1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 
22 using namespace mlir;
23 
24 namespace {
25 
26 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
27   AllocOpLowering(LLVMTypeConverter &converter)
28       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
29                                 converter) {}
30 
31   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
32                                           Location loc, Value sizeBytes,
33                                           Operation *op) const override {
34     // Heap allocations.
35     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
36     MemRefType memRefType = allocOp.getType();
37 
38     Value alignment;
39     if (auto alignmentAttr = allocOp.alignment()) {
40       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
41     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
42       // In the case where no alignment is specified, we may want to override
43       // `malloc's` behavior. `malloc` typically aligns at the size of the
44       // biggest scalar on a target HW. For non-scalars, use the natural
45       // alignment of the LLVM type given by the LLVM DataLayout.
46       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
47     }
48 
49     if (alignment) {
50       // Adjust the allocation size to consider alignment.
51       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
52     }
53 
54     // Allocate the underlying buffer and store a pointer to it in the MemRef
55     // descriptor.
56     Type elementPtrType = this->getElementPtrType(memRefType);
57     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
58         allocOp->getParentOfType<ModuleOp>(), getIndexType());
59     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
60                                   getVoidPtrType());
61     Value allocatedPtr =
62         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
63 
64     Value alignedPtr = allocatedPtr;
65     if (alignment) {
66       // Compute the aligned type pointer.
67       Value allocatedInt =
68           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
69       Value alignmentInt =
70           createAligned(rewriter, loc, allocatedInt, alignment);
71       alignedPtr =
72           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
73     }
74 
75     return std::make_tuple(allocatedPtr, alignedPtr);
76   }
77 };
78 
79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
80   AlignedAllocOpLowering(LLVMTypeConverter &converter)
81       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
82                                 converter) {}
83 
84   /// Returns the memref's element size in bytes using the data layout active at
85   /// `op`.
86   // TODO: there are other places where this is used. Expose publicly?
87   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
88     const DataLayout *layout = &defaultLayout;
89     if (const DataLayoutAnalysis *analysis =
90             getTypeConverter()->getDataLayoutAnalysis()) {
91       layout = &analysis->getAbove(op);
92     }
93     Type elementType = memRefType.getElementType();
94     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
95       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
96                                                          *layout);
97     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
98       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
99           memRefElementType, *layout);
100     return layout->getTypeSize(elementType);
101   }
102 
103   /// Returns true if the memref size in bytes is known to be a multiple of
104   /// factor assuming the data layout active at `op`.
105   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
106                               Operation *op) const {
107     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
108     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
109       if (type.isDynamic(type.getDimSize(i)))
110         continue;
111       sizeDivisor = sizeDivisor * type.getDimSize(i);
112     }
113     return sizeDivisor % factor == 0;
114   }
115 
116   /// Returns the alignment to be used for the allocation call itself.
117   /// aligned_alloc requires the allocation size to be a power of two, and the
118   /// allocation size to be a multiple of alignment,
119   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
120     if (Optional<uint64_t> alignment = allocOp.alignment())
121       return *alignment;
122 
123     // Whenever we don't have alignment set, we will use an alignment
124     // consistent with the element type; since the allocation size has to be a
125     // power of two, we will bump to the next power of two if it already isn't.
126     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
127     return std::max(kMinAlignedAllocAlignment,
128                     llvm::PowerOf2Ceil(eltSizeBytes));
129   }
130 
131   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
132                                           Location loc, Value sizeBytes,
133                                           Operation *op) const override {
134     // Heap allocations.
135     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
136     MemRefType memRefType = allocOp.getType();
137     int64_t alignment = getAllocationAlignment(allocOp);
138     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
139 
140     // aligned_alloc requires size to be a multiple of alignment; we will pad
141     // the size to the next multiple if necessary.
142     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
143       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
144 
145     Type elementPtrType = this->getElementPtrType(memRefType);
146     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
147         allocOp->getParentOfType<ModuleOp>(), getIndexType());
148     auto results =
149         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
150                        getVoidPtrType());
151     Value allocatedPtr =
152         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
153 
154     return std::make_tuple(allocatedPtr, allocatedPtr);
155   }
156 
157   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
158   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
159 
160   /// Default layout to use in absence of the corresponding analysis.
161   DataLayout defaultLayout;
162 };
163 
164 // Out of line definition, required till C++17.
165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
166 
167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
168   AllocaOpLowering(LLVMTypeConverter &converter)
169       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
170                                 converter) {}
171 
172   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
173   /// is set to null for stack allocations. `accessAlignment` is set if
174   /// alignment is needed post allocation (for eg. in conjunction with malloc).
175   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
176                                           Location loc, Value sizeBytes,
177                                           Operation *op) const override {
178 
179     // With alloca, one gets a pointer to the element type right away.
180     // For stack allocations.
181     auto allocaOp = cast<memref::AllocaOp>(op);
182     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
183 
184     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
185         loc, elementPtrType, sizeBytes,
186         allocaOp.alignment() ? *allocaOp.alignment() : 0);
187 
188     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
189   }
190 };
191 
192 struct AllocaScopeOpLowering
193     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
194   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
195 
196   LogicalResult
197   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
198                   ConversionPatternRewriter &rewriter) const override {
199     OpBuilder::InsertionGuard guard(rewriter);
200     Location loc = allocaScopeOp.getLoc();
201 
202     // Split the current block before the AllocaScopeOp to create the inlining
203     // point.
204     auto *currentBlock = rewriter.getInsertionBlock();
205     auto *remainingOpsBlock =
206         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
207     Block *continueBlock;
208     if (allocaScopeOp.getNumResults() == 0) {
209       continueBlock = remainingOpsBlock;
210     } else {
211       continueBlock = rewriter.createBlock(remainingOpsBlock,
212                                            allocaScopeOp.getResultTypes());
213       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
214     }
215 
216     // Inline body region.
217     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
218     Block *afterBody = &allocaScopeOp.bodyRegion().back();
219     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
220 
221     // Save stack and then branch into the body of the region.
222     rewriter.setInsertionPointToEnd(currentBlock);
223     auto stackSaveOp =
224         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
225     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
226 
227     // Replace the alloca_scope return with a branch that jumps out of the body.
228     // Stack restore before leaving the body region.
229     rewriter.setInsertionPointToEnd(afterBody);
230     auto returnOp =
231         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
232     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
233         returnOp, returnOp.results(), continueBlock);
234 
235     // Insert stack restore before jumping out the body of the region.
236     rewriter.setInsertionPoint(branchOp);
237     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
238 
239     // Replace the op with values return from the body region.
240     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
241 
242     return success();
243   }
244 };
245 
246 struct AssumeAlignmentOpLowering
247     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
248   using ConvertOpToLLVMPattern<
249       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
250 
251   LogicalResult
252   matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
253                   ConversionPatternRewriter &rewriter) const override {
254     Value memref = adaptor.memref();
255     unsigned alignment = op.alignment();
256     auto loc = op.getLoc();
257 
258     MemRefDescriptor memRefDescriptor(memref);
259     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
260 
261     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
262     // the asserted memref.alignedPtr isn't used anywhere else, as the real
263     // users like load/store/views always re-extract memref.alignedPtr as they
264     // get lowered.
265     //
266     // This relies on LLVM's CSE optimization (potentially after SROA), since
267     // after CSE all memref.alignedPtr instances get de-duplicated into the same
268     // pointer SSA value.
269     auto intPtrType =
270         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
271     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
272     Value mask =
273         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
274     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
275     rewriter.create<LLVM::AssumeOp>(
276         loc, rewriter.create<LLVM::ICmpOp>(
277                  loc, LLVM::ICmpPredicate::eq,
278                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
279 
280     rewriter.eraseOp(op);
281     return success();
282   }
283 };
284 
285 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
286 // The memref descriptor being an SSA value, there is no need to clean it up
287 // in any way.
288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
289   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
290 
291   explicit DeallocOpLowering(LLVMTypeConverter &converter)
292       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
293 
294   LogicalResult
295   matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
296                   ConversionPatternRewriter &rewriter) const override {
297     // Insert the `free` declaration if it is not already present.
298     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
299     MemRefDescriptor memref(adaptor.memref());
300     Value casted = rewriter.create<LLVM::BitcastOp>(
301         op.getLoc(), getVoidPtrType(),
302         memref.allocatedPtr(rewriter, op.getLoc()));
303     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
304         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
305     return success();
306   }
307 };
308 
309 // A `dim` is converted to a constant for static sizes and to an access to the
310 // size stored in the memref descriptor for dynamic sizes.
311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
312   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
313 
314   LogicalResult
315   matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
316                   ConversionPatternRewriter &rewriter) const override {
317     Type operandType = dimOp.source().getType();
318     if (operandType.isa<UnrankedMemRefType>()) {
319       rewriter.replaceOp(
320           dimOp, {extractSizeOfUnrankedMemRef(
321                      operandType, dimOp, adaptor.getOperands(), rewriter)});
322 
323       return success();
324     }
325     if (operandType.isa<MemRefType>()) {
326       rewriter.replaceOp(
327           dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
328                                             adaptor.getOperands(), rewriter)});
329       return success();
330     }
331     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
332   }
333 
334 private:
335   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
336                                     OpAdaptor adaptor,
337                                     ConversionPatternRewriter &rewriter) const {
338     Location loc = dimOp.getLoc();
339 
340     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
341     auto scalarMemRefType =
342         MemRefType::get({}, unrankedMemRefType.getElementType());
343     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
344 
345     // Extract pointer to the underlying ranked descriptor and bitcast it to a
346     // memref<element_type> descriptor pointer to minimize the number of GEP
347     // operations.
348     UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
349     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
350     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
351         loc,
352         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
353                                    addressSpace),
354         underlyingRankedDesc);
355 
356     // Get pointer to offset field of memref<element_type> descriptor.
357     Type indexPtrTy = LLVM::LLVMPointerType::get(
358         getTypeConverter()->getIndexType(), addressSpace);
359     Value two = rewriter.create<LLVM::ConstantOp>(
360         loc, typeConverter->convertType(rewriter.getI32Type()),
361         rewriter.getI32IntegerAttr(2));
362     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
363         loc, indexPtrTy, scalarMemRefDescPtr,
364         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
365 
366     // The size value that we have to extract can be obtained using GEPop with
367     // `dimOp.index() + 1` index argument.
368     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
369         loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
370     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
371                                                  ValueRange({idxPlusOne}));
372     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
373   }
374 
375   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
376     if (Optional<int64_t> idx = dimOp.getConstantIndex())
377       return idx;
378 
379     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
380       return constantOp.getValue()
381           .cast<IntegerAttr>()
382           .getValue()
383           .getSExtValue();
384 
385     return llvm::None;
386   }
387 
388   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
389                                   OpAdaptor adaptor,
390                                   ConversionPatternRewriter &rewriter) const {
391     Location loc = dimOp.getLoc();
392 
393     // Take advantage if index is constant.
394     MemRefType memRefType = operandType.cast<MemRefType>();
395     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
396       int64_t i = index.getValue();
397       if (memRefType.isDynamicDim(i)) {
398         // extract dynamic size from the memref descriptor.
399         MemRefDescriptor descriptor(adaptor.source());
400         return descriptor.size(rewriter, loc, i);
401       }
402       // Use constant for static size.
403       int64_t dimSize = memRefType.getDimSize(i);
404       return createIndexConstant(rewriter, loc, dimSize);
405     }
406     Value index = adaptor.index();
407     int64_t rank = memRefType.getRank();
408     MemRefDescriptor memrefDescriptor(adaptor.source());
409     return memrefDescriptor.size(rewriter, loc, index, rank);
410   }
411 };
412 
413 /// Returns the LLVM type of the global variable given the memref type `type`.
414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
415                                           LLVMTypeConverter &typeConverter) {
416   // LLVM type for a global memref will be a multi-dimension array. For
417   // declarations or uninitialized global memrefs, we can potentially flatten
418   // this to a 1D array. However, for memref.global's with an initial value,
419   // we do not intend to flatten the ElementsAttribute when going from std ->
420   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
421   Type elementType = typeConverter.convertType(type.getElementType());
422   Type arrayTy = elementType;
423   // Shape has the outermost dim at index 0, so need to walk it backwards
424   for (int64_t dim : llvm::reverse(type.getShape()))
425     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
426   return arrayTy;
427 }
428 
429 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
430 struct GlobalMemrefOpLowering
431     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
432   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
433 
434   LogicalResult
435   matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
436                   ConversionPatternRewriter &rewriter) const override {
437     MemRefType type = global.type();
438     if (!isConvertibleAndHasIdentityMaps(type))
439       return failure();
440 
441     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
442 
443     LLVM::Linkage linkage =
444         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
445 
446     Attribute initialValue = nullptr;
447     if (!global.isExternal() && !global.isUninitialized()) {
448       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
449       initialValue = elementsAttr;
450 
451       // For scalar memrefs, the global variable created is of the element type,
452       // so unpack the elements attribute to extract the value.
453       if (type.getRank() == 0)
454         initialValue = elementsAttr.getSplatValue<Attribute>();
455     }
456 
457     uint64_t alignment = global.alignment().getValueOr(0);
458 
459     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
460         global, arrayTy, global.constant(), linkage, global.sym_name(),
461         initialValue, alignment, type.getMemorySpaceAsInt());
462     if (!global.isExternal() && global.isUninitialized()) {
463       Block *blk = new Block();
464       newGlobal.getInitializerRegion().push_back(blk);
465       rewriter.setInsertionPointToStart(blk);
466       Value undef[] = {
467           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
468       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
469     }
470     return success();
471   }
472 };
473 
474 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
475 /// the first element stashed into the descriptor. This reuses
476 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
477 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
478   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
479       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
480                                 converter) {}
481 
482   /// Buffer "allocation" for memref.get_global op is getting the address of
483   /// the global variable referenced.
484   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
485                                           Location loc, Value sizeBytes,
486                                           Operation *op) const override {
487     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
488     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
489     unsigned memSpace = type.getMemorySpaceAsInt();
490 
491     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
492     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
493         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
494 
495     // Get the address of the first element in the array by creating a GEP with
496     // the address of the GV as the base, and (rank + 1) number of 0 indices.
497     Type elementType = typeConverter->convertType(type.getElementType());
498     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
499 
500     SmallVector<Value, 4> operands = {addressOf};
501     operands.insert(operands.end(), type.getRank() + 1,
502                     createIndexConstant(rewriter, loc, 0));
503     auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands);
504 
505     // We do not expect the memref obtained using `memref.get_global` to be
506     // ever deallocated. Set the allocated pointer to be known bad value to
507     // help debug if that ever happens.
508     auto intPtrType = getIntPtrType(memSpace);
509     Value deadBeefConst =
510         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
511     auto deadBeefPtr =
512         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
513 
514     // Both allocated and aligned pointers are same. We could potentially stash
515     // a nullptr for the allocated pointer since we do not expect any dealloc.
516     return std::make_tuple(deadBeefPtr, gep);
517   }
518 };
519 
520 // Common base for load and store operations on MemRefs. Restricts the match
521 // to supported MemRef types. Provides functionality to emit code accessing a
522 // specific element of the underlying data buffer.
523 template <typename Derived>
524 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
525   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
526   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
527   using Base = LoadStoreOpLowering<Derived>;
528 
529   LogicalResult match(Derived op) const override {
530     MemRefType type = op.getMemRefType();
531     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
532   }
533 };
534 
535 // Load operation is lowered to obtaining a pointer to the indexed element
536 // and loading it.
537 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
538   using Base::Base;
539 
540   LogicalResult
541   matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
542                   ConversionPatternRewriter &rewriter) const override {
543     auto type = loadOp.getMemRefType();
544 
545     Value dataPtr = getStridedElementPtr(
546         loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
547     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
548     return success();
549   }
550 };
551 
552 // Store operation is lowered to obtaining a pointer to the indexed element,
553 // and storing the given value to it.
554 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
555   using Base::Base;
556 
557   LogicalResult
558   matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
559                   ConversionPatternRewriter &rewriter) const override {
560     auto type = op.getMemRefType();
561 
562     Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
563                                          adaptor.indices(), rewriter);
564     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
565     return success();
566   }
567 };
568 
569 // The prefetch operation is lowered in a way similar to the load operation
570 // except that the llvm.prefetch operation is used for replacement.
571 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
572   using Base::Base;
573 
574   LogicalResult
575   matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
576                   ConversionPatternRewriter &rewriter) const override {
577     auto type = prefetchOp.getMemRefType();
578     auto loc = prefetchOp.getLoc();
579 
580     Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
581                                          adaptor.indices(), rewriter);
582 
583     // Replace with llvm.prefetch.
584     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
585     auto isWrite = rewriter.create<LLVM::ConstantOp>(
586         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
587     auto localityHint = rewriter.create<LLVM::ConstantOp>(
588         loc, llvmI32Type,
589         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
590     auto isData = rewriter.create<LLVM::ConstantOp>(
591         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
592 
593     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
594                                                 localityHint, isData);
595     return success();
596   }
597 };
598 
599 struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> {
600   using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern;
601 
602   LogicalResult
603   matchAndRewrite(memref::RankOp op, OpAdaptor adaptor,
604                   ConversionPatternRewriter &rewriter) const override {
605     Location loc = op.getLoc();
606     Type operandType = op.memref().getType();
607     if (auto unrankedMemRefType = operandType.dyn_cast<UnrankedMemRefType>()) {
608       UnrankedMemRefDescriptor desc(adaptor.memref());
609       rewriter.replaceOp(op, {desc.rank(rewriter, loc)});
610       return success();
611     }
612     if (auto rankedMemRefType = operandType.dyn_cast<MemRefType>()) {
613       rewriter.replaceOp(
614           op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())});
615       return success();
616     }
617     return failure();
618   }
619 };
620 
621 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
622   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
623 
624   LogicalResult match(memref::CastOp memRefCastOp) const override {
625     Type srcType = memRefCastOp.getOperand().getType();
626     Type dstType = memRefCastOp.getType();
627 
628     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
629     // used for type erasure. For now they must preserve underlying element type
630     // and require source and result type to have the same rank. Therefore,
631     // perform a sanity check that the underlying structs are the same. Once op
632     // semantics are relaxed we can revisit.
633     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
634       return success(typeConverter->convertType(srcType) ==
635                      typeConverter->convertType(dstType));
636 
637     // At least one of the operands is unranked type
638     assert(srcType.isa<UnrankedMemRefType>() ||
639            dstType.isa<UnrankedMemRefType>());
640 
641     // Unranked to unranked cast is disallowed
642     return !(srcType.isa<UnrankedMemRefType>() &&
643              dstType.isa<UnrankedMemRefType>())
644                ? success()
645                : failure();
646   }
647 
648   void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
649                ConversionPatternRewriter &rewriter) const override {
650     auto srcType = memRefCastOp.getOperand().getType();
651     auto dstType = memRefCastOp.getType();
652     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
653     auto loc = memRefCastOp.getLoc();
654 
655     // For ranked/ranked case, just keep the original descriptor.
656     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
657       return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
658 
659     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
660       // Casting ranked to unranked memref type
661       // Set the rank in the destination from the memref type
662       // Allocate space on the stack and copy the src memref descriptor
663       // Set the ptr in the destination to the stack space
664       auto srcMemRefType = srcType.cast<MemRefType>();
665       int64_t rank = srcMemRefType.getRank();
666       // ptr = AllocaOp sizeof(MemRefDescriptor)
667       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
668           loc, adaptor.source(), rewriter);
669       // voidptr = BitCastOp srcType* to void*
670       auto voidPtr =
671           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
672               .getResult();
673       // rank = ConstantOp srcRank
674       auto rankVal = rewriter.create<LLVM::ConstantOp>(
675           loc, typeConverter->convertType(rewriter.getIntegerType(64)),
676           rewriter.getI64IntegerAttr(rank));
677       // undef = UndefOp
678       UnrankedMemRefDescriptor memRefDesc =
679           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
680       // d1 = InsertValueOp undef, rank, 0
681       memRefDesc.setRank(rewriter, loc, rankVal);
682       // d2 = InsertValueOp d1, voidptr, 1
683       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
684       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
685 
686     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
687       // Casting from unranked type to ranked.
688       // The operation is assumed to be doing a correct cast. If the destination
689       // type mismatches the unranked the type, it is undefined behavior.
690       UnrankedMemRefDescriptor memRefDesc(adaptor.source());
691       // ptr = ExtractValueOp src, 1
692       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
693       // castPtr = BitCastOp i8* to structTy*
694       auto castPtr =
695           rewriter
696               .create<LLVM::BitcastOp>(
697                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
698               .getResult();
699       // struct = LoadOp castPtr
700       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
701       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
702     } else {
703       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
704     }
705   }
706 };
707 
708 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
709   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
710 
711   LogicalResult
712   matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
713                   ConversionPatternRewriter &rewriter) const override {
714     auto loc = op.getLoc();
715     auto srcType = op.source().getType().cast<BaseMemRefType>();
716     auto targetType = op.target().getType().cast<BaseMemRefType>();
717 
718     // First make sure we have an unranked memref descriptor representation.
719     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
720       auto rank = rewriter.create<LLVM::ConstantOp>(
721           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
722       auto *typeConverter = getTypeConverter();
723       auto ptr =
724           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
725       auto voidPtr =
726           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
727               .getResult();
728       auto unrankedType =
729           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
730       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
731                                             unrankedType,
732                                             ValueRange{rank, voidPtr});
733     };
734 
735     Value unrankedSource = srcType.hasRank()
736                                ? makeUnranked(adaptor.source(), srcType)
737                                : adaptor.source();
738     Value unrankedTarget = targetType.hasRank()
739                                ? makeUnranked(adaptor.target(), targetType)
740                                : adaptor.target();
741 
742     // Now promote the unranked descriptors to the stack.
743     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
744                                                  rewriter.getIndexAttr(1));
745     auto promote = [&](Value desc) {
746       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
747       auto allocated =
748           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
749       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
750       return allocated;
751     };
752 
753     auto sourcePtr = promote(unrankedSource);
754     auto targetPtr = promote(unrankedTarget);
755 
756     auto elemSize = rewriter.create<LLVM::ConstantOp>(
757         loc, getIndexType(),
758         rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8));
759     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
760         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
761     rewriter.create<LLVM::CallOp>(loc, copyFn,
762                                   ValueRange{elemSize, sourcePtr, targetPtr});
763     rewriter.eraseOp(op);
764 
765     return success();
766   }
767 };
768 
769 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
770 /// memref type. In unranked case, the fields are extracted from the underlying
771 /// ranked descriptor.
772 static void extractPointersAndOffset(Location loc,
773                                      ConversionPatternRewriter &rewriter,
774                                      LLVMTypeConverter &typeConverter,
775                                      Value originalOperand,
776                                      Value convertedOperand,
777                                      Value *allocatedPtr, Value *alignedPtr,
778                                      Value *offset = nullptr) {
779   Type operandType = originalOperand.getType();
780   if (operandType.isa<MemRefType>()) {
781     MemRefDescriptor desc(convertedOperand);
782     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
783     *alignedPtr = desc.alignedPtr(rewriter, loc);
784     if (offset != nullptr)
785       *offset = desc.offset(rewriter, loc);
786     return;
787   }
788 
789   unsigned memorySpace =
790       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
791   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
792   Type llvmElementType = typeConverter.convertType(elementType);
793   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
794       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
795 
796   // Extract pointer to the underlying ranked memref descriptor and cast it to
797   // ElemType**.
798   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
799   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
800 
801   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
802       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
803   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
804       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
805   if (offset != nullptr) {
806     *offset = UnrankedMemRefDescriptor::offset(
807         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
808   }
809 }
810 
811 struct MemRefReinterpretCastOpLowering
812     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
813   using ConvertOpToLLVMPattern<
814       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
815 
816   LogicalResult
817   matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
818                   ConversionPatternRewriter &rewriter) const override {
819     Type srcType = castOp.source().getType();
820 
821     Value descriptor;
822     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
823                                                adaptor, &descriptor)))
824       return failure();
825     rewriter.replaceOp(castOp, {descriptor});
826     return success();
827   }
828 
829 private:
830   LogicalResult convertSourceMemRefToDescriptor(
831       ConversionPatternRewriter &rewriter, Type srcType,
832       memref::ReinterpretCastOp castOp,
833       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
834     MemRefType targetMemRefType =
835         castOp.getResult().getType().cast<MemRefType>();
836     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
837                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
838     if (!llvmTargetDescriptorTy)
839       return failure();
840 
841     // Create descriptor.
842     Location loc = castOp.getLoc();
843     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
844 
845     // Set allocated and aligned pointers.
846     Value allocatedPtr, alignedPtr;
847     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
848                              castOp.source(), adaptor.source(), &allocatedPtr,
849                              &alignedPtr);
850     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
851     desc.setAlignedPtr(rewriter, loc, alignedPtr);
852 
853     // Set offset.
854     if (castOp.isDynamicOffset(0))
855       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
856     else
857       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
858 
859     // Set sizes and strides.
860     unsigned dynSizeId = 0;
861     unsigned dynStrideId = 0;
862     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
863       if (castOp.isDynamicSize(i))
864         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
865       else
866         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
867 
868       if (castOp.isDynamicStride(i))
869         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
870       else
871         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
872     }
873     *descriptor = desc;
874     return success();
875   }
876 };
877 
878 struct MemRefReshapeOpLowering
879     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
880   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
881 
882   LogicalResult
883   matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
884                   ConversionPatternRewriter &rewriter) const override {
885     Type srcType = reshapeOp.source().getType();
886 
887     Value descriptor;
888     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
889                                                adaptor, &descriptor)))
890       return failure();
891     rewriter.replaceOp(reshapeOp, {descriptor});
892     return success();
893   }
894 
895 private:
896   LogicalResult
897   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
898                                   Type srcType, memref::ReshapeOp reshapeOp,
899                                   memref::ReshapeOp::Adaptor adaptor,
900                                   Value *descriptor) const {
901     // Conversion for statically-known shape args is performed via
902     // `memref_reinterpret_cast`.
903     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
904     if (shapeMemRefType.hasStaticShape())
905       return failure();
906 
907     // The shape is a rank-1 tensor with unknown length.
908     Location loc = reshapeOp.getLoc();
909     MemRefDescriptor shapeDesc(adaptor.shape());
910     Value resultRank = shapeDesc.size(rewriter, loc, 0);
911 
912     // Extract address space and element type.
913     auto targetType =
914         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
915     unsigned addressSpace = targetType.getMemorySpaceAsInt();
916     Type elementType = targetType.getElementType();
917 
918     // Create the unranked memref descriptor that holds the ranked one. The
919     // inner descriptor is allocated on stack.
920     auto targetDesc = UnrankedMemRefDescriptor::undef(
921         rewriter, loc, typeConverter->convertType(targetType));
922     targetDesc.setRank(rewriter, loc, resultRank);
923     SmallVector<Value, 4> sizes;
924     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
925                                            targetDesc, sizes);
926     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
927         loc, getVoidPtrType(), sizes.front(), llvm::None);
928     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
929 
930     // Extract pointers and offset from the source memref.
931     Value allocatedPtr, alignedPtr, offset;
932     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
933                              reshapeOp.source(), adaptor.source(),
934                              &allocatedPtr, &alignedPtr, &offset);
935 
936     // Set pointers and offset.
937     Type llvmElementType = typeConverter->convertType(elementType);
938     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
939         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
940     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
941                                               elementPtrPtrType, allocatedPtr);
942     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
943                                             underlyingDescPtr,
944                                             elementPtrPtrType, alignedPtr);
945     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
946                                         underlyingDescPtr, elementPtrPtrType,
947                                         offset);
948 
949     // Use the offset pointer as base for further addressing. Copy over the new
950     // shape and compute strides. For this, we create a loop from rank-1 to 0.
951     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
952         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
953         elementPtrPtrType);
954     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
955         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
956     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
957     Value oneIndex = createIndexConstant(rewriter, loc, 1);
958     Value resultRankMinusOne =
959         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
960 
961     Block *initBlock = rewriter.getInsertionBlock();
962     Type indexType = getTypeConverter()->getIndexType();
963     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
964 
965     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
966                                             {indexType, indexType});
967 
968     // Move the remaining initBlock ops to condBlock.
969     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
970     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
971 
972     rewriter.setInsertionPointToEnd(initBlock);
973     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
974                                 condBlock);
975     rewriter.setInsertionPointToStart(condBlock);
976     Value indexArg = condBlock->getArgument(0);
977     Value strideArg = condBlock->getArgument(1);
978 
979     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
980     Value pred = rewriter.create<LLVM::ICmpOp>(
981         loc, IntegerType::get(rewriter.getContext(), 1),
982         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
983 
984     Block *bodyBlock =
985         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
986     rewriter.setInsertionPointToStart(bodyBlock);
987 
988     // Copy size from shape to descriptor.
989     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
990     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
991         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
992     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
993     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
994                                       targetSizesBase, indexArg, size);
995 
996     // Write stride value and compute next one.
997     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
998                                         targetStridesBase, indexArg, strideArg);
999     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
1000 
1001     // Decrement loop counter and branch back.
1002     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
1003     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
1004                                 condBlock);
1005 
1006     Block *remainder =
1007         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
1008 
1009     // Hook up the cond exit to the remainder.
1010     rewriter.setInsertionPointToEnd(condBlock);
1011     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
1012                                     llvm::None);
1013 
1014     // Reset position to beginning of new remainder block.
1015     rewriter.setInsertionPointToStart(remainder);
1016 
1017     *descriptor = targetDesc;
1018     return success();
1019   }
1020 };
1021 
1022 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
1023 /// `Value`s.
1024 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
1025                                       Type &llvmIndexType,
1026                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1027   return llvm::to_vector<4>(
1028       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1029         if (auto attr = value.dyn_cast<Attribute>())
1030           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1031         return value.get<Value>();
1032       }));
1033 }
1034 
1035 /// Compute a map that for a given dimension of the expanded type gives the
1036 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1037 /// the `reassocation` maps.
1038 static DenseMap<int64_t, int64_t>
1039 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1040   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1041   for (auto &en : enumerate(reassociation)) {
1042     for (auto dim : en.value())
1043       expandedDimToCollapsedDim[dim] = en.index();
1044   }
1045   return expandedDimToCollapsedDim;
1046 }
1047 
1048 static OpFoldResult
1049 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1050                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1051                          MemRefDescriptor &inDesc,
1052                          ArrayRef<int64_t> inStaticShape,
1053                          ArrayRef<ReassociationIndices> reassocation,
1054                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1055   int64_t outDimSize = outStaticShape[outDimIndex];
1056   if (!ShapedType::isDynamic(outDimSize))
1057     return b.getIndexAttr(outDimSize);
1058 
1059   // Calculate the multiplication of all the out dim sizes except the
1060   // current dim.
1061   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1062   int64_t otherDimSizesMul = 1;
1063   for (auto otherDimIndex : reassocation[inDimIndex]) {
1064     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1065       continue;
1066     int64_t otherDimSize = outStaticShape[otherDimIndex];
1067     assert(!ShapedType::isDynamic(otherDimSize) &&
1068            "single dimension cannot be expanded into multiple dynamic "
1069            "dimensions");
1070     otherDimSizesMul *= otherDimSize;
1071   }
1072 
1073   // outDimSize = inDimSize / otherOutDimSizesMul
1074   int64_t inDimSize = inStaticShape[inDimIndex];
1075   Value inDimSizeDynamic =
1076       ShapedType::isDynamic(inDimSize)
1077           ? inDesc.size(b, loc, inDimIndex)
1078           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1079                                        b.getIndexAttr(inDimSize));
1080   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1081       loc, inDimSizeDynamic,
1082       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1083                                  b.getIndexAttr(otherDimSizesMul)));
1084   return outDimSizeDynamic;
1085 }
1086 
1087 static OpFoldResult getCollapsedOutputDimSize(
1088     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1089     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1090     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1091   if (!ShapedType::isDynamic(outDimSize))
1092     return b.getIndexAttr(outDimSize);
1093 
1094   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1095   Value outDimSizeDynamic = c1;
1096   for (auto inDimIndex : reassocation[outDimIndex]) {
1097     int64_t inDimSize = inStaticShape[inDimIndex];
1098     Value inDimSizeDynamic =
1099         ShapedType::isDynamic(inDimSize)
1100             ? inDesc.size(b, loc, inDimIndex)
1101             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1102                                          b.getIndexAttr(inDimSize));
1103     outDimSizeDynamic =
1104         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1105   }
1106   return outDimSizeDynamic;
1107 }
1108 
1109 static SmallVector<OpFoldResult, 4>
1110 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1111                         ArrayRef<ReassociationIndices> reassocation,
1112                         ArrayRef<int64_t> inStaticShape,
1113                         MemRefDescriptor &inDesc,
1114                         ArrayRef<int64_t> outStaticShape) {
1115   return llvm::to_vector<4>(llvm::map_range(
1116       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1117         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1118                                          outStaticShape[outDimIndex],
1119                                          inStaticShape, inDesc, reassocation);
1120       }));
1121 }
1122 
1123 static SmallVector<OpFoldResult, 4>
1124 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1125                        ArrayRef<ReassociationIndices> reassocation,
1126                        ArrayRef<int64_t> inStaticShape,
1127                        MemRefDescriptor &inDesc,
1128                        ArrayRef<int64_t> outStaticShape) {
1129   DenseMap<int64_t, int64_t> outDimToInDimMap =
1130       getExpandedDimToCollapsedDimMap(reassocation);
1131   return llvm::to_vector<4>(llvm::map_range(
1132       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1133         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1134                                         outStaticShape, inDesc, inStaticShape,
1135                                         reassocation, outDimToInDimMap);
1136       }));
1137 }
1138 
1139 static SmallVector<Value>
1140 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1141                       ArrayRef<ReassociationIndices> reassocation,
1142                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1143                       ArrayRef<int64_t> outStaticShape) {
1144   return outStaticShape.size() < inStaticShape.size()
1145              ? getAsValues(b, loc, llvmIndexType,
1146                            getCollapsedOutputShape(b, loc, llvmIndexType,
1147                                                    reassocation, inStaticShape,
1148                                                    inDesc, outStaticShape))
1149              : getAsValues(b, loc, llvmIndexType,
1150                            getExpandedOutputShape(b, loc, llvmIndexType,
1151                                                   reassocation, inStaticShape,
1152                                                   inDesc, outStaticShape));
1153 }
1154 
1155 // ReshapeOp creates a new view descriptor of the proper rank.
1156 // For now, the only conversion supported is for target MemRef with static sizes
1157 // and strides.
1158 template <typename ReshapeOp>
1159 class ReassociatingReshapeOpConversion
1160     : public ConvertOpToLLVMPattern<ReshapeOp> {
1161 public:
1162   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1163   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1164 
1165   LogicalResult
1166   matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
1167                   ConversionPatternRewriter &rewriter) const override {
1168     MemRefType dstType = reshapeOp.getResultType();
1169     MemRefType srcType = reshapeOp.getSrcType();
1170     if (!srcType.getLayout().isIdentity() ||
1171         !dstType.getLayout().isIdentity()) {
1172       return rewriter.notifyMatchFailure(reshapeOp,
1173                                          "only empty layout map is supported");
1174     }
1175 
1176     int64_t offset;
1177     SmallVector<int64_t, 4> strides;
1178     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1179       return rewriter.notifyMatchFailure(
1180           reshapeOp, "failed to get stride and offset exprs");
1181     }
1182 
1183     MemRefDescriptor srcDesc(adaptor.src());
1184     Location loc = reshapeOp->getLoc();
1185     auto dstDesc = MemRefDescriptor::undef(
1186         rewriter, loc, this->typeConverter->convertType(dstType));
1187     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1188     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1189     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1190 
1191     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1192     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1193     Type llvmIndexType =
1194         this->typeConverter->convertType(rewriter.getIndexType());
1195     SmallVector<Value> dstShape = getDynamicOutputShape(
1196         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1197         srcStaticShape, srcDesc, dstStaticShape);
1198     for (auto &en : llvm::enumerate(dstShape))
1199       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1200 
1201     auto isStaticStride = [](int64_t stride) {
1202       return !ShapedType::isDynamicStrideOrOffset(stride);
1203     };
1204     if (llvm::all_of(strides, isStaticStride)) {
1205       for (auto &en : llvm::enumerate(strides))
1206         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1207     } else {
1208       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1209                                                    rewriter.getIndexAttr(1));
1210       Value stride = c1;
1211       for (auto dimIndex :
1212            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1213         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1214         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1215       }
1216     }
1217     rewriter.replaceOp(reshapeOp, {dstDesc});
1218     return success();
1219   }
1220 };
1221 
1222 /// Conversion pattern that transforms a subview op into:
1223 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1224 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1225 ///      and stride.
1226 /// The subview op is replaced by the descriptor.
1227 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1228   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1229 
1230   LogicalResult
1231   matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
1232                   ConversionPatternRewriter &rewriter) const override {
1233     auto loc = subViewOp.getLoc();
1234 
1235     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1236     auto sourceElementTy =
1237         typeConverter->convertType(sourceMemRefType.getElementType());
1238 
1239     auto viewMemRefType = subViewOp.getType();
1240     auto inferredType = memref::SubViewOp::inferResultType(
1241                             subViewOp.getSourceType(),
1242                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1243                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1244                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1245                             .cast<MemRefType>();
1246     auto targetElementTy =
1247         typeConverter->convertType(viewMemRefType.getElementType());
1248     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1249     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1250         !LLVM::isCompatibleType(sourceElementTy) ||
1251         !LLVM::isCompatibleType(targetElementTy) ||
1252         !LLVM::isCompatibleType(targetDescTy))
1253       return failure();
1254 
1255     // Extract the offset and strides from the type.
1256     int64_t offset;
1257     SmallVector<int64_t, 4> strides;
1258     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1259     if (failed(successStrides))
1260       return failure();
1261 
1262     // Create the descriptor.
1263     if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
1264       return failure();
1265     MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
1266     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1267 
1268     // Copy the buffer pointer from the old descriptor to the new one.
1269     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1270     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1271         loc,
1272         LLVM::LLVMPointerType::get(targetElementTy,
1273                                    viewMemRefType.getMemorySpaceAsInt()),
1274         extracted);
1275     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1276 
1277     // Copy the aligned pointer from the old descriptor to the new one.
1278     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1279     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1280         loc,
1281         LLVM::LLVMPointerType::get(targetElementTy,
1282                                    viewMemRefType.getMemorySpaceAsInt()),
1283         extracted);
1284     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1285 
1286     size_t inferredShapeRank = inferredType.getRank();
1287     size_t resultShapeRank = viewMemRefType.getRank();
1288 
1289     // Extract strides needed to compute offset.
1290     SmallVector<Value, 4> strideValues;
1291     strideValues.reserve(inferredShapeRank);
1292     for (unsigned i = 0; i < inferredShapeRank; ++i)
1293       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1294 
1295     // Offset.
1296     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1297     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1298       targetMemRef.setConstantOffset(rewriter, loc, offset);
1299     } else {
1300       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1301       // `inferredShapeRank` may be larger than the number of offset operands
1302       // because of trailing semantics. In this case, the offset is guaranteed
1303       // to be interpreted as 0 and we can just skip the extra dimensions.
1304       for (unsigned i = 0, e = std::min(inferredShapeRank,
1305                                         subViewOp.getMixedOffsets().size());
1306            i < e; ++i) {
1307         Value offset =
1308             // TODO: need OpFoldResult ODS adaptor to clean this up.
1309             subViewOp.isDynamicOffset(i)
1310                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
1311                 : rewriter.create<LLVM::ConstantOp>(
1312                       loc, llvmIndexType,
1313                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1314         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1315         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1316       }
1317       targetMemRef.setOffset(rewriter, loc, baseOffset);
1318     }
1319 
1320     // Update sizes and strides.
1321     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1322     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1323     assert(mixedSizes.size() == mixedStrides.size() &&
1324            "expected sizes and strides of equal length");
1325     llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims();
1326     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1327          i >= 0 && j >= 0; --i) {
1328       if (unusedDims.contains(i))
1329         continue;
1330 
1331       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1332       // In this case, the size is guaranteed to be interpreted as Dim and the
1333       // stride as 1.
1334       Value size, stride;
1335       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1336         // If the static size is available, use it directly. This is similar to
1337         // the folding of dim(constant-op) but removes the need for dim to be
1338         // aware of LLVM constants and for this pass to be aware of std
1339         // constants.
1340         int64_t staticSize =
1341             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1342         if (staticSize != ShapedType::kDynamicSize) {
1343           size = rewriter.create<LLVM::ConstantOp>(
1344               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1345         } else {
1346           Value pos = rewriter.create<LLVM::ConstantOp>(
1347               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1348           Value dim =
1349               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1350           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1351               loc, llvmIndexType, dim);
1352           size = cast.getResult(0);
1353         }
1354         stride = rewriter.create<LLVM::ConstantOp>(
1355             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1356       } else {
1357         // TODO: need OpFoldResult ODS adaptor to clean this up.
1358         size =
1359             subViewOp.isDynamicSize(i)
1360                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
1361                 : rewriter.create<LLVM::ConstantOp>(
1362                       loc, llvmIndexType,
1363                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1364         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1365           stride = rewriter.create<LLVM::ConstantOp>(
1366               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1367         } else {
1368           stride =
1369               subViewOp.isDynamicStride(i)
1370                   ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
1371                   : rewriter.create<LLVM::ConstantOp>(
1372                         loc, llvmIndexType,
1373                         rewriter.getI64IntegerAttr(
1374                             subViewOp.getStaticStride(i)));
1375           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1376         }
1377       }
1378       targetMemRef.setSize(rewriter, loc, j, size);
1379       targetMemRef.setStride(rewriter, loc, j, stride);
1380       j--;
1381     }
1382 
1383     rewriter.replaceOp(subViewOp, {targetMemRef});
1384     return success();
1385   }
1386 };
1387 
1388 /// Conversion pattern that transforms a transpose op into:
1389 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1390 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1391 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1392 ///      and stride. Size and stride are permutations of the original values.
1393 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1394 /// The transpose op is replaced by the alloca'ed pointer.
1395 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1396 public:
1397   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1398 
1399   LogicalResult
1400   matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
1401                   ConversionPatternRewriter &rewriter) const override {
1402     auto loc = transposeOp.getLoc();
1403     MemRefDescriptor viewMemRef(adaptor.in());
1404 
1405     // No permutation, early exit.
1406     if (transposeOp.permutation().isIdentity())
1407       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1408 
1409     auto targetMemRef = MemRefDescriptor::undef(
1410         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1411 
1412     // Copy the base and aligned pointers from the old descriptor to the new
1413     // one.
1414     targetMemRef.setAllocatedPtr(rewriter, loc,
1415                                  viewMemRef.allocatedPtr(rewriter, loc));
1416     targetMemRef.setAlignedPtr(rewriter, loc,
1417                                viewMemRef.alignedPtr(rewriter, loc));
1418 
1419     // Copy the offset pointer from the old descriptor to the new one.
1420     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1421 
1422     // Iterate over the dimensions and apply size/stride permutation.
1423     for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
1424       int sourcePos = en.index();
1425       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1426       targetMemRef.setSize(rewriter, loc, targetPos,
1427                            viewMemRef.size(rewriter, loc, sourcePos));
1428       targetMemRef.setStride(rewriter, loc, targetPos,
1429                              viewMemRef.stride(rewriter, loc, sourcePos));
1430     }
1431 
1432     rewriter.replaceOp(transposeOp, {targetMemRef});
1433     return success();
1434   }
1435 };
1436 
1437 /// Conversion pattern that transforms an op into:
1438 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1439 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1440 ///      and stride.
1441 /// The view op is replaced by the descriptor.
1442 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1443   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1444 
1445   // Build and return the value for the idx^th shape dimension, either by
1446   // returning the constant shape dimension or counting the proper dynamic size.
1447   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1448                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1449                 unsigned idx) const {
1450     assert(idx < shape.size());
1451     if (!ShapedType::isDynamic(shape[idx]))
1452       return createIndexConstant(rewriter, loc, shape[idx]);
1453     // Count the number of dynamic dims in range [0, idx]
1454     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1455       return ShapedType::isDynamic(v);
1456     });
1457     return dynamicSizes[nDynamic];
1458   }
1459 
1460   // Build and return the idx^th stride, either by returning the constant stride
1461   // or by computing the dynamic stride from the current `runningStride` and
1462   // `nextSize`. The caller should keep a running stride and update it with the
1463   // result returned by this function.
1464   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1465                   ArrayRef<int64_t> strides, Value nextSize,
1466                   Value runningStride, unsigned idx) const {
1467     assert(idx < strides.size());
1468     if (!MemRefType::isDynamicStrideOrOffset(strides[idx]))
1469       return createIndexConstant(rewriter, loc, strides[idx]);
1470     if (nextSize)
1471       return runningStride
1472                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1473                  : nextSize;
1474     assert(!runningStride);
1475     return createIndexConstant(rewriter, loc, 1);
1476   }
1477 
1478   LogicalResult
1479   matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
1480                   ConversionPatternRewriter &rewriter) const override {
1481     auto loc = viewOp.getLoc();
1482 
1483     auto viewMemRefType = viewOp.getType();
1484     auto targetElementTy =
1485         typeConverter->convertType(viewMemRefType.getElementType());
1486     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1487     if (!targetDescTy || !targetElementTy ||
1488         !LLVM::isCompatibleType(targetElementTy) ||
1489         !LLVM::isCompatibleType(targetDescTy))
1490       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1491              failure();
1492 
1493     int64_t offset;
1494     SmallVector<int64_t, 4> strides;
1495     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1496     if (failed(successStrides))
1497       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1498     assert(offset == 0 && "expected offset to be 0");
1499 
1500     // Create the descriptor.
1501     MemRefDescriptor sourceMemRef(adaptor.source());
1502     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1503 
1504     // Field 1: Copy the allocated pointer, used for malloc/free.
1505     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1506     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1507     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1508         loc,
1509         LLVM::LLVMPointerType::get(targetElementTy,
1510                                    srcMemRefType.getMemorySpaceAsInt()),
1511         allocatedPtr);
1512     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1513 
1514     // Field 2: Copy the actual aligned pointer to payload.
1515     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1516     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1517                                               alignedPtr, adaptor.byte_shift());
1518     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1519         loc,
1520         LLVM::LLVMPointerType::get(targetElementTy,
1521                                    srcMemRefType.getMemorySpaceAsInt()),
1522         alignedPtr);
1523     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1524 
1525     // Field 3: The offset in the resulting type must be 0. This is because of
1526     // the type change: an offset on srcType* may not be expressible as an
1527     // offset on dstType*.
1528     targetMemRef.setOffset(rewriter, loc,
1529                            createIndexConstant(rewriter, loc, offset));
1530 
1531     // Early exit for 0-D corner case.
1532     if (viewMemRefType.getRank() == 0)
1533       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1534 
1535     // Fields 4 and 5: Update sizes and strides.
1536     if (strides.back() != 1)
1537       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1538              failure();
1539     Value stride = nullptr, nextSize = nullptr;
1540     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1541       // Update size.
1542       Value size =
1543           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1544       targetMemRef.setSize(rewriter, loc, i, size);
1545       // Update stride.
1546       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1547       targetMemRef.setStride(rewriter, loc, i, stride);
1548       nextSize = size;
1549     }
1550 
1551     rewriter.replaceOp(viewOp, {targetMemRef});
1552     return success();
1553   }
1554 };
1555 
1556 } // namespace
1557 
1558 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1559                                                   RewritePatternSet &patterns) {
1560   // clang-format off
1561   patterns.add<
1562       AllocaOpLowering,
1563       AllocaScopeOpLowering,
1564       AssumeAlignmentOpLowering,
1565       DimOpLowering,
1566       GlobalMemrefOpLowering,
1567       GetGlobalMemrefOpLowering,
1568       LoadOpLowering,
1569       MemRefCastOpLowering,
1570       MemRefCopyOpLowering,
1571       MemRefReinterpretCastOpLowering,
1572       MemRefReshapeOpLowering,
1573       PrefetchOpLowering,
1574       RankOpLowering,
1575       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1576       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1577       StoreOpLowering,
1578       SubViewOpLowering,
1579       TransposeOpLowering,
1580       ViewOpLowering>(converter);
1581   // clang-format on
1582   auto allocLowering = converter.getOptions().allocLowering;
1583   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1584     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1585   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1586     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1587 }
1588 
1589 namespace {
1590 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1591   MemRefToLLVMPass() = default;
1592 
1593   void runOnOperation() override {
1594     Operation *op = getOperation();
1595     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1596     LowerToLLVMOptions options(&getContext(),
1597                                dataLayoutAnalysis.getAtOrAbove(op));
1598     options.allocLowering =
1599         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1600                          : LowerToLLVMOptions::AllocLowering::Malloc);
1601     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1602       options.overrideIndexBitwidth(indexBitwidth);
1603 
1604     LLVMTypeConverter typeConverter(&getContext(), options,
1605                                     &dataLayoutAnalysis);
1606     RewritePatternSet patterns(&getContext());
1607     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1608     LLVMConversionTarget target(getContext());
1609     target.addLegalOp<FuncOp>();
1610     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1611       signalPassFailure();
1612   }
1613 };
1614 } // namespace
1615 
1616 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1617   return std::make_unique<MemRefToLLVMPass>();
1618 }
1619