1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 
22 using namespace mlir;
23 
24 namespace {
25 
26 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
27   AllocOpLowering(LLVMTypeConverter &converter)
28       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
29                                 converter) {}
30 
31   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
32                                           Location loc, Value sizeBytes,
33                                           Operation *op) const override {
34     // Heap allocations.
35     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
36     MemRefType memRefType = allocOp.getType();
37 
38     Value alignment;
39     if (auto alignmentAttr = allocOp.alignment()) {
40       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
41     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
42       // In the case where no alignment is specified, we may want to override
43       // `malloc's` behavior. `malloc` typically aligns at the size of the
44       // biggest scalar on a target HW. For non-scalars, use the natural
45       // alignment of the LLVM type given by the LLVM DataLayout.
46       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
47     }
48 
49     if (alignment) {
50       // Adjust the allocation size to consider alignment.
51       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
52     }
53 
54     // Allocate the underlying buffer and store a pointer to it in the MemRef
55     // descriptor.
56     Type elementPtrType = this->getElementPtrType(memRefType);
57     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
58         allocOp->getParentOfType<ModuleOp>(), getIndexType());
59     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
60                                   getVoidPtrType());
61     Value allocatedPtr =
62         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
63 
64     Value alignedPtr = allocatedPtr;
65     if (alignment) {
66       // Compute the aligned type pointer.
67       Value allocatedInt =
68           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
69       Value alignmentInt =
70           createAligned(rewriter, loc, allocatedInt, alignment);
71       alignedPtr =
72           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
73     }
74 
75     return std::make_tuple(allocatedPtr, alignedPtr);
76   }
77 };
78 
79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
80   AlignedAllocOpLowering(LLVMTypeConverter &converter)
81       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
82                                 converter) {}
83 
84   /// Returns the memref's element size in bytes using the data layout active at
85   /// `op`.
86   // TODO: there are other places where this is used. Expose publicly?
87   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
88     const DataLayout *layout = &defaultLayout;
89     if (const DataLayoutAnalysis *analysis =
90             getTypeConverter()->getDataLayoutAnalysis()) {
91       layout = &analysis->getAbove(op);
92     }
93     Type elementType = memRefType.getElementType();
94     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
95       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
96                                                          *layout);
97     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
98       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
99           memRefElementType, *layout);
100     return layout->getTypeSize(elementType);
101   }
102 
103   /// Returns true if the memref size in bytes is known to be a multiple of
104   /// factor assuming the data layout active at `op`.
105   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
106                               Operation *op) const {
107     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
108     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
109       if (type.isDynamic(type.getDimSize(i)))
110         continue;
111       sizeDivisor = sizeDivisor * type.getDimSize(i);
112     }
113     return sizeDivisor % factor == 0;
114   }
115 
116   /// Returns the alignment to be used for the allocation call itself.
117   /// aligned_alloc requires the allocation size to be a power of two, and the
118   /// allocation size to be a multiple of alignment,
119   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
120     if (Optional<uint64_t> alignment = allocOp.alignment())
121       return *alignment;
122 
123     // Whenever we don't have alignment set, we will use an alignment
124     // consistent with the element type; since the allocation size has to be a
125     // power of two, we will bump to the next power of two if it already isn't.
126     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
127     return std::max(kMinAlignedAllocAlignment,
128                     llvm::PowerOf2Ceil(eltSizeBytes));
129   }
130 
131   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
132                                           Location loc, Value sizeBytes,
133                                           Operation *op) const override {
134     // Heap allocations.
135     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
136     MemRefType memRefType = allocOp.getType();
137     int64_t alignment = getAllocationAlignment(allocOp);
138     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
139 
140     // aligned_alloc requires size to be a multiple of alignment; we will pad
141     // the size to the next multiple if necessary.
142     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
143       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
144 
145     Type elementPtrType = this->getElementPtrType(memRefType);
146     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
147         allocOp->getParentOfType<ModuleOp>(), getIndexType());
148     auto results =
149         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
150                        getVoidPtrType());
151     Value allocatedPtr =
152         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
153 
154     return std::make_tuple(allocatedPtr, allocatedPtr);
155   }
156 
157   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
158   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
159 
160   /// Default layout to use in absence of the corresponding analysis.
161   DataLayout defaultLayout;
162 };
163 
164 // Out of line definition, required till C++17.
165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
166 
167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
168   AllocaOpLowering(LLVMTypeConverter &converter)
169       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
170                                 converter) {}
171 
172   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
173   /// is set to null for stack allocations. `accessAlignment` is set if
174   /// alignment is needed post allocation (for eg. in conjunction with malloc).
175   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
176                                           Location loc, Value sizeBytes,
177                                           Operation *op) const override {
178 
179     // With alloca, one gets a pointer to the element type right away.
180     // For stack allocations.
181     auto allocaOp = cast<memref::AllocaOp>(op);
182     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
183 
184     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
185         loc, elementPtrType, sizeBytes,
186         allocaOp.alignment() ? *allocaOp.alignment() : 0);
187 
188     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
189   }
190 };
191 
192 struct AllocaScopeOpLowering
193     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
194   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
195 
196   LogicalResult
197   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
198                   ConversionPatternRewriter &rewriter) const override {
199     OpBuilder::InsertionGuard guard(rewriter);
200     Location loc = allocaScopeOp.getLoc();
201 
202     // Split the current block before the AllocaScopeOp to create the inlining
203     // point.
204     auto *currentBlock = rewriter.getInsertionBlock();
205     auto *remainingOpsBlock =
206         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
207     Block *continueBlock;
208     if (allocaScopeOp.getNumResults() == 0) {
209       continueBlock = remainingOpsBlock;
210     } else {
211       continueBlock = rewriter.createBlock(remainingOpsBlock,
212                                            allocaScopeOp.getResultTypes());
213       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
214     }
215 
216     // Inline body region.
217     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
218     Block *afterBody = &allocaScopeOp.bodyRegion().back();
219     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
220 
221     // Save stack and then branch into the body of the region.
222     rewriter.setInsertionPointToEnd(currentBlock);
223     auto stackSaveOp =
224         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
225     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
226 
227     // Replace the alloca_scope return with a branch that jumps out of the body.
228     // Stack restore before leaving the body region.
229     rewriter.setInsertionPointToEnd(afterBody);
230     auto returnOp =
231         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
232     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
233         returnOp, returnOp.results(), continueBlock);
234 
235     // Insert stack restore before jumping out the body of the region.
236     rewriter.setInsertionPoint(branchOp);
237     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
238 
239     // Replace the op with values return from the body region.
240     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
241 
242     return success();
243   }
244 };
245 
246 struct AssumeAlignmentOpLowering
247     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
248   using ConvertOpToLLVMPattern<
249       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
250 
251   LogicalResult
252   matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
253                   ConversionPatternRewriter &rewriter) const override {
254     Value memref = adaptor.memref();
255     unsigned alignment = op.alignment();
256     auto loc = op.getLoc();
257 
258     MemRefDescriptor memRefDescriptor(memref);
259     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
260 
261     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
262     // the asserted memref.alignedPtr isn't used anywhere else, as the real
263     // users like load/store/views always re-extract memref.alignedPtr as they
264     // get lowered.
265     //
266     // This relies on LLVM's CSE optimization (potentially after SROA), since
267     // after CSE all memref.alignedPtr instances get de-duplicated into the same
268     // pointer SSA value.
269     auto intPtrType =
270         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
271     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
272     Value mask =
273         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
274     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
275     rewriter.create<LLVM::AssumeOp>(
276         loc, rewriter.create<LLVM::ICmpOp>(
277                  loc, LLVM::ICmpPredicate::eq,
278                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
279 
280     rewriter.eraseOp(op);
281     return success();
282   }
283 };
284 
285 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
286 // The memref descriptor being an SSA value, there is no need to clean it up
287 // in any way.
288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
289   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
290 
291   explicit DeallocOpLowering(LLVMTypeConverter &converter)
292       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
293 
294   LogicalResult
295   matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
296                   ConversionPatternRewriter &rewriter) const override {
297     // Insert the `free` declaration if it is not already present.
298     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
299     MemRefDescriptor memref(adaptor.memref());
300     Value casted = rewriter.create<LLVM::BitcastOp>(
301         op.getLoc(), getVoidPtrType(),
302         memref.allocatedPtr(rewriter, op.getLoc()));
303     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
304         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
305     return success();
306   }
307 };
308 
309 // A `dim` is converted to a constant for static sizes and to an access to the
310 // size stored in the memref descriptor for dynamic sizes.
311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
312   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
313 
314   LogicalResult
315   matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
316                   ConversionPatternRewriter &rewriter) const override {
317     Type operandType = dimOp.source().getType();
318     if (operandType.isa<UnrankedMemRefType>()) {
319       rewriter.replaceOp(
320           dimOp, {extractSizeOfUnrankedMemRef(
321                      operandType, dimOp, adaptor.getOperands(), rewriter)});
322 
323       return success();
324     }
325     if (operandType.isa<MemRefType>()) {
326       rewriter.replaceOp(
327           dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
328                                             adaptor.getOperands(), rewriter)});
329       return success();
330     }
331     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
332   }
333 
334 private:
335   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
336                                     OpAdaptor adaptor,
337                                     ConversionPatternRewriter &rewriter) const {
338     Location loc = dimOp.getLoc();
339 
340     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
341     auto scalarMemRefType =
342         MemRefType::get({}, unrankedMemRefType.getElementType());
343     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
344 
345     // Extract pointer to the underlying ranked descriptor and bitcast it to a
346     // memref<element_type> descriptor pointer to minimize the number of GEP
347     // operations.
348     UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
349     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
350     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
351         loc,
352         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
353                                    addressSpace),
354         underlyingRankedDesc);
355 
356     // Get pointer to offset field of memref<element_type> descriptor.
357     Type indexPtrTy = LLVM::LLVMPointerType::get(
358         getTypeConverter()->getIndexType(), addressSpace);
359     Value two = rewriter.create<LLVM::ConstantOp>(
360         loc, typeConverter->convertType(rewriter.getI32Type()),
361         rewriter.getI32IntegerAttr(2));
362     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
363         loc, indexPtrTy, scalarMemRefDescPtr,
364         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
365 
366     // The size value that we have to extract can be obtained using GEPop with
367     // `dimOp.index() + 1` index argument.
368     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
369         loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
370     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
371                                                  ValueRange({idxPlusOne}));
372     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
373   }
374 
375   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
376     if (Optional<int64_t> idx = dimOp.getConstantIndex())
377       return idx;
378 
379     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
380       return constantOp.value().cast<IntegerAttr>().getValue().getSExtValue();
381 
382     return llvm::None;
383   }
384 
385   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
386                                   OpAdaptor adaptor,
387                                   ConversionPatternRewriter &rewriter) const {
388     Location loc = dimOp.getLoc();
389 
390     // Take advantage if index is constant.
391     MemRefType memRefType = operandType.cast<MemRefType>();
392     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
393       int64_t i = index.getValue();
394       if (memRefType.isDynamicDim(i)) {
395         // extract dynamic size from the memref descriptor.
396         MemRefDescriptor descriptor(adaptor.source());
397         return descriptor.size(rewriter, loc, i);
398       }
399       // Use constant for static size.
400       int64_t dimSize = memRefType.getDimSize(i);
401       return createIndexConstant(rewriter, loc, dimSize);
402     }
403     Value index = adaptor.index();
404     int64_t rank = memRefType.getRank();
405     MemRefDescriptor memrefDescriptor(adaptor.source());
406     return memrefDescriptor.size(rewriter, loc, index, rank);
407   }
408 };
409 
410 /// Returns the LLVM type of the global variable given the memref type `type`.
411 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
412                                           LLVMTypeConverter &typeConverter) {
413   // LLVM type for a global memref will be a multi-dimension array. For
414   // declarations or uninitialized global memrefs, we can potentially flatten
415   // this to a 1D array. However, for memref.global's with an initial value,
416   // we do not intend to flatten the ElementsAttribute when going from std ->
417   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
418   Type elementType = typeConverter.convertType(type.getElementType());
419   Type arrayTy = elementType;
420   // Shape has the outermost dim at index 0, so need to walk it backwards
421   for (int64_t dim : llvm::reverse(type.getShape()))
422     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
423   return arrayTy;
424 }
425 
426 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
427 struct GlobalMemrefOpLowering
428     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
429   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
430 
431   LogicalResult
432   matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
433                   ConversionPatternRewriter &rewriter) const override {
434     MemRefType type = global.type();
435     if (!isConvertibleAndHasIdentityMaps(type))
436       return failure();
437 
438     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
439 
440     LLVM::Linkage linkage =
441         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
442 
443     Attribute initialValue = nullptr;
444     if (!global.isExternal() && !global.isUninitialized()) {
445       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
446       initialValue = elementsAttr;
447 
448       // For scalar memrefs, the global variable created is of the element type,
449       // so unpack the elements attribute to extract the value.
450       if (type.getRank() == 0)
451         initialValue = elementsAttr.getValue({});
452     }
453 
454     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
455         global, arrayTy, global.constant(), linkage, global.sym_name(),
456         initialValue, /*alignment=*/0, type.getMemorySpaceAsInt());
457     if (!global.isExternal() && global.isUninitialized()) {
458       Block *blk = new Block();
459       newGlobal.getInitializerRegion().push_back(blk);
460       rewriter.setInsertionPointToStart(blk);
461       Value undef[] = {
462           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
463       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
464     }
465     return success();
466   }
467 };
468 
469 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
470 /// the first element stashed into the descriptor. This reuses
471 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
472 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
473   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
474       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
475                                 converter) {}
476 
477   /// Buffer "allocation" for memref.get_global op is getting the address of
478   /// the global variable referenced.
479   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
480                                           Location loc, Value sizeBytes,
481                                           Operation *op) const override {
482     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
483     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
484     unsigned memSpace = type.getMemorySpaceAsInt();
485 
486     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
487     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
488         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
489 
490     // Get the address of the first element in the array by creating a GEP with
491     // the address of the GV as the base, and (rank + 1) number of 0 indices.
492     Type elementType = typeConverter->convertType(type.getElementType());
493     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
494 
495     SmallVector<Value, 4> operands = {addressOf};
496     operands.insert(operands.end(), type.getRank() + 1,
497                     createIndexConstant(rewriter, loc, 0));
498     auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands);
499 
500     // We do not expect the memref obtained using `memref.get_global` to be
501     // ever deallocated. Set the allocated pointer to be known bad value to
502     // help debug if that ever happens.
503     auto intPtrType = getIntPtrType(memSpace);
504     Value deadBeefConst =
505         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
506     auto deadBeefPtr =
507         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
508 
509     // Both allocated and aligned pointers are same. We could potentially stash
510     // a nullptr for the allocated pointer since we do not expect any dealloc.
511     return std::make_tuple(deadBeefPtr, gep);
512   }
513 };
514 
515 // Common base for load and store operations on MemRefs. Restricts the match
516 // to supported MemRef types. Provides functionality to emit code accessing a
517 // specific element of the underlying data buffer.
518 template <typename Derived>
519 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
520   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
521   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
522   using Base = LoadStoreOpLowering<Derived>;
523 
524   LogicalResult match(Derived op) const override {
525     MemRefType type = op.getMemRefType();
526     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
527   }
528 };
529 
530 // Load operation is lowered to obtaining a pointer to the indexed element
531 // and loading it.
532 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
533   using Base::Base;
534 
535   LogicalResult
536   matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
537                   ConversionPatternRewriter &rewriter) const override {
538     auto type = loadOp.getMemRefType();
539 
540     Value dataPtr = getStridedElementPtr(
541         loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
542     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
543     return success();
544   }
545 };
546 
547 // Store operation is lowered to obtaining a pointer to the indexed element,
548 // and storing the given value to it.
549 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
550   using Base::Base;
551 
552   LogicalResult
553   matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
554                   ConversionPatternRewriter &rewriter) const override {
555     auto type = op.getMemRefType();
556 
557     Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
558                                          adaptor.indices(), rewriter);
559     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
560     return success();
561   }
562 };
563 
564 // The prefetch operation is lowered in a way similar to the load operation
565 // except that the llvm.prefetch operation is used for replacement.
566 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
567   using Base::Base;
568 
569   LogicalResult
570   matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
571                   ConversionPatternRewriter &rewriter) const override {
572     auto type = prefetchOp.getMemRefType();
573     auto loc = prefetchOp.getLoc();
574 
575     Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
576                                          adaptor.indices(), rewriter);
577 
578     // Replace with llvm.prefetch.
579     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
580     auto isWrite = rewriter.create<LLVM::ConstantOp>(
581         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
582     auto localityHint = rewriter.create<LLVM::ConstantOp>(
583         loc, llvmI32Type,
584         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
585     auto isData = rewriter.create<LLVM::ConstantOp>(
586         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
587 
588     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
589                                                 localityHint, isData);
590     return success();
591   }
592 };
593 
594 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
595   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
596 
597   LogicalResult match(memref::CastOp memRefCastOp) const override {
598     Type srcType = memRefCastOp.getOperand().getType();
599     Type dstType = memRefCastOp.getType();
600 
601     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
602     // used for type erasure. For now they must preserve underlying element type
603     // and require source and result type to have the same rank. Therefore,
604     // perform a sanity check that the underlying structs are the same. Once op
605     // semantics are relaxed we can revisit.
606     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
607       return success(typeConverter->convertType(srcType) ==
608                      typeConverter->convertType(dstType));
609 
610     // At least one of the operands is unranked type
611     assert(srcType.isa<UnrankedMemRefType>() ||
612            dstType.isa<UnrankedMemRefType>());
613 
614     // Unranked to unranked cast is disallowed
615     return !(srcType.isa<UnrankedMemRefType>() &&
616              dstType.isa<UnrankedMemRefType>())
617                ? success()
618                : failure();
619   }
620 
621   void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
622                ConversionPatternRewriter &rewriter) const override {
623     auto srcType = memRefCastOp.getOperand().getType();
624     auto dstType = memRefCastOp.getType();
625     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
626     auto loc = memRefCastOp.getLoc();
627 
628     // For ranked/ranked case, just keep the original descriptor.
629     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
630       return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
631 
632     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
633       // Casting ranked to unranked memref type
634       // Set the rank in the destination from the memref type
635       // Allocate space on the stack and copy the src memref descriptor
636       // Set the ptr in the destination to the stack space
637       auto srcMemRefType = srcType.cast<MemRefType>();
638       int64_t rank = srcMemRefType.getRank();
639       // ptr = AllocaOp sizeof(MemRefDescriptor)
640       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
641           loc, adaptor.source(), rewriter);
642       // voidptr = BitCastOp srcType* to void*
643       auto voidPtr =
644           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
645               .getResult();
646       // rank = ConstantOp srcRank
647       auto rankVal = rewriter.create<LLVM::ConstantOp>(
648           loc, typeConverter->convertType(rewriter.getIntegerType(64)),
649           rewriter.getI64IntegerAttr(rank));
650       // undef = UndefOp
651       UnrankedMemRefDescriptor memRefDesc =
652           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
653       // d1 = InsertValueOp undef, rank, 0
654       memRefDesc.setRank(rewriter, loc, rankVal);
655       // d2 = InsertValueOp d1, voidptr, 1
656       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
657       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
658 
659     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
660       // Casting from unranked type to ranked.
661       // The operation is assumed to be doing a correct cast. If the destination
662       // type mismatches the unranked the type, it is undefined behavior.
663       UnrankedMemRefDescriptor memRefDesc(adaptor.source());
664       // ptr = ExtractValueOp src, 1
665       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
666       // castPtr = BitCastOp i8* to structTy*
667       auto castPtr =
668           rewriter
669               .create<LLVM::BitcastOp>(
670                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
671               .getResult();
672       // struct = LoadOp castPtr
673       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
674       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
675     } else {
676       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
677     }
678   }
679 };
680 
681 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
682   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
683 
684   LogicalResult
685   matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
686                   ConversionPatternRewriter &rewriter) const override {
687     auto loc = op.getLoc();
688     auto srcType = op.source().getType().cast<BaseMemRefType>();
689     auto targetType = op.target().getType().cast<BaseMemRefType>();
690 
691     // First make sure we have an unranked memref descriptor representation.
692     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
693       auto rank = rewriter.create<LLVM::ConstantOp>(
694           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
695       auto *typeConverter = getTypeConverter();
696       auto ptr =
697           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
698       auto voidPtr =
699           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
700               .getResult();
701       auto unrankedType =
702           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
703       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
704                                             unrankedType,
705                                             ValueRange{rank, voidPtr});
706     };
707 
708     Value unrankedSource = srcType.hasRank()
709                                ? makeUnranked(adaptor.source(), srcType)
710                                : adaptor.source();
711     Value unrankedTarget = targetType.hasRank()
712                                ? makeUnranked(adaptor.target(), targetType)
713                                : adaptor.target();
714 
715     // Now promote the unranked descriptors to the stack.
716     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
717                                                  rewriter.getIndexAttr(1));
718     auto promote = [&](Value desc) {
719       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
720       auto allocated =
721           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
722       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
723       return allocated;
724     };
725 
726     auto sourcePtr = promote(unrankedSource);
727     auto targetPtr = promote(unrankedTarget);
728 
729     auto elemSize = rewriter.create<LLVM::ConstantOp>(
730         loc, getIndexType(),
731         rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8));
732     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
733         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
734     rewriter.create<LLVM::CallOp>(loc, copyFn,
735                                   ValueRange{elemSize, sourcePtr, targetPtr});
736     rewriter.eraseOp(op);
737 
738     return success();
739   }
740 };
741 
742 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
743 /// memref type. In unranked case, the fields are extracted from the underlying
744 /// ranked descriptor.
745 static void extractPointersAndOffset(Location loc,
746                                      ConversionPatternRewriter &rewriter,
747                                      LLVMTypeConverter &typeConverter,
748                                      Value originalOperand,
749                                      Value convertedOperand,
750                                      Value *allocatedPtr, Value *alignedPtr,
751                                      Value *offset = nullptr) {
752   Type operandType = originalOperand.getType();
753   if (operandType.isa<MemRefType>()) {
754     MemRefDescriptor desc(convertedOperand);
755     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
756     *alignedPtr = desc.alignedPtr(rewriter, loc);
757     if (offset != nullptr)
758       *offset = desc.offset(rewriter, loc);
759     return;
760   }
761 
762   unsigned memorySpace =
763       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
764   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
765   Type llvmElementType = typeConverter.convertType(elementType);
766   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
767       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
768 
769   // Extract pointer to the underlying ranked memref descriptor and cast it to
770   // ElemType**.
771   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
772   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
773 
774   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
775       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
776   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
777       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
778   if (offset != nullptr) {
779     *offset = UnrankedMemRefDescriptor::offset(
780         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
781   }
782 }
783 
784 struct MemRefReinterpretCastOpLowering
785     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
786   using ConvertOpToLLVMPattern<
787       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
788 
789   LogicalResult
790   matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
791                   ConversionPatternRewriter &rewriter) const override {
792     Type srcType = castOp.source().getType();
793 
794     Value descriptor;
795     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
796                                                adaptor, &descriptor)))
797       return failure();
798     rewriter.replaceOp(castOp, {descriptor});
799     return success();
800   }
801 
802 private:
803   LogicalResult convertSourceMemRefToDescriptor(
804       ConversionPatternRewriter &rewriter, Type srcType,
805       memref::ReinterpretCastOp castOp,
806       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
807     MemRefType targetMemRefType =
808         castOp.getResult().getType().cast<MemRefType>();
809     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
810                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
811     if (!llvmTargetDescriptorTy)
812       return failure();
813 
814     // Create descriptor.
815     Location loc = castOp.getLoc();
816     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
817 
818     // Set allocated and aligned pointers.
819     Value allocatedPtr, alignedPtr;
820     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
821                              castOp.source(), adaptor.source(), &allocatedPtr,
822                              &alignedPtr);
823     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
824     desc.setAlignedPtr(rewriter, loc, alignedPtr);
825 
826     // Set offset.
827     if (castOp.isDynamicOffset(0))
828       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
829     else
830       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
831 
832     // Set sizes and strides.
833     unsigned dynSizeId = 0;
834     unsigned dynStrideId = 0;
835     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
836       if (castOp.isDynamicSize(i))
837         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
838       else
839         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
840 
841       if (castOp.isDynamicStride(i))
842         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
843       else
844         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
845     }
846     *descriptor = desc;
847     return success();
848   }
849 };
850 
851 struct MemRefReshapeOpLowering
852     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
853   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
854 
855   LogicalResult
856   matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
857                   ConversionPatternRewriter &rewriter) const override {
858     Type srcType = reshapeOp.source().getType();
859 
860     Value descriptor;
861     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
862                                                adaptor, &descriptor)))
863       return failure();
864     rewriter.replaceOp(reshapeOp, {descriptor});
865     return success();
866   }
867 
868 private:
869   LogicalResult
870   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
871                                   Type srcType, memref::ReshapeOp reshapeOp,
872                                   memref::ReshapeOp::Adaptor adaptor,
873                                   Value *descriptor) const {
874     // Conversion for statically-known shape args is performed via
875     // `memref_reinterpret_cast`.
876     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
877     if (shapeMemRefType.hasStaticShape())
878       return failure();
879 
880     // The shape is a rank-1 tensor with unknown length.
881     Location loc = reshapeOp.getLoc();
882     MemRefDescriptor shapeDesc(adaptor.shape());
883     Value resultRank = shapeDesc.size(rewriter, loc, 0);
884 
885     // Extract address space and element type.
886     auto targetType =
887         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
888     unsigned addressSpace = targetType.getMemorySpaceAsInt();
889     Type elementType = targetType.getElementType();
890 
891     // Create the unranked memref descriptor that holds the ranked one. The
892     // inner descriptor is allocated on stack.
893     auto targetDesc = UnrankedMemRefDescriptor::undef(
894         rewriter, loc, typeConverter->convertType(targetType));
895     targetDesc.setRank(rewriter, loc, resultRank);
896     SmallVector<Value, 4> sizes;
897     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
898                                            targetDesc, sizes);
899     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
900         loc, getVoidPtrType(), sizes.front(), llvm::None);
901     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
902 
903     // Extract pointers and offset from the source memref.
904     Value allocatedPtr, alignedPtr, offset;
905     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
906                              reshapeOp.source(), adaptor.source(),
907                              &allocatedPtr, &alignedPtr, &offset);
908 
909     // Set pointers and offset.
910     Type llvmElementType = typeConverter->convertType(elementType);
911     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
912         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
913     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
914                                               elementPtrPtrType, allocatedPtr);
915     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
916                                             underlyingDescPtr,
917                                             elementPtrPtrType, alignedPtr);
918     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
919                                         underlyingDescPtr, elementPtrPtrType,
920                                         offset);
921 
922     // Use the offset pointer as base for further addressing. Copy over the new
923     // shape and compute strides. For this, we create a loop from rank-1 to 0.
924     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
925         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
926         elementPtrPtrType);
927     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
928         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
929     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
930     Value oneIndex = createIndexConstant(rewriter, loc, 1);
931     Value resultRankMinusOne =
932         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
933 
934     Block *initBlock = rewriter.getInsertionBlock();
935     Type indexType = getTypeConverter()->getIndexType();
936     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
937 
938     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
939                                             {indexType, indexType});
940 
941     // Move the remaining initBlock ops to condBlock.
942     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
943     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
944 
945     rewriter.setInsertionPointToEnd(initBlock);
946     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
947                                 condBlock);
948     rewriter.setInsertionPointToStart(condBlock);
949     Value indexArg = condBlock->getArgument(0);
950     Value strideArg = condBlock->getArgument(1);
951 
952     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
953     Value pred = rewriter.create<LLVM::ICmpOp>(
954         loc, IntegerType::get(rewriter.getContext(), 1),
955         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
956 
957     Block *bodyBlock =
958         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
959     rewriter.setInsertionPointToStart(bodyBlock);
960 
961     // Copy size from shape to descriptor.
962     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
963     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
964         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
965     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
966     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
967                                       targetSizesBase, indexArg, size);
968 
969     // Write stride value and compute next one.
970     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
971                                         targetStridesBase, indexArg, strideArg);
972     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
973 
974     // Decrement loop counter and branch back.
975     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
976     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
977                                 condBlock);
978 
979     Block *remainder =
980         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
981 
982     // Hook up the cond exit to the remainder.
983     rewriter.setInsertionPointToEnd(condBlock);
984     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
985                                     llvm::None);
986 
987     // Reset position to beginning of new remainder block.
988     rewriter.setInsertionPointToStart(remainder);
989 
990     *descriptor = targetDesc;
991     return success();
992   }
993 };
994 
995 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
996 /// `Value`s.
997 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
998                                       Type &llvmIndexType,
999                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1000   return llvm::to_vector<4>(
1001       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1002         if (auto attr = value.dyn_cast<Attribute>())
1003           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1004         return value.get<Value>();
1005       }));
1006 }
1007 
1008 /// Compute a map that for a given dimension of the expanded type gives the
1009 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1010 /// the `reassocation` maps.
1011 static DenseMap<int64_t, int64_t>
1012 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1013   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1014   for (auto &en : enumerate(reassociation)) {
1015     for (auto dim : en.value())
1016       expandedDimToCollapsedDim[dim] = en.index();
1017   }
1018   return expandedDimToCollapsedDim;
1019 }
1020 
1021 static OpFoldResult
1022 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1023                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1024                          MemRefDescriptor &inDesc,
1025                          ArrayRef<int64_t> inStaticShape,
1026                          ArrayRef<ReassociationIndices> reassocation,
1027                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1028   int64_t outDimSize = outStaticShape[outDimIndex];
1029   if (!ShapedType::isDynamic(outDimSize))
1030     return b.getIndexAttr(outDimSize);
1031 
1032   // Calculate the multiplication of all the out dim sizes except the
1033   // current dim.
1034   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1035   int64_t otherDimSizesMul = 1;
1036   for (auto otherDimIndex : reassocation[inDimIndex]) {
1037     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1038       continue;
1039     int64_t otherDimSize = outStaticShape[otherDimIndex];
1040     assert(!ShapedType::isDynamic(otherDimSize) &&
1041            "single dimension cannot be expanded into multiple dynamic "
1042            "dimensions");
1043     otherDimSizesMul *= otherDimSize;
1044   }
1045 
1046   // outDimSize = inDimSize / otherOutDimSizesMul
1047   int64_t inDimSize = inStaticShape[inDimIndex];
1048   Value inDimSizeDynamic =
1049       ShapedType::isDynamic(inDimSize)
1050           ? inDesc.size(b, loc, inDimIndex)
1051           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1052                                        b.getIndexAttr(inDimSize));
1053   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1054       loc, inDimSizeDynamic,
1055       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1056                                  b.getIndexAttr(otherDimSizesMul)));
1057   return outDimSizeDynamic;
1058 }
1059 
1060 static OpFoldResult getCollapsedOutputDimSize(
1061     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1062     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1063     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1064   if (!ShapedType::isDynamic(outDimSize))
1065     return b.getIndexAttr(outDimSize);
1066 
1067   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1068   Value outDimSizeDynamic = c1;
1069   for (auto inDimIndex : reassocation[outDimIndex]) {
1070     int64_t inDimSize = inStaticShape[inDimIndex];
1071     Value inDimSizeDynamic =
1072         ShapedType::isDynamic(inDimSize)
1073             ? inDesc.size(b, loc, inDimIndex)
1074             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1075                                          b.getIndexAttr(inDimSize));
1076     outDimSizeDynamic =
1077         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1078   }
1079   return outDimSizeDynamic;
1080 }
1081 
1082 static SmallVector<OpFoldResult, 4>
1083 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1084                         ArrayRef<ReassociationIndices> reassocation,
1085                         ArrayRef<int64_t> inStaticShape,
1086                         MemRefDescriptor &inDesc,
1087                         ArrayRef<int64_t> outStaticShape) {
1088   return llvm::to_vector<4>(llvm::map_range(
1089       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1090         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1091                                          outStaticShape[outDimIndex],
1092                                          inStaticShape, inDesc, reassocation);
1093       }));
1094 }
1095 
1096 static SmallVector<OpFoldResult, 4>
1097 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1098                        ArrayRef<ReassociationIndices> reassocation,
1099                        ArrayRef<int64_t> inStaticShape,
1100                        MemRefDescriptor &inDesc,
1101                        ArrayRef<int64_t> outStaticShape) {
1102   DenseMap<int64_t, int64_t> outDimToInDimMap =
1103       getExpandedDimToCollapsedDimMap(reassocation);
1104   return llvm::to_vector<4>(llvm::map_range(
1105       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1106         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1107                                         outStaticShape, inDesc, inStaticShape,
1108                                         reassocation, outDimToInDimMap);
1109       }));
1110 }
1111 
1112 static SmallVector<Value>
1113 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1114                       ArrayRef<ReassociationIndices> reassocation,
1115                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1116                       ArrayRef<int64_t> outStaticShape) {
1117   return outStaticShape.size() < inStaticShape.size()
1118              ? getAsValues(b, loc, llvmIndexType,
1119                            getCollapsedOutputShape(b, loc, llvmIndexType,
1120                                                    reassocation, inStaticShape,
1121                                                    inDesc, outStaticShape))
1122              : getAsValues(b, loc, llvmIndexType,
1123                            getExpandedOutputShape(b, loc, llvmIndexType,
1124                                                   reassocation, inStaticShape,
1125                                                   inDesc, outStaticShape));
1126 }
1127 
1128 // ReshapeOp creates a new view descriptor of the proper rank.
1129 // For now, the only conversion supported is for target MemRef with static sizes
1130 // and strides.
1131 template <typename ReshapeOp>
1132 class ReassociatingReshapeOpConversion
1133     : public ConvertOpToLLVMPattern<ReshapeOp> {
1134 public:
1135   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1136   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1137 
1138   LogicalResult
1139   matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
1140                   ConversionPatternRewriter &rewriter) const override {
1141     MemRefType dstType = reshapeOp.getResultType();
1142     MemRefType srcType = reshapeOp.getSrcType();
1143     if (!srcType.getAffineMaps().empty() || !dstType.getAffineMaps().empty()) {
1144       return rewriter.notifyMatchFailure(reshapeOp,
1145                                          "only empty layout map is supported");
1146     }
1147 
1148     int64_t offset;
1149     SmallVector<int64_t, 4> strides;
1150     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1151       return rewriter.notifyMatchFailure(
1152           reshapeOp, "failed to get stride and offset exprs");
1153     }
1154 
1155     MemRefDescriptor srcDesc(adaptor.src());
1156     Location loc = reshapeOp->getLoc();
1157     auto dstDesc = MemRefDescriptor::undef(
1158         rewriter, loc, this->typeConverter->convertType(dstType));
1159     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1160     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1161     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1162 
1163     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1164     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1165     Type llvmIndexType =
1166         this->typeConverter->convertType(rewriter.getIndexType());
1167     SmallVector<Value> dstShape = getDynamicOutputShape(
1168         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1169         srcStaticShape, srcDesc, dstStaticShape);
1170     for (auto &en : llvm::enumerate(dstShape))
1171       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1172 
1173     auto isStaticStride = [](int64_t stride) {
1174       return !ShapedType::isDynamicStrideOrOffset(stride);
1175     };
1176     if (llvm::all_of(strides, isStaticStride)) {
1177       for (auto &en : llvm::enumerate(strides))
1178         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1179     } else {
1180       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1181                                                    rewriter.getIndexAttr(1));
1182       Value stride = c1;
1183       for (auto dimIndex :
1184            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1185         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1186         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1187       }
1188     }
1189     rewriter.replaceOp(reshapeOp, {dstDesc});
1190     return success();
1191   }
1192 };
1193 
1194 /// Conversion pattern that transforms a subview op into:
1195 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1196 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1197 ///      and stride.
1198 /// The subview op is replaced by the descriptor.
1199 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1200   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1201 
1202   LogicalResult
1203   matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
1204                   ConversionPatternRewriter &rewriter) const override {
1205     auto loc = subViewOp.getLoc();
1206 
1207     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1208     auto sourceElementTy =
1209         typeConverter->convertType(sourceMemRefType.getElementType());
1210 
1211     auto viewMemRefType = subViewOp.getType();
1212     auto inferredType = memref::SubViewOp::inferResultType(
1213                             subViewOp.getSourceType(),
1214                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1215                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1216                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1217                             .cast<MemRefType>();
1218     auto targetElementTy =
1219         typeConverter->convertType(viewMemRefType.getElementType());
1220     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1221     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1222         !LLVM::isCompatibleType(sourceElementTy) ||
1223         !LLVM::isCompatibleType(targetElementTy) ||
1224         !LLVM::isCompatibleType(targetDescTy))
1225       return failure();
1226 
1227     // Extract the offset and strides from the type.
1228     int64_t offset;
1229     SmallVector<int64_t, 4> strides;
1230     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1231     if (failed(successStrides))
1232       return failure();
1233 
1234     // Create the descriptor.
1235     if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
1236       return failure();
1237     MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
1238     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1239 
1240     // Copy the buffer pointer from the old descriptor to the new one.
1241     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1242     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1243         loc,
1244         LLVM::LLVMPointerType::get(targetElementTy,
1245                                    viewMemRefType.getMemorySpaceAsInt()),
1246         extracted);
1247     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1248 
1249     // Copy the aligned pointer from the old descriptor to the new one.
1250     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1251     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1252         loc,
1253         LLVM::LLVMPointerType::get(targetElementTy,
1254                                    viewMemRefType.getMemorySpaceAsInt()),
1255         extracted);
1256     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1257 
1258     size_t inferredShapeRank = inferredType.getRank();
1259     size_t resultShapeRank = viewMemRefType.getRank();
1260 
1261     // Extract strides needed to compute offset.
1262     SmallVector<Value, 4> strideValues;
1263     strideValues.reserve(inferredShapeRank);
1264     for (unsigned i = 0; i < inferredShapeRank; ++i)
1265       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1266 
1267     // Offset.
1268     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1269     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1270       targetMemRef.setConstantOffset(rewriter, loc, offset);
1271     } else {
1272       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1273       // `inferredShapeRank` may be larger than the number of offset operands
1274       // because of trailing semantics. In this case, the offset is guaranteed
1275       // to be interpreted as 0 and we can just skip the extra dimensions.
1276       for (unsigned i = 0, e = std::min(inferredShapeRank,
1277                                         subViewOp.getMixedOffsets().size());
1278            i < e; ++i) {
1279         Value offset =
1280             // TODO: need OpFoldResult ODS adaptor to clean this up.
1281             subViewOp.isDynamicOffset(i)
1282                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
1283                 : rewriter.create<LLVM::ConstantOp>(
1284                       loc, llvmIndexType,
1285                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1286         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1287         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1288       }
1289       targetMemRef.setOffset(rewriter, loc, baseOffset);
1290     }
1291 
1292     // Update sizes and strides.
1293     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1294     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1295     assert(mixedSizes.size() == mixedStrides.size() &&
1296            "expected sizes and strides of equal length");
1297     llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims();
1298     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1299          i >= 0 && j >= 0; --i) {
1300       if (unusedDims.contains(i))
1301         continue;
1302 
1303       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1304       // In this case, the size is guaranteed to be interpreted as Dim and the
1305       // stride as 1.
1306       Value size, stride;
1307       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1308         // If the static size is available, use it directly. This is similar to
1309         // the folding of dim(constant-op) but removes the need for dim to be
1310         // aware of LLVM constants and for this pass to be aware of std
1311         // constants.
1312         int64_t staticSize =
1313             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1314         if (staticSize != ShapedType::kDynamicSize) {
1315           size = rewriter.create<LLVM::ConstantOp>(
1316               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1317         } else {
1318           Value pos = rewriter.create<LLVM::ConstantOp>(
1319               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1320           Value dim =
1321               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1322           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1323               loc, llvmIndexType, dim);
1324           size = cast.getResult(0);
1325         }
1326         stride = rewriter.create<LLVM::ConstantOp>(
1327             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1328       } else {
1329         // TODO: need OpFoldResult ODS adaptor to clean this up.
1330         size =
1331             subViewOp.isDynamicSize(i)
1332                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
1333                 : rewriter.create<LLVM::ConstantOp>(
1334                       loc, llvmIndexType,
1335                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1336         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1337           stride = rewriter.create<LLVM::ConstantOp>(
1338               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1339         } else {
1340           stride =
1341               subViewOp.isDynamicStride(i)
1342                   ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
1343                   : rewriter.create<LLVM::ConstantOp>(
1344                         loc, llvmIndexType,
1345                         rewriter.getI64IntegerAttr(
1346                             subViewOp.getStaticStride(i)));
1347           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1348         }
1349       }
1350       targetMemRef.setSize(rewriter, loc, j, size);
1351       targetMemRef.setStride(rewriter, loc, j, stride);
1352       j--;
1353     }
1354 
1355     rewriter.replaceOp(subViewOp, {targetMemRef});
1356     return success();
1357   }
1358 };
1359 
1360 /// Conversion pattern that transforms a transpose op into:
1361 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1362 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1363 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1364 ///      and stride. Size and stride are permutations of the original values.
1365 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1366 /// The transpose op is replaced by the alloca'ed pointer.
1367 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1368 public:
1369   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1370 
1371   LogicalResult
1372   matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
1373                   ConversionPatternRewriter &rewriter) const override {
1374     auto loc = transposeOp.getLoc();
1375     MemRefDescriptor viewMemRef(adaptor.in());
1376 
1377     // No permutation, early exit.
1378     if (transposeOp.permutation().isIdentity())
1379       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1380 
1381     auto targetMemRef = MemRefDescriptor::undef(
1382         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1383 
1384     // Copy the base and aligned pointers from the old descriptor to the new
1385     // one.
1386     targetMemRef.setAllocatedPtr(rewriter, loc,
1387                                  viewMemRef.allocatedPtr(rewriter, loc));
1388     targetMemRef.setAlignedPtr(rewriter, loc,
1389                                viewMemRef.alignedPtr(rewriter, loc));
1390 
1391     // Copy the offset pointer from the old descriptor to the new one.
1392     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1393 
1394     // Iterate over the dimensions and apply size/stride permutation.
1395     for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
1396       int sourcePos = en.index();
1397       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1398       targetMemRef.setSize(rewriter, loc, targetPos,
1399                            viewMemRef.size(rewriter, loc, sourcePos));
1400       targetMemRef.setStride(rewriter, loc, targetPos,
1401                              viewMemRef.stride(rewriter, loc, sourcePos));
1402     }
1403 
1404     rewriter.replaceOp(transposeOp, {targetMemRef});
1405     return success();
1406   }
1407 };
1408 
1409 /// Conversion pattern that transforms an op into:
1410 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1411 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1412 ///      and stride.
1413 /// The view op is replaced by the descriptor.
1414 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1415   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1416 
1417   // Build and return the value for the idx^th shape dimension, either by
1418   // returning the constant shape dimension or counting the proper dynamic size.
1419   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1420                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1421                 unsigned idx) const {
1422     assert(idx < shape.size());
1423     if (!ShapedType::isDynamic(shape[idx]))
1424       return createIndexConstant(rewriter, loc, shape[idx]);
1425     // Count the number of dynamic dims in range [0, idx]
1426     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1427       return ShapedType::isDynamic(v);
1428     });
1429     return dynamicSizes[nDynamic];
1430   }
1431 
1432   // Build and return the idx^th stride, either by returning the constant stride
1433   // or by computing the dynamic stride from the current `runningStride` and
1434   // `nextSize`. The caller should keep a running stride and update it with the
1435   // result returned by this function.
1436   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1437                   ArrayRef<int64_t> strides, Value nextSize,
1438                   Value runningStride, unsigned idx) const {
1439     assert(idx < strides.size());
1440     if (!MemRefType::isDynamicStrideOrOffset(strides[idx]))
1441       return createIndexConstant(rewriter, loc, strides[idx]);
1442     if (nextSize)
1443       return runningStride
1444                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1445                  : nextSize;
1446     assert(!runningStride);
1447     return createIndexConstant(rewriter, loc, 1);
1448   }
1449 
1450   LogicalResult
1451   matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
1452                   ConversionPatternRewriter &rewriter) const override {
1453     auto loc = viewOp.getLoc();
1454 
1455     auto viewMemRefType = viewOp.getType();
1456     auto targetElementTy =
1457         typeConverter->convertType(viewMemRefType.getElementType());
1458     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1459     if (!targetDescTy || !targetElementTy ||
1460         !LLVM::isCompatibleType(targetElementTy) ||
1461         !LLVM::isCompatibleType(targetDescTy))
1462       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1463              failure();
1464 
1465     int64_t offset;
1466     SmallVector<int64_t, 4> strides;
1467     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1468     if (failed(successStrides))
1469       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1470     assert(offset == 0 && "expected offset to be 0");
1471 
1472     // Create the descriptor.
1473     MemRefDescriptor sourceMemRef(adaptor.source());
1474     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1475 
1476     // Field 1: Copy the allocated pointer, used for malloc/free.
1477     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1478     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1479     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1480         loc,
1481         LLVM::LLVMPointerType::get(targetElementTy,
1482                                    srcMemRefType.getMemorySpaceAsInt()),
1483         allocatedPtr);
1484     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1485 
1486     // Field 2: Copy the actual aligned pointer to payload.
1487     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1488     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1489                                               alignedPtr, adaptor.byte_shift());
1490     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1491         loc,
1492         LLVM::LLVMPointerType::get(targetElementTy,
1493                                    srcMemRefType.getMemorySpaceAsInt()),
1494         alignedPtr);
1495     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1496 
1497     // Field 3: The offset in the resulting type must be 0. This is because of
1498     // the type change: an offset on srcType* may not be expressible as an
1499     // offset on dstType*.
1500     targetMemRef.setOffset(rewriter, loc,
1501                            createIndexConstant(rewriter, loc, offset));
1502 
1503     // Early exit for 0-D corner case.
1504     if (viewMemRefType.getRank() == 0)
1505       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1506 
1507     // Fields 4 and 5: Update sizes and strides.
1508     if (strides.back() != 1)
1509       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1510              failure();
1511     Value stride = nullptr, nextSize = nullptr;
1512     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1513       // Update size.
1514       Value size =
1515           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1516       targetMemRef.setSize(rewriter, loc, i, size);
1517       // Update stride.
1518       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1519       targetMemRef.setStride(rewriter, loc, i, stride);
1520       nextSize = size;
1521     }
1522 
1523     rewriter.replaceOp(viewOp, {targetMemRef});
1524     return success();
1525   }
1526 };
1527 
1528 } // namespace
1529 
1530 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1531                                                   RewritePatternSet &patterns) {
1532   // clang-format off
1533   patterns.add<
1534       AllocaOpLowering,
1535       AllocaScopeOpLowering,
1536       AssumeAlignmentOpLowering,
1537       DimOpLowering,
1538       GlobalMemrefOpLowering,
1539       GetGlobalMemrefOpLowering,
1540       LoadOpLowering,
1541       MemRefCastOpLowering,
1542       MemRefCopyOpLowering,
1543       MemRefReinterpretCastOpLowering,
1544       MemRefReshapeOpLowering,
1545       PrefetchOpLowering,
1546       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1547       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1548       StoreOpLowering,
1549       SubViewOpLowering,
1550       TransposeOpLowering,
1551       ViewOpLowering>(converter);
1552   // clang-format on
1553   auto allocLowering = converter.getOptions().allocLowering;
1554   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1555     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1556   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1557     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1558 }
1559 
1560 namespace {
1561 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1562   MemRefToLLVMPass() = default;
1563 
1564   void runOnOperation() override {
1565     Operation *op = getOperation();
1566     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1567     LowerToLLVMOptions options(&getContext(),
1568                                dataLayoutAnalysis.getAtOrAbove(op));
1569     options.allocLowering =
1570         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1571                          : LowerToLLVMOptions::AllocLowering::Malloc);
1572     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1573       options.overrideIndexBitwidth(indexBitwidth);
1574 
1575     LLVMTypeConverter typeConverter(&getContext(), options,
1576                                     &dataLayoutAnalysis);
1577     RewritePatternSet patterns(&getContext());
1578     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1579     LLVMConversionTarget target(getContext());
1580     target.addLegalOp<FuncOp>();
1581     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1582       signalPassFailure();
1583   }
1584 };
1585 } // namespace
1586 
1587 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1588   return std::make_unique<MemRefToLLVMPass>();
1589 }
1590