LLVMConversionTarget target(getContext()); 1586 target.addLegalOp<FuncOp>(); 1587 if (failed(applyPartialConversion(op, target, std::move(patterns)))) 1588 signalPassFailure(); 1589 } 1590 }; 1591 } // namespace 1592 1593 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() { 1594 return std::make_unique<MemRefToLLVMPass>(); 1595 } 1596