1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 #include "llvm/ADT/SmallBitVector.h"
22 
23 using namespace mlir;
24 
25 namespace {
26 
27 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
28   AllocOpLowering(LLVMTypeConverter &converter)
29       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
30                                 converter) {}
31 
32   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
33                                           Location loc, Value sizeBytes,
34                                           Operation *op) const override {
35     // Heap allocations.
36     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
37     MemRefType memRefType = allocOp.getType();
38 
39     Value alignment;
40     if (auto alignmentAttr = allocOp.alignment()) {
41       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
42     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
43       // In the case where no alignment is specified, we may want to override
44       // `malloc's` behavior. `malloc` typically aligns at the size of the
45       // biggest scalar on a target HW. For non-scalars, use the natural
46       // alignment of the LLVM type given by the LLVM DataLayout.
47       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
48     }
49 
50     if (alignment) {
51       // Adjust the allocation size to consider alignment.
52       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
53     }
54 
55     // Allocate the underlying buffer and store a pointer to it in the MemRef
56     // descriptor.
57     Type elementPtrType = this->getElementPtrType(memRefType);
58     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
59         allocOp->getParentOfType<ModuleOp>(), getIndexType());
60     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
61                                   getVoidPtrType());
62     Value allocatedPtr =
63         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
64 
65     Value alignedPtr = allocatedPtr;
66     if (alignment) {
67       // Compute the aligned type pointer.
68       Value allocatedInt =
69           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
70       Value alignmentInt =
71           createAligned(rewriter, loc, allocatedInt, alignment);
72       alignedPtr =
73           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
74     }
75 
76     return std::make_tuple(allocatedPtr, alignedPtr);
77   }
78 };
79 
80 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
81   AlignedAllocOpLowering(LLVMTypeConverter &converter)
82       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
83                                 converter) {}
84 
85   /// Returns the memref's element size in bytes using the data layout active at
86   /// `op`.
87   // TODO: there are other places where this is used. Expose publicly?
88   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
89     const DataLayout *layout = &defaultLayout;
90     if (const DataLayoutAnalysis *analysis =
91             getTypeConverter()->getDataLayoutAnalysis()) {
92       layout = &analysis->getAbove(op);
93     }
94     Type elementType = memRefType.getElementType();
95     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
96       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
97                                                          *layout);
98     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
99       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
100           memRefElementType, *layout);
101     return layout->getTypeSize(elementType);
102   }
103 
104   /// Returns true if the memref size in bytes is known to be a multiple of
105   /// factor assuming the data layout active at `op`.
106   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
107                               Operation *op) const {
108     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
109     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
110       if (ShapedType::isDynamic(type.getDimSize(i)))
111         continue;
112       sizeDivisor = sizeDivisor * type.getDimSize(i);
113     }
114     return sizeDivisor % factor == 0;
115   }
116 
117   /// Returns the alignment to be used for the allocation call itself.
118   /// aligned_alloc requires the allocation size to be a power of two, and the
119   /// allocation size to be a multiple of alignment,
120   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
121     if (Optional<uint64_t> alignment = allocOp.alignment())
122       return *alignment;
123 
124     // Whenever we don't have alignment set, we will use an alignment
125     // consistent with the element type; since the allocation size has to be a
126     // power of two, we will bump to the next power of two if it already isn't.
127     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
128     return std::max(kMinAlignedAllocAlignment,
129                     llvm::PowerOf2Ceil(eltSizeBytes));
130   }
131 
132   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
133                                           Location loc, Value sizeBytes,
134                                           Operation *op) const override {
135     // Heap allocations.
136     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
137     MemRefType memRefType = allocOp.getType();
138     int64_t alignment = getAllocationAlignment(allocOp);
139     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
140 
141     // aligned_alloc requires size to be a multiple of alignment; we will pad
142     // the size to the next multiple if necessary.
143     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
144       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
145 
146     Type elementPtrType = this->getElementPtrType(memRefType);
147     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
148         allocOp->getParentOfType<ModuleOp>(), getIndexType());
149     auto results =
150         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
151                        getVoidPtrType());
152     Value allocatedPtr =
153         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
154 
155     return std::make_tuple(allocatedPtr, allocatedPtr);
156   }
157 
158   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
159   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
160 
161   /// Default layout to use in absence of the corresponding analysis.
162   DataLayout defaultLayout;
163 };
164 
165 // Out of line definition, required till C++17.
166 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
167 
168 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
169   AllocaOpLowering(LLVMTypeConverter &converter)
170       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
171                                 converter) {}
172 
173   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
174   /// is set to null for stack allocations. `accessAlignment` is set if
175   /// alignment is needed post allocation (for eg. in conjunction with malloc).
176   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
177                                           Location loc, Value sizeBytes,
178                                           Operation *op) const override {
179 
180     // With alloca, one gets a pointer to the element type right away.
181     // For stack allocations.
182     auto allocaOp = cast<memref::AllocaOp>(op);
183     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
184 
185     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
186         loc, elementPtrType, sizeBytes,
187         allocaOp.alignment() ? *allocaOp.alignment() : 0);
188 
189     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
190   }
191 };
192 
193 struct AllocaScopeOpLowering
194     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
195   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
196 
197   LogicalResult
198   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
199                   ConversionPatternRewriter &rewriter) const override {
200     OpBuilder::InsertionGuard guard(rewriter);
201     Location loc = allocaScopeOp.getLoc();
202 
203     // Split the current block before the AllocaScopeOp to create the inlining
204     // point.
205     auto *currentBlock = rewriter.getInsertionBlock();
206     auto *remainingOpsBlock =
207         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
208     Block *continueBlock;
209     if (allocaScopeOp.getNumResults() == 0) {
210       continueBlock = remainingOpsBlock;
211     } else {
212       continueBlock = rewriter.createBlock(
213           remainingOpsBlock, allocaScopeOp.getResultTypes(),
214           SmallVector<Location>(allocaScopeOp->getNumResults(),
215                                 allocaScopeOp.getLoc()));
216       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
217     }
218 
219     // Inline body region.
220     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
221     Block *afterBody = &allocaScopeOp.bodyRegion().back();
222     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
223 
224     // Save stack and then branch into the body of the region.
225     rewriter.setInsertionPointToEnd(currentBlock);
226     auto stackSaveOp =
227         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
228     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
229 
230     // Replace the alloca_scope return with a branch that jumps out of the body.
231     // Stack restore before leaving the body region.
232     rewriter.setInsertionPointToEnd(afterBody);
233     auto returnOp =
234         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
235     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
236         returnOp, returnOp.results(), continueBlock);
237 
238     // Insert stack restore before jumping out the body of the region.
239     rewriter.setInsertionPoint(branchOp);
240     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
241 
242     // Replace the op with values return from the body region.
243     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
244 
245     return success();
246   }
247 };
248 
249 struct AssumeAlignmentOpLowering
250     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
251   using ConvertOpToLLVMPattern<
252       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
253 
254   LogicalResult
255   matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
256                   ConversionPatternRewriter &rewriter) const override {
257     Value memref = adaptor.memref();
258     unsigned alignment = op.alignment();
259     auto loc = op.getLoc();
260 
261     MemRefDescriptor memRefDescriptor(memref);
262     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
263 
264     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
265     // the asserted memref.alignedPtr isn't used anywhere else, as the real
266     // users like load/store/views always re-extract memref.alignedPtr as they
267     // get lowered.
268     //
269     // This relies on LLVM's CSE optimization (potentially after SROA), since
270     // after CSE all memref.alignedPtr instances get de-duplicated into the same
271     // pointer SSA value.
272     auto intPtrType =
273         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
274     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
275     Value mask =
276         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
277     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
278     rewriter.create<LLVM::AssumeOp>(
279         loc, rewriter.create<LLVM::ICmpOp>(
280                  loc, LLVM::ICmpPredicate::eq,
281                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
282 
283     rewriter.eraseOp(op);
284     return success();
285   }
286 };
287 
288 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
289 // The memref descriptor being an SSA value, there is no need to clean it up
290 // in any way.
291 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
292   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
293 
294   explicit DeallocOpLowering(LLVMTypeConverter &converter)
295       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
296 
297   LogicalResult
298   matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
299                   ConversionPatternRewriter &rewriter) const override {
300     // Insert the `free` declaration if it is not already present.
301     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
302     MemRefDescriptor memref(adaptor.memref());
303     Value casted = rewriter.create<LLVM::BitcastOp>(
304         op.getLoc(), getVoidPtrType(),
305         memref.allocatedPtr(rewriter, op.getLoc()));
306     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
307         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
308     return success();
309   }
310 };
311 
312 // A `dim` is converted to a constant for static sizes and to an access to the
313 // size stored in the memref descriptor for dynamic sizes.
314 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
315   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
316 
317   LogicalResult
318   matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
319                   ConversionPatternRewriter &rewriter) const override {
320     Type operandType = dimOp.source().getType();
321     if (operandType.isa<UnrankedMemRefType>()) {
322       rewriter.replaceOp(
323           dimOp, {extractSizeOfUnrankedMemRef(
324                      operandType, dimOp, adaptor.getOperands(), rewriter)});
325 
326       return success();
327     }
328     if (operandType.isa<MemRefType>()) {
329       rewriter.replaceOp(
330           dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
331                                             adaptor.getOperands(), rewriter)});
332       return success();
333     }
334     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
335   }
336 
337 private:
338   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
339                                     OpAdaptor adaptor,
340                                     ConversionPatternRewriter &rewriter) const {
341     Location loc = dimOp.getLoc();
342 
343     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
344     auto scalarMemRefType =
345         MemRefType::get({}, unrankedMemRefType.getElementType());
346     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
347 
348     // Extract pointer to the underlying ranked descriptor and bitcast it to a
349     // memref<element_type> descriptor pointer to minimize the number of GEP
350     // operations.
351     UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
352     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
353     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
354         loc,
355         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
356                                    addressSpace),
357         underlyingRankedDesc);
358 
359     // Get pointer to offset field of memref<element_type> descriptor.
360     Type indexPtrTy = LLVM::LLVMPointerType::get(
361         getTypeConverter()->getIndexType(), addressSpace);
362     Value two = rewriter.create<LLVM::ConstantOp>(
363         loc, typeConverter->convertType(rewriter.getI32Type()),
364         rewriter.getI32IntegerAttr(2));
365     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
366         loc, indexPtrTy, scalarMemRefDescPtr,
367         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
368 
369     // The size value that we have to extract can be obtained using GEPop with
370     // `dimOp.index() + 1` index argument.
371     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
372         loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
373     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
374                                                  ValueRange({idxPlusOne}));
375     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
376   }
377 
378   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
379     if (Optional<int64_t> idx = dimOp.getConstantIndex())
380       return idx;
381 
382     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
383       return constantOp.getValue()
384           .cast<IntegerAttr>()
385           .getValue()
386           .getSExtValue();
387 
388     return llvm::None;
389   }
390 
391   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
392                                   OpAdaptor adaptor,
393                                   ConversionPatternRewriter &rewriter) const {
394     Location loc = dimOp.getLoc();
395 
396     // Take advantage if index is constant.
397     MemRefType memRefType = operandType.cast<MemRefType>();
398     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
399       int64_t i = index.getValue();
400       if (memRefType.isDynamicDim(i)) {
401         // extract dynamic size from the memref descriptor.
402         MemRefDescriptor descriptor(adaptor.source());
403         return descriptor.size(rewriter, loc, i);
404       }
405       // Use constant for static size.
406       int64_t dimSize = memRefType.getDimSize(i);
407       return createIndexConstant(rewriter, loc, dimSize);
408     }
409     Value index = adaptor.index();
410     int64_t rank = memRefType.getRank();
411     MemRefDescriptor memrefDescriptor(adaptor.source());
412     return memrefDescriptor.size(rewriter, loc, index, rank);
413   }
414 };
415 
416 /// Common base for load and store operations on MemRefs. Restricts the match
417 /// to supported MemRef types. Provides functionality to emit code accessing a
418 /// specific element of the underlying data buffer.
419 template <typename Derived>
420 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
421   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
422   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
423   using Base = LoadStoreOpLowering<Derived>;
424 
425   LogicalResult match(Derived op) const override {
426     MemRefType type = op.getMemRefType();
427     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
428   }
429 };
430 
431 /// Wrap a llvm.cmpxchg operation in a while loop so that the operation can be
432 /// retried until it succeeds in atomically storing a new value into memory.
433 ///
434 ///      +---------------------------------+
435 ///      |   <code before the AtomicRMWOp> |
436 ///      |   <compute initial %loaded>     |
437 ///      |   cf.br loop(%loaded)              |
438 ///      +---------------------------------+
439 ///             |
440 ///  -------|   |
441 ///  |      v   v
442 ///  |   +--------------------------------+
443 ///  |   | loop(%loaded):                 |
444 ///  |   |   <body contents>              |
445 ///  |   |   %pair = cmpxchg              |
446 ///  |   |   %ok = %pair[0]               |
447 ///  |   |   %new = %pair[1]              |
448 ///  |   |   cf.cond_br %ok, end, loop(%new) |
449 ///  |   +--------------------------------+
450 ///  |          |        |
451 ///  |-----------        |
452 ///                      v
453 ///      +--------------------------------+
454 ///      | end:                           |
455 ///      |   <code after the AtomicRMWOp> |
456 ///      +--------------------------------+
457 ///
458 struct GenericAtomicRMWOpLowering
459     : public LoadStoreOpLowering<memref::GenericAtomicRMWOp> {
460   using Base::Base;
461 
462   LogicalResult
463   matchAndRewrite(memref::GenericAtomicRMWOp atomicOp, OpAdaptor adaptor,
464                   ConversionPatternRewriter &rewriter) const override {
465     auto loc = atomicOp.getLoc();
466     Type valueType = typeConverter->convertType(atomicOp.getResult().getType());
467 
468     // Split the block into initial, loop, and ending parts.
469     auto *initBlock = rewriter.getInsertionBlock();
470     auto *loopBlock = rewriter.createBlock(
471         initBlock->getParent(), std::next(Region::iterator(initBlock)),
472         valueType, loc);
473     auto *endBlock = rewriter.createBlock(
474         loopBlock->getParent(), std::next(Region::iterator(loopBlock)));
475 
476     // Operations range to be moved to `endBlock`.
477     auto opsToMoveStart = atomicOp->getIterator();
478     auto opsToMoveEnd = initBlock->back().getIterator();
479 
480     // Compute the loaded value and branch to the loop block.
481     rewriter.setInsertionPointToEnd(initBlock);
482     auto memRefType = atomicOp.memref().getType().cast<MemRefType>();
483     auto dataPtr = getStridedElementPtr(loc, memRefType, adaptor.memref(),
484                                         adaptor.indices(), rewriter);
485     Value init = rewriter.create<LLVM::LoadOp>(loc, dataPtr);
486     rewriter.create<LLVM::BrOp>(loc, init, loopBlock);
487 
488     // Prepare the body of the loop block.
489     rewriter.setInsertionPointToStart(loopBlock);
490 
491     // Clone the GenericAtomicRMWOp region and extract the result.
492     auto loopArgument = loopBlock->getArgument(0);
493     BlockAndValueMapping mapping;
494     mapping.map(atomicOp.getCurrentValue(), loopArgument);
495     Block &entryBlock = atomicOp.body().front();
496     for (auto &nestedOp : entryBlock.without_terminator()) {
497       Operation *clone = rewriter.clone(nestedOp, mapping);
498       mapping.map(nestedOp.getResults(), clone->getResults());
499     }
500     Value result = mapping.lookup(entryBlock.getTerminator()->getOperand(0));
501 
502     // Prepare the epilog of the loop block.
503     // Append the cmpxchg op to the end of the loop block.
504     auto successOrdering = LLVM::AtomicOrdering::acq_rel;
505     auto failureOrdering = LLVM::AtomicOrdering::monotonic;
506     auto boolType = IntegerType::get(rewriter.getContext(), 1);
507     auto pairType = LLVM::LLVMStructType::getLiteral(rewriter.getContext(),
508                                                      {valueType, boolType});
509     auto cmpxchg = rewriter.create<LLVM::AtomicCmpXchgOp>(
510         loc, pairType, dataPtr, loopArgument, result, successOrdering,
511         failureOrdering);
512     // Extract the %new_loaded and %ok values from the pair.
513     Value newLoaded = rewriter.create<LLVM::ExtractValueOp>(
514         loc, valueType, cmpxchg, rewriter.getI64ArrayAttr({0}));
515     Value ok = rewriter.create<LLVM::ExtractValueOp>(
516         loc, boolType, cmpxchg, rewriter.getI64ArrayAttr({1}));
517 
518     // Conditionally branch to the end or back to the loop depending on %ok.
519     rewriter.create<LLVM::CondBrOp>(loc, ok, endBlock, ArrayRef<Value>(),
520                                     loopBlock, newLoaded);
521 
522     rewriter.setInsertionPointToEnd(endBlock);
523     moveOpsRange(atomicOp.getResult(), newLoaded, std::next(opsToMoveStart),
524                  std::next(opsToMoveEnd), rewriter);
525 
526     // The 'result' of the atomic_rmw op is the newly loaded value.
527     rewriter.replaceOp(atomicOp, {newLoaded});
528 
529     return success();
530   }
531 
532 private:
533   // Clones a segment of ops [start, end) and erases the original.
534   void moveOpsRange(ValueRange oldResult, ValueRange newResult,
535                     Block::iterator start, Block::iterator end,
536                     ConversionPatternRewriter &rewriter) const {
537     BlockAndValueMapping mapping;
538     mapping.map(oldResult, newResult);
539     SmallVector<Operation *, 2> opsToErase;
540     for (auto it = start; it != end; ++it) {
541       rewriter.clone(*it, mapping);
542       opsToErase.push_back(&*it);
543     }
544     for (auto *it : opsToErase)
545       rewriter.eraseOp(it);
546   }
547 };
548 
549 /// Returns the LLVM type of the global variable given the memref type `type`.
550 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
551                                           LLVMTypeConverter &typeConverter) {
552   // LLVM type for a global memref will be a multi-dimension array. For
553   // declarations or uninitialized global memrefs, we can potentially flatten
554   // this to a 1D array. However, for memref.global's with an initial value,
555   // we do not intend to flatten the ElementsAttribute when going from std ->
556   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
557   Type elementType = typeConverter.convertType(type.getElementType());
558   Type arrayTy = elementType;
559   // Shape has the outermost dim at index 0, so need to walk it backwards
560   for (int64_t dim : llvm::reverse(type.getShape()))
561     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
562   return arrayTy;
563 }
564 
565 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
566 struct GlobalMemrefOpLowering
567     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
568   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
569 
570   LogicalResult
571   matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
572                   ConversionPatternRewriter &rewriter) const override {
573     MemRefType type = global.type();
574     if (!isConvertibleAndHasIdentityMaps(type))
575       return failure();
576 
577     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
578 
579     LLVM::Linkage linkage =
580         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
581 
582     Attribute initialValue = nullptr;
583     if (!global.isExternal() && !global.isUninitialized()) {
584       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
585       initialValue = elementsAttr;
586 
587       // For scalar memrefs, the global variable created is of the element type,
588       // so unpack the elements attribute to extract the value.
589       if (type.getRank() == 0)
590         initialValue = elementsAttr.getSplatValue<Attribute>();
591     }
592 
593     uint64_t alignment = global.alignment().getValueOr(0);
594 
595     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
596         global, arrayTy, global.constant(), linkage, global.sym_name(),
597         initialValue, alignment, type.getMemorySpaceAsInt());
598     if (!global.isExternal() && global.isUninitialized()) {
599       Block *blk = new Block();
600       newGlobal.getInitializerRegion().push_back(blk);
601       rewriter.setInsertionPointToStart(blk);
602       Value undef[] = {
603           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
604       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
605     }
606     return success();
607   }
608 };
609 
610 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
611 /// the first element stashed into the descriptor. This reuses
612 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
613 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
614   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
615       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
616                                 converter) {}
617 
618   /// Buffer "allocation" for memref.get_global op is getting the address of
619   /// the global variable referenced.
620   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
621                                           Location loc, Value sizeBytes,
622                                           Operation *op) const override {
623     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
624     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
625     unsigned memSpace = type.getMemorySpaceAsInt();
626 
627     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
628     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
629         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
630 
631     // Get the address of the first element in the array by creating a GEP with
632     // the address of the GV as the base, and (rank + 1) number of 0 indices.
633     Type elementType = typeConverter->convertType(type.getElementType());
634     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
635 
636     SmallVector<Value> operands;
637     operands.insert(operands.end(), type.getRank() + 1,
638                     createIndexConstant(rewriter, loc, 0));
639     auto gep =
640         rewriter.create<LLVM::GEPOp>(loc, elementPtrType, addressOf, operands);
641 
642     // We do not expect the memref obtained using `memref.get_global` to be
643     // ever deallocated. Set the allocated pointer to be known bad value to
644     // help debug if that ever happens.
645     auto intPtrType = getIntPtrType(memSpace);
646     Value deadBeefConst =
647         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
648     auto deadBeefPtr =
649         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
650 
651     // Both allocated and aligned pointers are same. We could potentially stash
652     // a nullptr for the allocated pointer since we do not expect any dealloc.
653     return std::make_tuple(deadBeefPtr, gep);
654   }
655 };
656 
657 // Load operation is lowered to obtaining a pointer to the indexed element
658 // and loading it.
659 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
660   using Base::Base;
661 
662   LogicalResult
663   matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
664                   ConversionPatternRewriter &rewriter) const override {
665     auto type = loadOp.getMemRefType();
666 
667     Value dataPtr = getStridedElementPtr(
668         loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
669     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
670     return success();
671   }
672 };
673 
674 // Store operation is lowered to obtaining a pointer to the indexed element,
675 // and storing the given value to it.
676 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
677   using Base::Base;
678 
679   LogicalResult
680   matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
681                   ConversionPatternRewriter &rewriter) const override {
682     auto type = op.getMemRefType();
683 
684     Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
685                                          adaptor.indices(), rewriter);
686     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
687     return success();
688   }
689 };
690 
691 // The prefetch operation is lowered in a way similar to the load operation
692 // except that the llvm.prefetch operation is used for replacement.
693 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
694   using Base::Base;
695 
696   LogicalResult
697   matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
698                   ConversionPatternRewriter &rewriter) const override {
699     auto type = prefetchOp.getMemRefType();
700     auto loc = prefetchOp.getLoc();
701 
702     Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
703                                          adaptor.indices(), rewriter);
704 
705     // Replace with llvm.prefetch.
706     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
707     auto isWrite = rewriter.create<LLVM::ConstantOp>(
708         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
709     auto localityHint = rewriter.create<LLVM::ConstantOp>(
710         loc, llvmI32Type,
711         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
712     auto isData = rewriter.create<LLVM::ConstantOp>(
713         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
714 
715     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
716                                                 localityHint, isData);
717     return success();
718   }
719 };
720 
721 struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> {
722   using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern;
723 
724   LogicalResult
725   matchAndRewrite(memref::RankOp op, OpAdaptor adaptor,
726                   ConversionPatternRewriter &rewriter) const override {
727     Location loc = op.getLoc();
728     Type operandType = op.memref().getType();
729     if (auto unrankedMemRefType = operandType.dyn_cast<UnrankedMemRefType>()) {
730       UnrankedMemRefDescriptor desc(adaptor.memref());
731       rewriter.replaceOp(op, {desc.rank(rewriter, loc)});
732       return success();
733     }
734     if (auto rankedMemRefType = operandType.dyn_cast<MemRefType>()) {
735       rewriter.replaceOp(
736           op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())});
737       return success();
738     }
739     return failure();
740   }
741 };
742 
743 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
744   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
745 
746   LogicalResult match(memref::CastOp memRefCastOp) const override {
747     Type srcType = memRefCastOp.getOperand().getType();
748     Type dstType = memRefCastOp.getType();
749 
750     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
751     // used for type erasure. For now they must preserve underlying element type
752     // and require source and result type to have the same rank. Therefore,
753     // perform a sanity check that the underlying structs are the same. Once op
754     // semantics are relaxed we can revisit.
755     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
756       return success(typeConverter->convertType(srcType) ==
757                      typeConverter->convertType(dstType));
758 
759     // At least one of the operands is unranked type
760     assert(srcType.isa<UnrankedMemRefType>() ||
761            dstType.isa<UnrankedMemRefType>());
762 
763     // Unranked to unranked cast is disallowed
764     return !(srcType.isa<UnrankedMemRefType>() &&
765              dstType.isa<UnrankedMemRefType>())
766                ? success()
767                : failure();
768   }
769 
770   void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
771                ConversionPatternRewriter &rewriter) const override {
772     auto srcType = memRefCastOp.getOperand().getType();
773     auto dstType = memRefCastOp.getType();
774     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
775     auto loc = memRefCastOp.getLoc();
776 
777     // For ranked/ranked case, just keep the original descriptor.
778     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
779       return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
780 
781     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
782       // Casting ranked to unranked memref type
783       // Set the rank in the destination from the memref type
784       // Allocate space on the stack and copy the src memref descriptor
785       // Set the ptr in the destination to the stack space
786       auto srcMemRefType = srcType.cast<MemRefType>();
787       int64_t rank = srcMemRefType.getRank();
788       // ptr = AllocaOp sizeof(MemRefDescriptor)
789       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
790           loc, adaptor.source(), rewriter);
791       // voidptr = BitCastOp srcType* to void*
792       auto voidPtr =
793           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
794               .getResult();
795       // rank = ConstantOp srcRank
796       auto rankVal = rewriter.create<LLVM::ConstantOp>(
797           loc, getIndexType(), rewriter.getIndexAttr(rank));
798       // undef = UndefOp
799       UnrankedMemRefDescriptor memRefDesc =
800           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
801       // d1 = InsertValueOp undef, rank, 0
802       memRefDesc.setRank(rewriter, loc, rankVal);
803       // d2 = InsertValueOp d1, voidptr, 1
804       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
805       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
806 
807     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
808       // Casting from unranked type to ranked.
809       // The operation is assumed to be doing a correct cast. If the destination
810       // type mismatches the unranked the type, it is undefined behavior.
811       UnrankedMemRefDescriptor memRefDesc(adaptor.source());
812       // ptr = ExtractValueOp src, 1
813       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
814       // castPtr = BitCastOp i8* to structTy*
815       auto castPtr =
816           rewriter
817               .create<LLVM::BitcastOp>(
818                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
819               .getResult();
820       // struct = LoadOp castPtr
821       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
822       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
823     } else {
824       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
825     }
826   }
827 };
828 
829 /// Pattern to lower a `memref.copy` to llvm.
830 ///
831 /// For memrefs with identity layouts, the copy is lowered to the llvm
832 /// `memcpy` intrinsic. For non-identity layouts, the copy is lowered to a call
833 /// to the generic `MemrefCopyFn`.
834 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
835   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
836 
837   LogicalResult
838   lowerToMemCopyIntrinsic(memref::CopyOp op, OpAdaptor adaptor,
839                           ConversionPatternRewriter &rewriter) const {
840     auto loc = op.getLoc();
841     auto srcType = op.source().getType().dyn_cast<MemRefType>();
842 
843     MemRefDescriptor srcDesc(adaptor.source());
844 
845     // Compute number of elements.
846     Value numElements = rewriter.create<LLVM::ConstantOp>(
847         loc, getIndexType(), rewriter.getIndexAttr(1));
848     for (int pos = 0; pos < srcType.getRank(); ++pos) {
849       auto size = srcDesc.size(rewriter, loc, pos);
850       numElements = rewriter.create<LLVM::MulOp>(loc, numElements, size);
851     }
852 
853     // Get element size.
854     auto sizeInBytes = getSizeInBytes(loc, srcType.getElementType(), rewriter);
855     // Compute total.
856     Value totalSize =
857         rewriter.create<LLVM::MulOp>(loc, numElements, sizeInBytes);
858 
859     Value srcBasePtr = srcDesc.alignedPtr(rewriter, loc);
860     MemRefDescriptor targetDesc(adaptor.target());
861     Value targetBasePtr = targetDesc.alignedPtr(rewriter, loc);
862     Value isVolatile = rewriter.create<LLVM::ConstantOp>(
863         loc, typeConverter->convertType(rewriter.getI1Type()),
864         rewriter.getBoolAttr(false));
865     rewriter.create<LLVM::MemcpyOp>(loc, targetBasePtr, srcBasePtr, totalSize,
866                                     isVolatile);
867     rewriter.eraseOp(op);
868 
869     return success();
870   }
871 
872   LogicalResult
873   lowerToMemCopyFunctionCall(memref::CopyOp op, OpAdaptor adaptor,
874                              ConversionPatternRewriter &rewriter) const {
875     auto loc = op.getLoc();
876     auto srcType = op.source().getType().cast<BaseMemRefType>();
877     auto targetType = op.target().getType().cast<BaseMemRefType>();
878 
879     // First make sure we have an unranked memref descriptor representation.
880     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
881       auto rank = rewriter.create<LLVM::ConstantOp>(
882           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
883       auto *typeConverter = getTypeConverter();
884       auto ptr =
885           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
886       auto voidPtr =
887           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
888               .getResult();
889       auto unrankedType =
890           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
891       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
892                                             unrankedType,
893                                             ValueRange{rank, voidPtr});
894     };
895 
896     Value unrankedSource = srcType.hasRank()
897                                ? makeUnranked(adaptor.source(), srcType)
898                                : adaptor.source();
899     Value unrankedTarget = targetType.hasRank()
900                                ? makeUnranked(adaptor.target(), targetType)
901                                : adaptor.target();
902 
903     // Now promote the unranked descriptors to the stack.
904     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
905                                                  rewriter.getIndexAttr(1));
906     auto promote = [&](Value desc) {
907       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
908       auto allocated =
909           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
910       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
911       return allocated;
912     };
913 
914     auto sourcePtr = promote(unrankedSource);
915     auto targetPtr = promote(unrankedTarget);
916 
917     unsigned typeSize =
918         mlir::DataLayout::closest(op).getTypeSize(srcType.getElementType());
919     auto elemSize = rewriter.create<LLVM::ConstantOp>(
920         loc, getIndexType(), rewriter.getIndexAttr(typeSize));
921     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
922         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
923     rewriter.create<LLVM::CallOp>(loc, copyFn,
924                                   ValueRange{elemSize, sourcePtr, targetPtr});
925     rewriter.eraseOp(op);
926 
927     return success();
928   }
929 
930   LogicalResult
931   matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
932                   ConversionPatternRewriter &rewriter) const override {
933     auto srcType = op.source().getType().cast<BaseMemRefType>();
934     auto targetType = op.target().getType().cast<BaseMemRefType>();
935 
936     if (srcType.hasRank() &&
937         srcType.cast<MemRefType>().getLayout().isIdentity() &&
938         targetType.hasRank() &&
939         targetType.cast<MemRefType>().getLayout().isIdentity())
940       return lowerToMemCopyIntrinsic(op, adaptor, rewriter);
941 
942     return lowerToMemCopyFunctionCall(op, adaptor, rewriter);
943   }
944 };
945 
946 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
947 /// memref type. In unranked case, the fields are extracted from the underlying
948 /// ranked descriptor.
949 static void extractPointersAndOffset(Location loc,
950                                      ConversionPatternRewriter &rewriter,
951                                      LLVMTypeConverter &typeConverter,
952                                      Value originalOperand,
953                                      Value convertedOperand,
954                                      Value *allocatedPtr, Value *alignedPtr,
955                                      Value *offset = nullptr) {
956   Type operandType = originalOperand.getType();
957   if (operandType.isa<MemRefType>()) {
958     MemRefDescriptor desc(convertedOperand);
959     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
960     *alignedPtr = desc.alignedPtr(rewriter, loc);
961     if (offset != nullptr)
962       *offset = desc.offset(rewriter, loc);
963     return;
964   }
965 
966   unsigned memorySpace =
967       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
968   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
969   Type llvmElementType = typeConverter.convertType(elementType);
970   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
971       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
972 
973   // Extract pointer to the underlying ranked memref descriptor and cast it to
974   // ElemType**.
975   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
976   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
977 
978   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
979       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
980   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
981       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
982   if (offset != nullptr) {
983     *offset = UnrankedMemRefDescriptor::offset(
984         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
985   }
986 }
987 
988 struct MemRefReinterpretCastOpLowering
989     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
990   using ConvertOpToLLVMPattern<
991       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
992 
993   LogicalResult
994   matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
995                   ConversionPatternRewriter &rewriter) const override {
996     Type srcType = castOp.source().getType();
997 
998     Value descriptor;
999     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
1000                                                adaptor, &descriptor)))
1001       return failure();
1002     rewriter.replaceOp(castOp, {descriptor});
1003     return success();
1004   }
1005 
1006 private:
1007   LogicalResult convertSourceMemRefToDescriptor(
1008       ConversionPatternRewriter &rewriter, Type srcType,
1009       memref::ReinterpretCastOp castOp,
1010       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
1011     MemRefType targetMemRefType =
1012         castOp.getResult().getType().cast<MemRefType>();
1013     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
1014                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
1015     if (!llvmTargetDescriptorTy)
1016       return failure();
1017 
1018     // Create descriptor.
1019     Location loc = castOp.getLoc();
1020     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
1021 
1022     // Set allocated and aligned pointers.
1023     Value allocatedPtr, alignedPtr;
1024     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
1025                              castOp.source(), adaptor.source(), &allocatedPtr,
1026                              &alignedPtr);
1027     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
1028     desc.setAlignedPtr(rewriter, loc, alignedPtr);
1029 
1030     // Set offset.
1031     if (castOp.isDynamicOffset(0))
1032       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
1033     else
1034       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
1035 
1036     // Set sizes and strides.
1037     unsigned dynSizeId = 0;
1038     unsigned dynStrideId = 0;
1039     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
1040       if (castOp.isDynamicSize(i))
1041         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
1042       else
1043         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
1044 
1045       if (castOp.isDynamicStride(i))
1046         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
1047       else
1048         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
1049     }
1050     *descriptor = desc;
1051     return success();
1052   }
1053 };
1054 
1055 struct MemRefReshapeOpLowering
1056     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
1057   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
1058 
1059   LogicalResult
1060   matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
1061                   ConversionPatternRewriter &rewriter) const override {
1062     Type srcType = reshapeOp.source().getType();
1063 
1064     Value descriptor;
1065     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
1066                                                adaptor, &descriptor)))
1067       return failure();
1068     rewriter.replaceOp(reshapeOp, {descriptor});
1069     return success();
1070   }
1071 
1072 private:
1073   LogicalResult
1074   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
1075                                   Type srcType, memref::ReshapeOp reshapeOp,
1076                                   memref::ReshapeOp::Adaptor adaptor,
1077                                   Value *descriptor) const {
1078     // Conversion for statically-known shape args is performed via
1079     // `memref_reinterpret_cast`.
1080     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
1081     if (shapeMemRefType.hasStaticShape())
1082       return failure();
1083 
1084     // The shape is a rank-1 tensor with unknown length.
1085     Location loc = reshapeOp.getLoc();
1086     MemRefDescriptor shapeDesc(adaptor.shape());
1087     Value resultRank = shapeDesc.size(rewriter, loc, 0);
1088 
1089     // Extract address space and element type.
1090     auto targetType =
1091         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
1092     unsigned addressSpace = targetType.getMemorySpaceAsInt();
1093     Type elementType = targetType.getElementType();
1094 
1095     // Create the unranked memref descriptor that holds the ranked one. The
1096     // inner descriptor is allocated on stack.
1097     auto targetDesc = UnrankedMemRefDescriptor::undef(
1098         rewriter, loc, typeConverter->convertType(targetType));
1099     targetDesc.setRank(rewriter, loc, resultRank);
1100     SmallVector<Value, 4> sizes;
1101     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
1102                                            targetDesc, sizes);
1103     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
1104         loc, getVoidPtrType(), sizes.front(), llvm::None);
1105     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
1106 
1107     // Extract pointers and offset from the source memref.
1108     Value allocatedPtr, alignedPtr, offset;
1109     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
1110                              reshapeOp.source(), adaptor.source(),
1111                              &allocatedPtr, &alignedPtr, &offset);
1112 
1113     // Set pointers and offset.
1114     Type llvmElementType = typeConverter->convertType(elementType);
1115     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
1116         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
1117     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
1118                                               elementPtrPtrType, allocatedPtr);
1119     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
1120                                             underlyingDescPtr,
1121                                             elementPtrPtrType, alignedPtr);
1122     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
1123                                         underlyingDescPtr, elementPtrPtrType,
1124                                         offset);
1125 
1126     // Use the offset pointer as base for further addressing. Copy over the new
1127     // shape and compute strides. For this, we create a loop from rank-1 to 0.
1128     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
1129         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
1130         elementPtrPtrType);
1131     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
1132         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
1133     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
1134     Value oneIndex = createIndexConstant(rewriter, loc, 1);
1135     Value resultRankMinusOne =
1136         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
1137 
1138     Block *initBlock = rewriter.getInsertionBlock();
1139     Type indexType = getTypeConverter()->getIndexType();
1140     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
1141 
1142     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
1143                                             {indexType, indexType}, {loc, loc});
1144 
1145     // Move the remaining initBlock ops to condBlock.
1146     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
1147     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
1148 
1149     rewriter.setInsertionPointToEnd(initBlock);
1150     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
1151                                 condBlock);
1152     rewriter.setInsertionPointToStart(condBlock);
1153     Value indexArg = condBlock->getArgument(0);
1154     Value strideArg = condBlock->getArgument(1);
1155 
1156     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
1157     Value pred = rewriter.create<LLVM::ICmpOp>(
1158         loc, IntegerType::get(rewriter.getContext(), 1),
1159         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
1160 
1161     Block *bodyBlock =
1162         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
1163     rewriter.setInsertionPointToStart(bodyBlock);
1164 
1165     // Copy size from shape to descriptor.
1166     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
1167     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
1168         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
1169     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
1170     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
1171                                       targetSizesBase, indexArg, size);
1172 
1173     // Write stride value and compute next one.
1174     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
1175                                         targetStridesBase, indexArg, strideArg);
1176     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
1177 
1178     // Decrement loop counter and branch back.
1179     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
1180     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
1181                                 condBlock);
1182 
1183     Block *remainder =
1184         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
1185 
1186     // Hook up the cond exit to the remainder.
1187     rewriter.setInsertionPointToEnd(condBlock);
1188     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
1189                                     llvm::None);
1190 
1191     // Reset position to beginning of new remainder block.
1192     rewriter.setInsertionPointToStart(remainder);
1193 
1194     *descriptor = targetDesc;
1195     return success();
1196   }
1197 };
1198 
1199 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
1200 /// `Value`s.
1201 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
1202                                       Type &llvmIndexType,
1203                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1204   return llvm::to_vector<4>(
1205       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1206         if (auto attr = value.dyn_cast<Attribute>())
1207           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1208         return value.get<Value>();
1209       }));
1210 }
1211 
1212 /// Compute a map that for a given dimension of the expanded type gives the
1213 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1214 /// the `reassocation` maps.
1215 static DenseMap<int64_t, int64_t>
1216 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1217   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1218   for (auto &en : enumerate(reassociation)) {
1219     for (auto dim : en.value())
1220       expandedDimToCollapsedDim[dim] = en.index();
1221   }
1222   return expandedDimToCollapsedDim;
1223 }
1224 
1225 static OpFoldResult
1226 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1227                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1228                          MemRefDescriptor &inDesc,
1229                          ArrayRef<int64_t> inStaticShape,
1230                          ArrayRef<ReassociationIndices> reassocation,
1231                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1232   int64_t outDimSize = outStaticShape[outDimIndex];
1233   if (!ShapedType::isDynamic(outDimSize))
1234     return b.getIndexAttr(outDimSize);
1235 
1236   // Calculate the multiplication of all the out dim sizes except the
1237   // current dim.
1238   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1239   int64_t otherDimSizesMul = 1;
1240   for (auto otherDimIndex : reassocation[inDimIndex]) {
1241     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1242       continue;
1243     int64_t otherDimSize = outStaticShape[otherDimIndex];
1244     assert(!ShapedType::isDynamic(otherDimSize) &&
1245            "single dimension cannot be expanded into multiple dynamic "
1246            "dimensions");
1247     otherDimSizesMul *= otherDimSize;
1248   }
1249 
1250   // outDimSize = inDimSize / otherOutDimSizesMul
1251   int64_t inDimSize = inStaticShape[inDimIndex];
1252   Value inDimSizeDynamic =
1253       ShapedType::isDynamic(inDimSize)
1254           ? inDesc.size(b, loc, inDimIndex)
1255           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1256                                        b.getIndexAttr(inDimSize));
1257   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1258       loc, inDimSizeDynamic,
1259       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1260                                  b.getIndexAttr(otherDimSizesMul)));
1261   return outDimSizeDynamic;
1262 }
1263 
1264 static OpFoldResult getCollapsedOutputDimSize(
1265     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1266     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1267     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1268   if (!ShapedType::isDynamic(outDimSize))
1269     return b.getIndexAttr(outDimSize);
1270 
1271   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1272   Value outDimSizeDynamic = c1;
1273   for (auto inDimIndex : reassocation[outDimIndex]) {
1274     int64_t inDimSize = inStaticShape[inDimIndex];
1275     Value inDimSizeDynamic =
1276         ShapedType::isDynamic(inDimSize)
1277             ? inDesc.size(b, loc, inDimIndex)
1278             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1279                                          b.getIndexAttr(inDimSize));
1280     outDimSizeDynamic =
1281         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1282   }
1283   return outDimSizeDynamic;
1284 }
1285 
1286 static SmallVector<OpFoldResult, 4>
1287 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1288                         ArrayRef<ReassociationIndices> reassocation,
1289                         ArrayRef<int64_t> inStaticShape,
1290                         MemRefDescriptor &inDesc,
1291                         ArrayRef<int64_t> outStaticShape) {
1292   return llvm::to_vector<4>(llvm::map_range(
1293       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1294         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1295                                          outStaticShape[outDimIndex],
1296                                          inStaticShape, inDesc, reassocation);
1297       }));
1298 }
1299 
1300 static SmallVector<OpFoldResult, 4>
1301 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1302                        ArrayRef<ReassociationIndices> reassocation,
1303                        ArrayRef<int64_t> inStaticShape,
1304                        MemRefDescriptor &inDesc,
1305                        ArrayRef<int64_t> outStaticShape) {
1306   DenseMap<int64_t, int64_t> outDimToInDimMap =
1307       getExpandedDimToCollapsedDimMap(reassocation);
1308   return llvm::to_vector<4>(llvm::map_range(
1309       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1310         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1311                                         outStaticShape, inDesc, inStaticShape,
1312                                         reassocation, outDimToInDimMap);
1313       }));
1314 }
1315 
1316 static SmallVector<Value>
1317 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1318                       ArrayRef<ReassociationIndices> reassocation,
1319                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1320                       ArrayRef<int64_t> outStaticShape) {
1321   return outStaticShape.size() < inStaticShape.size()
1322              ? getAsValues(b, loc, llvmIndexType,
1323                            getCollapsedOutputShape(b, loc, llvmIndexType,
1324                                                    reassocation, inStaticShape,
1325                                                    inDesc, outStaticShape))
1326              : getAsValues(b, loc, llvmIndexType,
1327                            getExpandedOutputShape(b, loc, llvmIndexType,
1328                                                   reassocation, inStaticShape,
1329                                                   inDesc, outStaticShape));
1330 }
1331 
1332 // ReshapeOp creates a new view descriptor of the proper rank.
1333 // For now, the only conversion supported is for target MemRef with static sizes
1334 // and strides.
1335 template <typename ReshapeOp>
1336 class ReassociatingReshapeOpConversion
1337     : public ConvertOpToLLVMPattern<ReshapeOp> {
1338 public:
1339   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1340   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1341 
1342   LogicalResult
1343   matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
1344                   ConversionPatternRewriter &rewriter) const override {
1345     MemRefType dstType = reshapeOp.getResultType();
1346     MemRefType srcType = reshapeOp.getSrcType();
1347 
1348     // The condition on the layouts can be ignored when all shapes are static.
1349     if (!srcType.hasStaticShape() || !dstType.hasStaticShape()) {
1350       if (!srcType.getLayout().isIdentity() ||
1351           !dstType.getLayout().isIdentity()) {
1352         return rewriter.notifyMatchFailure(
1353             reshapeOp, "only empty layout map is supported");
1354       }
1355     }
1356 
1357     int64_t offset;
1358     SmallVector<int64_t, 4> strides;
1359     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1360       return rewriter.notifyMatchFailure(
1361           reshapeOp, "failed to get stride and offset exprs");
1362     }
1363 
1364     MemRefDescriptor srcDesc(adaptor.src());
1365     Location loc = reshapeOp->getLoc();
1366     auto dstDesc = MemRefDescriptor::undef(
1367         rewriter, loc, this->typeConverter->convertType(dstType));
1368     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1369     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1370     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1371 
1372     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1373     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1374     Type llvmIndexType =
1375         this->typeConverter->convertType(rewriter.getIndexType());
1376     SmallVector<Value> dstShape = getDynamicOutputShape(
1377         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1378         srcStaticShape, srcDesc, dstStaticShape);
1379     for (auto &en : llvm::enumerate(dstShape))
1380       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1381 
1382     auto isStaticStride = [](int64_t stride) {
1383       return !ShapedType::isDynamicStrideOrOffset(stride);
1384     };
1385     if (llvm::all_of(strides, isStaticStride)) {
1386       for (auto &en : llvm::enumerate(strides))
1387         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1388     } else {
1389       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1390                                                    rewriter.getIndexAttr(1));
1391       Value stride = c1;
1392       for (auto dimIndex :
1393            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1394         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1395         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1396       }
1397     }
1398     rewriter.replaceOp(reshapeOp, {dstDesc});
1399     return success();
1400   }
1401 };
1402 
1403 /// Conversion pattern that transforms a subview op into:
1404 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1405 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1406 ///      and stride.
1407 /// The subview op is replaced by the descriptor.
1408 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1409   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1410 
1411   LogicalResult
1412   matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
1413                   ConversionPatternRewriter &rewriter) const override {
1414     auto loc = subViewOp.getLoc();
1415 
1416     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1417     auto sourceElementTy =
1418         typeConverter->convertType(sourceMemRefType.getElementType());
1419 
1420     auto viewMemRefType = subViewOp.getType();
1421     auto inferredType = memref::SubViewOp::inferResultType(
1422                             subViewOp.getSourceType(),
1423                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1424                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1425                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1426                             .cast<MemRefType>();
1427     auto targetElementTy =
1428         typeConverter->convertType(viewMemRefType.getElementType());
1429     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1430     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1431         !LLVM::isCompatibleType(sourceElementTy) ||
1432         !LLVM::isCompatibleType(targetElementTy) ||
1433         !LLVM::isCompatibleType(targetDescTy))
1434       return failure();
1435 
1436     // Extract the offset and strides from the type.
1437     int64_t offset;
1438     SmallVector<int64_t, 4> strides;
1439     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1440     if (failed(successStrides))
1441       return failure();
1442 
1443     // Create the descriptor.
1444     if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
1445       return failure();
1446     MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
1447     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1448 
1449     // Copy the buffer pointer from the old descriptor to the new one.
1450     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1451     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1452         loc,
1453         LLVM::LLVMPointerType::get(targetElementTy,
1454                                    viewMemRefType.getMemorySpaceAsInt()),
1455         extracted);
1456     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1457 
1458     // Copy the aligned pointer from the old descriptor to the new one.
1459     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1460     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1461         loc,
1462         LLVM::LLVMPointerType::get(targetElementTy,
1463                                    viewMemRefType.getMemorySpaceAsInt()),
1464         extracted);
1465     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1466 
1467     size_t inferredShapeRank = inferredType.getRank();
1468     size_t resultShapeRank = viewMemRefType.getRank();
1469 
1470     // Extract strides needed to compute offset.
1471     SmallVector<Value, 4> strideValues;
1472     strideValues.reserve(inferredShapeRank);
1473     for (unsigned i = 0; i < inferredShapeRank; ++i)
1474       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1475 
1476     // Offset.
1477     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1478     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1479       targetMemRef.setConstantOffset(rewriter, loc, offset);
1480     } else {
1481       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1482       // `inferredShapeRank` may be larger than the number of offset operands
1483       // because of trailing semantics. In this case, the offset is guaranteed
1484       // to be interpreted as 0 and we can just skip the extra dimensions.
1485       for (unsigned i = 0, e = std::min(inferredShapeRank,
1486                                         subViewOp.getMixedOffsets().size());
1487            i < e; ++i) {
1488         Value offset =
1489             // TODO: need OpFoldResult ODS adaptor to clean this up.
1490             subViewOp.isDynamicOffset(i)
1491                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
1492                 : rewriter.create<LLVM::ConstantOp>(
1493                       loc, llvmIndexType,
1494                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1495         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1496         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1497       }
1498       targetMemRef.setOffset(rewriter, loc, baseOffset);
1499     }
1500 
1501     // Update sizes and strides.
1502     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1503     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1504     assert(mixedSizes.size() == mixedStrides.size() &&
1505            "expected sizes and strides of equal length");
1506     llvm::SmallBitVector unusedDims = subViewOp.getDroppedDims();
1507     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1508          i >= 0 && j >= 0; --i) {
1509       if (unusedDims.test(i))
1510         continue;
1511 
1512       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1513       // In this case, the size is guaranteed to be interpreted as Dim and the
1514       // stride as 1.
1515       Value size, stride;
1516       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1517         // If the static size is available, use it directly. This is similar to
1518         // the folding of dim(constant-op) but removes the need for dim to be
1519         // aware of LLVM constants and for this pass to be aware of std
1520         // constants.
1521         int64_t staticSize =
1522             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1523         if (staticSize != ShapedType::kDynamicSize) {
1524           size = rewriter.create<LLVM::ConstantOp>(
1525               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1526         } else {
1527           Value pos = rewriter.create<LLVM::ConstantOp>(
1528               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1529           Value dim =
1530               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1531           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1532               loc, llvmIndexType, dim);
1533           size = cast.getResult(0);
1534         }
1535         stride = rewriter.create<LLVM::ConstantOp>(
1536             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1537       } else {
1538         // TODO: need OpFoldResult ODS adaptor to clean this up.
1539         size =
1540             subViewOp.isDynamicSize(i)
1541                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
1542                 : rewriter.create<LLVM::ConstantOp>(
1543                       loc, llvmIndexType,
1544                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1545         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1546           stride = rewriter.create<LLVM::ConstantOp>(
1547               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1548         } else {
1549           stride =
1550               subViewOp.isDynamicStride(i)
1551                   ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
1552                   : rewriter.create<LLVM::ConstantOp>(
1553                         loc, llvmIndexType,
1554                         rewriter.getI64IntegerAttr(
1555                             subViewOp.getStaticStride(i)));
1556           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1557         }
1558       }
1559       targetMemRef.setSize(rewriter, loc, j, size);
1560       targetMemRef.setStride(rewriter, loc, j, stride);
1561       j--;
1562     }
1563 
1564     rewriter.replaceOp(subViewOp, {targetMemRef});
1565     return success();
1566   }
1567 };
1568 
1569 /// Conversion pattern that transforms a transpose op into:
1570 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1571 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1572 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1573 ///      and stride. Size and stride are permutations of the original values.
1574 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1575 /// The transpose op is replaced by the alloca'ed pointer.
1576 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1577 public:
1578   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1579 
1580   LogicalResult
1581   matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
1582                   ConversionPatternRewriter &rewriter) const override {
1583     auto loc = transposeOp.getLoc();
1584     MemRefDescriptor viewMemRef(adaptor.in());
1585 
1586     // No permutation, early exit.
1587     if (transposeOp.permutation().isIdentity())
1588       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1589 
1590     auto targetMemRef = MemRefDescriptor::undef(
1591         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1592 
1593     // Copy the base and aligned pointers from the old descriptor to the new
1594     // one.
1595     targetMemRef.setAllocatedPtr(rewriter, loc,
1596                                  viewMemRef.allocatedPtr(rewriter, loc));
1597     targetMemRef.setAlignedPtr(rewriter, loc,
1598                                viewMemRef.alignedPtr(rewriter, loc));
1599 
1600     // Copy the offset pointer from the old descriptor to the new one.
1601     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1602 
1603     // Iterate over the dimensions and apply size/stride permutation.
1604     for (const auto &en :
1605          llvm::enumerate(transposeOp.permutation().getResults())) {
1606       int sourcePos = en.index();
1607       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1608       targetMemRef.setSize(rewriter, loc, targetPos,
1609                            viewMemRef.size(rewriter, loc, sourcePos));
1610       targetMemRef.setStride(rewriter, loc, targetPos,
1611                              viewMemRef.stride(rewriter, loc, sourcePos));
1612     }
1613 
1614     rewriter.replaceOp(transposeOp, {targetMemRef});
1615     return success();
1616   }
1617 };
1618 
1619 /// Conversion pattern that transforms an op into:
1620 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1621 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1622 ///      and stride.
1623 /// The view op is replaced by the descriptor.
1624 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1625   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1626 
1627   // Build and return the value for the idx^th shape dimension, either by
1628   // returning the constant shape dimension or counting the proper dynamic size.
1629   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1630                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1631                 unsigned idx) const {
1632     assert(idx < shape.size());
1633     if (!ShapedType::isDynamic(shape[idx]))
1634       return createIndexConstant(rewriter, loc, shape[idx]);
1635     // Count the number of dynamic dims in range [0, idx]
1636     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1637       return ShapedType::isDynamic(v);
1638     });
1639     return dynamicSizes[nDynamic];
1640   }
1641 
1642   // Build and return the idx^th stride, either by returning the constant stride
1643   // or by computing the dynamic stride from the current `runningStride` and
1644   // `nextSize`. The caller should keep a running stride and update it with the
1645   // result returned by this function.
1646   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1647                   ArrayRef<int64_t> strides, Value nextSize,
1648                   Value runningStride, unsigned idx) const {
1649     assert(idx < strides.size());
1650     if (!ShapedType::isDynamicStrideOrOffset(strides[idx]))
1651       return createIndexConstant(rewriter, loc, strides[idx]);
1652     if (nextSize)
1653       return runningStride
1654                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1655                  : nextSize;
1656     assert(!runningStride);
1657     return createIndexConstant(rewriter, loc, 1);
1658   }
1659 
1660   LogicalResult
1661   matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
1662                   ConversionPatternRewriter &rewriter) const override {
1663     auto loc = viewOp.getLoc();
1664 
1665     auto viewMemRefType = viewOp.getType();
1666     auto targetElementTy =
1667         typeConverter->convertType(viewMemRefType.getElementType());
1668     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1669     if (!targetDescTy || !targetElementTy ||
1670         !LLVM::isCompatibleType(targetElementTy) ||
1671         !LLVM::isCompatibleType(targetDescTy))
1672       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1673              failure();
1674 
1675     int64_t offset;
1676     SmallVector<int64_t, 4> strides;
1677     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1678     if (failed(successStrides))
1679       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1680     assert(offset == 0 && "expected offset to be 0");
1681 
1682     // Create the descriptor.
1683     MemRefDescriptor sourceMemRef(adaptor.source());
1684     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1685 
1686     // Field 1: Copy the allocated pointer, used for malloc/free.
1687     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1688     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1689     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1690         loc,
1691         LLVM::LLVMPointerType::get(targetElementTy,
1692                                    srcMemRefType.getMemorySpaceAsInt()),
1693         allocatedPtr);
1694     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1695 
1696     // Field 2: Copy the actual aligned pointer to payload.
1697     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1698     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1699                                               alignedPtr, adaptor.byte_shift());
1700     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1701         loc,
1702         LLVM::LLVMPointerType::get(targetElementTy,
1703                                    srcMemRefType.getMemorySpaceAsInt()),
1704         alignedPtr);
1705     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1706 
1707     // Field 3: The offset in the resulting type must be 0. This is because of
1708     // the type change: an offset on srcType* may not be expressible as an
1709     // offset on dstType*.
1710     targetMemRef.setOffset(rewriter, loc,
1711                            createIndexConstant(rewriter, loc, offset));
1712 
1713     // Early exit for 0-D corner case.
1714     if (viewMemRefType.getRank() == 0)
1715       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1716 
1717     // Fields 4 and 5: Update sizes and strides.
1718     if (strides.back() != 1)
1719       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1720              failure();
1721     Value stride = nullptr, nextSize = nullptr;
1722     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1723       // Update size.
1724       Value size =
1725           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1726       targetMemRef.setSize(rewriter, loc, i, size);
1727       // Update stride.
1728       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1729       targetMemRef.setStride(rewriter, loc, i, stride);
1730       nextSize = size;
1731     }
1732 
1733     rewriter.replaceOp(viewOp, {targetMemRef});
1734     return success();
1735   }
1736 };
1737 
1738 //===----------------------------------------------------------------------===//
1739 // AtomicRMWOpLowering
1740 //===----------------------------------------------------------------------===//
1741 
1742 /// Try to match the kind of a std.atomic_rmw to determine whether to use a
1743 /// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg.
1744 static Optional<LLVM::AtomicBinOp>
1745 matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) {
1746   switch (atomicOp.kind()) {
1747   case arith::AtomicRMWKind::addf:
1748     return LLVM::AtomicBinOp::fadd;
1749   case arith::AtomicRMWKind::addi:
1750     return LLVM::AtomicBinOp::add;
1751   case arith::AtomicRMWKind::assign:
1752     return LLVM::AtomicBinOp::xchg;
1753   case arith::AtomicRMWKind::maxs:
1754     return LLVM::AtomicBinOp::max;
1755   case arith::AtomicRMWKind::maxu:
1756     return LLVM::AtomicBinOp::umax;
1757   case arith::AtomicRMWKind::mins:
1758     return LLVM::AtomicBinOp::min;
1759   case arith::AtomicRMWKind::minu:
1760     return LLVM::AtomicBinOp::umin;
1761   case arith::AtomicRMWKind::ori:
1762     return LLVM::AtomicBinOp::_or;
1763   case arith::AtomicRMWKind::andi:
1764     return LLVM::AtomicBinOp::_and;
1765   default:
1766     return llvm::None;
1767   }
1768   llvm_unreachable("Invalid AtomicRMWKind");
1769 }
1770 
1771 struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> {
1772   using Base::Base;
1773 
1774   LogicalResult
1775   matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor,
1776                   ConversionPatternRewriter &rewriter) const override {
1777     if (failed(match(atomicOp)))
1778       return failure();
1779     auto maybeKind = matchSimpleAtomicOp(atomicOp);
1780     if (!maybeKind)
1781       return failure();
1782     auto resultType = adaptor.value().getType();
1783     auto memRefType = atomicOp.getMemRefType();
1784     auto dataPtr =
1785         getStridedElementPtr(atomicOp.getLoc(), memRefType, adaptor.memref(),
1786                              adaptor.indices(), rewriter);
1787     rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>(
1788         atomicOp, resultType, *maybeKind, dataPtr, adaptor.value(),
1789         LLVM::AtomicOrdering::acq_rel);
1790     return success();
1791   }
1792 };
1793 
1794 } // namespace
1795 
1796 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1797                                                   RewritePatternSet &patterns) {
1798   // clang-format off
1799   patterns.add<
1800       AllocaOpLowering,
1801       AllocaScopeOpLowering,
1802       AtomicRMWOpLowering,
1803       AssumeAlignmentOpLowering,
1804       DimOpLowering,
1805       GenericAtomicRMWOpLowering,
1806       GlobalMemrefOpLowering,
1807       GetGlobalMemrefOpLowering,
1808       LoadOpLowering,
1809       MemRefCastOpLowering,
1810       MemRefCopyOpLowering,
1811       MemRefReinterpretCastOpLowering,
1812       MemRefReshapeOpLowering,
1813       PrefetchOpLowering,
1814       RankOpLowering,
1815       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1816       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1817       StoreOpLowering,
1818       SubViewOpLowering,
1819       TransposeOpLowering,
1820       ViewOpLowering>(converter);
1821   // clang-format on
1822   auto allocLowering = converter.getOptions().allocLowering;
1823   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1824     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1825   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1826     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1827 }
1828 
1829 namespace {
1830 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1831   MemRefToLLVMPass() = default;
1832 
1833   void runOnOperation() override {
1834     Operation *op = getOperation();
1835     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1836     LowerToLLVMOptions options(&getContext(),
1837                                dataLayoutAnalysis.getAtOrAbove(op));
1838     options.allocLowering =
1839         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1840                          : LowerToLLVMOptions::AllocLowering::Malloc);
1841     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1842       options.overrideIndexBitwidth(indexBitwidth);
1843 
1844     LLVMTypeConverter typeConverter(&getContext(), options,
1845                                     &dataLayoutAnalysis);
1846     RewritePatternSet patterns(&getContext());
1847     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1848     LLVMConversionTarget target(getContext());
1849     target.addLegalOp<FuncOp>();
1850     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1851       signalPassFailure();
1852   }
1853 };
1854 } // namespace
1855 
1856 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1857   return std::make_unique<MemRefToLLVMPass>();
1858 }
1859