1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
10 #include "../PassDetail.h"
11 #include "mlir/Analysis/DataLayoutAnalysis.h"
12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
13 #include "mlir/Conversion/LLVMCommon/Pattern.h"
14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h"
15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h"
16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h"
17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
18 #include "mlir/Dialect/MemRef/IR/MemRef.h"
19 #include "mlir/IR/AffineMap.h"
20 #include "mlir/IR/BlockAndValueMapping.h"
21 
22 using namespace mlir;
23 
24 namespace {
25 
26 struct AllocOpLowering : public AllocLikeOpLLVMLowering {
27   AllocOpLowering(LLVMTypeConverter &converter)
28       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
29                                 converter) {}
30 
31   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
32                                           Location loc, Value sizeBytes,
33                                           Operation *op) const override {
34     // Heap allocations.
35     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
36     MemRefType memRefType = allocOp.getType();
37 
38     Value alignment;
39     if (auto alignmentAttr = allocOp.alignment()) {
40       alignment = createIndexConstant(rewriter, loc, *alignmentAttr);
41     } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) {
42       // In the case where no alignment is specified, we may want to override
43       // `malloc's` behavior. `malloc` typically aligns at the size of the
44       // biggest scalar on a target HW. For non-scalars, use the natural
45       // alignment of the LLVM type given by the LLVM DataLayout.
46       alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter);
47     }
48 
49     if (alignment) {
50       // Adjust the allocation size to consider alignment.
51       sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment);
52     }
53 
54     // Allocate the underlying buffer and store a pointer to it in the MemRef
55     // descriptor.
56     Type elementPtrType = this->getElementPtrType(memRefType);
57     auto allocFuncOp = LLVM::lookupOrCreateMallocFn(
58         allocOp->getParentOfType<ModuleOp>(), getIndexType());
59     auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes},
60                                   getVoidPtrType());
61     Value allocatedPtr =
62         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
63 
64     Value alignedPtr = allocatedPtr;
65     if (alignment) {
66       // Compute the aligned type pointer.
67       Value allocatedInt =
68           rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr);
69       Value alignmentInt =
70           createAligned(rewriter, loc, allocatedInt, alignment);
71       alignedPtr =
72           rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt);
73     }
74 
75     return std::make_tuple(allocatedPtr, alignedPtr);
76   }
77 };
78 
79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering {
80   AlignedAllocOpLowering(LLVMTypeConverter &converter)
81       : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(),
82                                 converter) {}
83 
84   /// Returns the memref's element size in bytes using the data layout active at
85   /// `op`.
86   // TODO: there are other places where this is used. Expose publicly?
87   unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const {
88     const DataLayout *layout = &defaultLayout;
89     if (const DataLayoutAnalysis *analysis =
90             getTypeConverter()->getDataLayoutAnalysis()) {
91       layout = &analysis->getAbove(op);
92     }
93     Type elementType = memRefType.getElementType();
94     if (auto memRefElementType = elementType.dyn_cast<MemRefType>())
95       return getTypeConverter()->getMemRefDescriptorSize(memRefElementType,
96                                                          *layout);
97     if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>())
98       return getTypeConverter()->getUnrankedMemRefDescriptorSize(
99           memRefElementType, *layout);
100     return layout->getTypeSize(elementType);
101   }
102 
103   /// Returns true if the memref size in bytes is known to be a multiple of
104   /// factor assuming the data layout active at `op`.
105   bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor,
106                               Operation *op) const {
107     uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op);
108     for (unsigned i = 0, e = type.getRank(); i < e; i++) {
109       if (type.isDynamic(type.getDimSize(i)))
110         continue;
111       sizeDivisor = sizeDivisor * type.getDimSize(i);
112     }
113     return sizeDivisor % factor == 0;
114   }
115 
116   /// Returns the alignment to be used for the allocation call itself.
117   /// aligned_alloc requires the allocation size to be a power of two, and the
118   /// allocation size to be a multiple of alignment,
119   int64_t getAllocationAlignment(memref::AllocOp allocOp) const {
120     if (Optional<uint64_t> alignment = allocOp.alignment())
121       return *alignment;
122 
123     // Whenever we don't have alignment set, we will use an alignment
124     // consistent with the element type; since the allocation size has to be a
125     // power of two, we will bump to the next power of two if it already isn't.
126     auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp);
127     return std::max(kMinAlignedAllocAlignment,
128                     llvm::PowerOf2Ceil(eltSizeBytes));
129   }
130 
131   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
132                                           Location loc, Value sizeBytes,
133                                           Operation *op) const override {
134     // Heap allocations.
135     memref::AllocOp allocOp = cast<memref::AllocOp>(op);
136     MemRefType memRefType = allocOp.getType();
137     int64_t alignment = getAllocationAlignment(allocOp);
138     Value allocAlignment = createIndexConstant(rewriter, loc, alignment);
139 
140     // aligned_alloc requires size to be a multiple of alignment; we will pad
141     // the size to the next multiple if necessary.
142     if (!isMemRefSizeMultipleOf(memRefType, alignment, op))
143       sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment);
144 
145     Type elementPtrType = this->getElementPtrType(memRefType);
146     auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn(
147         allocOp->getParentOfType<ModuleOp>(), getIndexType());
148     auto results =
149         createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes},
150                        getVoidPtrType());
151     Value allocatedPtr =
152         rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]);
153 
154     return std::make_tuple(allocatedPtr, allocatedPtr);
155   }
156 
157   /// The minimum alignment to use with aligned_alloc (has to be a power of 2).
158   static constexpr uint64_t kMinAlignedAllocAlignment = 16UL;
159 
160   /// Default layout to use in absence of the corresponding analysis.
161   DataLayout defaultLayout;
162 };
163 
164 // Out of line definition, required till C++17.
165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment;
166 
167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering {
168   AllocaOpLowering(LLVMTypeConverter &converter)
169       : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(),
170                                 converter) {}
171 
172   /// Allocates the underlying buffer using the right call. `allocatedBytePtr`
173   /// is set to null for stack allocations. `accessAlignment` is set if
174   /// alignment is needed post allocation (for eg. in conjunction with malloc).
175   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
176                                           Location loc, Value sizeBytes,
177                                           Operation *op) const override {
178 
179     // With alloca, one gets a pointer to the element type right away.
180     // For stack allocations.
181     auto allocaOp = cast<memref::AllocaOp>(op);
182     auto elementPtrType = this->getElementPtrType(allocaOp.getType());
183 
184     auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>(
185         loc, elementPtrType, sizeBytes,
186         allocaOp.alignment() ? *allocaOp.alignment() : 0);
187 
188     return std::make_tuple(allocatedElementPtr, allocatedElementPtr);
189   }
190 };
191 
192 struct AllocaScopeOpLowering
193     : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> {
194   using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern;
195 
196   LogicalResult
197   matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor,
198                   ConversionPatternRewriter &rewriter) const override {
199     OpBuilder::InsertionGuard guard(rewriter);
200     Location loc = allocaScopeOp.getLoc();
201 
202     // Split the current block before the AllocaScopeOp to create the inlining
203     // point.
204     auto *currentBlock = rewriter.getInsertionBlock();
205     auto *remainingOpsBlock =
206         rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint());
207     Block *continueBlock;
208     if (allocaScopeOp.getNumResults() == 0) {
209       continueBlock = remainingOpsBlock;
210     } else {
211       continueBlock = rewriter.createBlock(remainingOpsBlock,
212                                            allocaScopeOp.getResultTypes());
213       rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock);
214     }
215 
216     // Inline body region.
217     Block *beforeBody = &allocaScopeOp.bodyRegion().front();
218     Block *afterBody = &allocaScopeOp.bodyRegion().back();
219     rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock);
220 
221     // Save stack and then branch into the body of the region.
222     rewriter.setInsertionPointToEnd(currentBlock);
223     auto stackSaveOp =
224         rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType());
225     rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody);
226 
227     // Replace the alloca_scope return with a branch that jumps out of the body.
228     // Stack restore before leaving the body region.
229     rewriter.setInsertionPointToEnd(afterBody);
230     auto returnOp =
231         cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator());
232     auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>(
233         returnOp, returnOp.results(), continueBlock);
234 
235     // Insert stack restore before jumping out the body of the region.
236     rewriter.setInsertionPoint(branchOp);
237     rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp);
238 
239     // Replace the op with values return from the body region.
240     rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments());
241 
242     return success();
243   }
244 };
245 
246 struct AssumeAlignmentOpLowering
247     : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> {
248   using ConvertOpToLLVMPattern<
249       memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern;
250 
251   LogicalResult
252   matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor,
253                   ConversionPatternRewriter &rewriter) const override {
254     Value memref = adaptor.memref();
255     unsigned alignment = op.alignment();
256     auto loc = op.getLoc();
257 
258     MemRefDescriptor memRefDescriptor(memref);
259     Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc());
260 
261     // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that
262     // the asserted memref.alignedPtr isn't used anywhere else, as the real
263     // users like load/store/views always re-extract memref.alignedPtr as they
264     // get lowered.
265     //
266     // This relies on LLVM's CSE optimization (potentially after SROA), since
267     // after CSE all memref.alignedPtr instances get de-duplicated into the same
268     // pointer SSA value.
269     auto intPtrType =
270         getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace());
271     Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0);
272     Value mask =
273         createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1);
274     Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr);
275     rewriter.create<LLVM::AssumeOp>(
276         loc, rewriter.create<LLVM::ICmpOp>(
277                  loc, LLVM::ICmpPredicate::eq,
278                  rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero));
279 
280     rewriter.eraseOp(op);
281     return success();
282   }
283 };
284 
285 // A `dealloc` is converted into a call to `free` on the underlying data buffer.
286 // The memref descriptor being an SSA value, there is no need to clean it up
287 // in any way.
288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> {
289   using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern;
290 
291   explicit DeallocOpLowering(LLVMTypeConverter &converter)
292       : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {}
293 
294   LogicalResult
295   matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor,
296                   ConversionPatternRewriter &rewriter) const override {
297     // Insert the `free` declaration if it is not already present.
298     auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>());
299     MemRefDescriptor memref(adaptor.memref());
300     Value casted = rewriter.create<LLVM::BitcastOp>(
301         op.getLoc(), getVoidPtrType(),
302         memref.allocatedPtr(rewriter, op.getLoc()));
303     rewriter.replaceOpWithNewOp<LLVM::CallOp>(
304         op, TypeRange(), SymbolRefAttr::get(freeFunc), casted);
305     return success();
306   }
307 };
308 
309 // A `dim` is converted to a constant for static sizes and to an access to the
310 // size stored in the memref descriptor for dynamic sizes.
311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> {
312   using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern;
313 
314   LogicalResult
315   matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor,
316                   ConversionPatternRewriter &rewriter) const override {
317     Type operandType = dimOp.source().getType();
318     if (operandType.isa<UnrankedMemRefType>()) {
319       rewriter.replaceOp(
320           dimOp, {extractSizeOfUnrankedMemRef(
321                      operandType, dimOp, adaptor.getOperands(), rewriter)});
322 
323       return success();
324     }
325     if (operandType.isa<MemRefType>()) {
326       rewriter.replaceOp(
327           dimOp, {extractSizeOfRankedMemRef(operandType, dimOp,
328                                             adaptor.getOperands(), rewriter)});
329       return success();
330     }
331     llvm_unreachable("expected MemRefType or UnrankedMemRefType");
332   }
333 
334 private:
335   Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp,
336                                     OpAdaptor adaptor,
337                                     ConversionPatternRewriter &rewriter) const {
338     Location loc = dimOp.getLoc();
339 
340     auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>();
341     auto scalarMemRefType =
342         MemRefType::get({}, unrankedMemRefType.getElementType());
343     unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt();
344 
345     // Extract pointer to the underlying ranked descriptor and bitcast it to a
346     // memref<element_type> descriptor pointer to minimize the number of GEP
347     // operations.
348     UnrankedMemRefDescriptor unrankedDesc(adaptor.source());
349     Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc);
350     Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>(
351         loc,
352         LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType),
353                                    addressSpace),
354         underlyingRankedDesc);
355 
356     // Get pointer to offset field of memref<element_type> descriptor.
357     Type indexPtrTy = LLVM::LLVMPointerType::get(
358         getTypeConverter()->getIndexType(), addressSpace);
359     Value two = rewriter.create<LLVM::ConstantOp>(
360         loc, typeConverter->convertType(rewriter.getI32Type()),
361         rewriter.getI32IntegerAttr(2));
362     Value offsetPtr = rewriter.create<LLVM::GEPOp>(
363         loc, indexPtrTy, scalarMemRefDescPtr,
364         ValueRange({createIndexConstant(rewriter, loc, 0), two}));
365 
366     // The size value that we have to extract can be obtained using GEPop with
367     // `dimOp.index() + 1` index argument.
368     Value idxPlusOne = rewriter.create<LLVM::AddOp>(
369         loc, createIndexConstant(rewriter, loc, 1), adaptor.index());
370     Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr,
371                                                  ValueRange({idxPlusOne}));
372     return rewriter.create<LLVM::LoadOp>(loc, sizePtr);
373   }
374 
375   Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const {
376     if (Optional<int64_t> idx = dimOp.getConstantIndex())
377       return idx;
378 
379     if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>())
380       return constantOp.getValue()
381           .cast<IntegerAttr>()
382           .getValue()
383           .getSExtValue();
384 
385     return llvm::None;
386   }
387 
388   Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp,
389                                   OpAdaptor adaptor,
390                                   ConversionPatternRewriter &rewriter) const {
391     Location loc = dimOp.getLoc();
392 
393     // Take advantage if index is constant.
394     MemRefType memRefType = operandType.cast<MemRefType>();
395     if (Optional<int64_t> index = getConstantDimIndex(dimOp)) {
396       int64_t i = index.getValue();
397       if (memRefType.isDynamicDim(i)) {
398         // extract dynamic size from the memref descriptor.
399         MemRefDescriptor descriptor(adaptor.source());
400         return descriptor.size(rewriter, loc, i);
401       }
402       // Use constant for static size.
403       int64_t dimSize = memRefType.getDimSize(i);
404       return createIndexConstant(rewriter, loc, dimSize);
405     }
406     Value index = adaptor.index();
407     int64_t rank = memRefType.getRank();
408     MemRefDescriptor memrefDescriptor(adaptor.source());
409     return memrefDescriptor.size(rewriter, loc, index, rank);
410   }
411 };
412 
413 /// Returns the LLVM type of the global variable given the memref type `type`.
414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type,
415                                           LLVMTypeConverter &typeConverter) {
416   // LLVM type for a global memref will be a multi-dimension array. For
417   // declarations or uninitialized global memrefs, we can potentially flatten
418   // this to a 1D array. However, for memref.global's with an initial value,
419   // we do not intend to flatten the ElementsAttribute when going from std ->
420   // LLVM dialect, so the LLVM type needs to me a multi-dimension array.
421   Type elementType = typeConverter.convertType(type.getElementType());
422   Type arrayTy = elementType;
423   // Shape has the outermost dim at index 0, so need to walk it backwards
424   for (int64_t dim : llvm::reverse(type.getShape()))
425     arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim);
426   return arrayTy;
427 }
428 
429 /// GlobalMemrefOp is lowered to a LLVM Global Variable.
430 struct GlobalMemrefOpLowering
431     : public ConvertOpToLLVMPattern<memref::GlobalOp> {
432   using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern;
433 
434   LogicalResult
435   matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor,
436                   ConversionPatternRewriter &rewriter) const override {
437     MemRefType type = global.type();
438     if (!isConvertibleAndHasIdentityMaps(type))
439       return failure();
440 
441     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
442 
443     LLVM::Linkage linkage =
444         global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private;
445 
446     Attribute initialValue = nullptr;
447     if (!global.isExternal() && !global.isUninitialized()) {
448       auto elementsAttr = global.initial_value()->cast<ElementsAttr>();
449       initialValue = elementsAttr;
450 
451       // For scalar memrefs, the global variable created is of the element type,
452       // so unpack the elements attribute to extract the value.
453       if (type.getRank() == 0)
454         initialValue = elementsAttr.getSplatValue<Attribute>();
455     }
456 
457     uint64_t alignment = global.alignment().getValueOr(0);
458 
459     auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>(
460         global, arrayTy, global.constant(), linkage, global.sym_name(),
461         initialValue, alignment, type.getMemorySpaceAsInt());
462     if (!global.isExternal() && global.isUninitialized()) {
463       Block *blk = new Block();
464       newGlobal.getInitializerRegion().push_back(blk);
465       rewriter.setInsertionPointToStart(blk);
466       Value undef[] = {
467           rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)};
468       rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef);
469     }
470     return success();
471   }
472 };
473 
474 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to
475 /// the first element stashed into the descriptor. This reuses
476 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction.
477 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering {
478   GetGlobalMemrefOpLowering(LLVMTypeConverter &converter)
479       : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(),
480                                 converter) {}
481 
482   /// Buffer "allocation" for memref.get_global op is getting the address of
483   /// the global variable referenced.
484   std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter,
485                                           Location loc, Value sizeBytes,
486                                           Operation *op) const override {
487     auto getGlobalOp = cast<memref::GetGlobalOp>(op);
488     MemRefType type = getGlobalOp.result().getType().cast<MemRefType>();
489     unsigned memSpace = type.getMemorySpaceAsInt();
490 
491     Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter());
492     auto addressOf = rewriter.create<LLVM::AddressOfOp>(
493         loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name());
494 
495     // Get the address of the first element in the array by creating a GEP with
496     // the address of the GV as the base, and (rank + 1) number of 0 indices.
497     Type elementType = typeConverter->convertType(type.getElementType());
498     Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace);
499 
500     SmallVector<Value> operands;
501     operands.insert(operands.end(), type.getRank() + 1,
502                     createIndexConstant(rewriter, loc, 0));
503     auto gep =
504         rewriter.create<LLVM::GEPOp>(loc, elementPtrType, addressOf, operands);
505 
506     // We do not expect the memref obtained using `memref.get_global` to be
507     // ever deallocated. Set the allocated pointer to be known bad value to
508     // help debug if that ever happens.
509     auto intPtrType = getIntPtrType(memSpace);
510     Value deadBeefConst =
511         createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef);
512     auto deadBeefPtr =
513         rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst);
514 
515     // Both allocated and aligned pointers are same. We could potentially stash
516     // a nullptr for the allocated pointer since we do not expect any dealloc.
517     return std::make_tuple(deadBeefPtr, gep);
518   }
519 };
520 
521 // Common base for load and store operations on MemRefs. Restricts the match
522 // to supported MemRef types. Provides functionality to emit code accessing a
523 // specific element of the underlying data buffer.
524 template <typename Derived>
525 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> {
526   using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern;
527   using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps;
528   using Base = LoadStoreOpLowering<Derived>;
529 
530   LogicalResult match(Derived op) const override {
531     MemRefType type = op.getMemRefType();
532     return isConvertibleAndHasIdentityMaps(type) ? success() : failure();
533   }
534 };
535 
536 // Load operation is lowered to obtaining a pointer to the indexed element
537 // and loading it.
538 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> {
539   using Base::Base;
540 
541   LogicalResult
542   matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor,
543                   ConversionPatternRewriter &rewriter) const override {
544     auto type = loadOp.getMemRefType();
545 
546     Value dataPtr = getStridedElementPtr(
547         loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter);
548     rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr);
549     return success();
550   }
551 };
552 
553 // Store operation is lowered to obtaining a pointer to the indexed element,
554 // and storing the given value to it.
555 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> {
556   using Base::Base;
557 
558   LogicalResult
559   matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor,
560                   ConversionPatternRewriter &rewriter) const override {
561     auto type = op.getMemRefType();
562 
563     Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(),
564                                          adaptor.indices(), rewriter);
565     rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr);
566     return success();
567   }
568 };
569 
570 // The prefetch operation is lowered in a way similar to the load operation
571 // except that the llvm.prefetch operation is used for replacement.
572 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> {
573   using Base::Base;
574 
575   LogicalResult
576   matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor,
577                   ConversionPatternRewriter &rewriter) const override {
578     auto type = prefetchOp.getMemRefType();
579     auto loc = prefetchOp.getLoc();
580 
581     Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(),
582                                          adaptor.indices(), rewriter);
583 
584     // Replace with llvm.prefetch.
585     auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32));
586     auto isWrite = rewriter.create<LLVM::ConstantOp>(
587         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite()));
588     auto localityHint = rewriter.create<LLVM::ConstantOp>(
589         loc, llvmI32Type,
590         rewriter.getI32IntegerAttr(prefetchOp.localityHint()));
591     auto isData = rewriter.create<LLVM::ConstantOp>(
592         loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache()));
593 
594     rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite,
595                                                 localityHint, isData);
596     return success();
597   }
598 };
599 
600 struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> {
601   using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern;
602 
603   LogicalResult
604   matchAndRewrite(memref::RankOp op, OpAdaptor adaptor,
605                   ConversionPatternRewriter &rewriter) const override {
606     Location loc = op.getLoc();
607     Type operandType = op.memref().getType();
608     if (auto unrankedMemRefType = operandType.dyn_cast<UnrankedMemRefType>()) {
609       UnrankedMemRefDescriptor desc(adaptor.memref());
610       rewriter.replaceOp(op, {desc.rank(rewriter, loc)});
611       return success();
612     }
613     if (auto rankedMemRefType = operandType.dyn_cast<MemRefType>()) {
614       rewriter.replaceOp(
615           op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())});
616       return success();
617     }
618     return failure();
619   }
620 };
621 
622 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> {
623   using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern;
624 
625   LogicalResult match(memref::CastOp memRefCastOp) const override {
626     Type srcType = memRefCastOp.getOperand().getType();
627     Type dstType = memRefCastOp.getType();
628 
629     // memref::CastOp reduce to bitcast in the ranked MemRef case and can be
630     // used for type erasure. For now they must preserve underlying element type
631     // and require source and result type to have the same rank. Therefore,
632     // perform a sanity check that the underlying structs are the same. Once op
633     // semantics are relaxed we can revisit.
634     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
635       return success(typeConverter->convertType(srcType) ==
636                      typeConverter->convertType(dstType));
637 
638     // At least one of the operands is unranked type
639     assert(srcType.isa<UnrankedMemRefType>() ||
640            dstType.isa<UnrankedMemRefType>());
641 
642     // Unranked to unranked cast is disallowed
643     return !(srcType.isa<UnrankedMemRefType>() &&
644              dstType.isa<UnrankedMemRefType>())
645                ? success()
646                : failure();
647   }
648 
649   void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor,
650                ConversionPatternRewriter &rewriter) const override {
651     auto srcType = memRefCastOp.getOperand().getType();
652     auto dstType = memRefCastOp.getType();
653     auto targetStructType = typeConverter->convertType(memRefCastOp.getType());
654     auto loc = memRefCastOp.getLoc();
655 
656     // For ranked/ranked case, just keep the original descriptor.
657     if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>())
658       return rewriter.replaceOp(memRefCastOp, {adaptor.source()});
659 
660     if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) {
661       // Casting ranked to unranked memref type
662       // Set the rank in the destination from the memref type
663       // Allocate space on the stack and copy the src memref descriptor
664       // Set the ptr in the destination to the stack space
665       auto srcMemRefType = srcType.cast<MemRefType>();
666       int64_t rank = srcMemRefType.getRank();
667       // ptr = AllocaOp sizeof(MemRefDescriptor)
668       auto ptr = getTypeConverter()->promoteOneMemRefDescriptor(
669           loc, adaptor.source(), rewriter);
670       // voidptr = BitCastOp srcType* to void*
671       auto voidPtr =
672           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
673               .getResult();
674       // rank = ConstantOp srcRank
675       auto rankVal = rewriter.create<LLVM::ConstantOp>(
676           loc, typeConverter->convertType(rewriter.getIntegerType(64)),
677           rewriter.getI64IntegerAttr(rank));
678       // undef = UndefOp
679       UnrankedMemRefDescriptor memRefDesc =
680           UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType);
681       // d1 = InsertValueOp undef, rank, 0
682       memRefDesc.setRank(rewriter, loc, rankVal);
683       // d2 = InsertValueOp d1, voidptr, 1
684       memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr);
685       rewriter.replaceOp(memRefCastOp, (Value)memRefDesc);
686 
687     } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) {
688       // Casting from unranked type to ranked.
689       // The operation is assumed to be doing a correct cast. If the destination
690       // type mismatches the unranked the type, it is undefined behavior.
691       UnrankedMemRefDescriptor memRefDesc(adaptor.source());
692       // ptr = ExtractValueOp src, 1
693       auto ptr = memRefDesc.memRefDescPtr(rewriter, loc);
694       // castPtr = BitCastOp i8* to structTy*
695       auto castPtr =
696           rewriter
697               .create<LLVM::BitcastOp>(
698                   loc, LLVM::LLVMPointerType::get(targetStructType), ptr)
699               .getResult();
700       // struct = LoadOp castPtr
701       auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr);
702       rewriter.replaceOp(memRefCastOp, loadOp.getResult());
703     } else {
704       llvm_unreachable("Unsupported unranked memref to unranked memref cast");
705     }
706   }
707 };
708 
709 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> {
710   using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern;
711 
712   LogicalResult
713   matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor,
714                   ConversionPatternRewriter &rewriter) const override {
715     auto loc = op.getLoc();
716     auto srcType = op.source().getType().cast<BaseMemRefType>();
717     auto targetType = op.target().getType().cast<BaseMemRefType>();
718 
719     // First make sure we have an unranked memref descriptor representation.
720     auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) {
721       auto rank = rewriter.create<LLVM::ConstantOp>(
722           loc, getIndexType(), rewriter.getIndexAttr(type.getRank()));
723       auto *typeConverter = getTypeConverter();
724       auto ptr =
725           typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter);
726       auto voidPtr =
727           rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr)
728               .getResult();
729       auto unrankedType =
730           UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace());
731       return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter,
732                                             unrankedType,
733                                             ValueRange{rank, voidPtr});
734     };
735 
736     Value unrankedSource = srcType.hasRank()
737                                ? makeUnranked(adaptor.source(), srcType)
738                                : adaptor.source();
739     Value unrankedTarget = targetType.hasRank()
740                                ? makeUnranked(adaptor.target(), targetType)
741                                : adaptor.target();
742 
743     // Now promote the unranked descriptors to the stack.
744     auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(),
745                                                  rewriter.getIndexAttr(1));
746     auto promote = [&](Value desc) {
747       auto ptrType = LLVM::LLVMPointerType::get(desc.getType());
748       auto allocated =
749           rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one});
750       rewriter.create<LLVM::StoreOp>(loc, desc, allocated);
751       return allocated;
752     };
753 
754     auto sourcePtr = promote(unrankedSource);
755     auto targetPtr = promote(unrankedTarget);
756 
757     auto elemSize = rewriter.create<LLVM::ConstantOp>(
758         loc, getIndexType(),
759         rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8));
760     auto copyFn = LLVM::lookupOrCreateMemRefCopyFn(
761         op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType());
762     rewriter.create<LLVM::CallOp>(loc, copyFn,
763                                   ValueRange{elemSize, sourcePtr, targetPtr});
764     rewriter.eraseOp(op);
765 
766     return success();
767   }
768 };
769 
770 /// Extracts allocated, aligned pointers and offset from a ranked or unranked
771 /// memref type. In unranked case, the fields are extracted from the underlying
772 /// ranked descriptor.
773 static void extractPointersAndOffset(Location loc,
774                                      ConversionPatternRewriter &rewriter,
775                                      LLVMTypeConverter &typeConverter,
776                                      Value originalOperand,
777                                      Value convertedOperand,
778                                      Value *allocatedPtr, Value *alignedPtr,
779                                      Value *offset = nullptr) {
780   Type operandType = originalOperand.getType();
781   if (operandType.isa<MemRefType>()) {
782     MemRefDescriptor desc(convertedOperand);
783     *allocatedPtr = desc.allocatedPtr(rewriter, loc);
784     *alignedPtr = desc.alignedPtr(rewriter, loc);
785     if (offset != nullptr)
786       *offset = desc.offset(rewriter, loc);
787     return;
788   }
789 
790   unsigned memorySpace =
791       operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt();
792   Type elementType = operandType.cast<UnrankedMemRefType>().getElementType();
793   Type llvmElementType = typeConverter.convertType(elementType);
794   Type elementPtrPtrType = LLVM::LLVMPointerType::get(
795       LLVM::LLVMPointerType::get(llvmElementType, memorySpace));
796 
797   // Extract pointer to the underlying ranked memref descriptor and cast it to
798   // ElemType**.
799   UnrankedMemRefDescriptor unrankedDesc(convertedOperand);
800   Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc);
801 
802   *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr(
803       rewriter, loc, underlyingDescPtr, elementPtrPtrType);
804   *alignedPtr = UnrankedMemRefDescriptor::alignedPtr(
805       rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
806   if (offset != nullptr) {
807     *offset = UnrankedMemRefDescriptor::offset(
808         rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType);
809   }
810 }
811 
812 struct MemRefReinterpretCastOpLowering
813     : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> {
814   using ConvertOpToLLVMPattern<
815       memref::ReinterpretCastOp>::ConvertOpToLLVMPattern;
816 
817   LogicalResult
818   matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor,
819                   ConversionPatternRewriter &rewriter) const override {
820     Type srcType = castOp.source().getType();
821 
822     Value descriptor;
823     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp,
824                                                adaptor, &descriptor)))
825       return failure();
826     rewriter.replaceOp(castOp, {descriptor});
827     return success();
828   }
829 
830 private:
831   LogicalResult convertSourceMemRefToDescriptor(
832       ConversionPatternRewriter &rewriter, Type srcType,
833       memref::ReinterpretCastOp castOp,
834       memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const {
835     MemRefType targetMemRefType =
836         castOp.getResult().getType().cast<MemRefType>();
837     auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType)
838                                       .dyn_cast_or_null<LLVM::LLVMStructType>();
839     if (!llvmTargetDescriptorTy)
840       return failure();
841 
842     // Create descriptor.
843     Location loc = castOp.getLoc();
844     auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy);
845 
846     // Set allocated and aligned pointers.
847     Value allocatedPtr, alignedPtr;
848     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
849                              castOp.source(), adaptor.source(), &allocatedPtr,
850                              &alignedPtr);
851     desc.setAllocatedPtr(rewriter, loc, allocatedPtr);
852     desc.setAlignedPtr(rewriter, loc, alignedPtr);
853 
854     // Set offset.
855     if (castOp.isDynamicOffset(0))
856       desc.setOffset(rewriter, loc, adaptor.offsets()[0]);
857     else
858       desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0));
859 
860     // Set sizes and strides.
861     unsigned dynSizeId = 0;
862     unsigned dynStrideId = 0;
863     for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) {
864       if (castOp.isDynamicSize(i))
865         desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]);
866       else
867         desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i));
868 
869       if (castOp.isDynamicStride(i))
870         desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]);
871       else
872         desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i));
873     }
874     *descriptor = desc;
875     return success();
876   }
877 };
878 
879 struct MemRefReshapeOpLowering
880     : public ConvertOpToLLVMPattern<memref::ReshapeOp> {
881   using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern;
882 
883   LogicalResult
884   matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor,
885                   ConversionPatternRewriter &rewriter) const override {
886     Type srcType = reshapeOp.source().getType();
887 
888     Value descriptor;
889     if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp,
890                                                adaptor, &descriptor)))
891       return failure();
892     rewriter.replaceOp(reshapeOp, {descriptor});
893     return success();
894   }
895 
896 private:
897   LogicalResult
898   convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter,
899                                   Type srcType, memref::ReshapeOp reshapeOp,
900                                   memref::ReshapeOp::Adaptor adaptor,
901                                   Value *descriptor) const {
902     // Conversion for statically-known shape args is performed via
903     // `memref_reinterpret_cast`.
904     auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>();
905     if (shapeMemRefType.hasStaticShape())
906       return failure();
907 
908     // The shape is a rank-1 tensor with unknown length.
909     Location loc = reshapeOp.getLoc();
910     MemRefDescriptor shapeDesc(adaptor.shape());
911     Value resultRank = shapeDesc.size(rewriter, loc, 0);
912 
913     // Extract address space and element type.
914     auto targetType =
915         reshapeOp.getResult().getType().cast<UnrankedMemRefType>();
916     unsigned addressSpace = targetType.getMemorySpaceAsInt();
917     Type elementType = targetType.getElementType();
918 
919     // Create the unranked memref descriptor that holds the ranked one. The
920     // inner descriptor is allocated on stack.
921     auto targetDesc = UnrankedMemRefDescriptor::undef(
922         rewriter, loc, typeConverter->convertType(targetType));
923     targetDesc.setRank(rewriter, loc, resultRank);
924     SmallVector<Value, 4> sizes;
925     UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(),
926                                            targetDesc, sizes);
927     Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>(
928         loc, getVoidPtrType(), sizes.front(), llvm::None);
929     targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr);
930 
931     // Extract pointers and offset from the source memref.
932     Value allocatedPtr, alignedPtr, offset;
933     extractPointersAndOffset(loc, rewriter, *getTypeConverter(),
934                              reshapeOp.source(), adaptor.source(),
935                              &allocatedPtr, &alignedPtr, &offset);
936 
937     // Set pointers and offset.
938     Type llvmElementType = typeConverter->convertType(elementType);
939     auto elementPtrPtrType = LLVM::LLVMPointerType::get(
940         LLVM::LLVMPointerType::get(llvmElementType, addressSpace));
941     UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr,
942                                               elementPtrPtrType, allocatedPtr);
943     UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(),
944                                             underlyingDescPtr,
945                                             elementPtrPtrType, alignedPtr);
946     UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(),
947                                         underlyingDescPtr, elementPtrPtrType,
948                                         offset);
949 
950     // Use the offset pointer as base for further addressing. Copy over the new
951     // shape and compute strides. For this, we create a loop from rank-1 to 0.
952     Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr(
953         rewriter, loc, *getTypeConverter(), underlyingDescPtr,
954         elementPtrPtrType);
955     Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr(
956         rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank);
957     Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc);
958     Value oneIndex = createIndexConstant(rewriter, loc, 1);
959     Value resultRankMinusOne =
960         rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex);
961 
962     Block *initBlock = rewriter.getInsertionBlock();
963     Type indexType = getTypeConverter()->getIndexType();
964     Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint());
965 
966     Block *condBlock = rewriter.createBlock(initBlock->getParent(), {},
967                                             {indexType, indexType});
968 
969     // Move the remaining initBlock ops to condBlock.
970     Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt);
971     rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange());
972 
973     rewriter.setInsertionPointToEnd(initBlock);
974     rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}),
975                                 condBlock);
976     rewriter.setInsertionPointToStart(condBlock);
977     Value indexArg = condBlock->getArgument(0);
978     Value strideArg = condBlock->getArgument(1);
979 
980     Value zeroIndex = createIndexConstant(rewriter, loc, 0);
981     Value pred = rewriter.create<LLVM::ICmpOp>(
982         loc, IntegerType::get(rewriter.getContext(), 1),
983         LLVM::ICmpPredicate::sge, indexArg, zeroIndex);
984 
985     Block *bodyBlock =
986         rewriter.splitBlock(condBlock, rewriter.getInsertionPoint());
987     rewriter.setInsertionPointToStart(bodyBlock);
988 
989     // Copy size from shape to descriptor.
990     Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType);
991     Value sizeLoadGep = rewriter.create<LLVM::GEPOp>(
992         loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg});
993     Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep);
994     UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(),
995                                       targetSizesBase, indexArg, size);
996 
997     // Write stride value and compute next one.
998     UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(),
999                                         targetStridesBase, indexArg, strideArg);
1000     Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size);
1001 
1002     // Decrement loop counter and branch back.
1003     Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex);
1004     rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}),
1005                                 condBlock);
1006 
1007     Block *remainder =
1008         rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint());
1009 
1010     // Hook up the cond exit to the remainder.
1011     rewriter.setInsertionPointToEnd(condBlock);
1012     rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder,
1013                                     llvm::None);
1014 
1015     // Reset position to beginning of new remainder block.
1016     rewriter.setInsertionPointToStart(remainder);
1017 
1018     *descriptor = targetDesc;
1019     return success();
1020   }
1021 };
1022 
1023 /// Helper function to convert a vector of `OpFoldResult`s into a vector of
1024 /// `Value`s.
1025 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc,
1026                                       Type &llvmIndexType,
1027                                       ArrayRef<OpFoldResult> valueOrAttrVec) {
1028   return llvm::to_vector<4>(
1029       llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value {
1030         if (auto attr = value.dyn_cast<Attribute>())
1031           return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr);
1032         return value.get<Value>();
1033       }));
1034 }
1035 
1036 /// Compute a map that for a given dimension of the expanded type gives the
1037 /// dimension in the collapsed type it maps to. Essentially its the inverse of
1038 /// the `reassocation` maps.
1039 static DenseMap<int64_t, int64_t>
1040 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) {
1041   llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim;
1042   for (auto &en : enumerate(reassociation)) {
1043     for (auto dim : en.value())
1044       expandedDimToCollapsedDim[dim] = en.index();
1045   }
1046   return expandedDimToCollapsedDim;
1047 }
1048 
1049 static OpFoldResult
1050 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType,
1051                          int64_t outDimIndex, ArrayRef<int64_t> outStaticShape,
1052                          MemRefDescriptor &inDesc,
1053                          ArrayRef<int64_t> inStaticShape,
1054                          ArrayRef<ReassociationIndices> reassocation,
1055                          DenseMap<int64_t, int64_t> &outDimToInDimMap) {
1056   int64_t outDimSize = outStaticShape[outDimIndex];
1057   if (!ShapedType::isDynamic(outDimSize))
1058     return b.getIndexAttr(outDimSize);
1059 
1060   // Calculate the multiplication of all the out dim sizes except the
1061   // current dim.
1062   int64_t inDimIndex = outDimToInDimMap[outDimIndex];
1063   int64_t otherDimSizesMul = 1;
1064   for (auto otherDimIndex : reassocation[inDimIndex]) {
1065     if (otherDimIndex == static_cast<unsigned>(outDimIndex))
1066       continue;
1067     int64_t otherDimSize = outStaticShape[otherDimIndex];
1068     assert(!ShapedType::isDynamic(otherDimSize) &&
1069            "single dimension cannot be expanded into multiple dynamic "
1070            "dimensions");
1071     otherDimSizesMul *= otherDimSize;
1072   }
1073 
1074   // outDimSize = inDimSize / otherOutDimSizesMul
1075   int64_t inDimSize = inStaticShape[inDimIndex];
1076   Value inDimSizeDynamic =
1077       ShapedType::isDynamic(inDimSize)
1078           ? inDesc.size(b, loc, inDimIndex)
1079           : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1080                                        b.getIndexAttr(inDimSize));
1081   Value outDimSizeDynamic = b.create<LLVM::SDivOp>(
1082       loc, inDimSizeDynamic,
1083       b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1084                                  b.getIndexAttr(otherDimSizesMul)));
1085   return outDimSizeDynamic;
1086 }
1087 
1088 static OpFoldResult getCollapsedOutputDimSize(
1089     OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex,
1090     int64_t outDimSize, ArrayRef<int64_t> inStaticShape,
1091     MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) {
1092   if (!ShapedType::isDynamic(outDimSize))
1093     return b.getIndexAttr(outDimSize);
1094 
1095   Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1));
1096   Value outDimSizeDynamic = c1;
1097   for (auto inDimIndex : reassocation[outDimIndex]) {
1098     int64_t inDimSize = inStaticShape[inDimIndex];
1099     Value inDimSizeDynamic =
1100         ShapedType::isDynamic(inDimSize)
1101             ? inDesc.size(b, loc, inDimIndex)
1102             : b.create<LLVM::ConstantOp>(loc, llvmIndexType,
1103                                          b.getIndexAttr(inDimSize));
1104     outDimSizeDynamic =
1105         b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic);
1106   }
1107   return outDimSizeDynamic;
1108 }
1109 
1110 static SmallVector<OpFoldResult, 4>
1111 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1112                         ArrayRef<ReassociationIndices> reassocation,
1113                         ArrayRef<int64_t> inStaticShape,
1114                         MemRefDescriptor &inDesc,
1115                         ArrayRef<int64_t> outStaticShape) {
1116   return llvm::to_vector<4>(llvm::map_range(
1117       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1118         return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1119                                          outStaticShape[outDimIndex],
1120                                          inStaticShape, inDesc, reassocation);
1121       }));
1122 }
1123 
1124 static SmallVector<OpFoldResult, 4>
1125 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1126                        ArrayRef<ReassociationIndices> reassocation,
1127                        ArrayRef<int64_t> inStaticShape,
1128                        MemRefDescriptor &inDesc,
1129                        ArrayRef<int64_t> outStaticShape) {
1130   DenseMap<int64_t, int64_t> outDimToInDimMap =
1131       getExpandedDimToCollapsedDimMap(reassocation);
1132   return llvm::to_vector<4>(llvm::map_range(
1133       llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) {
1134         return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex,
1135                                         outStaticShape, inDesc, inStaticShape,
1136                                         reassocation, outDimToInDimMap);
1137       }));
1138 }
1139 
1140 static SmallVector<Value>
1141 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType,
1142                       ArrayRef<ReassociationIndices> reassocation,
1143                       ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc,
1144                       ArrayRef<int64_t> outStaticShape) {
1145   return outStaticShape.size() < inStaticShape.size()
1146              ? getAsValues(b, loc, llvmIndexType,
1147                            getCollapsedOutputShape(b, loc, llvmIndexType,
1148                                                    reassocation, inStaticShape,
1149                                                    inDesc, outStaticShape))
1150              : getAsValues(b, loc, llvmIndexType,
1151                            getExpandedOutputShape(b, loc, llvmIndexType,
1152                                                   reassocation, inStaticShape,
1153                                                   inDesc, outStaticShape));
1154 }
1155 
1156 // ReshapeOp creates a new view descriptor of the proper rank.
1157 // For now, the only conversion supported is for target MemRef with static sizes
1158 // and strides.
1159 template <typename ReshapeOp>
1160 class ReassociatingReshapeOpConversion
1161     : public ConvertOpToLLVMPattern<ReshapeOp> {
1162 public:
1163   using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern;
1164   using ReshapeOpAdaptor = typename ReshapeOp::Adaptor;
1165 
1166   LogicalResult
1167   matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor,
1168                   ConversionPatternRewriter &rewriter) const override {
1169     MemRefType dstType = reshapeOp.getResultType();
1170     MemRefType srcType = reshapeOp.getSrcType();
1171     if (!srcType.getLayout().isIdentity() ||
1172         !dstType.getLayout().isIdentity()) {
1173       return rewriter.notifyMatchFailure(reshapeOp,
1174                                          "only empty layout map is supported");
1175     }
1176 
1177     int64_t offset;
1178     SmallVector<int64_t, 4> strides;
1179     if (failed(getStridesAndOffset(dstType, strides, offset))) {
1180       return rewriter.notifyMatchFailure(
1181           reshapeOp, "failed to get stride and offset exprs");
1182     }
1183 
1184     MemRefDescriptor srcDesc(adaptor.src());
1185     Location loc = reshapeOp->getLoc();
1186     auto dstDesc = MemRefDescriptor::undef(
1187         rewriter, loc, this->typeConverter->convertType(dstType));
1188     dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc));
1189     dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc));
1190     dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc));
1191 
1192     ArrayRef<int64_t> srcStaticShape = srcType.getShape();
1193     ArrayRef<int64_t> dstStaticShape = dstType.getShape();
1194     Type llvmIndexType =
1195         this->typeConverter->convertType(rewriter.getIndexType());
1196     SmallVector<Value> dstShape = getDynamicOutputShape(
1197         rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(),
1198         srcStaticShape, srcDesc, dstStaticShape);
1199     for (auto &en : llvm::enumerate(dstShape))
1200       dstDesc.setSize(rewriter, loc, en.index(), en.value());
1201 
1202     auto isStaticStride = [](int64_t stride) {
1203       return !ShapedType::isDynamicStrideOrOffset(stride);
1204     };
1205     if (llvm::all_of(strides, isStaticStride)) {
1206       for (auto &en : llvm::enumerate(strides))
1207         dstDesc.setConstantStride(rewriter, loc, en.index(), en.value());
1208     } else {
1209       Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType,
1210                                                    rewriter.getIndexAttr(1));
1211       Value stride = c1;
1212       for (auto dimIndex :
1213            llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) {
1214         dstDesc.setStride(rewriter, loc, dimIndex, stride);
1215         stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride);
1216       }
1217     }
1218     rewriter.replaceOp(reshapeOp, {dstDesc});
1219     return success();
1220   }
1221 };
1222 
1223 /// Conversion pattern that transforms a subview op into:
1224 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1225 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1226 ///      and stride.
1227 /// The subview op is replaced by the descriptor.
1228 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> {
1229   using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern;
1230 
1231   LogicalResult
1232   matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor,
1233                   ConversionPatternRewriter &rewriter) const override {
1234     auto loc = subViewOp.getLoc();
1235 
1236     auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>();
1237     auto sourceElementTy =
1238         typeConverter->convertType(sourceMemRefType.getElementType());
1239 
1240     auto viewMemRefType = subViewOp.getType();
1241     auto inferredType = memref::SubViewOp::inferResultType(
1242                             subViewOp.getSourceType(),
1243                             extractFromI64ArrayAttr(subViewOp.static_offsets()),
1244                             extractFromI64ArrayAttr(subViewOp.static_sizes()),
1245                             extractFromI64ArrayAttr(subViewOp.static_strides()))
1246                             .cast<MemRefType>();
1247     auto targetElementTy =
1248         typeConverter->convertType(viewMemRefType.getElementType());
1249     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1250     if (!sourceElementTy || !targetDescTy || !targetElementTy ||
1251         !LLVM::isCompatibleType(sourceElementTy) ||
1252         !LLVM::isCompatibleType(targetElementTy) ||
1253         !LLVM::isCompatibleType(targetDescTy))
1254       return failure();
1255 
1256     // Extract the offset and strides from the type.
1257     int64_t offset;
1258     SmallVector<int64_t, 4> strides;
1259     auto successStrides = getStridesAndOffset(inferredType, strides, offset);
1260     if (failed(successStrides))
1261       return failure();
1262 
1263     // Create the descriptor.
1264     if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType()))
1265       return failure();
1266     MemRefDescriptor sourceMemRef(adaptor.getOperands().front());
1267     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1268 
1269     // Copy the buffer pointer from the old descriptor to the new one.
1270     Value extracted = sourceMemRef.allocatedPtr(rewriter, loc);
1271     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1272         loc,
1273         LLVM::LLVMPointerType::get(targetElementTy,
1274                                    viewMemRefType.getMemorySpaceAsInt()),
1275         extracted);
1276     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1277 
1278     // Copy the aligned pointer from the old descriptor to the new one.
1279     extracted = sourceMemRef.alignedPtr(rewriter, loc);
1280     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1281         loc,
1282         LLVM::LLVMPointerType::get(targetElementTy,
1283                                    viewMemRefType.getMemorySpaceAsInt()),
1284         extracted);
1285     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1286 
1287     size_t inferredShapeRank = inferredType.getRank();
1288     size_t resultShapeRank = viewMemRefType.getRank();
1289 
1290     // Extract strides needed to compute offset.
1291     SmallVector<Value, 4> strideValues;
1292     strideValues.reserve(inferredShapeRank);
1293     for (unsigned i = 0; i < inferredShapeRank; ++i)
1294       strideValues.push_back(sourceMemRef.stride(rewriter, loc, i));
1295 
1296     // Offset.
1297     auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType());
1298     if (!ShapedType::isDynamicStrideOrOffset(offset)) {
1299       targetMemRef.setConstantOffset(rewriter, loc, offset);
1300     } else {
1301       Value baseOffset = sourceMemRef.offset(rewriter, loc);
1302       // `inferredShapeRank` may be larger than the number of offset operands
1303       // because of trailing semantics. In this case, the offset is guaranteed
1304       // to be interpreted as 0 and we can just skip the extra dimensions.
1305       for (unsigned i = 0, e = std::min(inferredShapeRank,
1306                                         subViewOp.getMixedOffsets().size());
1307            i < e; ++i) {
1308         Value offset =
1309             // TODO: need OpFoldResult ODS adaptor to clean this up.
1310             subViewOp.isDynamicOffset(i)
1311                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)]
1312                 : rewriter.create<LLVM::ConstantOp>(
1313                       loc, llvmIndexType,
1314                       rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i)));
1315         Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]);
1316         baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul);
1317       }
1318       targetMemRef.setOffset(rewriter, loc, baseOffset);
1319     }
1320 
1321     // Update sizes and strides.
1322     SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes();
1323     SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides();
1324     assert(mixedSizes.size() == mixedStrides.size() &&
1325            "expected sizes and strides of equal length");
1326     llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims();
1327     for (int i = inferredShapeRank - 1, j = resultShapeRank - 1;
1328          i >= 0 && j >= 0; --i) {
1329       if (unusedDims.contains(i))
1330         continue;
1331 
1332       // `i` may overflow subViewOp.getMixedSizes because of trailing semantics.
1333       // In this case, the size is guaranteed to be interpreted as Dim and the
1334       // stride as 1.
1335       Value size, stride;
1336       if (static_cast<unsigned>(i) >= mixedSizes.size()) {
1337         // If the static size is available, use it directly. This is similar to
1338         // the folding of dim(constant-op) but removes the need for dim to be
1339         // aware of LLVM constants and for this pass to be aware of std
1340         // constants.
1341         int64_t staticSize =
1342             subViewOp.source().getType().cast<MemRefType>().getShape()[i];
1343         if (staticSize != ShapedType::kDynamicSize) {
1344           size = rewriter.create<LLVM::ConstantOp>(
1345               loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize));
1346         } else {
1347           Value pos = rewriter.create<LLVM::ConstantOp>(
1348               loc, llvmIndexType, rewriter.getI64IntegerAttr(i));
1349           Value dim =
1350               rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos);
1351           auto cast = rewriter.create<UnrealizedConversionCastOp>(
1352               loc, llvmIndexType, dim);
1353           size = cast.getResult(0);
1354         }
1355         stride = rewriter.create<LLVM::ConstantOp>(
1356             loc, llvmIndexType, rewriter.getI64IntegerAttr(1));
1357       } else {
1358         // TODO: need OpFoldResult ODS adaptor to clean this up.
1359         size =
1360             subViewOp.isDynamicSize(i)
1361                 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)]
1362                 : rewriter.create<LLVM::ConstantOp>(
1363                       loc, llvmIndexType,
1364                       rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i)));
1365         if (!ShapedType::isDynamicStrideOrOffset(strides[i])) {
1366           stride = rewriter.create<LLVM::ConstantOp>(
1367               loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i]));
1368         } else {
1369           stride =
1370               subViewOp.isDynamicStride(i)
1371                   ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)]
1372                   : rewriter.create<LLVM::ConstantOp>(
1373                         loc, llvmIndexType,
1374                         rewriter.getI64IntegerAttr(
1375                             subViewOp.getStaticStride(i)));
1376           stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]);
1377         }
1378       }
1379       targetMemRef.setSize(rewriter, loc, j, size);
1380       targetMemRef.setStride(rewriter, loc, j, stride);
1381       j--;
1382     }
1383 
1384     rewriter.replaceOp(subViewOp, {targetMemRef});
1385     return success();
1386   }
1387 };
1388 
1389 /// Conversion pattern that transforms a transpose op into:
1390 ///   1. A function entry `alloca` operation to allocate a ViewDescriptor.
1391 ///   2. A load of the ViewDescriptor from the pointer allocated in 1.
1392 ///   3. Updates to the ViewDescriptor to introduce the data ptr, offset, size
1393 ///      and stride. Size and stride are permutations of the original values.
1394 ///   4. A store of the resulting ViewDescriptor to the alloca'ed pointer.
1395 /// The transpose op is replaced by the alloca'ed pointer.
1396 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> {
1397 public:
1398   using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern;
1399 
1400   LogicalResult
1401   matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor,
1402                   ConversionPatternRewriter &rewriter) const override {
1403     auto loc = transposeOp.getLoc();
1404     MemRefDescriptor viewMemRef(adaptor.in());
1405 
1406     // No permutation, early exit.
1407     if (transposeOp.permutation().isIdentity())
1408       return rewriter.replaceOp(transposeOp, {viewMemRef}), success();
1409 
1410     auto targetMemRef = MemRefDescriptor::undef(
1411         rewriter, loc, typeConverter->convertType(transposeOp.getShapedType()));
1412 
1413     // Copy the base and aligned pointers from the old descriptor to the new
1414     // one.
1415     targetMemRef.setAllocatedPtr(rewriter, loc,
1416                                  viewMemRef.allocatedPtr(rewriter, loc));
1417     targetMemRef.setAlignedPtr(rewriter, loc,
1418                                viewMemRef.alignedPtr(rewriter, loc));
1419 
1420     // Copy the offset pointer from the old descriptor to the new one.
1421     targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc));
1422 
1423     // Iterate over the dimensions and apply size/stride permutation.
1424     for (const auto &en :
1425          llvm::enumerate(transposeOp.permutation().getResults())) {
1426       int sourcePos = en.index();
1427       int targetPos = en.value().cast<AffineDimExpr>().getPosition();
1428       targetMemRef.setSize(rewriter, loc, targetPos,
1429                            viewMemRef.size(rewriter, loc, sourcePos));
1430       targetMemRef.setStride(rewriter, loc, targetPos,
1431                              viewMemRef.stride(rewriter, loc, sourcePos));
1432     }
1433 
1434     rewriter.replaceOp(transposeOp, {targetMemRef});
1435     return success();
1436   }
1437 };
1438 
1439 /// Conversion pattern that transforms an op into:
1440 ///   1. An `llvm.mlir.undef` operation to create a memref descriptor
1441 ///   2. Updates to the descriptor to introduce the data ptr, offset, size
1442 ///      and stride.
1443 /// The view op is replaced by the descriptor.
1444 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> {
1445   using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern;
1446 
1447   // Build and return the value for the idx^th shape dimension, either by
1448   // returning the constant shape dimension or counting the proper dynamic size.
1449   Value getSize(ConversionPatternRewriter &rewriter, Location loc,
1450                 ArrayRef<int64_t> shape, ValueRange dynamicSizes,
1451                 unsigned idx) const {
1452     assert(idx < shape.size());
1453     if (!ShapedType::isDynamic(shape[idx]))
1454       return createIndexConstant(rewriter, loc, shape[idx]);
1455     // Count the number of dynamic dims in range [0, idx]
1456     unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) {
1457       return ShapedType::isDynamic(v);
1458     });
1459     return dynamicSizes[nDynamic];
1460   }
1461 
1462   // Build and return the idx^th stride, either by returning the constant stride
1463   // or by computing the dynamic stride from the current `runningStride` and
1464   // `nextSize`. The caller should keep a running stride and update it with the
1465   // result returned by this function.
1466   Value getStride(ConversionPatternRewriter &rewriter, Location loc,
1467                   ArrayRef<int64_t> strides, Value nextSize,
1468                   Value runningStride, unsigned idx) const {
1469     assert(idx < strides.size());
1470     if (!MemRefType::isDynamicStrideOrOffset(strides[idx]))
1471       return createIndexConstant(rewriter, loc, strides[idx]);
1472     if (nextSize)
1473       return runningStride
1474                  ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize)
1475                  : nextSize;
1476     assert(!runningStride);
1477     return createIndexConstant(rewriter, loc, 1);
1478   }
1479 
1480   LogicalResult
1481   matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor,
1482                   ConversionPatternRewriter &rewriter) const override {
1483     auto loc = viewOp.getLoc();
1484 
1485     auto viewMemRefType = viewOp.getType();
1486     auto targetElementTy =
1487         typeConverter->convertType(viewMemRefType.getElementType());
1488     auto targetDescTy = typeConverter->convertType(viewMemRefType);
1489     if (!targetDescTy || !targetElementTy ||
1490         !LLVM::isCompatibleType(targetElementTy) ||
1491         !LLVM::isCompatibleType(targetDescTy))
1492       return viewOp.emitWarning("Target descriptor type not converted to LLVM"),
1493              failure();
1494 
1495     int64_t offset;
1496     SmallVector<int64_t, 4> strides;
1497     auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset);
1498     if (failed(successStrides))
1499       return viewOp.emitWarning("cannot cast to non-strided shape"), failure();
1500     assert(offset == 0 && "expected offset to be 0");
1501 
1502     // Create the descriptor.
1503     MemRefDescriptor sourceMemRef(adaptor.source());
1504     auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy);
1505 
1506     // Field 1: Copy the allocated pointer, used for malloc/free.
1507     Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc);
1508     auto srcMemRefType = viewOp.source().getType().cast<MemRefType>();
1509     Value bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1510         loc,
1511         LLVM::LLVMPointerType::get(targetElementTy,
1512                                    srcMemRefType.getMemorySpaceAsInt()),
1513         allocatedPtr);
1514     targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr);
1515 
1516     // Field 2: Copy the actual aligned pointer to payload.
1517     Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc);
1518     alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(),
1519                                               alignedPtr, adaptor.byte_shift());
1520     bitcastPtr = rewriter.create<LLVM::BitcastOp>(
1521         loc,
1522         LLVM::LLVMPointerType::get(targetElementTy,
1523                                    srcMemRefType.getMemorySpaceAsInt()),
1524         alignedPtr);
1525     targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr);
1526 
1527     // Field 3: The offset in the resulting type must be 0. This is because of
1528     // the type change: an offset on srcType* may not be expressible as an
1529     // offset on dstType*.
1530     targetMemRef.setOffset(rewriter, loc,
1531                            createIndexConstant(rewriter, loc, offset));
1532 
1533     // Early exit for 0-D corner case.
1534     if (viewMemRefType.getRank() == 0)
1535       return rewriter.replaceOp(viewOp, {targetMemRef}), success();
1536 
1537     // Fields 4 and 5: Update sizes and strides.
1538     if (strides.back() != 1)
1539       return viewOp.emitWarning("cannot cast to non-contiguous shape"),
1540              failure();
1541     Value stride = nullptr, nextSize = nullptr;
1542     for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) {
1543       // Update size.
1544       Value size =
1545           getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i);
1546       targetMemRef.setSize(rewriter, loc, i, size);
1547       // Update stride.
1548       stride = getStride(rewriter, loc, strides, nextSize, stride, i);
1549       targetMemRef.setStride(rewriter, loc, i, stride);
1550       nextSize = size;
1551     }
1552 
1553     rewriter.replaceOp(viewOp, {targetMemRef});
1554     return success();
1555   }
1556 };
1557 
1558 //===----------------------------------------------------------------------===//
1559 // AtomicRMWOpLowering
1560 //===----------------------------------------------------------------------===//
1561 
1562 /// Try to match the kind of a std.atomic_rmw to determine whether to use a
1563 /// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg.
1564 static Optional<LLVM::AtomicBinOp>
1565 matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) {
1566   switch (atomicOp.kind()) {
1567   case arith::AtomicRMWKind::addf:
1568     return LLVM::AtomicBinOp::fadd;
1569   case arith::AtomicRMWKind::addi:
1570     return LLVM::AtomicBinOp::add;
1571   case arith::AtomicRMWKind::assign:
1572     return LLVM::AtomicBinOp::xchg;
1573   case arith::AtomicRMWKind::maxs:
1574     return LLVM::AtomicBinOp::max;
1575   case arith::AtomicRMWKind::maxu:
1576     return LLVM::AtomicBinOp::umax;
1577   case arith::AtomicRMWKind::mins:
1578     return LLVM::AtomicBinOp::min;
1579   case arith::AtomicRMWKind::minu:
1580     return LLVM::AtomicBinOp::umin;
1581   case arith::AtomicRMWKind::ori:
1582     return LLVM::AtomicBinOp::_or;
1583   case arith::AtomicRMWKind::andi:
1584     return LLVM::AtomicBinOp::_and;
1585   default:
1586     return llvm::None;
1587   }
1588   llvm_unreachable("Invalid AtomicRMWKind");
1589 }
1590 
1591 struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> {
1592   using Base::Base;
1593 
1594   LogicalResult
1595   matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor,
1596                   ConversionPatternRewriter &rewriter) const override {
1597     if (failed(match(atomicOp)))
1598       return failure();
1599     auto maybeKind = matchSimpleAtomicOp(atomicOp);
1600     if (!maybeKind)
1601       return failure();
1602     auto resultType = adaptor.value().getType();
1603     auto memRefType = atomicOp.getMemRefType();
1604     auto dataPtr =
1605         getStridedElementPtr(atomicOp.getLoc(), memRefType, adaptor.memref(),
1606                              adaptor.indices(), rewriter);
1607     rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>(
1608         atomicOp, resultType, *maybeKind, dataPtr, adaptor.value(),
1609         LLVM::AtomicOrdering::acq_rel);
1610     return success();
1611   }
1612 };
1613 
1614 } // namespace
1615 
1616 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter,
1617                                                   RewritePatternSet &patterns) {
1618   // clang-format off
1619   patterns.add<
1620       AllocaOpLowering,
1621       AllocaScopeOpLowering,
1622       AtomicRMWOpLowering,
1623       AssumeAlignmentOpLowering,
1624       DimOpLowering,
1625       GlobalMemrefOpLowering,
1626       GetGlobalMemrefOpLowering,
1627       LoadOpLowering,
1628       MemRefCastOpLowering,
1629       MemRefCopyOpLowering,
1630       MemRefReinterpretCastOpLowering,
1631       MemRefReshapeOpLowering,
1632       PrefetchOpLowering,
1633       RankOpLowering,
1634       ReassociatingReshapeOpConversion<memref::ExpandShapeOp>,
1635       ReassociatingReshapeOpConversion<memref::CollapseShapeOp>,
1636       StoreOpLowering,
1637       SubViewOpLowering,
1638       TransposeOpLowering,
1639       ViewOpLowering>(converter);
1640   // clang-format on
1641   auto allocLowering = converter.getOptions().allocLowering;
1642   if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc)
1643     patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter);
1644   else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc)
1645     patterns.add<AllocOpLowering, DeallocOpLowering>(converter);
1646 }
1647 
1648 namespace {
1649 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> {
1650   MemRefToLLVMPass() = default;
1651 
1652   void runOnOperation() override {
1653     Operation *op = getOperation();
1654     const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>();
1655     LowerToLLVMOptions options(&getContext(),
1656                                dataLayoutAnalysis.getAtOrAbove(op));
1657     options.allocLowering =
1658         (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc
1659                          : LowerToLLVMOptions::AllocLowering::Malloc);
1660     if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout)
1661       options.overrideIndexBitwidth(indexBitwidth);
1662 
1663     LLVMTypeConverter typeConverter(&getContext(), options,
1664                                     &dataLayoutAnalysis);
1665     RewritePatternSet patterns(&getContext());
1666     populateMemRefToLLVMConversionPatterns(typeConverter, patterns);
1667     LLVMConversionTarget target(getContext());
1668     target.addLegalOp<FuncOp>();
1669     if (failed(applyPartialConversion(op, target, std::move(patterns))))
1670       signalPassFailure();
1671   }
1672 };
1673 } // namespace
1674 
1675 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() {
1676   return std::make_unique<MemRefToLLVMPass>();
1677 }
1678