1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 
22 using namespace mlir;
23 
24 namespace {
25 
26 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
27   AllocOpLowering(LLVMTypeConverter &converter)
28       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
29                                 converter) {}
30 
31   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
32                                           Location loc, Value sizeBytes,
33                                           Operation *op) const override {
34     // Heap allocations.
35     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
36     MemRefType memRefType = allocOp.getType();
37 
38     Value alignment;
39     if (auto alignmentAttr = allocOp.alignment()) {
40       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
41     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
42       // In the case where no alignment is specified, we may want to override
43       // `malloc's` behavior. `malloc` typically aligns at the size of the
44       // biggest scalar on a target HW. For non-scalars, use the natural
45       // alignment of the LLVM type given by the LLVM DataLayout.
46       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
47     }
48 
49     if (alignment) {
50       // Adjust the allocation size to consider alignment.
51       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
52     }
53 
54     // Allocate the underlying buffer and store a pointer to it in the MemRef
55     // descriptor.
56     Type elementPtrType = this->getElementPtrType(memRefType);
57     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
58         allocOp->getParentOfType<ModuleOp>(), getIndexType());
59     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
60                                   getVoidPtrType());
61     Value allocatedPtr =
62         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
63 
64     Value alignedPtr = allocatedPtr;
65     if (alignment) {
66       // Compute the aligned type pointer.
67       Value allocatedInt =
68           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
69       Value alignmentInt =
70           createAligned(rewriter, loc, allocatedInt, alignment);
71       alignedPtr =
72           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
73     }
74 
75     return std::make_tuple(allocatedPtr, alignedPtr);
76   }
77 };
78 
79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
80   AlignedAllocOpLowering(LLVMTypeConverter &converter)
81       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
82                                 converter) {}
83 
84   /// Returns the memref's element size in bytes using the data layout active at
85   /// `op`.
86   // TODO: there are other places where this is used. Expose publicly?
87   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
88     const DataLayout *layout = &defaultLayout;
89     if (const DataLayoutAnalysis *analysis =
90             getTypeConverter()->getDataLayoutAnalysis()) {
91       layout = &analysis->getAbove(op);
92     }
93     Type elementType = memRefType.getElementType();
94     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
95       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
96                                                          *layout);
97     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
98       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
99           memRefElementType, *layout);
100     return layout->getTypeSize(elementType);
101   }
102 
103   /// Returns true if the memref size in bytes is known to be a multiple of
104   /// factor assuming the data layout active at `op`.
105   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
106                               Operation *op) const {
107     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
108     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
109       if (type.isDynamic(type.getDimSize(i)))
110         continue;
111       sizeDivisor = sizeDivisor * type.getDimSize(i);
112     }
113     return sizeDivisor % factor == 0;
114   }
115 
116   /// Returns the alignment to be used for the allocation call itself.
117   /// aligned_alloc requires the allocation size to be a power of two, and the
118   /// allocation size to be a multiple of alignment,
119   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
120     if (Optional<uint64_t> alignment = allocOp.alignment())
121       return *alignment;
122 
123     // Whenever we don't have alignment set, we will use an alignment
124     // consistent with the element type; since the allocation size has to be a
125     // power of two, we will bump to the next power of two if it already isn't.
126     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
127     return std::max(kMinAlignedAllocAlignment,
128                     llvm::PowerOf2Ceil(eltSizeBytes));
129   }
130 
131   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
132                                           Location loc, Value sizeBytes,
133                                           Operation *op) const override {
134     // Heap allocations.
135     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
136     MemRefType memRefType = allocOp.getType();
137     int64_t alignment = getAllocationAlignment(allocOp);
138     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
139 
140     // aligned_alloc requires size to be a multiple of alignment; we will pad
141     // the size to the next multiple if necessary.
142     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
143       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
144 
145     Type elementPtrType = this->getElementPtrType(memRefType);
146     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
147         allocOp->getParentOfType<ModuleOp>(), getIndexType());
148     auto results =
149         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
150                        getVoidPtrType());
151     Value allocatedPtr =
152         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
153 
154     return std::make_tuple(allocatedPtr, allocatedPtr);
155   }
156 
157   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
158   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
159 
160   /// Default layout to use in absence of the corresponding analysis.
161   DataLayout defaultLayout;
162 };
163 
164 // Out of line definition, required till C++17.
165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
166 
167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
168   AllocaOpLowering(LLVMTypeConverter &converter)
169       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
170                                 converter) {}
171 
172   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
173   /// is set to null for stack allocations. `accessAlignment` is set if
174   /// alignment is needed post allocation (for eg. in conjunction with malloc).
175   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
176                                           Location loc, Value sizeBytes,
177                                           Operation *op) const override {
178 
179     // With alloca, one gets a pointer to the element type right away.
180     // For stack allocations.
181     auto allocaOp = cast<memref::AllocaOp>(op);
182     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
183 
184     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
185         loc, elementPtrType, sizeBytes,
186         allocaOp.alignment() ? *allocaOp.alignment() : 0);
187 
188     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
189   }
190 };
191 
192 struct AllocaScopeOpLowering
193     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
194   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
195 
196   LogicalResult
197   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
198                   ConversionPatternRewriter &rewriter) const override {
199     OpBuilder::InsertionGuard guard(rewriter);
200     Location loc = allocaScopeOp.getLoc();
201 
202     // Split the current block before the AllocaScopeOp to create the inlining
203     // point.
204     auto *currentBlock = rewriter.getInsertionBlock();
205     auto *remainingOpsBlock =
206         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
207     Block *continueBlock;
208     if (allocaScopeOp.getNumResults() == 0) {
209       continueBlock = remainingOpsBlock;
210     } else {
211       continueBlock = rewriter.createBlock(remainingOpsBlock,
212                                            allocaScopeOp.getResultTypes());
213       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
214     }
215 
216     // Inline body region.
217     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
218     Block *afterBody = &allocaScopeOp.bodyRegion().back();
219     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
220 
221     // Save stack and then branch into the body of the region.
222     rewriter.setInsertionPointToEnd(currentBlock);
223     auto stackSaveOp =
224         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
225     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
226 
227     // Replace the alloca_scope return with a branch that jumps out of the body.
228     // Stack restore before leaving the body region.
229     rewriter.setInsertionPointToEnd(afterBody);
230     auto returnOp =
231         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
232     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
233         returnOp, returnOp.results(), continueBlock);
234 
235     // Insert stack restore before jumping out the body of the region.
236     rewriter.setInsertionPoint(branchOp);
237     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
238 
239     // Replace the op with values return from the body region.
240     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
241 
242     return success();
243   }
244 };
245 
246 struct AssumeAlignmentOpLowering
247     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
248   using ConvertOpToLLVMPattern<
249       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
250 
251   LogicalResult
252   matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
253                   ConversionPatternRewriter &rewriter) const override {
254     Value memref = adaptor.memref();
255     unsigned alignment = op.alignment();
256     auto loc = op.getLoc();
257 
258     MemRefDescriptor memRefDescriptor(memref);
259     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
260 
261     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
262     // the asserted memref.alignedPtr isn't used anywhere else, as the real
263     // users like load/store/views always re-extract memref.alignedPtr as they
264     // get lowered.
265     //
266     // This relies on LLVM's CSE optimization (potentially after SROA), since
267     // after CSE all memref.alignedPtr instances get de-duplicated into the same
268     // pointer SSA value.
269     auto intPtrType =
270         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
271     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
272     Value mask =
273         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
274     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
275     rewriter.create<LLVM::AssumeOp>(
276         loc, rewriter.create<LLVM::ICmpOp>(
277                  loc, LLVM::ICmpPredicate::eq,
278                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
279 
280     rewriter.eraseOp(op);
281     return success();
282   }
283 };
284 
285 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
286 // The memref descriptor being an SSA value, there is no need to clean it up
287 // in any way.
288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
289   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
290 
291   explicit DeallocOpLowering(LLVMTypeConverter &converter)
292       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
293 
294   LogicalResult
295   matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
296                   ConversionPatternRewriter &rewriter) const override {
297     // Insert the `free` declaration if it is not already present.
298     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
299     MemRefDescriptor memref(adaptor.memref());
300     Value casted = rewriter.create<LLVM::BitcastOp>(
301         op.getLoc(), getVoidPtrType(),
302         memref.allocatedPtr(rewriter, op.getLoc()));
303     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
304         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
305     return success();
306   }
307 };
308 
309 // A `dim` is converted to a constant for static sizes and to an access to the
310 // size stored in the memref descriptor for dynamic sizes.
311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
312   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
313 
314   LogicalResult
315   matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
316                   ConversionPatternRewriter &rewriter) const override {
317     Type operandType = dimOp.source().getType();
318     if (operandType.isa<UnrankedMemRefType>()) {
319       rewriter.replaceOp(
320           dimOp, {extractSizeOfUnrankedMemRef(
321                      operandType, dimOp, adaptor.getOperands(), rewriter)});
322 
323       return success();
324     }
325     if (operandType.isa<MemRefType>()) {
326       rewriter.replaceOp(
327           dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
328                                             adaptor.getOperands(), rewriter)});
329       return success();
330     }
331     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
332   }
333 
334 private:
335   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
336                                     OpAdaptor adaptor,
337                                     ConversionPatternRewriter &rewriter) const {
338     Location loc = dimOp.getLoc();
339 
340     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
341     auto scalarMemRefType =
342         MemRefType::get({}, unrankedMemRefType.getElementType());
343     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
344 
345     // Extract pointer to the underlying ranked descriptor and bitcast it to a
346     // memref<element_type> descriptor pointer to minimize the number of GEP
347     // operations.
348     UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
349     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
350     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
351         loc,
352         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
353                                    addressSpace),
354         underlyingRankedDesc);
355 
356     // Get pointer to offset field of memref<element_type> descriptor.
357     Type indexPtrTy = LLVM::LLVMPointerType::get(
358         getTypeConverter()->getIndexType(), addressSpace);
359     Value two = rewriter.create<LLVM::ConstantOp>(
360         loc, typeConverter->convertType(rewriter.getI32Type()),
361         rewriter.getI32IntegerAttr(2));
362     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
363         loc, indexPtrTy, scalarMemRefDescPtr,
364         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
365 
366     // The size value that we have to extract can be obtained using GEPop with
367     // `dimOp.index() + 1` index argument.
368     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
369         loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
370     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
371                                                  ValueRange({idxPlusOne}));
372     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
373   }
374 
375   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
376     if (Optional<int64_t> idx = dimOp.getConstantIndex())
377       return idx;
378 
379     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
380       return constantOp.value().cast<IntegerAttr>().getValue().getSExtValue();
381 
382     return llvm::None;
383   }
384 
385   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
386                                   OpAdaptor adaptor,
387                                   ConversionPatternRewriter &rewriter) const {
388     Location loc = dimOp.getLoc();
389 
390     // Take advantage if index is constant.
391     MemRefType memRefType = operandType.cast<MemRefType>();
392     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
393       int64_t i = index.getValue();
394       if (memRefType.isDynamicDim(i)) {
395         // extract dynamic size from the memref descriptor.
396         MemRefDescriptor descriptor(adaptor.source());
397         return descriptor.size(rewriter, loc, i);
398       }
399       // Use constant for static size.
400       int64_t dimSize = memRefType.getDimSize(i);
401       return createIndexConstant(rewriter, loc, dimSize);
402     }
403     Value index = adaptor.index();
404     int64_t rank = memRefType.getRank();
405     MemRefDescriptor memrefDescriptor(adaptor.source());
406     return memrefDescriptor.size(rewriter, loc, index, rank);
407   }
408 };
409 
410 /// Returns the LLVM type of the global variable given the memref type `type`.
411 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
412                                           LLVMTypeConverter &typeConverter) {
413   // LLVM type for a global memref will be a multi-dimension array. For
414   // declarations or uninitialized global memrefs, we can potentially flatten
415   // this to a 1D array. However, for memref.global's with an initial value,
416   // we do not intend to flatten the ElementsAttribute when going from std ->
417   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
418   Type elementType = typeConverter.convertType(type.getElementType());
419   Type arrayTy = elementType;
420   // Shape has the outermost dim at index 0, so need to walk it backwards
421   for (int64_t dim : llvm::reverse(type.getShape()))
422     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
423   return arrayTy;
424 }
425 
426 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
427 struct GlobalMemrefOpLowering
428     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
429   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
430 
431   LogicalResult
432   matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
433                   ConversionPatternRewriter &rewriter) const override {
434     MemRefType type = global.type();
435     if (!isConvertibleAndHasIdentityMaps(type))
436       return failure();
437 
438     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
439 
440     LLVM::Linkage linkage =
441         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
442 
443     Attribute initialValue = nullptr;
444     if (!global.isExternal() && !global.isUninitialized()) {
445       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
446       initialValue = elementsAttr;
447 
448       // For scalar memrefs, the global variable created is of the element type,
449       // so unpack the elements attribute to extract the value.
450       if (type.getRank() == 0)
451         initialValue = elementsAttr.getValue({});
452     }
453 
454     uint64_t alignment = global.alignment().getValueOr(0);
455 
456     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
457         global, arrayTy, global.constant(), linkage, global.sym_name(),
458         initialValue, alignment, type.getMemorySpaceAsInt());
459     if (!global.isExternal() && global.isUninitialized()) {
460       Block *blk = new Block();
461       newGlobal.getInitializerRegion().push_back(blk);
462       rewriter.setInsertionPointToStart(blk);
463       Value undef[] = {
464           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
465       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
466     }
467     return success();
468   }
469 };
470 
471 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
472 /// the first element stashed into the descriptor. This reuses
473 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
474 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
475   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
476       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
477                                 converter) {}
478 
479   /// Buffer "allocation" for memref.get_global op is getting the address of
480   /// the global variable referenced.
481   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
482                                           Location loc, Value sizeBytes,
483                                           Operation *op) const override {
484     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
485     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
486     unsigned memSpace = type.getMemorySpaceAsInt();
487 
488     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
489     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
490         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
491 
492     // Get the address of the first element in the array by creating a GEP with
493     // the address of the GV as the base, and (rank + 1) number of 0 indices.
494     Type elementType = typeConverter->convertType(type.getElementType());
495     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
496 
497     SmallVector<Value, 4> operands = {addressOf};
498     operands.insert(operands.end(), type.getRank() + 1,
499                     createIndexConstant(rewriter, loc, 0));
500     auto gep = rewriter.create<LLVM::GEPOp>(loc, elementPtrType, operands);
501 
502     // We do not expect the memref obtained using `memref.get_global` to be
503     // ever deallocated. Set the allocated pointer to be known bad value to
504     // help debug if that ever happens.
505     auto intPtrType = getIntPtrType(memSpace);
506     Value deadBeefConst =
507         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
508     auto deadBeefPtr =
509         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
510 
511     // Both allocated and aligned pointers are same. We could potentially stash
512     // a nullptr for the allocated pointer since we do not expect any dealloc.
513     return std::make_tuple(deadBeefPtr, gep);
514   }
515 };
516 
517 // Common base for load and store operations on MemRefs. Restricts the match
518 // to supported MemRef types. Provides functionality to emit code accessing a
519 // specific element of the underlying data buffer.
520 template <typename Derived>
521 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
522   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
523   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
524   using Base = LoadStoreOpLowering<Derived>;
525 
526   LogicalResult match(Derived op) const override {
527     MemRefType type = op.getMemRefType();
528     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
529   }
530 };
531 
532 // Load operation is lowered to obtaining a pointer to the indexed element
533 // and loading it.
534 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
535   using Base::Base;
536 
537   LogicalResult
538   matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
539                   ConversionPatternRewriter &rewriter) const override {
540     auto type = loadOp.getMemRefType();
541 
542     Value dataPtr = getStridedElementPtr(
543         loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
544     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
545     return success();
546   }
547 };
548 
549 // Store operation is lowered to obtaining a pointer to the indexed element,
550 // and storing the given value to it.
551 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
552   using Base::Base;
553 
554   LogicalResult
555   matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
556                   ConversionPatternRewriter &rewriter) const override {
557     auto type = op.getMemRefType();
558 
559     Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
560                                          adaptor.indices(), rewriter);
561     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
562     return success();
563   }
564 };
565 
566 // The prefetch operation is lowered in a way similar to the load operation
567 // except that the llvm.prefetch operation is used for replacement.
568 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
569   using Base::Base;
570 
571   LogicalResult
572   matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
573                   ConversionPatternRewriter &rewriter) const override {
574     auto type = prefetchOp.getMemRefType();
575     auto loc = prefetchOp.getLoc();
576 
577     Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
578                                          adaptor.indices(), rewriter);
579 
580     // Replace with llvm.prefetch.
581     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
582     auto isWrite = rewriter.create<LLVM::ConstantOp>(
583         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
584     auto localityHint = rewriter.create<LLVM::ConstantOp>(
585         loc, llvmI32Type,
586         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
587     auto isData = rewriter.create<LLVM::ConstantOp>(
588         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
589 
590     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
591                                                 localityHint, isData);
592     return success();
593   }
594 };
595 
596 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
597   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
598 
599   LogicalResult match(memref::CastOp memRefCastOp) const override {
600     Type srcType = memRefCastOp.getOperand().getType();
601     Type dstType = memRefCastOp.getType();
602 
603     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
604     // used for type erasure. For now they must preserve underlying element type
605     // and require source and result type to have the same rank. Therefore,
606     // perform a sanity check that the underlying structs are the same. Once op
607     // semantics are relaxed we can revisit.
608     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
609       return success(typeConverter->convertType(srcType) ==
610                      typeConverter->convertType(dstType));
611 
612     // At least one of the operands is unranked type
613     assert(srcType.isa<UnrankedMemRefType>() ||
614            dstType.isa<UnrankedMemRefType>());
615 
616     // Unranked to unranked cast is disallowed
617     return !(srcType.isa<UnrankedMemRefType>() &&
618              dstType.isa<UnrankedMemRefType>())
619                ? success()
620                : failure();
621   }
622 
623   void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
624                ConversionPatternRewriter &rewriter) const override {
625     auto srcType = memRefCastOp.getOperand().getType();
626     auto dstType = memRefCastOp.getType();
627     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
628     auto loc = memRefCastOp.getLoc();
629 
630     // For ranked/ranked case, just keep the original descriptor.
631     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
632       return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
633 
634     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
635       // Casting ranked to unranked memref type
636       // Set the rank in the destination from the memref type
637       // Allocate space on the stack and copy the src memref descriptor
638       // Set the ptr in the destination to the stack space
639       auto srcMemRefType = srcType.cast<MemRefType>();
640       int64_t rank = srcMemRefType.getRank();
641       // ptr = AllocaOp sizeof(MemRefDescriptor)
642       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
643           loc, adaptor.source(), rewriter);
644       // voidptr = BitCastOp srcType* to void*
645       auto voidPtr =
646           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
647               .getResult();
648       // rank = ConstantOp srcRank
649       auto rankVal = rewriter.create<LLVM::ConstantOp>(
650           loc, typeConverter->convertType(rewriter.getIntegerType(64)),
651           rewriter.getI64IntegerAttr(rank));
652       // undef = UndefOp
653       UnrankedMemRefDescriptor memRefDesc =
654           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
655       // d1 = InsertValueOp undef, rank, 0
656       memRefDesc.setRank(rewriter, loc, rankVal);
657       // d2 = InsertValueOp d1, voidptr, 1
658       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
659       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
660 
661     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
662       // Casting from unranked type to ranked.
663       // The operation is assumed to be doing a correct cast. If the destination
664       // type mismatches the unranked the type, it is undefined behavior.
665       UnrankedMemRefDescriptor memRefDesc(adaptor.source());
666       // ptr = ExtractValueOp src, 1
667       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
668       // castPtr = BitCastOp i8* to structTy*
669       auto castPtr =
670           rewriter
671               .create<LLVM::BitcastOp>(
672                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
673               .getResult();
674       // struct = LoadOp castPtr
675       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
676       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
677     } else {
678       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
679     }
680   }
681 };
682 
683 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
684   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
685 
686   LogicalResult
687   matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
688                   ConversionPatternRewriter &rewriter) const override {
689     auto loc = op.getLoc();
690     auto srcType = op.source().getType().cast<BaseMemRefType>();
691     auto targetType = op.target().getType().cast<BaseMemRefType>();
692 
693     // First make sure we have an unranked memref descriptor representation.
694     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
695       auto rank = rewriter.create<LLVM::ConstantOp>(
696           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
697       auto *typeConverter = getTypeConverter();
698       auto ptr =
699           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
700       auto voidPtr =
701           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
702               .getResult();
703       auto unrankedType =
704           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
705       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
706                                             unrankedType,
707                                             ValueRange{rank, voidPtr});
708     };
709 
710     Value unrankedSource = srcType.hasRank()
711                                ? makeUnranked(adaptor.source(), srcType)
712                                : adaptor.source();
713     Value unrankedTarget = targetType.hasRank()
714                                ? makeUnranked(adaptor.target(), targetType)
715                                : adaptor.target();
716 
717     // Now promote the unranked descriptors to the stack.
718     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
719                                                  rewriter.getIndexAttr(1));
720     auto promote = [&](Value desc) {
721       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
722       auto allocated =
723           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
724       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
725       return allocated;
726     };
727 
728     auto sourcePtr = promote(unrankedSource);
729     auto targetPtr = promote(unrankedTarget);
730 
731     auto elemSize = rewriter.create<LLVM::ConstantOp>(
732         loc, getIndexType(),
733         rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8));
734     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
735         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
736     rewriter.create<LLVM::CallOp>(loc, copyFn,
737                                   ValueRange{elemSize, sourcePtr, targetPtr});
738     rewriter.eraseOp(op);
739 
740     return success();
741   }
742 };
743 
744 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
745 /// memref type. In unranked case, the fields are extracted from the underlying
746 /// ranked descriptor.
747 static void extractPointersAndOffset(Location loc,
748                                      ConversionPatternRewriter &rewriter,
749                                      LLVMTypeConverter &typeConverter,
750                                      Value originalOperand,
751                                      Value convertedOperand,
752                                      Value *allocatedPtr, Value *alignedPtr,
753                                      Value *offset = nullptr) {
754   Type operandType = originalOperand.getType();
755   if (operandType.isa<MemRefType>()) {
756     MemRefDescriptor desc(convertedOperand);
757     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
758     *alignedPtr = desc.alignedPtr(rewriter, loc);
759     if (offset != nullptr)
760       *offset = desc.offset(rewriter, loc);
761     return;
762   }
763 
764   unsigned memorySpace =
765       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
766   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
767   Type llvmElementType = typeConverter.convertType(elementType);
768   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
769       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
770 
771   // Extract pointer to the underlying ranked memref descriptor and cast it to
772   // ElemType**.
773   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
774   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
775 
776   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
777       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
778   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
779       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
780   if (offset != nullptr) {
781     *offset = UnrankedMemRefDescriptor::offset(
782         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
783   }
784 }
785 
786 struct MemRefReinterpretCastOpLowering
787     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
788   using ConvertOpToLLVMPattern<
789       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
790 
791   LogicalResult
792   matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
793                   ConversionPatternRewriter &rewriter) const override {
794     Type srcType = castOp.source().getType();
795 
796     Value descriptor;
797     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
798                                                adaptor, &descriptor)))
799       return failure();
800     rewriter.replaceOp(castOp, {descriptor});
801     return success();
802   }
803 
804 private:
805   LogicalResult convertSourceMemRefToDescriptor(
806       ConversionPatternRewriter &rewriter, Type srcType,
807       memref::ReinterpretCastOp castOp,
808       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
809     MemRefType targetMemRefType =
810         castOp.getResult().getType().cast<MemRefType>();
811     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
812                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
813     if (!llvmTargetDescriptorTy)
814       return failure();
815 
816     // Create descriptor.
817     Location loc = castOp.getLoc();
818     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
819 
820     // Set allocated and aligned pointers.
821     Value allocatedPtr, alignedPtr;
822     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
823                              castOp.source(), adaptor.source(), &allocatedPtr,
824                              &alignedPtr);
825     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
826     desc.setAlignedPtr(rewriter, loc, alignedPtr);
827 
828     // Set offset.
829     if (castOp.isDynamicOffset(0))
830       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
831     else
832       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
833 
834     // Set sizes and strides.
835     unsigned dynSizeId = 0;
836     unsigned dynStrideId = 0;
837     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
838       if (castOp.isDynamicSize(i))
839         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
840       else
841         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
842 
843       if (castOp.isDynamicStride(i))
844         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
845       else
846         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
847     }
848     *descriptor = desc;
849     return success();
850   }
851 };
852 
853 struct MemRefReshapeOpLowering
854     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
855   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
856 
857   LogicalResult
858   matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
859                   ConversionPatternRewriter &rewriter) const override {
860     Type srcType = reshapeOp.source().getType();
861 
862     Value descriptor;
863     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
864                                                adaptor, &descriptor)))
865       return failure();
866     rewriter.replaceOp(reshapeOp, {descriptor});
867     return success();
868   }
869 
870 private:
871   LogicalResult
872   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
873                                   Type srcType, memref::ReshapeOp reshapeOp,
874                                   memref::ReshapeOp::Adaptor adaptor,
875                                   Value *descriptor) const {
876     // Conversion for statically-known shape args is performed via
877     // `memref_reinterpret_cast`.
878     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
879     if (shapeMemRefType.hasStaticShape())
880       return failure();
881 
882     // The shape is a rank-1 tensor with unknown length.
883     Location loc = reshapeOp.getLoc();
884     MemRefDescriptor shapeDesc(adaptor.shape());
885     Value resultRank = shapeDesc.size(rewriter, loc, 0);
886 
887     // Extract address space and element type.
888     auto targetType =
889         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
890     unsigned addressSpace = targetType.getMemorySpaceAsInt();
891     Type elementType = targetType.getElementType();
892 
893     // Create the unranked memref descriptor that holds the ranked one. The
894     // inner descriptor is allocated on stack.
895     auto targetDesc = UnrankedMemRefDescriptor::undef(
896         rewriter, loc, typeConverter->convertType(targetType));
897     targetDesc.setRank(rewriter, loc, resultRank);
898     SmallVector<Value, 4> sizes;
899     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
900                                            targetDesc, sizes);
901     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
902         loc, getVoidPtrType(), sizes.front(), llvm::None);
903     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
904 
905     // Extract pointers and offset from the source memref.
906     Value allocatedPtr, alignedPtr, offset;
907     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
908                              reshapeOp.source(), adaptor.source(),
909                              &allocatedPtr, &alignedPtr, &offset);
910 
911     // Set pointers and offset.
912     Type llvmElementType = typeConverter->convertType(elementType);
913     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
914         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
915     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
916                                               elementPtrPtrType, allocatedPtr);
917     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
918                                             underlyingDescPtr,
919                                             elementPtrPtrType, alignedPtr);
920     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
921                                         underlyingDescPtr, elementPtrPtrType,
922                                         offset);
923 
924     // Use the offset pointer as base for further addressing. Copy over the new
925     // shape and compute strides. For this, we create a loop from rank-1 to 0.
926     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
927         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
928         elementPtrPtrType);
929     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
930         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
931     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
932     Value oneIndex = createIndexConstant(rewriter, loc, 1);
933     Value resultRankMinusOne =
934         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
935 
936     Block *initBlock = rewriter.getInsertionBlock();
937     Type indexType = getTypeConverter()->getIndexType();
938     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
939 
940     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
941                                             {indexType, indexType});
942 
943     // Move the remaining initBlock ops to condBlock.
944     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
945     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
946 
947     rewriter.setInsertionPointToEnd(initBlock);
948     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
949                                 condBlock);
950     rewriter.setInsertionPointToStart(condBlock);
951     Value indexArg = condBlock->getArgument(0);
952     Value strideArg = condBlock->getArgument(1);
953 
954     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
955     Value pred = rewriter.create<LLVM::ICmpOp>(
956         loc, IntegerType::get(rewriter.getContext(), 1),
957         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
958 
959     Block *bodyBlock =
960         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
961     rewriter.setInsertionPointToStart(bodyBlock);
962 
963     // Copy size from shape to descriptor.
964     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
965     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
966         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
967     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
968     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
969                                       targetSizesBase, indexArg, size);
970 
971     // Write stride value and compute next one.
972     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
973                                         targetStridesBase, indexArg, strideArg);
974     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
975 
976     // Decrement loop counter and branch back.
977     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
978     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
979                                 condBlock);
980 
981     Block *remainder =
982         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
983 
984     // Hook up the cond exit to the remainder.
985     rewriter.setInsertionPointToEnd(condBlock);
986     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
987                                     llvm::None);
988 
989     // Reset position to beginning of new remainder block.
990     rewriter.setInsertionPointToStart(remainder);
991 
992     *descriptor = targetDesc;
993     return success();
994   }
995 };
996 
997 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
998 /// `Value`s.
999 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
1000                                       Type &llvmIndexType,
1001                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1002   return llvm::to_vector<4>(
1003       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1004         if (auto attr = value.dyn_cast<Attribute>())
1005           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1006         return value.get<Value>();
1007       }));
1008 }
1009 
1010 /// Compute a map that for a given dimension of the expanded type gives the
1011 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1012 /// the `reassocation` maps.
1013 static DenseMap<int64_t, int64_t>
1014 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1015   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1016   for (auto &en : enumerate(reassociation)) {
1017     for (auto dim : en.value())
1018       expandedDimToCollapsedDim[dim] = en.index();
1019   }
1020   return expandedDimToCollapsedDim;
1021 }
1022 
1023 static OpFoldResult
1024 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1025                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1026                          MemRefDescriptor &inDesc,
1027                          ArrayRef<int64_t> inStaticShape,
1028                          ArrayRef<ReassociationIndices> reassocation,
1029                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1030   int64_t outDimSize = outStaticShape[outDimIndex];
1031   if (!ShapedType::isDynamic(outDimSize))
1032     return b.getIndexAttr(outDimSize);
1033 
1034   // Calculate the multiplication of all the out dim sizes except the
1035   // current dim.
1036   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1037   int64_t otherDimSizesMul = 1;
1038   for (auto otherDimIndex : reassocation[inDimIndex]) {
1039     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1040       continue;
1041     int64_t otherDimSize = outStaticShape[otherDimIndex];
1042     assert(!ShapedType::isDynamic(otherDimSize) &&
1043            "single dimension cannot be expanded into multiple dynamic "
1044            "dimensions");
1045     otherDimSizesMul *= otherDimSize;
1046   }
1047 
1048   // outDimSize = inDimSize / otherOutDimSizesMul
1049   int64_t inDimSize = inStaticShape[inDimIndex];
1050   Value inDimSizeDynamic =
1051       ShapedType::isDynamic(inDimSize)
1052           ? inDesc.size(b, loc, inDimIndex)
1053           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1054                                        b.getIndexAttr(inDimSize));
1055   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1056       loc, inDimSizeDynamic,
1057       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1058                                  b.getIndexAttr(otherDimSizesMul)));
1059   return outDimSizeDynamic;
1060 }
1061 
1062 static OpFoldResult getCollapsedOutputDimSize(
1063     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1064     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1065     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1066   if (!ShapedType::isDynamic(outDimSize))
1067     return b.getIndexAttr(outDimSize);
1068 
1069   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1070   Value outDimSizeDynamic = c1;
1071   for (auto inDimIndex : reassocation[outDimIndex]) {
1072     int64_t inDimSize = inStaticShape[inDimIndex];
1073     Value inDimSizeDynamic =
1074         ShapedType::isDynamic(inDimSize)
1075             ? inDesc.size(b, loc, inDimIndex)
1076             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1077                                          b.getIndexAttr(inDimSize));
1078     outDimSizeDynamic =
1079         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1080   }
1081   return outDimSizeDynamic;
1082 }
1083 
1084 static SmallVector<OpFoldResult, 4>
1085 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1086                         ArrayRef<ReassociationIndices> reassocation,
1087                         ArrayRef<int64_t> inStaticShape,
1088                         MemRefDescriptor &inDesc,
1089                         ArrayRef<int64_t> outStaticShape) {
1090   return llvm::to_vector<4>(llvm::map_range(
1091       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1092         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1093                                          outStaticShape[outDimIndex],
1094                                          inStaticShape, inDesc, reassocation);
1095       }));
1096 }
1097 
1098 static SmallVector<OpFoldResult, 4>
1099 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1100                        ArrayRef<ReassociationIndices> reassocation,
1101                        ArrayRef<int64_t> inStaticShape,
1102                        MemRefDescriptor &inDesc,
1103                        ArrayRef<int64_t> outStaticShape) {
1104   DenseMap<int64_t, int64_t> outDimToInDimMap =
1105       getExpandedDimToCollapsedDimMap(reassocation);
1106   return llvm::to_vector<4>(llvm::map_range(
1107       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1108         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1109                                         outStaticShape, inDesc, inStaticShape,
1110                                         reassocation, outDimToInDimMap);
1111       }));
1112 }
1113 
1114 static SmallVector<Value>
1115 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1116                       ArrayRef<ReassociationIndices> reassocation,
1117                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1118                       ArrayRef<int64_t> outStaticShape) {
1119   return outStaticShape.size() < inStaticShape.size()
1120              ? getAsValues(b, loc, llvmIndexType,
1121                            getCollapsedOutputShape(b, loc, llvmIndexType,
1122                                                    reassocation, inStaticShape,
1123                                                    inDesc, outStaticShape))
1124              : getAsValues(b, loc, llvmIndexType,
1125                            getExpandedOutputShape(b, loc, llvmIndexType,
1126                                                   reassocation, inStaticShape,
1127                                                   inDesc, outStaticShape));
1128 }
1129 
1130 // ReshapeOp creates a new view descriptor of the proper rank.
1131 // For now, the only conversion supported is for target MemRef with static sizes
1132 // and strides.
1133 template <typename ReshapeOp>
1134 class ReassociatingReshapeOpConversion
1135     : public ConvertOpToLLVMPattern<ReshapeOp> {
1136 public:
1137   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1138   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1139 
1140   LogicalResult
1141   matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
1142                   ConversionPatternRewriter &rewriter) const override {
1143     MemRefType dstType = reshapeOp.getResultType();
1144     MemRefType srcType = reshapeOp.getSrcType();
1145     if (!srcType.getLayout().isIdentity() ||
1146         !dstType.getLayout().isIdentity()) {
1147       return rewriter.notifyMatchFailure(reshapeOp,
1148                                          "only empty layout map is supported");
1149     }
1150 
1151     int64_t offset;
1152     SmallVector<int64_t, 4> strides;
1153     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1154       return rewriter.notifyMatchFailure(
1155           reshapeOp, "failed to get stride and offset exprs");
1156     }
1157 
1158     MemRefDescriptor srcDesc(adaptor.src());
1159     Location loc = reshapeOp->getLoc();
1160     auto dstDesc = MemRefDescriptor::undef(
1161         rewriter, loc, this->typeConverter->convertType(dstType));
1162     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1163     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1164     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1165 
1166     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1167     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1168     Type llvmIndexType =
1169         this->typeConverter->convertType(rewriter.getIndexType());
1170     SmallVector<Value> dstShape = getDynamicOutputShape(
1171         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1172         srcStaticShape, srcDesc, dstStaticShape);
1173     for (auto &en : llvm::enumerate(dstShape))
1174       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1175 
1176     auto isStaticStride = [](int64_t stride) {
1177       return !ShapedType::isDynamicStrideOrOffset(stride);
1178     };
1179     if (llvm::all_of(strides, isStaticStride)) {
1180       for (auto &en : llvm::enumerate(strides))
1181         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1182     } else {
1183       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1184                                                    rewriter.getIndexAttr(1));
1185       Value stride = c1;
1186       for (auto dimIndex :
1187            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1188         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1189         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1190       }
1191     }
1192     rewriter.replaceOp(reshapeOp, {dstDesc});
1193     return success();
1194   }
1195 };
1196 
1197 /// Conversion pattern that transforms a subview op into:
1198 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1199 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1200 ///      and stride.
1201 /// The subview op is replaced by the descriptor.
1202 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1203   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1204 
1205   LogicalResult
1206   matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
1207                   ConversionPatternRewriter &rewriter) const override {
1208     auto loc = subViewOp.getLoc();
1209 
1210     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1211     auto sourceElementTy =
1212         typeConverter->convertType(sourceMemRefType.getElementType());
1213 
1214     auto viewMemRefType = subViewOp.getType();
1215     auto inferredType = memref::SubViewOp::inferResultType(
1216                             subViewOp.getSourceType(),
1217                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1218                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1219                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1220                             .cast<MemRefType>();
1221     auto targetElementTy =
1222         typeConverter->convertType(viewMemRefType.getElementType());
1223     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1224     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1225         !LLVM::isCompatibleType(sourceElementTy) ||
1226         !LLVM::isCompatibleType(targetElementTy) ||
1227         !LLVM::isCompatibleType(targetDescTy))
1228       return failure();
1229 
1230     // Extract the offset and strides from the type.
1231     int64_t offset;
1232     SmallVector<int64_t, 4> strides;
1233     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1234     if (failed(successStrides))
1235       return failure();
1236 
1237     // Create the descriptor.
1238     if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
1239       return failure();
1240     MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
1241     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1242 
1243     // Copy the buffer pointer from the old descriptor to the new one.
1244     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1245     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1246         loc,
1247         LLVM::LLVMPointerType::get(targetElementTy,
1248                                    viewMemRefType.getMemorySpaceAsInt()),
1249         extracted);
1250     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1251 
1252     // Copy the aligned pointer from the old descriptor to the new one.
1253     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1254     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1255         loc,
1256         LLVM::LLVMPointerType::get(targetElementTy,
1257                                    viewMemRefType.getMemorySpaceAsInt()),
1258         extracted);
1259     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1260 
1261     size_t inferredShapeRank = inferredType.getRank();
1262     size_t resultShapeRank = viewMemRefType.getRank();
1263 
1264     // Extract strides needed to compute offset.
1265     SmallVector<Value, 4> strideValues;
1266     strideValues.reserve(inferredShapeRank);
1267     for (unsigned i = 0; i < inferredShapeRank; ++i)
1268       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1269 
1270     // Offset.
1271     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1272     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1273       targetMemRef.setConstantOffset(rewriter, loc, offset);
1274     } else {
1275       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1276       // `inferredShapeRank` may be larger than the number of offset operands
1277       // because of trailing semantics. In this case, the offset is guaranteed
1278       // to be interpreted as 0 and we can just skip the extra dimensions.
1279       for (unsigned i = 0, e = std::min(inferredShapeRank,
1280                                         subViewOp.getMixedOffsets().size());
1281            i < e; ++i) {
1282         Value offset =
1283             // TODO: need OpFoldResult ODS adaptor to clean this up.
1284             subViewOp.isDynamicOffset(i)
1285                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
1286                 : rewriter.create<LLVM::ConstantOp>(
1287                       loc, llvmIndexType,
1288                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1289         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1290         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1291       }
1292       targetMemRef.setOffset(rewriter, loc, baseOffset);
1293     }
1294 
1295     // Update sizes and strides.
1296     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1297     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1298     assert(mixedSizes.size() == mixedStrides.size() &&
1299            "expected sizes and strides of equal length");
1300     llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims();
1301     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1302          i >= 0 && j >= 0; --i) {
1303       if (unusedDims.contains(i))
1304         continue;
1305 
1306       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1307       // In this case, the size is guaranteed to be interpreted as Dim and the
1308       // stride as 1.
1309       Value size, stride;
1310       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1311         // If the static size is available, use it directly. This is similar to
1312         // the folding of dim(constant-op) but removes the need for dim to be
1313         // aware of LLVM constants and for this pass to be aware of std
1314         // constants.
1315         int64_t staticSize =
1316             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1317         if (staticSize != ShapedType::kDynamicSize) {
1318           size = rewriter.create<LLVM::ConstantOp>(
1319               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1320         } else {
1321           Value pos = rewriter.create<LLVM::ConstantOp>(
1322               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1323           Value dim =
1324               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1325           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1326               loc, llvmIndexType, dim);
1327           size = cast.getResult(0);
1328         }
1329         stride = rewriter.create<LLVM::ConstantOp>(
1330             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1331       } else {
1332         // TODO: need OpFoldResult ODS adaptor to clean this up.
1333         size =
1334             subViewOp.isDynamicSize(i)
1335                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
1336                 : rewriter.create<LLVM::ConstantOp>(
1337                       loc, llvmIndexType,
1338                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1339         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1340           stride = rewriter.create<LLVM::ConstantOp>(
1341               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1342         } else {
1343           stride =
1344               subViewOp.isDynamicStride(i)
1345                   ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
1346                   : rewriter.create<LLVM::ConstantOp>(
1347                         loc, llvmIndexType,
1348                         rewriter.getI64IntegerAttr(
1349                             subViewOp.getStaticStride(i)));
1350           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1351         }
1352       }
1353       targetMemRef.setSize(rewriter, loc, j, size);
1354       targetMemRef.setStride(rewriter, loc, j, stride);
1355       j--;
1356     }
1357 
1358     rewriter.replaceOp(subViewOp, {targetMemRef});
1359     return success();
1360   }
1361 };
1362 
1363 /// Conversion pattern that transforms a transpose op into:
1364 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1365 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1366 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1367 ///      and stride. Size and stride are permutations of the original values.
1368 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1369 /// The transpose op is replaced by the alloca'ed pointer.
1370 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1371 public:
1372   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1373 
1374   LogicalResult
1375   matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
1376                   ConversionPatternRewriter &rewriter) const override {
1377     auto loc = transposeOp.getLoc();
1378     MemRefDescriptor viewMemRef(adaptor.in());
1379 
1380     // No permutation, early exit.
1381     if (transposeOp.permutation().isIdentity())
1382       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1383 
1384     auto targetMemRef = MemRefDescriptor::undef(
1385         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1386 
1387     // Copy the base and aligned pointers from the old descriptor to the new
1388     // one.
1389     targetMemRef.setAllocatedPtr(rewriter, loc,
1390                                  viewMemRef.allocatedPtr(rewriter, loc));
1391     targetMemRef.setAlignedPtr(rewriter, loc,
1392                                viewMemRef.alignedPtr(rewriter, loc));
1393 
1394     // Copy the offset pointer from the old descriptor to the new one.
1395     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1396 
1397     // Iterate over the dimensions and apply size/stride permutation.
1398     for (auto en : llvm::enumerate(transposeOp.permutation().getResults())) {
1399       int sourcePos = en.index();
1400       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1401       targetMemRef.setSize(rewriter, loc, targetPos,
1402                            viewMemRef.size(rewriter, loc, sourcePos));
1403       targetMemRef.setStride(rewriter, loc, targetPos,
1404                              viewMemRef.stride(rewriter, loc, sourcePos));
1405     }
1406 
1407     rewriter.replaceOp(transposeOp, {targetMemRef});
1408     return success();
1409   }
1410 };
1411 
1412 /// Conversion pattern that transforms an op into:
1413 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1414 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1415 ///      and stride.
1416 /// The view op is replaced by the descriptor.
1417 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1418   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1419 
1420   // Build and return the value for the idx^th shape dimension, either by
1421   // returning the constant shape dimension or counting the proper dynamic size.
1422   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1423                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1424                 unsigned idx) const {
1425     assert(idx < shape.size());
1426     if (!ShapedType::isDynamic(shape[idx]))
1427       return createIndexConstant(rewriter, loc, shape[idx]);
1428     // Count the number of dynamic dims in range [0, idx]
1429     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1430       return ShapedType::isDynamic(v);
1431     });
1432     return dynamicSizes[nDynamic];
1433   }
1434 
1435   // Build and return the idx^th stride, either by returning the constant stride
1436   // or by computing the dynamic stride from the current `runningStride` and
1437   // `nextSize`. The caller should keep a running stride and update it with the
1438   // result returned by this function.
1439   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1440                   ArrayRef<int64_t> strides, Value nextSize,
1441                   Value runningStride, unsigned idx) const {
1442     assert(idx < strides.size());
1443     if (!MemRefType::isDynamicStrideOrOffset(strides[idx]))
1444       return createIndexConstant(rewriter, loc, strides[idx]);
1445     if (nextSize)
1446       return runningStride
1447                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1448                  : nextSize;
1449     assert(!runningStride);
1450     return createIndexConstant(rewriter, loc, 1);
1451   }
1452 
1453   LogicalResult
1454   matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
1455                   ConversionPatternRewriter &rewriter) const override {
1456     auto loc = viewOp.getLoc();
1457 
1458     auto viewMemRefType = viewOp.getType();
1459     auto targetElementTy =
1460         typeConverter->convertType(viewMemRefType.getElementType());
1461     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1462     if (!targetDescTy || !targetElementTy ||
1463         !LLVM::isCompatibleType(targetElementTy) ||
1464         !LLVM::isCompatibleType(targetDescTy))
1465       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1466              failure();
1467 
1468     int64_t offset;
1469     SmallVector<int64_t, 4> strides;
1470     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1471     if (failed(successStrides))
1472       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1473     assert(offset == 0 && "expected offset to be 0");
1474 
1475     // Create the descriptor.
1476     MemRefDescriptor sourceMemRef(adaptor.source());
1477     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1478 
1479     // Field 1: Copy the allocated pointer, used for malloc/free.
1480     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1481     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1482     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1483         loc,
1484         LLVM::LLVMPointerType::get(targetElementTy,
1485                                    srcMemRefType.getMemorySpaceAsInt()),
1486         allocatedPtr);
1487     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1488 
1489     // Field 2: Copy the actual aligned pointer to payload.
1490     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1491     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1492                                               alignedPtr, adaptor.byte_shift());
1493     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1494         loc,
1495         LLVM::LLVMPointerType::get(targetElementTy,
1496                                    srcMemRefType.getMemorySpaceAsInt()),
1497         alignedPtr);
1498     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1499 
1500     // Field 3: The offset in the resulting type must be 0. This is because of
1501     // the type change: an offset on srcType* may not be expressible as an
1502     // offset on dstType*.
1503     targetMemRef.setOffset(rewriter, loc,
1504                            createIndexConstant(rewriter, loc, offset));
1505 
1506     // Early exit for 0-D corner case.
1507     if (viewMemRefType.getRank() == 0)
1508       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1509 
1510     // Fields 4 and 5: Update sizes and strides.
1511     if (strides.back() != 1)
1512       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1513              failure();
1514     Value stride = nullptr, nextSize = nullptr;
1515     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1516       // Update size.
1517       Value size =
1518           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1519       targetMemRef.setSize(rewriter, loc, i, size);
1520       // Update stride.
1521       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1522       targetMemRef.setStride(rewriter, loc, i, stride);
1523       nextSize = size;
1524     }
1525 
1526     rewriter.replaceOp(viewOp, {targetMemRef});
1527     return success();
1528   }
1529 };
1530 
1531 } // namespace
1532 
1533 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1534                                                   RewritePatternSet &patterns) {
1535   // clang-format off
1536   patterns.add<
1537       AllocaOpLowering,
1538       AllocaScopeOpLowering,
1539       AssumeAlignmentOpLowering,
1540       DimOpLowering,
1541       GlobalMemrefOpLowering,
1542       GetGlobalMemrefOpLowering,
1543       LoadOpLowering,
1544       MemRefCastOpLowering,
1545       MemRefCopyOpLowering,
1546       MemRefReinterpretCastOpLowering,
1547       MemRefReshapeOpLowering,
1548       PrefetchOpLowering,
1549       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1550       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1551       StoreOpLowering,
1552       SubViewOpLowering,
1553       TransposeOpLowering,
1554       ViewOpLowering>(converter);
1555   // clang-format on
1556   auto allocLowering = converter.getOptions().allocLowering;
1557   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1558     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1559   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1560     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1561 }
1562 
1563 namespace {
1564 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1565   MemRefToLLVMPass() = default;
1566 
1567   void runOnOperation() override {
1568     Operation *op = getOperation();
1569     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1570     LowerToLLVMOptions options(&getContext(),
1571                                dataLayoutAnalysis.getAtOrAbove(op));
1572     options.allocLowering =
1573         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1574                          : LowerToLLVMOptions::AllocLowering::Malloc);
1575     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1576       options.overrideIndexBitwidth(indexBitwidth);
1577 
1578     LLVMTypeConverter typeConverter(&getContext(), options,
1579                                     &dataLayoutAnalysis);
1580     RewritePatternSet patterns(&getContext());
1581     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1582     LLVMConversionTarget target(getContext());
1583     target.addLegalOp<FuncOp>();
1584     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1585       signalPassFailure();
1586   }
1587 };
1588 } // namespace
1589 
1590 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1591   return std::make_unique<MemRefToLLVMPass>();
1592 }
1593