1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" 10 #include "../PassDetail.h" 11 #include "mlir/Analysis/DataLayoutAnalysis.h" 12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" 13 #include "mlir/Conversion/LLVMCommon/Pattern.h" 14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h" 16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/AffineMap.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 22 using namespace mlir; 23 24 namespace { 25 26 struct AllocOpLowering : public AllocLikeOpLLVMLowering { 27 AllocOpLowering(LLVMTypeConverter &converter) 28 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 29 converter) {} 30 31 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 32 Location loc, Value sizeBytes, 33 Operation *op) const override { 34 // Heap allocations. 35 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 36 MemRefType memRefType = allocOp.getType(); 37 38 Value alignment; 39 if (auto alignmentAttr = allocOp.alignment()) { 40 alignment = createIndexConstant(rewriter, loc, *alignmentAttr); 41 } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) { 42 // In the case where no alignment is specified, we may want to override 43 // `malloc's` behavior. `malloc` typically aligns at the size of the 44 // biggest scalar on a target HW. For non-scalars, use the natural 45 // alignment of the LLVM type given by the LLVM DataLayout. 46 alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter); 47 } 48 49 if (alignment) { 50 // Adjust the allocation size to consider alignment. 51 sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment); 52 } 53 54 // Allocate the underlying buffer and store a pointer to it in the MemRef 55 // descriptor. 56 Type elementPtrType = this->getElementPtrType(memRefType); 57 auto allocFuncOp = LLVM::lookupOrCreateMallocFn( 58 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 59 auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes}, 60 getVoidPtrType()); 61 Value allocatedPtr = 62 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 63 64 Value alignedPtr = allocatedPtr; 65 if (alignment) { 66 // Compute the aligned type pointer. 67 Value allocatedInt = 68 rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr); 69 Value alignmentInt = 70 createAligned(rewriter, loc, allocatedInt, alignment); 71 alignedPtr = 72 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt); 73 } 74 75 return std::make_tuple(allocatedPtr, alignedPtr); 76 } 77 }; 78 79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering { 80 AlignedAllocOpLowering(LLVMTypeConverter &converter) 81 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 82 converter) {} 83 84 /// Returns the memref's element size in bytes using the data layout active at 85 /// `op`. 86 // TODO: there are other places where this is used. Expose publicly? 87 unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const { 88 const DataLayout *layout = &defaultLayout; 89 if (const DataLayoutAnalysis *analysis = 90 getTypeConverter()->getDataLayoutAnalysis()) { 91 layout = &analysis->getAbove(op); 92 } 93 Type elementType = memRefType.getElementType(); 94 if (auto memRefElementType = elementType.dyn_cast<MemRefType>()) 95 return getTypeConverter()->getMemRefDescriptorSize(memRefElementType, 96 *layout); 97 if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>()) 98 return getTypeConverter()->getUnrankedMemRefDescriptorSize( 99 memRefElementType, *layout); 100 return layout->getTypeSize(elementType); 101 } 102 103 /// Returns true if the memref size in bytes is known to be a multiple of 104 /// factor assuming the data layout active at `op`. 105 bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor, 106 Operation *op) const { 107 uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op); 108 for (unsigned i = 0, e = type.getRank(); i < e; i++) { 109 if (type.isDynamic(type.getDimSize(i))) 110 continue; 111 sizeDivisor = sizeDivisor * type.getDimSize(i); 112 } 113 return sizeDivisor % factor == 0; 114 } 115 116 /// Returns the alignment to be used for the allocation call itself. 117 /// aligned_alloc requires the allocation size to be a power of two, and the 118 /// allocation size to be a multiple of alignment, 119 int64_t getAllocationAlignment(memref::AllocOp allocOp) const { 120 if (Optional<uint64_t> alignment = allocOp.alignment()) 121 return *alignment; 122 123 // Whenever we don't have alignment set, we will use an alignment 124 // consistent with the element type; since the allocation size has to be a 125 // power of two, we will bump to the next power of two if it already isn't. 126 auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp); 127 return std::max(kMinAlignedAllocAlignment, 128 llvm::PowerOf2Ceil(eltSizeBytes)); 129 } 130 131 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 132 Location loc, Value sizeBytes, 133 Operation *op) const override { 134 // Heap allocations. 135 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 136 MemRefType memRefType = allocOp.getType(); 137 int64_t alignment = getAllocationAlignment(allocOp); 138 Value allocAlignment = createIndexConstant(rewriter, loc, alignment); 139 140 // aligned_alloc requires size to be a multiple of alignment; we will pad 141 // the size to the next multiple if necessary. 142 if (!isMemRefSizeMultipleOf(memRefType, alignment, op)) 143 sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment); 144 145 Type elementPtrType = this->getElementPtrType(memRefType); 146 auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn( 147 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 148 auto results = 149 createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes}, 150 getVoidPtrType()); 151 Value allocatedPtr = 152 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 153 154 return std::make_tuple(allocatedPtr, allocatedPtr); 155 } 156 157 /// The minimum alignment to use with aligned_alloc (has to be a power of 2). 158 static constexpr uint64_t kMinAlignedAllocAlignment = 16UL; 159 160 /// Default layout to use in absence of the corresponding analysis. 161 DataLayout defaultLayout; 162 }; 163 164 // Out of line definition, required till C++17. 165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment; 166 167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering { 168 AllocaOpLowering(LLVMTypeConverter &converter) 169 : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(), 170 converter) {} 171 172 /// Allocates the underlying buffer using the right call. `allocatedBytePtr` 173 /// is set to null for stack allocations. `accessAlignment` is set if 174 /// alignment is needed post allocation (for eg. in conjunction with malloc). 175 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 176 Location loc, Value sizeBytes, 177 Operation *op) const override { 178 179 // With alloca, one gets a pointer to the element type right away. 180 // For stack allocations. 181 auto allocaOp = cast<memref::AllocaOp>(op); 182 auto elementPtrType = this->getElementPtrType(allocaOp.getType()); 183 184 auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>( 185 loc, elementPtrType, sizeBytes, 186 allocaOp.alignment() ? *allocaOp.alignment() : 0); 187 188 return std::make_tuple(allocatedElementPtr, allocatedElementPtr); 189 } 190 }; 191 192 struct AllocaScopeOpLowering 193 : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> { 194 using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern; 195 196 LogicalResult 197 matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor, 198 ConversionPatternRewriter &rewriter) const override { 199 OpBuilder::InsertionGuard guard(rewriter); 200 Location loc = allocaScopeOp.getLoc(); 201 202 // Split the current block before the AllocaScopeOp to create the inlining 203 // point. 204 auto *currentBlock = rewriter.getInsertionBlock(); 205 auto *remainingOpsBlock = 206 rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); 207 Block *continueBlock; 208 if (allocaScopeOp.getNumResults() == 0) { 209 continueBlock = remainingOpsBlock; 210 } else { 211 continueBlock = rewriter.createBlock(remainingOpsBlock, 212 allocaScopeOp.getResultTypes()); 213 rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock); 214 } 215 216 // Inline body region. 217 Block *beforeBody = &allocaScopeOp.bodyRegion().front(); 218 Block *afterBody = &allocaScopeOp.bodyRegion().back(); 219 rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock); 220 221 // Save stack and then branch into the body of the region. 222 rewriter.setInsertionPointToEnd(currentBlock); 223 auto stackSaveOp = 224 rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); 225 rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody); 226 227 // Replace the alloca_scope return with a branch that jumps out of the body. 228 // Stack restore before leaving the body region. 229 rewriter.setInsertionPointToEnd(afterBody); 230 auto returnOp = 231 cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator()); 232 auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>( 233 returnOp, returnOp.results(), continueBlock); 234 235 // Insert stack restore before jumping out the body of the region. 236 rewriter.setInsertionPoint(branchOp); 237 rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); 238 239 // Replace the op with values return from the body region. 240 rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments()); 241 242 return success(); 243 } 244 }; 245 246 struct AssumeAlignmentOpLowering 247 : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> { 248 using ConvertOpToLLVMPattern< 249 memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern; 250 251 LogicalResult 252 matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor, 253 ConversionPatternRewriter &rewriter) const override { 254 Value memref = adaptor.memref(); 255 unsigned alignment = op.alignment(); 256 auto loc = op.getLoc(); 257 258 MemRefDescriptor memRefDescriptor(memref); 259 Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc()); 260 261 // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that 262 // the asserted memref.alignedPtr isn't used anywhere else, as the real 263 // users like load/store/views always re-extract memref.alignedPtr as they 264 // get lowered. 265 // 266 // This relies on LLVM's CSE optimization (potentially after SROA), since 267 // after CSE all memref.alignedPtr instances get de-duplicated into the same 268 // pointer SSA value. 269 auto intPtrType = 270 getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace()); 271 Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0); 272 Value mask = 273 createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1); 274 Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr); 275 rewriter.create<LLVM::AssumeOp>( 276 loc, rewriter.create<LLVM::ICmpOp>( 277 loc, LLVM::ICmpPredicate::eq, 278 rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero)); 279 280 rewriter.eraseOp(op); 281 return success(); 282 } 283 }; 284 285 // A `dealloc` is converted into a call to `free` on the underlying data buffer. 286 // The memref descriptor being an SSA value, there is no need to clean it up 287 // in any way. 288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> { 289 using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern; 290 291 explicit DeallocOpLowering(LLVMTypeConverter &converter) 292 : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {} 293 294 LogicalResult 295 matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor, 296 ConversionPatternRewriter &rewriter) const override { 297 // Insert the `free` declaration if it is not already present. 298 auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>()); 299 MemRefDescriptor memref(adaptor.memref()); 300 Value casted = rewriter.create<LLVM::BitcastOp>( 301 op.getLoc(), getVoidPtrType(), 302 memref.allocatedPtr(rewriter, op.getLoc())); 303 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 304 op, TypeRange(), SymbolRefAttr::get(freeFunc), casted); 305 return success(); 306 } 307 }; 308 309 // A `dim` is converted to a constant for static sizes and to an access to the 310 // size stored in the memref descriptor for dynamic sizes. 311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> { 312 using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern; 313 314 LogicalResult 315 matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor, 316 ConversionPatternRewriter &rewriter) const override { 317 Type operandType = dimOp.source().getType(); 318 if (operandType.isa<UnrankedMemRefType>()) { 319 rewriter.replaceOp( 320 dimOp, {extractSizeOfUnrankedMemRef( 321 operandType, dimOp, adaptor.getOperands(), rewriter)}); 322 323 return success(); 324 } 325 if (operandType.isa<MemRefType>()) { 326 rewriter.replaceOp( 327 dimOp, {extractSizeOfRankedMemRef(operandType, dimOp, 328 adaptor.getOperands(), rewriter)}); 329 return success(); 330 } 331 llvm_unreachable("expected MemRefType or UnrankedMemRefType"); 332 } 333 334 private: 335 Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp, 336 OpAdaptor adaptor, 337 ConversionPatternRewriter &rewriter) const { 338 Location loc = dimOp.getLoc(); 339 340 auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>(); 341 auto scalarMemRefType = 342 MemRefType::get({}, unrankedMemRefType.getElementType()); 343 unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt(); 344 345 // Extract pointer to the underlying ranked descriptor and bitcast it to a 346 // memref<element_type> descriptor pointer to minimize the number of GEP 347 // operations. 348 UnrankedMemRefDescriptor unrankedDesc(adaptor.source()); 349 Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc); 350 Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>( 351 loc, 352 LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType), 353 addressSpace), 354 underlyingRankedDesc); 355 356 // Get pointer to offset field of memref<element_type> descriptor. 357 Type indexPtrTy = LLVM::LLVMPointerType::get( 358 getTypeConverter()->getIndexType(), addressSpace); 359 Value two = rewriter.create<LLVM::ConstantOp>( 360 loc, typeConverter->convertType(rewriter.getI32Type()), 361 rewriter.getI32IntegerAttr(2)); 362 Value offsetPtr = rewriter.create<LLVM::GEPOp>( 363 loc, indexPtrTy, scalarMemRefDescPtr, 364 ValueRange({createIndexConstant(rewriter, loc, 0), two})); 365 366 // The size value that we have to extract can be obtained using GEPop with 367 // `dimOp.index() + 1` index argument. 368 Value idxPlusOne = rewriter.create<LLVM::AddOp>( 369 loc, createIndexConstant(rewriter, loc, 1), adaptor.index()); 370 Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr, 371 ValueRange({idxPlusOne})); 372 return rewriter.create<LLVM::LoadOp>(loc, sizePtr); 373 } 374 375 Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const { 376 if (Optional<int64_t> idx = dimOp.getConstantIndex()) 377 return idx; 378 379 if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>()) 380 return constantOp.value().cast<IntegerAttr>().getValue().getSExtValue(); 381 382 return llvm::None; 383 } 384 385 Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp, 386 OpAdaptor adaptor, 387 ConversionPatternRewriter &rewriter) const { 388 Location loc = dimOp.getLoc(); 389 390 // Take advantage if index is constant. 391 MemRefType memRefType = operandType.cast<MemRefType>(); 392 if (Optional<int64_t> index = getConstantDimIndex(dimOp)) { 393 int64_t i = index.getValue(); 394 if (memRefType.isDynamicDim(i)) { 395 // extract dynamic size from the memref descriptor. 396 MemRefDescriptor descriptor(adaptor.source()); 397 return descriptor.size(rewriter, loc, i); 398 } 399 // Use constant for static size. 400 int64_t dimSize = memRefType.getDimSize(i); 401 return createIndexConstant(rewriter, loc, dimSize); 402 } 403 Value index = adaptor.index(); 404 int64_t rank = memRefType.getRank(); 405 MemRefDescriptor memrefDescriptor(adaptor.source()); 406 return memrefDescriptor.size(rewriter, loc, index, rank); 407 } 408 }; 409 410 /// Returns the LLVM type of the global variable given the memref type `type`. 411 static Type convertGlobalMemrefTypeToLLVM(MemRefType type, 412 LLVMTypeConverter &typeConverter) { 413 // LLVM type for a global memref will be a multi-dimension array. For 414 // declarations or uninitialized global memrefs, we can potentially flatten 415 // this to a 1D array. However, for memref.global's with an initial value, 416 // we do not intend to flatten the ElementsAttribute when going from std -> 417 // LLVM dialect, so the LLVM type needs to me a multi-dimension array. 418 Type elementType = typeConverter.convertType(type.getElementType()); 419 Type arrayTy = elementType; 420 // Shape has the outermost dim at index 0, so need to walk it backwards 421 for (int64_t dim : llvm::reverse(type.getShape())) 422 arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim); 423 return arrayTy; 424 } 425 426 /// GlobalMemrefOp is lowered to a LLVM Global Variable. 427 struct GlobalMemrefOpLowering 428 : public ConvertOpToLLVMPattern<memref::GlobalOp> { 429 using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern; 430 431 LogicalResult 432 matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor, 433 ConversionPatternRewriter &rewriter) const override { 434 MemRefType type = global.type(); 435 if (!isConvertibleAndHasIdentityMaps(type)) 436 return failure(); 437 438 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 439 440 LLVM::Linkage linkage = 441 global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private; 442 443 Attribute initialValue = nullptr; 444 if (!global.isExternal() && !global.isUninitialized()) { 445 auto elementsAttr = global.initial_value()->cast<ElementsAttr>(); 446 initialValue = elementsAttr; 447 448 // For scalar memrefs, the global variable created is of the element type, 449 // so unpack the elements attribute to extract the value. 450 if (type.getRank() == 0) 451 initialValue = elementsAttr.getValue({}); 452 } 453 454 auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( 455 global, arrayTy, global.constant(), linkage, global.sym_name(), 456 initialValue, /*alignment=*/0, type.getMemorySpaceAsInt()); 457 if (!global.isExternal() && global.isUninitialized()) { 458 Block *blk = new Block(); 459 newGlobal.getInitializerRegion().push_back(blk); 460 rewriter.setInsertionPointToStart(blk); 461 Value undef[] = { 462 rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)}; 463 rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef); 464 } 465 return success(); 466 } 467 }; 468 469 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to 470 /// the first element stashed into the descriptor. This reuses 471 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction. 472 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering { 473 GetGlobalMemrefOpLowering(LLVMTypeConverter &converter) 474 : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(), 475 converter) {} 476 477 /// Buffer "allocation" for memref.get_global op is getting the address of 478 /// the global variable referenced. 479 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 480 Location loc, Value sizeBytes, 481 Operation *op) const override { 482 auto getGlobalOp = cast<memref::GetGlobalOp>(op); 483 MemRefType type = getGlobalOp.result().getType().cast<MemRefType>(); 484 unsigned memSpace = type.getMemorySpaceAsInt(); 485 486 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 487 auto addressOf = rewriter.create<LLVM::AddressOfOp>( 488 loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name()); 489 490 // Get the address of the first element in the array by creating a GEP with 491 // the address of the GV as the base, and (rank + 1) number of 0 indices. 492 Type elementType = typeConverter->convertType(type.getElementType()); 493 Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace); 494 495 SmallVector<Value, 4> operands = {addressOf}; 496 operands.insert(operands.end(), type.getRank() + 1, 497 createIndexConstant(rewriter, loc, 0)); 498 auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands); 499 500 // We do not expect the memref obtained using `memref.get_global` to be 501 // ever deallocated. Set the allocated pointer to be known bad value to 502 // help debug if that ever happens. 503 auto intPtrType = getIntPtrType(memSpace); 504 Value deadBeefConst = 505 createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef); 506 auto deadBeefPtr = 507 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst); 508 509 // Both allocated and aligned pointers are same. We could potentially stash 510 // a nullptr for the allocated pointer since we do not expect any dealloc. 511 return std::make_tuple(deadBeefPtr, gep); 512 } 513 }; 514 515 // Common base for load and store operations on MemRefs. Restricts the match 516 // to supported MemRef types. Provides functionality to emit code accessing a 517 // specific element of the underlying data buffer. 518 template <typename Derived> 519 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { 520 using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; 521 using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps; 522 using Base = LoadStoreOpLowering<Derived>; 523 524 LogicalResult match(Derived op) const override { 525 MemRefType type = op.getMemRefType(); 526 return isConvertibleAndHasIdentityMaps(type) ? success() : failure(); 527 } 528 }; 529 530 // Load operation is lowered to obtaining a pointer to the indexed element 531 // and loading it. 532 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> { 533 using Base::Base; 534 535 LogicalResult 536 matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor, 537 ConversionPatternRewriter &rewriter) const override { 538 auto type = loadOp.getMemRefType(); 539 540 Value dataPtr = getStridedElementPtr( 541 loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter); 542 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr); 543 return success(); 544 } 545 }; 546 547 // Store operation is lowered to obtaining a pointer to the indexed element, 548 // and storing the given value to it. 549 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> { 550 using Base::Base; 551 552 LogicalResult 553 matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor, 554 ConversionPatternRewriter &rewriter) const override { 555 auto type = op.getMemRefType(); 556 557 Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(), 558 adaptor.indices(), rewriter); 559 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr); 560 return success(); 561 } 562 }; 563 564 // The prefetch operation is lowered in a way similar to the load operation 565 // except that the llvm.prefetch operation is used for replacement. 566 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> { 567 using Base::Base; 568 569 LogicalResult 570 matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor, 571 ConversionPatternRewriter &rewriter) const override { 572 auto type = prefetchOp.getMemRefType(); 573 auto loc = prefetchOp.getLoc(); 574 575 Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(), 576 adaptor.indices(), rewriter); 577 578 // Replace with llvm.prefetch. 579 auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32)); 580 auto isWrite = rewriter.create<LLVM::ConstantOp>( 581 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite())); 582 auto localityHint = rewriter.create<LLVM::ConstantOp>( 583 loc, llvmI32Type, 584 rewriter.getI32IntegerAttr(prefetchOp.localityHint())); 585 auto isData = rewriter.create<LLVM::ConstantOp>( 586 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache())); 587 588 rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite, 589 localityHint, isData); 590 return success(); 591 } 592 }; 593 594 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> { 595 using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern; 596 597 LogicalResult match(memref::CastOp memRefCastOp) const override { 598 Type srcType = memRefCastOp.getOperand().getType(); 599 Type dstType = memRefCastOp.getType(); 600 601 // memref::CastOp reduce to bitcast in the ranked MemRef case and can be 602 // used for type erasure. For now they must preserve underlying element type 603 // and require source and result type to have the same rank. Therefore, 604 // perform a sanity check that the underlying structs are the same. Once op 605 // semantics are relaxed we can revisit. 606 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 607 return success(typeConverter->convertType(srcType) == 608 typeConverter->convertType(dstType)); 609 610 // At least one of the operands is unranked type 611 assert(srcType.isa<UnrankedMemRefType>() || 612 dstType.isa<UnrankedMemRefType>()); 613 614 // Unranked to unranked cast is disallowed 615 return !(srcType.isa<UnrankedMemRefType>() && 616 dstType.isa<UnrankedMemRefType>()) 617 ? success() 618 : failure(); 619 } 620 621 void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor, 622 ConversionPatternRewriter &rewriter) const override { 623 auto srcType = memRefCastOp.getOperand().getType(); 624 auto dstType = memRefCastOp.getType(); 625 auto targetStructType = typeConverter->convertType(memRefCastOp.getType()); 626 auto loc = memRefCastOp.getLoc(); 627 628 // For ranked/ranked case, just keep the original descriptor. 629 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 630 return rewriter.replaceOp(memRefCastOp, {adaptor.source()}); 631 632 if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) { 633 // Casting ranked to unranked memref type 634 // Set the rank in the destination from the memref type 635 // Allocate space on the stack and copy the src memref descriptor 636 // Set the ptr in the destination to the stack space 637 auto srcMemRefType = srcType.cast<MemRefType>(); 638 int64_t rank = srcMemRefType.getRank(); 639 // ptr = AllocaOp sizeof(MemRefDescriptor) 640 auto ptr = getTypeConverter()->promoteOneMemRefDescriptor( 641 loc, adaptor.source(), rewriter); 642 // voidptr = BitCastOp srcType* to void* 643 auto voidPtr = 644 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 645 .getResult(); 646 // rank = ConstantOp srcRank 647 auto rankVal = rewriter.create<LLVM::ConstantOp>( 648 loc, typeConverter->convertType(rewriter.getIntegerType(64)), 649 rewriter.getI64IntegerAttr(rank)); 650 // undef = UndefOp 651 UnrankedMemRefDescriptor memRefDesc = 652 UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType); 653 // d1 = InsertValueOp undef, rank, 0 654 memRefDesc.setRank(rewriter, loc, rankVal); 655 // d2 = InsertValueOp d1, voidptr, 1 656 memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr); 657 rewriter.replaceOp(memRefCastOp, (Value)memRefDesc); 658 659 } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) { 660 // Casting from unranked type to ranked. 661 // The operation is assumed to be doing a correct cast. If the destination 662 // type mismatches the unranked the type, it is undefined behavior. 663 UnrankedMemRefDescriptor memRefDesc(adaptor.source()); 664 // ptr = ExtractValueOp src, 1 665 auto ptr = memRefDesc.memRefDescPtr(rewriter, loc); 666 // castPtr = BitCastOp i8* to structTy* 667 auto castPtr = 668 rewriter 669 .create<LLVM::BitcastOp>( 670 loc, LLVM::LLVMPointerType::get(targetStructType), ptr) 671 .getResult(); 672 // struct = LoadOp castPtr 673 auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr); 674 rewriter.replaceOp(memRefCastOp, loadOp.getResult()); 675 } else { 676 llvm_unreachable("Unsupported unranked memref to unranked memref cast"); 677 } 678 } 679 }; 680 681 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> { 682 using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern; 683 684 LogicalResult 685 matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor, 686 ConversionPatternRewriter &rewriter) const override { 687 auto loc = op.getLoc(); 688 auto srcType = op.source().getType().cast<BaseMemRefType>(); 689 auto targetType = op.target().getType().cast<BaseMemRefType>(); 690 691 // First make sure we have an unranked memref descriptor representation. 692 auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) { 693 auto rank = rewriter.create<LLVM::ConstantOp>( 694 loc, getIndexType(), rewriter.getIndexAttr(type.getRank())); 695 auto *typeConverter = getTypeConverter(); 696 auto ptr = 697 typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter); 698 auto voidPtr = 699 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 700 .getResult(); 701 auto unrankedType = 702 UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace()); 703 return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter, 704 unrankedType, 705 ValueRange{rank, voidPtr}); 706 }; 707 708 Value unrankedSource = srcType.hasRank() 709 ? makeUnranked(adaptor.source(), srcType) 710 : adaptor.source(); 711 Value unrankedTarget = targetType.hasRank() 712 ? makeUnranked(adaptor.target(), targetType) 713 : adaptor.target(); 714 715 // Now promote the unranked descriptors to the stack. 716 auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), 717 rewriter.getIndexAttr(1)); 718 auto promote = [&](Value desc) { 719 auto ptrType = LLVM::LLVMPointerType::get(desc.getType()); 720 auto allocated = 721 rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one}); 722 rewriter.create<LLVM::StoreOp>(loc, desc, allocated); 723 return allocated; 724 }; 725 726 auto sourcePtr = promote(unrankedSource); 727 auto targetPtr = promote(unrankedTarget); 728 729 auto elemSize = rewriter.create<LLVM::ConstantOp>( 730 loc, getIndexType(), 731 rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8)); 732 auto copyFn = LLVM::lookupOrCreateMemRefCopyFn( 733 op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType()); 734 rewriter.create<LLVM::CallOp>(loc, copyFn, 735 ValueRange{elemSize, sourcePtr, targetPtr}); 736 rewriter.eraseOp(op); 737 738 return success(); 739 } 740 }; 741 742 /// Extracts allocated, aligned pointers and offset from a ranked or unranked 743 /// memref type. In unranked case, the fields are extracted from the underlying 744 /// ranked descriptor. 745 static void extractPointersAndOffset(Location loc, 746 ConversionPatternRewriter &rewriter, 747 LLVMTypeConverter &typeConverter, 748 Value originalOperand, 749 Value convertedOperand, 750 Value *allocatedPtr, Value *alignedPtr, 751 Value *offset = nullptr) { 752 Type operandType = originalOperand.getType(); 753 if (operandType.isa<MemRefType>()) { 754 MemRefDescriptor desc(convertedOperand); 755 *allocatedPtr = desc.allocatedPtr(rewriter, loc); 756 *alignedPtr = desc.alignedPtr(rewriter, loc); 757 if (offset != nullptr) 758 *offset = desc.offset(rewriter, loc); 759 return; 760 } 761 762 unsigned memorySpace = 763 operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 764 Type elementType = operandType.cast<UnrankedMemRefType>().getElementType(); 765 Type llvmElementType = typeConverter.convertType(elementType); 766 Type elementPtrPtrType = LLVM::LLVMPointerType::get( 767 LLVM::LLVMPointerType::get(llvmElementType, memorySpace)); 768 769 // Extract pointer to the underlying ranked memref descriptor and cast it to 770 // ElemType**. 771 UnrankedMemRefDescriptor unrankedDesc(convertedOperand); 772 Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc); 773 774 *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( 775 rewriter, loc, underlyingDescPtr, elementPtrPtrType); 776 *alignedPtr = UnrankedMemRefDescriptor::alignedPtr( 777 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 778 if (offset != nullptr) { 779 *offset = UnrankedMemRefDescriptor::offset( 780 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 781 } 782 } 783 784 struct MemRefReinterpretCastOpLowering 785 : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> { 786 using ConvertOpToLLVMPattern< 787 memref::ReinterpretCastOp>::ConvertOpToLLVMPattern; 788 789 LogicalResult 790 matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor, 791 ConversionPatternRewriter &rewriter) const override { 792 Type srcType = castOp.source().getType(); 793 794 Value descriptor; 795 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp, 796 adaptor, &descriptor))) 797 return failure(); 798 rewriter.replaceOp(castOp, {descriptor}); 799 return success(); 800 } 801 802 private: 803 LogicalResult convertSourceMemRefToDescriptor( 804 ConversionPatternRewriter &rewriter, Type srcType, 805 memref::ReinterpretCastOp castOp, 806 memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const { 807 MemRefType targetMemRefType = 808 castOp.getResult().getType().cast<MemRefType>(); 809 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 810 .dyn_cast_or_null<LLVM::LLVMStructType>(); 811 if (!llvmTargetDescriptorTy) 812 return failure(); 813 814 // Create descriptor. 815 Location loc = castOp.getLoc(); 816 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 817 818 // Set allocated and aligned pointers. 819 Value allocatedPtr, alignedPtr; 820 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 821 castOp.source(), adaptor.source(), &allocatedPtr, 822 &alignedPtr); 823 desc.setAllocatedPtr(rewriter, loc, allocatedPtr); 824 desc.setAlignedPtr(rewriter, loc, alignedPtr); 825 826 // Set offset. 827 if (castOp.isDynamicOffset(0)) 828 desc.setOffset(rewriter, loc, adaptor.offsets()[0]); 829 else 830 desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0)); 831 832 // Set sizes and strides. 833 unsigned dynSizeId = 0; 834 unsigned dynStrideId = 0; 835 for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) { 836 if (castOp.isDynamicSize(i)) 837 desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]); 838 else 839 desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i)); 840 841 if (castOp.isDynamicStride(i)) 842 desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]); 843 else 844 desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i)); 845 } 846 *descriptor = desc; 847 return success(); 848 } 849 }; 850 851 struct MemRefReshapeOpLowering 852 : public ConvertOpToLLVMPattern<memref::ReshapeOp> { 853 using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern; 854 855 LogicalResult 856 matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor, 857 ConversionPatternRewriter &rewriter) const override { 858 Type srcType = reshapeOp.source().getType(); 859 860 Value descriptor; 861 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp, 862 adaptor, &descriptor))) 863 return failure(); 864 rewriter.replaceOp(reshapeOp, {descriptor}); 865 return success(); 866 } 867 868 private: 869 LogicalResult 870 convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter, 871 Type srcType, memref::ReshapeOp reshapeOp, 872 memref::ReshapeOp::Adaptor adaptor, 873 Value *descriptor) const { 874 // Conversion for statically-known shape args is performed via 875 // `memref_reinterpret_cast`. 876 auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>(); 877 if (shapeMemRefType.hasStaticShape()) 878 return failure(); 879 880 // The shape is a rank-1 tensor with unknown length. 881 Location loc = reshapeOp.getLoc(); 882 MemRefDescriptor shapeDesc(adaptor.shape()); 883 Value resultRank = shapeDesc.size(rewriter, loc, 0); 884 885 // Extract address space and element type. 886 auto targetType = 887 reshapeOp.getResult().getType().cast<UnrankedMemRefType>(); 888 unsigned addressSpace = targetType.getMemorySpaceAsInt(); 889 Type elementType = targetType.getElementType(); 890 891 // Create the unranked memref descriptor that holds the ranked one. The 892 // inner descriptor is allocated on stack. 893 auto targetDesc = UnrankedMemRefDescriptor::undef( 894 rewriter, loc, typeConverter->convertType(targetType)); 895 targetDesc.setRank(rewriter, loc, resultRank); 896 SmallVector<Value, 4> sizes; 897 UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(), 898 targetDesc, sizes); 899 Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>( 900 loc, getVoidPtrType(), sizes.front(), llvm::None); 901 targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr); 902 903 // Extract pointers and offset from the source memref. 904 Value allocatedPtr, alignedPtr, offset; 905 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 906 reshapeOp.source(), adaptor.source(), 907 &allocatedPtr, &alignedPtr, &offset); 908 909 // Set pointers and offset. 910 Type llvmElementType = typeConverter->convertType(elementType); 911 auto elementPtrPtrType = LLVM::LLVMPointerType::get( 912 LLVM::LLVMPointerType::get(llvmElementType, addressSpace)); 913 UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr, 914 elementPtrPtrType, allocatedPtr); 915 UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(), 916 underlyingDescPtr, 917 elementPtrPtrType, alignedPtr); 918 UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(), 919 underlyingDescPtr, elementPtrPtrType, 920 offset); 921 922 // Use the offset pointer as base for further addressing. Copy over the new 923 // shape and compute strides. For this, we create a loop from rank-1 to 0. 924 Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr( 925 rewriter, loc, *getTypeConverter(), underlyingDescPtr, 926 elementPtrPtrType); 927 Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr( 928 rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank); 929 Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc); 930 Value oneIndex = createIndexConstant(rewriter, loc, 1); 931 Value resultRankMinusOne = 932 rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex); 933 934 Block *initBlock = rewriter.getInsertionBlock(); 935 Type indexType = getTypeConverter()->getIndexType(); 936 Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint()); 937 938 Block *condBlock = rewriter.createBlock(initBlock->getParent(), {}, 939 {indexType, indexType}); 940 941 // Move the remaining initBlock ops to condBlock. 942 Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt); 943 rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange()); 944 945 rewriter.setInsertionPointToEnd(initBlock); 946 rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}), 947 condBlock); 948 rewriter.setInsertionPointToStart(condBlock); 949 Value indexArg = condBlock->getArgument(0); 950 Value strideArg = condBlock->getArgument(1); 951 952 Value zeroIndex = createIndexConstant(rewriter, loc, 0); 953 Value pred = rewriter.create<LLVM::ICmpOp>( 954 loc, IntegerType::get(rewriter.getContext(), 1), 955 LLVM::ICmpPredicate::sge, indexArg, zeroIndex); 956 957 Block *bodyBlock = 958 rewriter.splitBlock(condBlock, rewriter.getInsertionPoint()); 959 rewriter.setInsertionPointToStart(bodyBlock); 960 961 // Copy size from shape to descriptor. 962 Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType); 963 Value sizeLoadGep = rewriter.create<LLVM::GEPOp>( 964 loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg}); 965 Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep); 966 UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(), 967 targetSizesBase, indexArg, size); 968 969 // Write stride value and compute next one. 970 UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(), 971 targetStridesBase, indexArg, strideArg); 972 Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size); 973 974 // Decrement loop counter and branch back. 975 Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex); 976 rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}), 977 condBlock); 978 979 Block *remainder = 980 rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint()); 981 982 // Hook up the cond exit to the remainder. 983 rewriter.setInsertionPointToEnd(condBlock); 984 rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder, 985 llvm::None); 986 987 // Reset position to beginning of new remainder block. 988 rewriter.setInsertionPointToStart(remainder); 989 990 *descriptor = targetDesc; 991 return success(); 992 } 993 }; 994 995 /// Helper function to convert a vector of `OpFoldResult`s into a vector of 996 /// `Value`s. 997 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc, 998 Type &llvmIndexType, 999 ArrayRef<OpFoldResult> valueOrAttrVec) { 1000 return llvm::to_vector<4>( 1001 llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value { 1002 if (auto attr = value.dyn_cast<Attribute>()) 1003 return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr); 1004 return value.get<Value>(); 1005 })); 1006 } 1007 1008 /// Compute a map that for a given dimension of the expanded type gives the 1009 /// dimension in the collapsed type it maps to. Essentially its the inverse of 1010 /// the `reassocation` maps. 1011 static DenseMap<int64_t, int64_t> 1012 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) { 1013 llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim; 1014 for (auto &en : enumerate(reassociation)) { 1015 for (auto dim : en.value()) 1016 expandedDimToCollapsedDim[dim] = en.index(); 1017 } 1018 return expandedDimToCollapsedDim; 1019 } 1020 1021 static OpFoldResult 1022 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType, 1023 int64_t outDimIndex, ArrayRef<int64_t> outStaticShape, 1024 MemRefDescriptor &inDesc, 1025 ArrayRef<int64_t> inStaticShape, 1026 ArrayRef<ReassociationIndices> reassocation, 1027 DenseMap<int64_t, int64_t> &outDimToInDimMap) { 1028 int64_t outDimSize = outStaticShape[outDimIndex]; 1029 if (!ShapedType::isDynamic(outDimSize)) 1030 return b.getIndexAttr(outDimSize); 1031 1032 // Calculate the multiplication of all the out dim sizes except the 1033 // current dim. 1034 int64_t inDimIndex = outDimToInDimMap[outDimIndex]; 1035 int64_t otherDimSizesMul = 1; 1036 for (auto otherDimIndex : reassocation[inDimIndex]) { 1037 if (otherDimIndex == static_cast<unsigned>(outDimIndex)) 1038 continue; 1039 int64_t otherDimSize = outStaticShape[otherDimIndex]; 1040 assert(!ShapedType::isDynamic(otherDimSize) && 1041 "single dimension cannot be expanded into multiple dynamic " 1042 "dimensions"); 1043 otherDimSizesMul *= otherDimSize; 1044 } 1045 1046 // outDimSize = inDimSize / otherOutDimSizesMul 1047 int64_t inDimSize = inStaticShape[inDimIndex]; 1048 Value inDimSizeDynamic = 1049 ShapedType::isDynamic(inDimSize) 1050 ? inDesc.size(b, loc, inDimIndex) 1051 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1052 b.getIndexAttr(inDimSize)); 1053 Value outDimSizeDynamic = b.create<LLVM::SDivOp>( 1054 loc, inDimSizeDynamic, 1055 b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1056 b.getIndexAttr(otherDimSizesMul))); 1057 return outDimSizeDynamic; 1058 } 1059 1060 static OpFoldResult getCollapsedOutputDimSize( 1061 OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex, 1062 int64_t outDimSize, ArrayRef<int64_t> inStaticShape, 1063 MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) { 1064 if (!ShapedType::isDynamic(outDimSize)) 1065 return b.getIndexAttr(outDimSize); 1066 1067 Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1)); 1068 Value outDimSizeDynamic = c1; 1069 for (auto inDimIndex : reassocation[outDimIndex]) { 1070 int64_t inDimSize = inStaticShape[inDimIndex]; 1071 Value inDimSizeDynamic = 1072 ShapedType::isDynamic(inDimSize) 1073 ? inDesc.size(b, loc, inDimIndex) 1074 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1075 b.getIndexAttr(inDimSize)); 1076 outDimSizeDynamic = 1077 b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic); 1078 } 1079 return outDimSizeDynamic; 1080 } 1081 1082 static SmallVector<OpFoldResult, 4> 1083 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1084 ArrayRef<ReassociationIndices> reassocation, 1085 ArrayRef<int64_t> inStaticShape, 1086 MemRefDescriptor &inDesc, 1087 ArrayRef<int64_t> outStaticShape) { 1088 return llvm::to_vector<4>(llvm::map_range( 1089 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1090 return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1091 outStaticShape[outDimIndex], 1092 inStaticShape, inDesc, reassocation); 1093 })); 1094 } 1095 1096 static SmallVector<OpFoldResult, 4> 1097 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1098 ArrayRef<ReassociationIndices> reassocation, 1099 ArrayRef<int64_t> inStaticShape, 1100 MemRefDescriptor &inDesc, 1101 ArrayRef<int64_t> outStaticShape) { 1102 DenseMap<int64_t, int64_t> outDimToInDimMap = 1103 getExpandedDimToCollapsedDimMap(reassocation); 1104 return llvm::to_vector<4>(llvm::map_range( 1105 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1106 return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1107 outStaticShape, inDesc, inStaticShape, 1108 reassocation, outDimToInDimMap); 1109 })); 1110 } 1111 1112 static SmallVector<Value> 1113 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1114 ArrayRef<ReassociationIndices> reassocation, 1115 ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc, 1116 ArrayRef<int64_t> outStaticShape) { 1117 return outStaticShape.size() < inStaticShape.size() 1118 ? getAsValues(b, loc, llvmIndexType, 1119 getCollapsedOutputShape(b, loc, llvmIndexType, 1120 reassocation, inStaticShape, 1121 inDesc, outStaticShape)) 1122 : getAsValues(b, loc, llvmIndexType, 1123 getExpandedOutputShape(b, loc, llvmIndexType, 1124 reassocation, inStaticShape, 1125 inDesc, outStaticShape)); 1126 } 1127 1128 // ReshapeOp creates a new view descriptor of the proper rank. 1129 // For now, the only conversion supported is for target MemRef with static sizes 1130 // and strides. 1131 template <typename ReshapeOp> 1132 class ReassociatingReshapeOpConversion 1133 : public ConvertOpToLLVMPattern<ReshapeOp> { 1134 public: 1135 using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern; 1136 using ReshapeOpAdaptor = typename ReshapeOp::Adaptor; 1137 1138 LogicalResult 1139 matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor, 1140 ConversionPatternRewriter &rewriter) const override { 1141 MemRefType dstType = reshapeOp.getResultType(); 1142 MemRefType srcType = reshapeOp.getSrcType(); 1143 if (!srcType.getAffineMaps().empty() || !dstType.getAffineMaps().empty()) { 1144 return rewriter.notifyMatchFailure(reshapeOp, 1145 "only empty layout map is supported"); 1146 } 1147 1148 int64_t offset; 1149 SmallVector<int64_t, 4> strides; 1150 if (failed(getStridesAndOffset(dstType, strides, offset))) { 1151 return rewriter.notifyMatchFailure( 1152 reshapeOp, "failed to get stride and offset exprs"); 1153 } 1154 1155 MemRefDescriptor srcDesc(adaptor.src()); 1156 Location loc = reshapeOp->getLoc(); 1157 auto dstDesc = MemRefDescriptor::undef( 1158 rewriter, loc, this->typeConverter->convertType(dstType)); 1159 dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc)); 1160 dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc)); 1161 dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc)); 1162 1163 ArrayRef<int64_t> srcStaticShape = srcType.getShape(); 1164 ArrayRef<int64_t> dstStaticShape = dstType.getShape(); 1165 Type llvmIndexType = 1166 this->typeConverter->convertType(rewriter.getIndexType()); 1167 SmallVector<Value> dstShape = getDynamicOutputShape( 1168 rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(), 1169 srcStaticShape, srcDesc, dstStaticShape); 1170 for (auto &en : llvm::enumerate(dstShape)) 1171 dstDesc.setSize(rewriter, loc, en.index(), en.value()); 1172 1173 auto isStaticStride = [](int64_t stride) { 1174 return !ShapedType::isDynamicStrideOrOffset(stride); 1175 }; 1176 if (llvm::all_of(strides, isStaticStride)) { 1177 for (auto &en : llvm::enumerate(strides)) 1178 dstDesc.setConstantStride(rewriter, loc, en.index(), en.value()); 1179 } else { 1180 Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType, 1181 rewriter.getIndexAttr(1)); 1182 Value stride = c1; 1183 for (auto dimIndex : 1184 llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) { 1185 dstDesc.setStride(rewriter, loc, dimIndex, stride); 1186 stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride); 1187 } 1188 } 1189 rewriter.replaceOp(reshapeOp, {dstDesc}); 1190 return success(); 1191 } 1192 }; 1193 1194 /// Conversion pattern that transforms a subview op into: 1195 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1196 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1197 /// and stride. 1198 /// The subview op is replaced by the descriptor. 1199 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> { 1200 using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern; 1201 1202 LogicalResult 1203 matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor, 1204 ConversionPatternRewriter &rewriter) const override { 1205 auto loc = subViewOp.getLoc(); 1206 1207 auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>(); 1208 auto sourceElementTy = 1209 typeConverter->convertType(sourceMemRefType.getElementType()); 1210 1211 auto viewMemRefType = subViewOp.getType(); 1212 auto inferredType = memref::SubViewOp::inferResultType( 1213 subViewOp.getSourceType(), 1214 extractFromI64ArrayAttr(subViewOp.static_offsets()), 1215 extractFromI64ArrayAttr(subViewOp.static_sizes()), 1216 extractFromI64ArrayAttr(subViewOp.static_strides())) 1217 .cast<MemRefType>(); 1218 auto targetElementTy = 1219 typeConverter->convertType(viewMemRefType.getElementType()); 1220 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1221 if (!sourceElementTy || !targetDescTy || !targetElementTy || 1222 !LLVM::isCompatibleType(sourceElementTy) || 1223 !LLVM::isCompatibleType(targetElementTy) || 1224 !LLVM::isCompatibleType(targetDescTy)) 1225 return failure(); 1226 1227 // Extract the offset and strides from the type. 1228 int64_t offset; 1229 SmallVector<int64_t, 4> strides; 1230 auto successStrides = getStridesAndOffset(inferredType, strides, offset); 1231 if (failed(successStrides)) 1232 return failure(); 1233 1234 // Create the descriptor. 1235 if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType())) 1236 return failure(); 1237 MemRefDescriptor sourceMemRef(adaptor.getOperands().front()); 1238 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1239 1240 // Copy the buffer pointer from the old descriptor to the new one. 1241 Value extracted = sourceMemRef.allocatedPtr(rewriter, loc); 1242 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1243 loc, 1244 LLVM::LLVMPointerType::get(targetElementTy, 1245 viewMemRefType.getMemorySpaceAsInt()), 1246 extracted); 1247 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1248 1249 // Copy the aligned pointer from the old descriptor to the new one. 1250 extracted = sourceMemRef.alignedPtr(rewriter, loc); 1251 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1252 loc, 1253 LLVM::LLVMPointerType::get(targetElementTy, 1254 viewMemRefType.getMemorySpaceAsInt()), 1255 extracted); 1256 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1257 1258 size_t inferredShapeRank = inferredType.getRank(); 1259 size_t resultShapeRank = viewMemRefType.getRank(); 1260 1261 // Extract strides needed to compute offset. 1262 SmallVector<Value, 4> strideValues; 1263 strideValues.reserve(inferredShapeRank); 1264 for (unsigned i = 0; i < inferredShapeRank; ++i) 1265 strideValues.push_back(sourceMemRef.stride(rewriter, loc, i)); 1266 1267 // Offset. 1268 auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType()); 1269 if (!ShapedType::isDynamicStrideOrOffset(offset)) { 1270 targetMemRef.setConstantOffset(rewriter, loc, offset); 1271 } else { 1272 Value baseOffset = sourceMemRef.offset(rewriter, loc); 1273 // `inferredShapeRank` may be larger than the number of offset operands 1274 // because of trailing semantics. In this case, the offset is guaranteed 1275 // to be interpreted as 0 and we can just skip the extra dimensions. 1276 for (unsigned i = 0, e = std::min(inferredShapeRank, 1277 subViewOp.getMixedOffsets().size()); 1278 i < e; ++i) { 1279 Value offset = 1280 // TODO: need OpFoldResult ODS adaptor to clean this up. 1281 subViewOp.isDynamicOffset(i) 1282 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)] 1283 : rewriter.create<LLVM::ConstantOp>( 1284 loc, llvmIndexType, 1285 rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i))); 1286 Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]); 1287 baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul); 1288 } 1289 targetMemRef.setOffset(rewriter, loc, baseOffset); 1290 } 1291 1292 // Update sizes and strides. 1293 SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes(); 1294 SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides(); 1295 assert(mixedSizes.size() == mixedStrides.size() && 1296 "expected sizes and strides of equal length"); 1297 llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims(); 1298 for (int i = inferredShapeRank - 1, j = resultShapeRank - 1; 1299 i >= 0 && j >= 0; --i) { 1300 if (unusedDims.contains(i)) 1301 continue; 1302 1303 // `i` may overflow subViewOp.getMixedSizes because of trailing semantics. 1304 // In this case, the size is guaranteed to be interpreted as Dim and the 1305 // stride as 1. 1306 Value size, stride; 1307 if (static_cast<unsigned>(i) >= mixedSizes.size()) { 1308 // If the static size is available, use it directly. This is similar to 1309 // the folding of dim(constant-op) but removes the need for dim to be 1310 // aware of LLVM constants and for this pass to be aware of std 1311 // constants. 1312 int64_t staticSize = 1313 subViewOp.source().getType().cast<MemRefType>().getShape()[i]; 1314 if (staticSize != ShapedType::kDynamicSize) { 1315 size = rewriter.create<LLVM::ConstantOp>( 1316 loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize)); 1317 } else { 1318 Value pos = rewriter.create<LLVM::ConstantOp>( 1319 loc, llvmIndexType, rewriter.getI64IntegerAttr(i)); 1320 Value dim = 1321 rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos); 1322 auto cast = rewriter.create<UnrealizedConversionCastOp>( 1323 loc, llvmIndexType, dim); 1324 size = cast.getResult(0); 1325 } 1326 stride = rewriter.create<LLVM::ConstantOp>( 1327 loc, llvmIndexType, rewriter.getI64IntegerAttr(1)); 1328 } else { 1329 // TODO: need OpFoldResult ODS adaptor to clean this up. 1330 size = 1331 subViewOp.isDynamicSize(i) 1332 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)] 1333 : rewriter.create<LLVM::ConstantOp>( 1334 loc, llvmIndexType, 1335 rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i))); 1336 if (!ShapedType::isDynamicStrideOrOffset(strides[i])) { 1337 stride = rewriter.create<LLVM::ConstantOp>( 1338 loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i])); 1339 } else { 1340 stride = 1341 subViewOp.isDynamicStride(i) 1342 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)] 1343 : rewriter.create<LLVM::ConstantOp>( 1344 loc, llvmIndexType, 1345 rewriter.getI64IntegerAttr( 1346 subViewOp.getStaticStride(i))); 1347 stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]); 1348 } 1349 } 1350 targetMemRef.setSize(rewriter, loc, j, size); 1351 targetMemRef.setStride(rewriter, loc, j, stride); 1352 j--; 1353 } 1354 1355 rewriter.replaceOp(subViewOp, {targetMemRef}); 1356 return success(); 1357 } 1358 }; 1359 1360 /// Conversion pattern that transforms a transpose op into: 1361 /// 1. A function entry `alloca` operation to allocate a ViewDescriptor. 1362 /// 2. A load of the ViewDescriptor from the pointer allocated in 1. 1363 /// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size 1364 /// and stride. Size and stride are permutations of the original values. 1365 /// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer. 1366 /// The transpose op is replaced by the alloca'ed pointer. 1367 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> { 1368 public: 1369 using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern; 1370 1371 LogicalResult 1372 matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor, 1373 ConversionPatternRewriter &rewriter) const override { 1374 auto loc = transposeOp.getLoc(); 1375 MemRefDescriptor viewMemRef(adaptor.in()); 1376 1377 // No permutation, early exit. 1378 if (transposeOp.permutation().isIdentity()) 1379 return rewriter.replaceOp(transposeOp, {viewMemRef}), success(); 1380 1381 auto targetMemRef = MemRefDescriptor::undef( 1382 rewriter, loc, typeConverter->convertType(transposeOp.getShapedType())); 1383 1384 // Copy the base and aligned pointers from the old descriptor to the new 1385 // one. 1386 targetMemRef.setAllocatedPtr(rewriter, loc, 1387 viewMemRef.allocatedPtr(rewriter, loc)); 1388 targetMemRef.setAlignedPtr(rewriter, loc, 1389 viewMemRef.alignedPtr(rewriter, loc)); 1390 1391 // Copy the offset pointer from the old descriptor to the new one. 1392 targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc)); 1393 1394 // Iterate over the dimensions and apply size/stride permutation. 1395 for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) { 1396 int sourcePos = en.index(); 1397 int targetPos = en.value().cast<AffineDimExpr>().getPosition(); 1398 targetMemRef.setSize(rewriter, loc, targetPos, 1399 viewMemRef.size(rewriter, loc, sourcePos)); 1400 targetMemRef.setStride(rewriter, loc, targetPos, 1401 viewMemRef.stride(rewriter, loc, sourcePos)); 1402 } 1403 1404 rewriter.replaceOp(transposeOp, {targetMemRef}); 1405 return success(); 1406 } 1407 }; 1408 1409 /// Conversion pattern that transforms an op into: 1410 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1411 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1412 /// and stride. 1413 /// The view op is replaced by the descriptor. 1414 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> { 1415 using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern; 1416 1417 // Build and return the value for the idx^th shape dimension, either by 1418 // returning the constant shape dimension or counting the proper dynamic size. 1419 Value getSize(ConversionPatternRewriter &rewriter, Location loc, 1420 ArrayRef<int64_t> shape, ValueRange dynamicSizes, 1421 unsigned idx) const { 1422 assert(idx < shape.size()); 1423 if (!ShapedType::isDynamic(shape[idx])) 1424 return createIndexConstant(rewriter, loc, shape[idx]); 1425 // Count the number of dynamic dims in range [0, idx] 1426 unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) { 1427 return ShapedType::isDynamic(v); 1428 }); 1429 return dynamicSizes[nDynamic]; 1430 } 1431 1432 // Build and return the idx^th stride, either by returning the constant stride 1433 // or by computing the dynamic stride from the current `runningStride` and 1434 // `nextSize`. The caller should keep a running stride and update it with the 1435 // result returned by this function. 1436 Value getStride(ConversionPatternRewriter &rewriter, Location loc, 1437 ArrayRef<int64_t> strides, Value nextSize, 1438 Value runningStride, unsigned idx) const { 1439 assert(idx < strides.size()); 1440 if (!MemRefType::isDynamicStrideOrOffset(strides[idx])) 1441 return createIndexConstant(rewriter, loc, strides[idx]); 1442 if (nextSize) 1443 return runningStride 1444 ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) 1445 : nextSize; 1446 assert(!runningStride); 1447 return createIndexConstant(rewriter, loc, 1); 1448 } 1449 1450 LogicalResult 1451 matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor, 1452 ConversionPatternRewriter &rewriter) const override { 1453 auto loc = viewOp.getLoc(); 1454 1455 auto viewMemRefType = viewOp.getType(); 1456 auto targetElementTy = 1457 typeConverter->convertType(viewMemRefType.getElementType()); 1458 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1459 if (!targetDescTy || !targetElementTy || 1460 !LLVM::isCompatibleType(targetElementTy) || 1461 !LLVM::isCompatibleType(targetDescTy)) 1462 return viewOp.emitWarning("Target descriptor type not converted to LLVM"), 1463 failure(); 1464 1465 int64_t offset; 1466 SmallVector<int64_t, 4> strides; 1467 auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); 1468 if (failed(successStrides)) 1469 return viewOp.emitWarning("cannot cast to non-strided shape"), failure(); 1470 assert(offset == 0 && "expected offset to be 0"); 1471 1472 // Create the descriptor. 1473 MemRefDescriptor sourceMemRef(adaptor.source()); 1474 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1475 1476 // Field 1: Copy the allocated pointer, used for malloc/free. 1477 Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc); 1478 auto srcMemRefType = viewOp.source().getType().cast<MemRefType>(); 1479 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1480 loc, 1481 LLVM::LLVMPointerType::get(targetElementTy, 1482 srcMemRefType.getMemorySpaceAsInt()), 1483 allocatedPtr); 1484 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1485 1486 // Field 2: Copy the actual aligned pointer to payload. 1487 Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc); 1488 alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(), 1489 alignedPtr, adaptor.byte_shift()); 1490 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1491 loc, 1492 LLVM::LLVMPointerType::get(targetElementTy, 1493 srcMemRefType.getMemorySpaceAsInt()), 1494 alignedPtr); 1495 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1496 1497 // Field 3: The offset in the resulting type must be 0. This is because of 1498 // the type change: an offset on srcType* may not be expressible as an 1499 // offset on dstType*. 1500 targetMemRef.setOffset(rewriter, loc, 1501 createIndexConstant(rewriter, loc, offset)); 1502 1503 // Early exit for 0-D corner case. 1504 if (viewMemRefType.getRank() == 0) 1505 return rewriter.replaceOp(viewOp, {targetMemRef}), success(); 1506 1507 // Fields 4 and 5: Update sizes and strides. 1508 if (strides.back() != 1) 1509 return viewOp.emitWarning("cannot cast to non-contiguous shape"), 1510 failure(); 1511 Value stride = nullptr, nextSize = nullptr; 1512 for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { 1513 // Update size. 1514 Value size = 1515 getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i); 1516 targetMemRef.setSize(rewriter, loc, i, size); 1517 // Update stride. 1518 stride = getStride(rewriter, loc, strides, nextSize, stride, i); 1519 targetMemRef.setStride(rewriter, loc, i, stride); 1520 nextSize = size; 1521 } 1522 1523 rewriter.replaceOp(viewOp, {targetMemRef}); 1524 return success(); 1525 } 1526 }; 1527 1528 } // namespace 1529 1530 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter, 1531 RewritePatternSet &patterns) { 1532 // clang-format off 1533 patterns.add< 1534 AllocaOpLowering, 1535 AllocaScopeOpLowering, 1536 AssumeAlignmentOpLowering, 1537 DimOpLowering, 1538 GlobalMemrefOpLowering, 1539 GetGlobalMemrefOpLowering, 1540 LoadOpLowering, 1541 MemRefCastOpLowering, 1542 MemRefCopyOpLowering, 1543 MemRefReinterpretCastOpLowering, 1544 MemRefReshapeOpLowering, 1545 PrefetchOpLowering, 1546 ReassociatingReshapeOpConversion<memref::ExpandShapeOp>, 1547 ReassociatingReshapeOpConversion<memref::CollapseShapeOp>, 1548 StoreOpLowering, 1549 SubViewOpLowering, 1550 TransposeOpLowering, 1551 ViewOpLowering>(converter); 1552 // clang-format on 1553 auto allocLowering = converter.getOptions().allocLowering; 1554 if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc) 1555 patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter); 1556 else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc) 1557 patterns.add<AllocOpLowering, DeallocOpLowering>(converter); 1558 } 1559 1560 namespace { 1561 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> { 1562 MemRefToLLVMPass() = default; 1563 1564 void runOnOperation() override { 1565 Operation *op = getOperation(); 1566 const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); 1567 LowerToLLVMOptions options(&getContext(), 1568 dataLayoutAnalysis.getAtOrAbove(op)); 1569 options.allocLowering = 1570 (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc 1571 : LowerToLLVMOptions::AllocLowering::Malloc); 1572 if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) 1573 options.overrideIndexBitwidth(indexBitwidth); 1574 1575 LLVMTypeConverter typeConverter(&getContext(), options, 1576 &dataLayoutAnalysis); 1577 RewritePatternSet patterns(&getContext()); 1578 populateMemRefToLLVMConversionPatterns(typeConverter, patterns); 1579 LLVMConversionTarget target(getContext()); 1580 target.addLegalOp<FuncOp>(); 1581 if (failed(applyPartialConversion(op, target, std::move(patterns)))) 1582 signalPassFailure(); 1583 } 1584 }; 1585 } // namespace 1586 1587 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() { 1588 return std::make_unique<MemRefToLLVMPass>(); 1589 } 1590