1 //===- MemRefToLLVM.cpp - MemRef to LLVM dialect conversion ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h" 10 #include "../PassDetail.h" 11 #include "mlir/Analysis/DataLayoutAnalysis.h" 12 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" 13 #include "mlir/Conversion/LLVMCommon/Pattern.h" 14 #include "mlir/Conversion/LLVMCommon/TypeConverter.h" 15 #include "mlir/Conversion/MemRefToLLVM/AllocLikeConversion.h" 16 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 17 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 18 #include "mlir/Dialect/MemRef/IR/MemRef.h" 19 #include "mlir/IR/AffineMap.h" 20 #include "mlir/IR/BlockAndValueMapping.h" 21 22 using namespace mlir; 23 24 namespace { 25 26 struct AllocOpLowering : public AllocLikeOpLLVMLowering { 27 AllocOpLowering(LLVMTypeConverter &converter) 28 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 29 converter) {} 30 31 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 32 Location loc, Value sizeBytes, 33 Operation *op) const override { 34 // Heap allocations. 35 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 36 MemRefType memRefType = allocOp.getType(); 37 38 Value alignment; 39 if (auto alignmentAttr = allocOp.alignment()) { 40 alignment = createIndexConstant(rewriter, loc, *alignmentAttr); 41 } else if (!memRefType.getElementType().isSignlessIntOrIndexOrFloat()) { 42 // In the case where no alignment is specified, we may want to override 43 // `malloc's` behavior. `malloc` typically aligns at the size of the 44 // biggest scalar on a target HW. For non-scalars, use the natural 45 // alignment of the LLVM type given by the LLVM DataLayout. 46 alignment = getSizeInBytes(loc, memRefType.getElementType(), rewriter); 47 } 48 49 if (alignment) { 50 // Adjust the allocation size to consider alignment. 51 sizeBytes = rewriter.create<LLVM::AddOp>(loc, sizeBytes, alignment); 52 } 53 54 // Allocate the underlying buffer and store a pointer to it in the MemRef 55 // descriptor. 56 Type elementPtrType = this->getElementPtrType(memRefType); 57 auto allocFuncOp = LLVM::lookupOrCreateMallocFn( 58 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 59 auto results = createLLVMCall(rewriter, loc, allocFuncOp, {sizeBytes}, 60 getVoidPtrType()); 61 Value allocatedPtr = 62 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 63 64 Value alignedPtr = allocatedPtr; 65 if (alignment) { 66 // Compute the aligned type pointer. 67 Value allocatedInt = 68 rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), allocatedPtr); 69 Value alignmentInt = 70 createAligned(rewriter, loc, allocatedInt, alignment); 71 alignedPtr = 72 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, alignmentInt); 73 } 74 75 return std::make_tuple(allocatedPtr, alignedPtr); 76 } 77 }; 78 79 struct AlignedAllocOpLowering : public AllocLikeOpLLVMLowering { 80 AlignedAllocOpLowering(LLVMTypeConverter &converter) 81 : AllocLikeOpLLVMLowering(memref::AllocOp::getOperationName(), 82 converter) {} 83 84 /// Returns the memref's element size in bytes using the data layout active at 85 /// `op`. 86 // TODO: there are other places where this is used. Expose publicly? 87 unsigned getMemRefEltSizeInBytes(MemRefType memRefType, Operation *op) const { 88 const DataLayout *layout = &defaultLayout; 89 if (const DataLayoutAnalysis *analysis = 90 getTypeConverter()->getDataLayoutAnalysis()) { 91 layout = &analysis->getAbove(op); 92 } 93 Type elementType = memRefType.getElementType(); 94 if (auto memRefElementType = elementType.dyn_cast<MemRefType>()) 95 return getTypeConverter()->getMemRefDescriptorSize(memRefElementType, 96 *layout); 97 if (auto memRefElementType = elementType.dyn_cast<UnrankedMemRefType>()) 98 return getTypeConverter()->getUnrankedMemRefDescriptorSize( 99 memRefElementType, *layout); 100 return layout->getTypeSize(elementType); 101 } 102 103 /// Returns true if the memref size in bytes is known to be a multiple of 104 /// factor assuming the data layout active at `op`. 105 bool isMemRefSizeMultipleOf(MemRefType type, uint64_t factor, 106 Operation *op) const { 107 uint64_t sizeDivisor = getMemRefEltSizeInBytes(type, op); 108 for (unsigned i = 0, e = type.getRank(); i < e; i++) { 109 if (type.isDynamic(type.getDimSize(i))) 110 continue; 111 sizeDivisor = sizeDivisor * type.getDimSize(i); 112 } 113 return sizeDivisor % factor == 0; 114 } 115 116 /// Returns the alignment to be used for the allocation call itself. 117 /// aligned_alloc requires the allocation size to be a power of two, and the 118 /// allocation size to be a multiple of alignment, 119 int64_t getAllocationAlignment(memref::AllocOp allocOp) const { 120 if (Optional<uint64_t> alignment = allocOp.alignment()) 121 return *alignment; 122 123 // Whenever we don't have alignment set, we will use an alignment 124 // consistent with the element type; since the allocation size has to be a 125 // power of two, we will bump to the next power of two if it already isn't. 126 auto eltSizeBytes = getMemRefEltSizeInBytes(allocOp.getType(), allocOp); 127 return std::max(kMinAlignedAllocAlignment, 128 llvm::PowerOf2Ceil(eltSizeBytes)); 129 } 130 131 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 132 Location loc, Value sizeBytes, 133 Operation *op) const override { 134 // Heap allocations. 135 memref::AllocOp allocOp = cast<memref::AllocOp>(op); 136 MemRefType memRefType = allocOp.getType(); 137 int64_t alignment = getAllocationAlignment(allocOp); 138 Value allocAlignment = createIndexConstant(rewriter, loc, alignment); 139 140 // aligned_alloc requires size to be a multiple of alignment; we will pad 141 // the size to the next multiple if necessary. 142 if (!isMemRefSizeMultipleOf(memRefType, alignment, op)) 143 sizeBytes = createAligned(rewriter, loc, sizeBytes, allocAlignment); 144 145 Type elementPtrType = this->getElementPtrType(memRefType); 146 auto allocFuncOp = LLVM::lookupOrCreateAlignedAllocFn( 147 allocOp->getParentOfType<ModuleOp>(), getIndexType()); 148 auto results = 149 createLLVMCall(rewriter, loc, allocFuncOp, {allocAlignment, sizeBytes}, 150 getVoidPtrType()); 151 Value allocatedPtr = 152 rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, results[0]); 153 154 return std::make_tuple(allocatedPtr, allocatedPtr); 155 } 156 157 /// The minimum alignment to use with aligned_alloc (has to be a power of 2). 158 static constexpr uint64_t kMinAlignedAllocAlignment = 16UL; 159 160 /// Default layout to use in absence of the corresponding analysis. 161 DataLayout defaultLayout; 162 }; 163 164 // Out of line definition, required till C++17. 165 constexpr uint64_t AlignedAllocOpLowering::kMinAlignedAllocAlignment; 166 167 struct AllocaOpLowering : public AllocLikeOpLLVMLowering { 168 AllocaOpLowering(LLVMTypeConverter &converter) 169 : AllocLikeOpLLVMLowering(memref::AllocaOp::getOperationName(), 170 converter) {} 171 172 /// Allocates the underlying buffer using the right call. `allocatedBytePtr` 173 /// is set to null for stack allocations. `accessAlignment` is set if 174 /// alignment is needed post allocation (for eg. in conjunction with malloc). 175 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 176 Location loc, Value sizeBytes, 177 Operation *op) const override { 178 179 // With alloca, one gets a pointer to the element type right away. 180 // For stack allocations. 181 auto allocaOp = cast<memref::AllocaOp>(op); 182 auto elementPtrType = this->getElementPtrType(allocaOp.getType()); 183 184 auto allocatedElementPtr = rewriter.create<LLVM::AllocaOp>( 185 loc, elementPtrType, sizeBytes, 186 allocaOp.alignment() ? *allocaOp.alignment() : 0); 187 188 return std::make_tuple(allocatedElementPtr, allocatedElementPtr); 189 } 190 }; 191 192 struct AllocaScopeOpLowering 193 : public ConvertOpToLLVMPattern<memref::AllocaScopeOp> { 194 using ConvertOpToLLVMPattern<memref::AllocaScopeOp>::ConvertOpToLLVMPattern; 195 196 LogicalResult 197 matchAndRewrite(memref::AllocaScopeOp allocaScopeOp, OpAdaptor adaptor, 198 ConversionPatternRewriter &rewriter) const override { 199 OpBuilder::InsertionGuard guard(rewriter); 200 Location loc = allocaScopeOp.getLoc(); 201 202 // Split the current block before the AllocaScopeOp to create the inlining 203 // point. 204 auto *currentBlock = rewriter.getInsertionBlock(); 205 auto *remainingOpsBlock = 206 rewriter.splitBlock(currentBlock, rewriter.getInsertionPoint()); 207 Block *continueBlock; 208 if (allocaScopeOp.getNumResults() == 0) { 209 continueBlock = remainingOpsBlock; 210 } else { 211 continueBlock = rewriter.createBlock(remainingOpsBlock, 212 allocaScopeOp.getResultTypes()); 213 rewriter.create<LLVM::BrOp>(loc, ValueRange(), remainingOpsBlock); 214 } 215 216 // Inline body region. 217 Block *beforeBody = &allocaScopeOp.bodyRegion().front(); 218 Block *afterBody = &allocaScopeOp.bodyRegion().back(); 219 rewriter.inlineRegionBefore(allocaScopeOp.bodyRegion(), continueBlock); 220 221 // Save stack and then branch into the body of the region. 222 rewriter.setInsertionPointToEnd(currentBlock); 223 auto stackSaveOp = 224 rewriter.create<LLVM::StackSaveOp>(loc, getVoidPtrType()); 225 rewriter.create<LLVM::BrOp>(loc, ValueRange(), beforeBody); 226 227 // Replace the alloca_scope return with a branch that jumps out of the body. 228 // Stack restore before leaving the body region. 229 rewriter.setInsertionPointToEnd(afterBody); 230 auto returnOp = 231 cast<memref::AllocaScopeReturnOp>(afterBody->getTerminator()); 232 auto branchOp = rewriter.replaceOpWithNewOp<LLVM::BrOp>( 233 returnOp, returnOp.results(), continueBlock); 234 235 // Insert stack restore before jumping out the body of the region. 236 rewriter.setInsertionPoint(branchOp); 237 rewriter.create<LLVM::StackRestoreOp>(loc, stackSaveOp); 238 239 // Replace the op with values return from the body region. 240 rewriter.replaceOp(allocaScopeOp, continueBlock->getArguments()); 241 242 return success(); 243 } 244 }; 245 246 struct AssumeAlignmentOpLowering 247 : public ConvertOpToLLVMPattern<memref::AssumeAlignmentOp> { 248 using ConvertOpToLLVMPattern< 249 memref::AssumeAlignmentOp>::ConvertOpToLLVMPattern; 250 251 LogicalResult 252 matchAndRewrite(memref::AssumeAlignmentOp op, OpAdaptor adaptor, 253 ConversionPatternRewriter &rewriter) const override { 254 Value memref = adaptor.memref(); 255 unsigned alignment = op.alignment(); 256 auto loc = op.getLoc(); 257 258 MemRefDescriptor memRefDescriptor(memref); 259 Value ptr = memRefDescriptor.alignedPtr(rewriter, memref.getLoc()); 260 261 // Emit llvm.assume(memref.alignedPtr & (alignment - 1) == 0). Notice that 262 // the asserted memref.alignedPtr isn't used anywhere else, as the real 263 // users like load/store/views always re-extract memref.alignedPtr as they 264 // get lowered. 265 // 266 // This relies on LLVM's CSE optimization (potentially after SROA), since 267 // after CSE all memref.alignedPtr instances get de-duplicated into the same 268 // pointer SSA value. 269 auto intPtrType = 270 getIntPtrType(memRefDescriptor.getElementPtrType().getAddressSpace()); 271 Value zero = createIndexAttrConstant(rewriter, loc, intPtrType, 0); 272 Value mask = 273 createIndexAttrConstant(rewriter, loc, intPtrType, alignment - 1); 274 Value ptrValue = rewriter.create<LLVM::PtrToIntOp>(loc, intPtrType, ptr); 275 rewriter.create<LLVM::AssumeOp>( 276 loc, rewriter.create<LLVM::ICmpOp>( 277 loc, LLVM::ICmpPredicate::eq, 278 rewriter.create<LLVM::AndOp>(loc, ptrValue, mask), zero)); 279 280 rewriter.eraseOp(op); 281 return success(); 282 } 283 }; 284 285 // A `dealloc` is converted into a call to `free` on the underlying data buffer. 286 // The memref descriptor being an SSA value, there is no need to clean it up 287 // in any way. 288 struct DeallocOpLowering : public ConvertOpToLLVMPattern<memref::DeallocOp> { 289 using ConvertOpToLLVMPattern<memref::DeallocOp>::ConvertOpToLLVMPattern; 290 291 explicit DeallocOpLowering(LLVMTypeConverter &converter) 292 : ConvertOpToLLVMPattern<memref::DeallocOp>(converter) {} 293 294 LogicalResult 295 matchAndRewrite(memref::DeallocOp op, OpAdaptor adaptor, 296 ConversionPatternRewriter &rewriter) const override { 297 // Insert the `free` declaration if it is not already present. 298 auto freeFunc = LLVM::lookupOrCreateFreeFn(op->getParentOfType<ModuleOp>()); 299 MemRefDescriptor memref(adaptor.memref()); 300 Value casted = rewriter.create<LLVM::BitcastOp>( 301 op.getLoc(), getVoidPtrType(), 302 memref.allocatedPtr(rewriter, op.getLoc())); 303 rewriter.replaceOpWithNewOp<LLVM::CallOp>( 304 op, TypeRange(), SymbolRefAttr::get(freeFunc), casted); 305 return success(); 306 } 307 }; 308 309 // A `dim` is converted to a constant for static sizes and to an access to the 310 // size stored in the memref descriptor for dynamic sizes. 311 struct DimOpLowering : public ConvertOpToLLVMPattern<memref::DimOp> { 312 using ConvertOpToLLVMPattern<memref::DimOp>::ConvertOpToLLVMPattern; 313 314 LogicalResult 315 matchAndRewrite(memref::DimOp dimOp, OpAdaptor adaptor, 316 ConversionPatternRewriter &rewriter) const override { 317 Type operandType = dimOp.source().getType(); 318 if (operandType.isa<UnrankedMemRefType>()) { 319 rewriter.replaceOp( 320 dimOp, {extractSizeOfUnrankedMemRef( 321 operandType, dimOp, adaptor.getOperands(), rewriter)}); 322 323 return success(); 324 } 325 if (operandType.isa<MemRefType>()) { 326 rewriter.replaceOp( 327 dimOp, {extractSizeOfRankedMemRef(operandType, dimOp, 328 adaptor.getOperands(), rewriter)}); 329 return success(); 330 } 331 llvm_unreachable("expected MemRefType or UnrankedMemRefType"); 332 } 333 334 private: 335 Value extractSizeOfUnrankedMemRef(Type operandType, memref::DimOp dimOp, 336 OpAdaptor adaptor, 337 ConversionPatternRewriter &rewriter) const { 338 Location loc = dimOp.getLoc(); 339 340 auto unrankedMemRefType = operandType.cast<UnrankedMemRefType>(); 341 auto scalarMemRefType = 342 MemRefType::get({}, unrankedMemRefType.getElementType()); 343 unsigned addressSpace = unrankedMemRefType.getMemorySpaceAsInt(); 344 345 // Extract pointer to the underlying ranked descriptor and bitcast it to a 346 // memref<element_type> descriptor pointer to minimize the number of GEP 347 // operations. 348 UnrankedMemRefDescriptor unrankedDesc(adaptor.source()); 349 Value underlyingRankedDesc = unrankedDesc.memRefDescPtr(rewriter, loc); 350 Value scalarMemRefDescPtr = rewriter.create<LLVM::BitcastOp>( 351 loc, 352 LLVM::LLVMPointerType::get(typeConverter->convertType(scalarMemRefType), 353 addressSpace), 354 underlyingRankedDesc); 355 356 // Get pointer to offset field of memref<element_type> descriptor. 357 Type indexPtrTy = LLVM::LLVMPointerType::get( 358 getTypeConverter()->getIndexType(), addressSpace); 359 Value two = rewriter.create<LLVM::ConstantOp>( 360 loc, typeConverter->convertType(rewriter.getI32Type()), 361 rewriter.getI32IntegerAttr(2)); 362 Value offsetPtr = rewriter.create<LLVM::GEPOp>( 363 loc, indexPtrTy, scalarMemRefDescPtr, 364 ValueRange({createIndexConstant(rewriter, loc, 0), two})); 365 366 // The size value that we have to extract can be obtained using GEPop with 367 // `dimOp.index() + 1` index argument. 368 Value idxPlusOne = rewriter.create<LLVM::AddOp>( 369 loc, createIndexConstant(rewriter, loc, 1), adaptor.index()); 370 Value sizePtr = rewriter.create<LLVM::GEPOp>(loc, indexPtrTy, offsetPtr, 371 ValueRange({idxPlusOne})); 372 return rewriter.create<LLVM::LoadOp>(loc, sizePtr); 373 } 374 375 Optional<int64_t> getConstantDimIndex(memref::DimOp dimOp) const { 376 if (Optional<int64_t> idx = dimOp.getConstantIndex()) 377 return idx; 378 379 if (auto constantOp = dimOp.index().getDefiningOp<LLVM::ConstantOp>()) 380 return constantOp.getValue() 381 .cast<IntegerAttr>() 382 .getValue() 383 .getSExtValue(); 384 385 return llvm::None; 386 } 387 388 Value extractSizeOfRankedMemRef(Type operandType, memref::DimOp dimOp, 389 OpAdaptor adaptor, 390 ConversionPatternRewriter &rewriter) const { 391 Location loc = dimOp.getLoc(); 392 393 // Take advantage if index is constant. 394 MemRefType memRefType = operandType.cast<MemRefType>(); 395 if (Optional<int64_t> index = getConstantDimIndex(dimOp)) { 396 int64_t i = index.getValue(); 397 if (memRefType.isDynamicDim(i)) { 398 // extract dynamic size from the memref descriptor. 399 MemRefDescriptor descriptor(adaptor.source()); 400 return descriptor.size(rewriter, loc, i); 401 } 402 // Use constant for static size. 403 int64_t dimSize = memRefType.getDimSize(i); 404 return createIndexConstant(rewriter, loc, dimSize); 405 } 406 Value index = adaptor.index(); 407 int64_t rank = memRefType.getRank(); 408 MemRefDescriptor memrefDescriptor(adaptor.source()); 409 return memrefDescriptor.size(rewriter, loc, index, rank); 410 } 411 }; 412 413 /// Returns the LLVM type of the global variable given the memref type `type`. 414 static Type convertGlobalMemrefTypeToLLVM(MemRefType type, 415 LLVMTypeConverter &typeConverter) { 416 // LLVM type for a global memref will be a multi-dimension array. For 417 // declarations or uninitialized global memrefs, we can potentially flatten 418 // this to a 1D array. However, for memref.global's with an initial value, 419 // we do not intend to flatten the ElementsAttribute when going from std -> 420 // LLVM dialect, so the LLVM type needs to me a multi-dimension array. 421 Type elementType = typeConverter.convertType(type.getElementType()); 422 Type arrayTy = elementType; 423 // Shape has the outermost dim at index 0, so need to walk it backwards 424 for (int64_t dim : llvm::reverse(type.getShape())) 425 arrayTy = LLVM::LLVMArrayType::get(arrayTy, dim); 426 return arrayTy; 427 } 428 429 /// GlobalMemrefOp is lowered to a LLVM Global Variable. 430 struct GlobalMemrefOpLowering 431 : public ConvertOpToLLVMPattern<memref::GlobalOp> { 432 using ConvertOpToLLVMPattern<memref::GlobalOp>::ConvertOpToLLVMPattern; 433 434 LogicalResult 435 matchAndRewrite(memref::GlobalOp global, OpAdaptor adaptor, 436 ConversionPatternRewriter &rewriter) const override { 437 MemRefType type = global.type(); 438 if (!isConvertibleAndHasIdentityMaps(type)) 439 return failure(); 440 441 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 442 443 LLVM::Linkage linkage = 444 global.isPublic() ? LLVM::Linkage::External : LLVM::Linkage::Private; 445 446 Attribute initialValue = nullptr; 447 if (!global.isExternal() && !global.isUninitialized()) { 448 auto elementsAttr = global.initial_value()->cast<ElementsAttr>(); 449 initialValue = elementsAttr; 450 451 // For scalar memrefs, the global variable created is of the element type, 452 // so unpack the elements attribute to extract the value. 453 if (type.getRank() == 0) 454 initialValue = elementsAttr.getSplatValue<Attribute>(); 455 } 456 457 uint64_t alignment = global.alignment().getValueOr(0); 458 459 auto newGlobal = rewriter.replaceOpWithNewOp<LLVM::GlobalOp>( 460 global, arrayTy, global.constant(), linkage, global.sym_name(), 461 initialValue, alignment, type.getMemorySpaceAsInt()); 462 if (!global.isExternal() && global.isUninitialized()) { 463 Block *blk = new Block(); 464 newGlobal.getInitializerRegion().push_back(blk); 465 rewriter.setInsertionPointToStart(blk); 466 Value undef[] = { 467 rewriter.create<LLVM::UndefOp>(global.getLoc(), arrayTy)}; 468 rewriter.create<LLVM::ReturnOp>(global.getLoc(), undef); 469 } 470 return success(); 471 } 472 }; 473 474 /// GetGlobalMemrefOp is lowered into a Memref descriptor with the pointer to 475 /// the first element stashed into the descriptor. This reuses 476 /// `AllocLikeOpLowering` to reuse the Memref descriptor construction. 477 struct GetGlobalMemrefOpLowering : public AllocLikeOpLLVMLowering { 478 GetGlobalMemrefOpLowering(LLVMTypeConverter &converter) 479 : AllocLikeOpLLVMLowering(memref::GetGlobalOp::getOperationName(), 480 converter) {} 481 482 /// Buffer "allocation" for memref.get_global op is getting the address of 483 /// the global variable referenced. 484 std::tuple<Value, Value> allocateBuffer(ConversionPatternRewriter &rewriter, 485 Location loc, Value sizeBytes, 486 Operation *op) const override { 487 auto getGlobalOp = cast<memref::GetGlobalOp>(op); 488 MemRefType type = getGlobalOp.result().getType().cast<MemRefType>(); 489 unsigned memSpace = type.getMemorySpaceAsInt(); 490 491 Type arrayTy = convertGlobalMemrefTypeToLLVM(type, *getTypeConverter()); 492 auto addressOf = rewriter.create<LLVM::AddressOfOp>( 493 loc, LLVM::LLVMPointerType::get(arrayTy, memSpace), getGlobalOp.name()); 494 495 // Get the address of the first element in the array by creating a GEP with 496 // the address of the GV as the base, and (rank + 1) number of 0 indices. 497 Type elementType = typeConverter->convertType(type.getElementType()); 498 Type elementPtrType = LLVM::LLVMPointerType::get(elementType, memSpace); 499 500 SmallVector<Value> operands; 501 operands.insert(operands.end(), type.getRank() + 1, 502 createIndexConstant(rewriter, loc, 0)); 503 auto gep = 504 rewriter.create<LLVM::GEPOp>(loc, elementPtrType, addressOf, operands); 505 506 // We do not expect the memref obtained using `memref.get_global` to be 507 // ever deallocated. Set the allocated pointer to be known bad value to 508 // help debug if that ever happens. 509 auto intPtrType = getIntPtrType(memSpace); 510 Value deadBeefConst = 511 createIndexAttrConstant(rewriter, op->getLoc(), intPtrType, 0xdeadbeef); 512 auto deadBeefPtr = 513 rewriter.create<LLVM::IntToPtrOp>(loc, elementPtrType, deadBeefConst); 514 515 // Both allocated and aligned pointers are same. We could potentially stash 516 // a nullptr for the allocated pointer since we do not expect any dealloc. 517 return std::make_tuple(deadBeefPtr, gep); 518 } 519 }; 520 521 // Common base for load and store operations on MemRefs. Restricts the match 522 // to supported MemRef types. Provides functionality to emit code accessing a 523 // specific element of the underlying data buffer. 524 template <typename Derived> 525 struct LoadStoreOpLowering : public ConvertOpToLLVMPattern<Derived> { 526 using ConvertOpToLLVMPattern<Derived>::ConvertOpToLLVMPattern; 527 using ConvertOpToLLVMPattern<Derived>::isConvertibleAndHasIdentityMaps; 528 using Base = LoadStoreOpLowering<Derived>; 529 530 LogicalResult match(Derived op) const override { 531 MemRefType type = op.getMemRefType(); 532 return isConvertibleAndHasIdentityMaps(type) ? success() : failure(); 533 } 534 }; 535 536 // Load operation is lowered to obtaining a pointer to the indexed element 537 // and loading it. 538 struct LoadOpLowering : public LoadStoreOpLowering<memref::LoadOp> { 539 using Base::Base; 540 541 LogicalResult 542 matchAndRewrite(memref::LoadOp loadOp, OpAdaptor adaptor, 543 ConversionPatternRewriter &rewriter) const override { 544 auto type = loadOp.getMemRefType(); 545 546 Value dataPtr = getStridedElementPtr( 547 loadOp.getLoc(), type, adaptor.memref(), adaptor.indices(), rewriter); 548 rewriter.replaceOpWithNewOp<LLVM::LoadOp>(loadOp, dataPtr); 549 return success(); 550 } 551 }; 552 553 // Store operation is lowered to obtaining a pointer to the indexed element, 554 // and storing the given value to it. 555 struct StoreOpLowering : public LoadStoreOpLowering<memref::StoreOp> { 556 using Base::Base; 557 558 LogicalResult 559 matchAndRewrite(memref::StoreOp op, OpAdaptor adaptor, 560 ConversionPatternRewriter &rewriter) const override { 561 auto type = op.getMemRefType(); 562 563 Value dataPtr = getStridedElementPtr(op.getLoc(), type, adaptor.memref(), 564 adaptor.indices(), rewriter); 565 rewriter.replaceOpWithNewOp<LLVM::StoreOp>(op, adaptor.value(), dataPtr); 566 return success(); 567 } 568 }; 569 570 // The prefetch operation is lowered in a way similar to the load operation 571 // except that the llvm.prefetch operation is used for replacement. 572 struct PrefetchOpLowering : public LoadStoreOpLowering<memref::PrefetchOp> { 573 using Base::Base; 574 575 LogicalResult 576 matchAndRewrite(memref::PrefetchOp prefetchOp, OpAdaptor adaptor, 577 ConversionPatternRewriter &rewriter) const override { 578 auto type = prefetchOp.getMemRefType(); 579 auto loc = prefetchOp.getLoc(); 580 581 Value dataPtr = getStridedElementPtr(loc, type, adaptor.memref(), 582 adaptor.indices(), rewriter); 583 584 // Replace with llvm.prefetch. 585 auto llvmI32Type = typeConverter->convertType(rewriter.getIntegerType(32)); 586 auto isWrite = rewriter.create<LLVM::ConstantOp>( 587 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isWrite())); 588 auto localityHint = rewriter.create<LLVM::ConstantOp>( 589 loc, llvmI32Type, 590 rewriter.getI32IntegerAttr(prefetchOp.localityHint())); 591 auto isData = rewriter.create<LLVM::ConstantOp>( 592 loc, llvmI32Type, rewriter.getI32IntegerAttr(prefetchOp.isDataCache())); 593 594 rewriter.replaceOpWithNewOp<LLVM::Prefetch>(prefetchOp, dataPtr, isWrite, 595 localityHint, isData); 596 return success(); 597 } 598 }; 599 600 struct RankOpLowering : public ConvertOpToLLVMPattern<memref::RankOp> { 601 using ConvertOpToLLVMPattern<memref::RankOp>::ConvertOpToLLVMPattern; 602 603 LogicalResult 604 matchAndRewrite(memref::RankOp op, OpAdaptor adaptor, 605 ConversionPatternRewriter &rewriter) const override { 606 Location loc = op.getLoc(); 607 Type operandType = op.memref().getType(); 608 if (auto unrankedMemRefType = operandType.dyn_cast<UnrankedMemRefType>()) { 609 UnrankedMemRefDescriptor desc(adaptor.memref()); 610 rewriter.replaceOp(op, {desc.rank(rewriter, loc)}); 611 return success(); 612 } 613 if (auto rankedMemRefType = operandType.dyn_cast<MemRefType>()) { 614 rewriter.replaceOp( 615 op, {createIndexConstant(rewriter, loc, rankedMemRefType.getRank())}); 616 return success(); 617 } 618 return failure(); 619 } 620 }; 621 622 struct MemRefCastOpLowering : public ConvertOpToLLVMPattern<memref::CastOp> { 623 using ConvertOpToLLVMPattern<memref::CastOp>::ConvertOpToLLVMPattern; 624 625 LogicalResult match(memref::CastOp memRefCastOp) const override { 626 Type srcType = memRefCastOp.getOperand().getType(); 627 Type dstType = memRefCastOp.getType(); 628 629 // memref::CastOp reduce to bitcast in the ranked MemRef case and can be 630 // used for type erasure. For now they must preserve underlying element type 631 // and require source and result type to have the same rank. Therefore, 632 // perform a sanity check that the underlying structs are the same. Once op 633 // semantics are relaxed we can revisit. 634 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 635 return success(typeConverter->convertType(srcType) == 636 typeConverter->convertType(dstType)); 637 638 // At least one of the operands is unranked type 639 assert(srcType.isa<UnrankedMemRefType>() || 640 dstType.isa<UnrankedMemRefType>()); 641 642 // Unranked to unranked cast is disallowed 643 return !(srcType.isa<UnrankedMemRefType>() && 644 dstType.isa<UnrankedMemRefType>()) 645 ? success() 646 : failure(); 647 } 648 649 void rewrite(memref::CastOp memRefCastOp, OpAdaptor adaptor, 650 ConversionPatternRewriter &rewriter) const override { 651 auto srcType = memRefCastOp.getOperand().getType(); 652 auto dstType = memRefCastOp.getType(); 653 auto targetStructType = typeConverter->convertType(memRefCastOp.getType()); 654 auto loc = memRefCastOp.getLoc(); 655 656 // For ranked/ranked case, just keep the original descriptor. 657 if (srcType.isa<MemRefType>() && dstType.isa<MemRefType>()) 658 return rewriter.replaceOp(memRefCastOp, {adaptor.source()}); 659 660 if (srcType.isa<MemRefType>() && dstType.isa<UnrankedMemRefType>()) { 661 // Casting ranked to unranked memref type 662 // Set the rank in the destination from the memref type 663 // Allocate space on the stack and copy the src memref descriptor 664 // Set the ptr in the destination to the stack space 665 auto srcMemRefType = srcType.cast<MemRefType>(); 666 int64_t rank = srcMemRefType.getRank(); 667 // ptr = AllocaOp sizeof(MemRefDescriptor) 668 auto ptr = getTypeConverter()->promoteOneMemRefDescriptor( 669 loc, adaptor.source(), rewriter); 670 // voidptr = BitCastOp srcType* to void* 671 auto voidPtr = 672 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 673 .getResult(); 674 // rank = ConstantOp srcRank 675 auto rankVal = rewriter.create<LLVM::ConstantOp>( 676 loc, typeConverter->convertType(rewriter.getIntegerType(64)), 677 rewriter.getI64IntegerAttr(rank)); 678 // undef = UndefOp 679 UnrankedMemRefDescriptor memRefDesc = 680 UnrankedMemRefDescriptor::undef(rewriter, loc, targetStructType); 681 // d1 = InsertValueOp undef, rank, 0 682 memRefDesc.setRank(rewriter, loc, rankVal); 683 // d2 = InsertValueOp d1, voidptr, 1 684 memRefDesc.setMemRefDescPtr(rewriter, loc, voidPtr); 685 rewriter.replaceOp(memRefCastOp, (Value)memRefDesc); 686 687 } else if (srcType.isa<UnrankedMemRefType>() && dstType.isa<MemRefType>()) { 688 // Casting from unranked type to ranked. 689 // The operation is assumed to be doing a correct cast. If the destination 690 // type mismatches the unranked the type, it is undefined behavior. 691 UnrankedMemRefDescriptor memRefDesc(adaptor.source()); 692 // ptr = ExtractValueOp src, 1 693 auto ptr = memRefDesc.memRefDescPtr(rewriter, loc); 694 // castPtr = BitCastOp i8* to structTy* 695 auto castPtr = 696 rewriter 697 .create<LLVM::BitcastOp>( 698 loc, LLVM::LLVMPointerType::get(targetStructType), ptr) 699 .getResult(); 700 // struct = LoadOp castPtr 701 auto loadOp = rewriter.create<LLVM::LoadOp>(loc, castPtr); 702 rewriter.replaceOp(memRefCastOp, loadOp.getResult()); 703 } else { 704 llvm_unreachable("Unsupported unranked memref to unranked memref cast"); 705 } 706 } 707 }; 708 709 struct MemRefCopyOpLowering : public ConvertOpToLLVMPattern<memref::CopyOp> { 710 using ConvertOpToLLVMPattern<memref::CopyOp>::ConvertOpToLLVMPattern; 711 712 LogicalResult 713 matchAndRewrite(memref::CopyOp op, OpAdaptor adaptor, 714 ConversionPatternRewriter &rewriter) const override { 715 auto loc = op.getLoc(); 716 auto srcType = op.source().getType().cast<BaseMemRefType>(); 717 auto targetType = op.target().getType().cast<BaseMemRefType>(); 718 719 // First make sure we have an unranked memref descriptor representation. 720 auto makeUnranked = [&, this](Value ranked, BaseMemRefType type) { 721 auto rank = rewriter.create<LLVM::ConstantOp>( 722 loc, getIndexType(), rewriter.getIndexAttr(type.getRank())); 723 auto *typeConverter = getTypeConverter(); 724 auto ptr = 725 typeConverter->promoteOneMemRefDescriptor(loc, ranked, rewriter); 726 auto voidPtr = 727 rewriter.create<LLVM::BitcastOp>(loc, getVoidPtrType(), ptr) 728 .getResult(); 729 auto unrankedType = 730 UnrankedMemRefType::get(type.getElementType(), type.getMemorySpace()); 731 return UnrankedMemRefDescriptor::pack(rewriter, loc, *typeConverter, 732 unrankedType, 733 ValueRange{rank, voidPtr}); 734 }; 735 736 Value unrankedSource = srcType.hasRank() 737 ? makeUnranked(adaptor.source(), srcType) 738 : adaptor.source(); 739 Value unrankedTarget = targetType.hasRank() 740 ? makeUnranked(adaptor.target(), targetType) 741 : adaptor.target(); 742 743 // Now promote the unranked descriptors to the stack. 744 auto one = rewriter.create<LLVM::ConstantOp>(loc, getIndexType(), 745 rewriter.getIndexAttr(1)); 746 auto promote = [&](Value desc) { 747 auto ptrType = LLVM::LLVMPointerType::get(desc.getType()); 748 auto allocated = 749 rewriter.create<LLVM::AllocaOp>(loc, ptrType, ValueRange{one}); 750 rewriter.create<LLVM::StoreOp>(loc, desc, allocated); 751 return allocated; 752 }; 753 754 auto sourcePtr = promote(unrankedSource); 755 auto targetPtr = promote(unrankedTarget); 756 757 auto elemSize = rewriter.create<LLVM::ConstantOp>( 758 loc, getIndexType(), 759 rewriter.getIndexAttr(srcType.getElementTypeBitWidth() / 8)); 760 auto copyFn = LLVM::lookupOrCreateMemRefCopyFn( 761 op->getParentOfType<ModuleOp>(), getIndexType(), sourcePtr.getType()); 762 rewriter.create<LLVM::CallOp>(loc, copyFn, 763 ValueRange{elemSize, sourcePtr, targetPtr}); 764 rewriter.eraseOp(op); 765 766 return success(); 767 } 768 }; 769 770 /// Extracts allocated, aligned pointers and offset from a ranked or unranked 771 /// memref type. In unranked case, the fields are extracted from the underlying 772 /// ranked descriptor. 773 static void extractPointersAndOffset(Location loc, 774 ConversionPatternRewriter &rewriter, 775 LLVMTypeConverter &typeConverter, 776 Value originalOperand, 777 Value convertedOperand, 778 Value *allocatedPtr, Value *alignedPtr, 779 Value *offset = nullptr) { 780 Type operandType = originalOperand.getType(); 781 if (operandType.isa<MemRefType>()) { 782 MemRefDescriptor desc(convertedOperand); 783 *allocatedPtr = desc.allocatedPtr(rewriter, loc); 784 *alignedPtr = desc.alignedPtr(rewriter, loc); 785 if (offset != nullptr) 786 *offset = desc.offset(rewriter, loc); 787 return; 788 } 789 790 unsigned memorySpace = 791 operandType.cast<UnrankedMemRefType>().getMemorySpaceAsInt(); 792 Type elementType = operandType.cast<UnrankedMemRefType>().getElementType(); 793 Type llvmElementType = typeConverter.convertType(elementType); 794 Type elementPtrPtrType = LLVM::LLVMPointerType::get( 795 LLVM::LLVMPointerType::get(llvmElementType, memorySpace)); 796 797 // Extract pointer to the underlying ranked memref descriptor and cast it to 798 // ElemType**. 799 UnrankedMemRefDescriptor unrankedDesc(convertedOperand); 800 Value underlyingDescPtr = unrankedDesc.memRefDescPtr(rewriter, loc); 801 802 *allocatedPtr = UnrankedMemRefDescriptor::allocatedPtr( 803 rewriter, loc, underlyingDescPtr, elementPtrPtrType); 804 *alignedPtr = UnrankedMemRefDescriptor::alignedPtr( 805 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 806 if (offset != nullptr) { 807 *offset = UnrankedMemRefDescriptor::offset( 808 rewriter, loc, typeConverter, underlyingDescPtr, elementPtrPtrType); 809 } 810 } 811 812 struct MemRefReinterpretCastOpLowering 813 : public ConvertOpToLLVMPattern<memref::ReinterpretCastOp> { 814 using ConvertOpToLLVMPattern< 815 memref::ReinterpretCastOp>::ConvertOpToLLVMPattern; 816 817 LogicalResult 818 matchAndRewrite(memref::ReinterpretCastOp castOp, OpAdaptor adaptor, 819 ConversionPatternRewriter &rewriter) const override { 820 Type srcType = castOp.source().getType(); 821 822 Value descriptor; 823 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, castOp, 824 adaptor, &descriptor))) 825 return failure(); 826 rewriter.replaceOp(castOp, {descriptor}); 827 return success(); 828 } 829 830 private: 831 LogicalResult convertSourceMemRefToDescriptor( 832 ConversionPatternRewriter &rewriter, Type srcType, 833 memref::ReinterpretCastOp castOp, 834 memref::ReinterpretCastOp::Adaptor adaptor, Value *descriptor) const { 835 MemRefType targetMemRefType = 836 castOp.getResult().getType().cast<MemRefType>(); 837 auto llvmTargetDescriptorTy = typeConverter->convertType(targetMemRefType) 838 .dyn_cast_or_null<LLVM::LLVMStructType>(); 839 if (!llvmTargetDescriptorTy) 840 return failure(); 841 842 // Create descriptor. 843 Location loc = castOp.getLoc(); 844 auto desc = MemRefDescriptor::undef(rewriter, loc, llvmTargetDescriptorTy); 845 846 // Set allocated and aligned pointers. 847 Value allocatedPtr, alignedPtr; 848 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 849 castOp.source(), adaptor.source(), &allocatedPtr, 850 &alignedPtr); 851 desc.setAllocatedPtr(rewriter, loc, allocatedPtr); 852 desc.setAlignedPtr(rewriter, loc, alignedPtr); 853 854 // Set offset. 855 if (castOp.isDynamicOffset(0)) 856 desc.setOffset(rewriter, loc, adaptor.offsets()[0]); 857 else 858 desc.setConstantOffset(rewriter, loc, castOp.getStaticOffset(0)); 859 860 // Set sizes and strides. 861 unsigned dynSizeId = 0; 862 unsigned dynStrideId = 0; 863 for (unsigned i = 0, e = targetMemRefType.getRank(); i < e; ++i) { 864 if (castOp.isDynamicSize(i)) 865 desc.setSize(rewriter, loc, i, adaptor.sizes()[dynSizeId++]); 866 else 867 desc.setConstantSize(rewriter, loc, i, castOp.getStaticSize(i)); 868 869 if (castOp.isDynamicStride(i)) 870 desc.setStride(rewriter, loc, i, adaptor.strides()[dynStrideId++]); 871 else 872 desc.setConstantStride(rewriter, loc, i, castOp.getStaticStride(i)); 873 } 874 *descriptor = desc; 875 return success(); 876 } 877 }; 878 879 struct MemRefReshapeOpLowering 880 : public ConvertOpToLLVMPattern<memref::ReshapeOp> { 881 using ConvertOpToLLVMPattern<memref::ReshapeOp>::ConvertOpToLLVMPattern; 882 883 LogicalResult 884 matchAndRewrite(memref::ReshapeOp reshapeOp, OpAdaptor adaptor, 885 ConversionPatternRewriter &rewriter) const override { 886 Type srcType = reshapeOp.source().getType(); 887 888 Value descriptor; 889 if (failed(convertSourceMemRefToDescriptor(rewriter, srcType, reshapeOp, 890 adaptor, &descriptor))) 891 return failure(); 892 rewriter.replaceOp(reshapeOp, {descriptor}); 893 return success(); 894 } 895 896 private: 897 LogicalResult 898 convertSourceMemRefToDescriptor(ConversionPatternRewriter &rewriter, 899 Type srcType, memref::ReshapeOp reshapeOp, 900 memref::ReshapeOp::Adaptor adaptor, 901 Value *descriptor) const { 902 // Conversion for statically-known shape args is performed via 903 // `memref_reinterpret_cast`. 904 auto shapeMemRefType = reshapeOp.shape().getType().cast<MemRefType>(); 905 if (shapeMemRefType.hasStaticShape()) 906 return failure(); 907 908 // The shape is a rank-1 tensor with unknown length. 909 Location loc = reshapeOp.getLoc(); 910 MemRefDescriptor shapeDesc(adaptor.shape()); 911 Value resultRank = shapeDesc.size(rewriter, loc, 0); 912 913 // Extract address space and element type. 914 auto targetType = 915 reshapeOp.getResult().getType().cast<UnrankedMemRefType>(); 916 unsigned addressSpace = targetType.getMemorySpaceAsInt(); 917 Type elementType = targetType.getElementType(); 918 919 // Create the unranked memref descriptor that holds the ranked one. The 920 // inner descriptor is allocated on stack. 921 auto targetDesc = UnrankedMemRefDescriptor::undef( 922 rewriter, loc, typeConverter->convertType(targetType)); 923 targetDesc.setRank(rewriter, loc, resultRank); 924 SmallVector<Value, 4> sizes; 925 UnrankedMemRefDescriptor::computeSizes(rewriter, loc, *getTypeConverter(), 926 targetDesc, sizes); 927 Value underlyingDescPtr = rewriter.create<LLVM::AllocaOp>( 928 loc, getVoidPtrType(), sizes.front(), llvm::None); 929 targetDesc.setMemRefDescPtr(rewriter, loc, underlyingDescPtr); 930 931 // Extract pointers and offset from the source memref. 932 Value allocatedPtr, alignedPtr, offset; 933 extractPointersAndOffset(loc, rewriter, *getTypeConverter(), 934 reshapeOp.source(), adaptor.source(), 935 &allocatedPtr, &alignedPtr, &offset); 936 937 // Set pointers and offset. 938 Type llvmElementType = typeConverter->convertType(elementType); 939 auto elementPtrPtrType = LLVM::LLVMPointerType::get( 940 LLVM::LLVMPointerType::get(llvmElementType, addressSpace)); 941 UnrankedMemRefDescriptor::setAllocatedPtr(rewriter, loc, underlyingDescPtr, 942 elementPtrPtrType, allocatedPtr); 943 UnrankedMemRefDescriptor::setAlignedPtr(rewriter, loc, *getTypeConverter(), 944 underlyingDescPtr, 945 elementPtrPtrType, alignedPtr); 946 UnrankedMemRefDescriptor::setOffset(rewriter, loc, *getTypeConverter(), 947 underlyingDescPtr, elementPtrPtrType, 948 offset); 949 950 // Use the offset pointer as base for further addressing. Copy over the new 951 // shape and compute strides. For this, we create a loop from rank-1 to 0. 952 Value targetSizesBase = UnrankedMemRefDescriptor::sizeBasePtr( 953 rewriter, loc, *getTypeConverter(), underlyingDescPtr, 954 elementPtrPtrType); 955 Value targetStridesBase = UnrankedMemRefDescriptor::strideBasePtr( 956 rewriter, loc, *getTypeConverter(), targetSizesBase, resultRank); 957 Value shapeOperandPtr = shapeDesc.alignedPtr(rewriter, loc); 958 Value oneIndex = createIndexConstant(rewriter, loc, 1); 959 Value resultRankMinusOne = 960 rewriter.create<LLVM::SubOp>(loc, resultRank, oneIndex); 961 962 Block *initBlock = rewriter.getInsertionBlock(); 963 Type indexType = getTypeConverter()->getIndexType(); 964 Block::iterator remainingOpsIt = std::next(rewriter.getInsertionPoint()); 965 966 Block *condBlock = rewriter.createBlock(initBlock->getParent(), {}, 967 {indexType, indexType}); 968 969 // Move the remaining initBlock ops to condBlock. 970 Block *remainingBlock = rewriter.splitBlock(initBlock, remainingOpsIt); 971 rewriter.mergeBlocks(remainingBlock, condBlock, ValueRange()); 972 973 rewriter.setInsertionPointToEnd(initBlock); 974 rewriter.create<LLVM::BrOp>(loc, ValueRange({resultRankMinusOne, oneIndex}), 975 condBlock); 976 rewriter.setInsertionPointToStart(condBlock); 977 Value indexArg = condBlock->getArgument(0); 978 Value strideArg = condBlock->getArgument(1); 979 980 Value zeroIndex = createIndexConstant(rewriter, loc, 0); 981 Value pred = rewriter.create<LLVM::ICmpOp>( 982 loc, IntegerType::get(rewriter.getContext(), 1), 983 LLVM::ICmpPredicate::sge, indexArg, zeroIndex); 984 985 Block *bodyBlock = 986 rewriter.splitBlock(condBlock, rewriter.getInsertionPoint()); 987 rewriter.setInsertionPointToStart(bodyBlock); 988 989 // Copy size from shape to descriptor. 990 Type llvmIndexPtrType = LLVM::LLVMPointerType::get(indexType); 991 Value sizeLoadGep = rewriter.create<LLVM::GEPOp>( 992 loc, llvmIndexPtrType, shapeOperandPtr, ValueRange{indexArg}); 993 Value size = rewriter.create<LLVM::LoadOp>(loc, sizeLoadGep); 994 UnrankedMemRefDescriptor::setSize(rewriter, loc, *getTypeConverter(), 995 targetSizesBase, indexArg, size); 996 997 // Write stride value and compute next one. 998 UnrankedMemRefDescriptor::setStride(rewriter, loc, *getTypeConverter(), 999 targetStridesBase, indexArg, strideArg); 1000 Value nextStride = rewriter.create<LLVM::MulOp>(loc, strideArg, size); 1001 1002 // Decrement loop counter and branch back. 1003 Value decrement = rewriter.create<LLVM::SubOp>(loc, indexArg, oneIndex); 1004 rewriter.create<LLVM::BrOp>(loc, ValueRange({decrement, nextStride}), 1005 condBlock); 1006 1007 Block *remainder = 1008 rewriter.splitBlock(bodyBlock, rewriter.getInsertionPoint()); 1009 1010 // Hook up the cond exit to the remainder. 1011 rewriter.setInsertionPointToEnd(condBlock); 1012 rewriter.create<LLVM::CondBrOp>(loc, pred, bodyBlock, llvm::None, remainder, 1013 llvm::None); 1014 1015 // Reset position to beginning of new remainder block. 1016 rewriter.setInsertionPointToStart(remainder); 1017 1018 *descriptor = targetDesc; 1019 return success(); 1020 } 1021 }; 1022 1023 /// Helper function to convert a vector of `OpFoldResult`s into a vector of 1024 /// `Value`s. 1025 static SmallVector<Value> getAsValues(OpBuilder &b, Location loc, 1026 Type &llvmIndexType, 1027 ArrayRef<OpFoldResult> valueOrAttrVec) { 1028 return llvm::to_vector<4>( 1029 llvm::map_range(valueOrAttrVec, [&](OpFoldResult value) -> Value { 1030 if (auto attr = value.dyn_cast<Attribute>()) 1031 return b.create<LLVM::ConstantOp>(loc, llvmIndexType, attr); 1032 return value.get<Value>(); 1033 })); 1034 } 1035 1036 /// Compute a map that for a given dimension of the expanded type gives the 1037 /// dimension in the collapsed type it maps to. Essentially its the inverse of 1038 /// the `reassocation` maps. 1039 static DenseMap<int64_t, int64_t> 1040 getExpandedDimToCollapsedDimMap(ArrayRef<ReassociationIndices> reassociation) { 1041 llvm::DenseMap<int64_t, int64_t> expandedDimToCollapsedDim; 1042 for (auto &en : enumerate(reassociation)) { 1043 for (auto dim : en.value()) 1044 expandedDimToCollapsedDim[dim] = en.index(); 1045 } 1046 return expandedDimToCollapsedDim; 1047 } 1048 1049 static OpFoldResult 1050 getExpandedOutputDimSize(OpBuilder &b, Location loc, Type &llvmIndexType, 1051 int64_t outDimIndex, ArrayRef<int64_t> outStaticShape, 1052 MemRefDescriptor &inDesc, 1053 ArrayRef<int64_t> inStaticShape, 1054 ArrayRef<ReassociationIndices> reassocation, 1055 DenseMap<int64_t, int64_t> &outDimToInDimMap) { 1056 int64_t outDimSize = outStaticShape[outDimIndex]; 1057 if (!ShapedType::isDynamic(outDimSize)) 1058 return b.getIndexAttr(outDimSize); 1059 1060 // Calculate the multiplication of all the out dim sizes except the 1061 // current dim. 1062 int64_t inDimIndex = outDimToInDimMap[outDimIndex]; 1063 int64_t otherDimSizesMul = 1; 1064 for (auto otherDimIndex : reassocation[inDimIndex]) { 1065 if (otherDimIndex == static_cast<unsigned>(outDimIndex)) 1066 continue; 1067 int64_t otherDimSize = outStaticShape[otherDimIndex]; 1068 assert(!ShapedType::isDynamic(otherDimSize) && 1069 "single dimension cannot be expanded into multiple dynamic " 1070 "dimensions"); 1071 otherDimSizesMul *= otherDimSize; 1072 } 1073 1074 // outDimSize = inDimSize / otherOutDimSizesMul 1075 int64_t inDimSize = inStaticShape[inDimIndex]; 1076 Value inDimSizeDynamic = 1077 ShapedType::isDynamic(inDimSize) 1078 ? inDesc.size(b, loc, inDimIndex) 1079 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1080 b.getIndexAttr(inDimSize)); 1081 Value outDimSizeDynamic = b.create<LLVM::SDivOp>( 1082 loc, inDimSizeDynamic, 1083 b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1084 b.getIndexAttr(otherDimSizesMul))); 1085 return outDimSizeDynamic; 1086 } 1087 1088 static OpFoldResult getCollapsedOutputDimSize( 1089 OpBuilder &b, Location loc, Type &llvmIndexType, int64_t outDimIndex, 1090 int64_t outDimSize, ArrayRef<int64_t> inStaticShape, 1091 MemRefDescriptor &inDesc, ArrayRef<ReassociationIndices> reassocation) { 1092 if (!ShapedType::isDynamic(outDimSize)) 1093 return b.getIndexAttr(outDimSize); 1094 1095 Value c1 = b.create<LLVM::ConstantOp>(loc, llvmIndexType, b.getIndexAttr(1)); 1096 Value outDimSizeDynamic = c1; 1097 for (auto inDimIndex : reassocation[outDimIndex]) { 1098 int64_t inDimSize = inStaticShape[inDimIndex]; 1099 Value inDimSizeDynamic = 1100 ShapedType::isDynamic(inDimSize) 1101 ? inDesc.size(b, loc, inDimIndex) 1102 : b.create<LLVM::ConstantOp>(loc, llvmIndexType, 1103 b.getIndexAttr(inDimSize)); 1104 outDimSizeDynamic = 1105 b.create<LLVM::MulOp>(loc, outDimSizeDynamic, inDimSizeDynamic); 1106 } 1107 return outDimSizeDynamic; 1108 } 1109 1110 static SmallVector<OpFoldResult, 4> 1111 getCollapsedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1112 ArrayRef<ReassociationIndices> reassocation, 1113 ArrayRef<int64_t> inStaticShape, 1114 MemRefDescriptor &inDesc, 1115 ArrayRef<int64_t> outStaticShape) { 1116 return llvm::to_vector<4>(llvm::map_range( 1117 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1118 return getCollapsedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1119 outStaticShape[outDimIndex], 1120 inStaticShape, inDesc, reassocation); 1121 })); 1122 } 1123 1124 static SmallVector<OpFoldResult, 4> 1125 getExpandedOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1126 ArrayRef<ReassociationIndices> reassocation, 1127 ArrayRef<int64_t> inStaticShape, 1128 MemRefDescriptor &inDesc, 1129 ArrayRef<int64_t> outStaticShape) { 1130 DenseMap<int64_t, int64_t> outDimToInDimMap = 1131 getExpandedDimToCollapsedDimMap(reassocation); 1132 return llvm::to_vector<4>(llvm::map_range( 1133 llvm::seq<int64_t>(0, outStaticShape.size()), [&](int64_t outDimIndex) { 1134 return getExpandedOutputDimSize(b, loc, llvmIndexType, outDimIndex, 1135 outStaticShape, inDesc, inStaticShape, 1136 reassocation, outDimToInDimMap); 1137 })); 1138 } 1139 1140 static SmallVector<Value> 1141 getDynamicOutputShape(OpBuilder &b, Location loc, Type &llvmIndexType, 1142 ArrayRef<ReassociationIndices> reassocation, 1143 ArrayRef<int64_t> inStaticShape, MemRefDescriptor &inDesc, 1144 ArrayRef<int64_t> outStaticShape) { 1145 return outStaticShape.size() < inStaticShape.size() 1146 ? getAsValues(b, loc, llvmIndexType, 1147 getCollapsedOutputShape(b, loc, llvmIndexType, 1148 reassocation, inStaticShape, 1149 inDesc, outStaticShape)) 1150 : getAsValues(b, loc, llvmIndexType, 1151 getExpandedOutputShape(b, loc, llvmIndexType, 1152 reassocation, inStaticShape, 1153 inDesc, outStaticShape)); 1154 } 1155 1156 // ReshapeOp creates a new view descriptor of the proper rank. 1157 // For now, the only conversion supported is for target MemRef with static sizes 1158 // and strides. 1159 template <typename ReshapeOp> 1160 class ReassociatingReshapeOpConversion 1161 : public ConvertOpToLLVMPattern<ReshapeOp> { 1162 public: 1163 using ConvertOpToLLVMPattern<ReshapeOp>::ConvertOpToLLVMPattern; 1164 using ReshapeOpAdaptor = typename ReshapeOp::Adaptor; 1165 1166 LogicalResult 1167 matchAndRewrite(ReshapeOp reshapeOp, typename ReshapeOp::Adaptor adaptor, 1168 ConversionPatternRewriter &rewriter) const override { 1169 MemRefType dstType = reshapeOp.getResultType(); 1170 MemRefType srcType = reshapeOp.getSrcType(); 1171 if (!srcType.getLayout().isIdentity() || 1172 !dstType.getLayout().isIdentity()) { 1173 return rewriter.notifyMatchFailure(reshapeOp, 1174 "only empty layout map is supported"); 1175 } 1176 1177 int64_t offset; 1178 SmallVector<int64_t, 4> strides; 1179 if (failed(getStridesAndOffset(dstType, strides, offset))) { 1180 return rewriter.notifyMatchFailure( 1181 reshapeOp, "failed to get stride and offset exprs"); 1182 } 1183 1184 MemRefDescriptor srcDesc(adaptor.src()); 1185 Location loc = reshapeOp->getLoc(); 1186 auto dstDesc = MemRefDescriptor::undef( 1187 rewriter, loc, this->typeConverter->convertType(dstType)); 1188 dstDesc.setAllocatedPtr(rewriter, loc, srcDesc.allocatedPtr(rewriter, loc)); 1189 dstDesc.setAlignedPtr(rewriter, loc, srcDesc.alignedPtr(rewriter, loc)); 1190 dstDesc.setOffset(rewriter, loc, srcDesc.offset(rewriter, loc)); 1191 1192 ArrayRef<int64_t> srcStaticShape = srcType.getShape(); 1193 ArrayRef<int64_t> dstStaticShape = dstType.getShape(); 1194 Type llvmIndexType = 1195 this->typeConverter->convertType(rewriter.getIndexType()); 1196 SmallVector<Value> dstShape = getDynamicOutputShape( 1197 rewriter, loc, llvmIndexType, reshapeOp.getReassociationIndices(), 1198 srcStaticShape, srcDesc, dstStaticShape); 1199 for (auto &en : llvm::enumerate(dstShape)) 1200 dstDesc.setSize(rewriter, loc, en.index(), en.value()); 1201 1202 auto isStaticStride = [](int64_t stride) { 1203 return !ShapedType::isDynamicStrideOrOffset(stride); 1204 }; 1205 if (llvm::all_of(strides, isStaticStride)) { 1206 for (auto &en : llvm::enumerate(strides)) 1207 dstDesc.setConstantStride(rewriter, loc, en.index(), en.value()); 1208 } else { 1209 Value c1 = rewriter.create<LLVM::ConstantOp>(loc, llvmIndexType, 1210 rewriter.getIndexAttr(1)); 1211 Value stride = c1; 1212 for (auto dimIndex : 1213 llvm::reverse(llvm::seq<int64_t>(0, dstShape.size()))) { 1214 dstDesc.setStride(rewriter, loc, dimIndex, stride); 1215 stride = rewriter.create<LLVM::MulOp>(loc, dstShape[dimIndex], stride); 1216 } 1217 } 1218 rewriter.replaceOp(reshapeOp, {dstDesc}); 1219 return success(); 1220 } 1221 }; 1222 1223 /// Conversion pattern that transforms a subview op into: 1224 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1225 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1226 /// and stride. 1227 /// The subview op is replaced by the descriptor. 1228 struct SubViewOpLowering : public ConvertOpToLLVMPattern<memref::SubViewOp> { 1229 using ConvertOpToLLVMPattern<memref::SubViewOp>::ConvertOpToLLVMPattern; 1230 1231 LogicalResult 1232 matchAndRewrite(memref::SubViewOp subViewOp, OpAdaptor adaptor, 1233 ConversionPatternRewriter &rewriter) const override { 1234 auto loc = subViewOp.getLoc(); 1235 1236 auto sourceMemRefType = subViewOp.source().getType().cast<MemRefType>(); 1237 auto sourceElementTy = 1238 typeConverter->convertType(sourceMemRefType.getElementType()); 1239 1240 auto viewMemRefType = subViewOp.getType(); 1241 auto inferredType = memref::SubViewOp::inferResultType( 1242 subViewOp.getSourceType(), 1243 extractFromI64ArrayAttr(subViewOp.static_offsets()), 1244 extractFromI64ArrayAttr(subViewOp.static_sizes()), 1245 extractFromI64ArrayAttr(subViewOp.static_strides())) 1246 .cast<MemRefType>(); 1247 auto targetElementTy = 1248 typeConverter->convertType(viewMemRefType.getElementType()); 1249 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1250 if (!sourceElementTy || !targetDescTy || !targetElementTy || 1251 !LLVM::isCompatibleType(sourceElementTy) || 1252 !LLVM::isCompatibleType(targetElementTy) || 1253 !LLVM::isCompatibleType(targetDescTy)) 1254 return failure(); 1255 1256 // Extract the offset and strides from the type. 1257 int64_t offset; 1258 SmallVector<int64_t, 4> strides; 1259 auto successStrides = getStridesAndOffset(inferredType, strides, offset); 1260 if (failed(successStrides)) 1261 return failure(); 1262 1263 // Create the descriptor. 1264 if (!LLVM::isCompatibleType(adaptor.getOperands().front().getType())) 1265 return failure(); 1266 MemRefDescriptor sourceMemRef(adaptor.getOperands().front()); 1267 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1268 1269 // Copy the buffer pointer from the old descriptor to the new one. 1270 Value extracted = sourceMemRef.allocatedPtr(rewriter, loc); 1271 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1272 loc, 1273 LLVM::LLVMPointerType::get(targetElementTy, 1274 viewMemRefType.getMemorySpaceAsInt()), 1275 extracted); 1276 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1277 1278 // Copy the aligned pointer from the old descriptor to the new one. 1279 extracted = sourceMemRef.alignedPtr(rewriter, loc); 1280 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1281 loc, 1282 LLVM::LLVMPointerType::get(targetElementTy, 1283 viewMemRefType.getMemorySpaceAsInt()), 1284 extracted); 1285 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1286 1287 size_t inferredShapeRank = inferredType.getRank(); 1288 size_t resultShapeRank = viewMemRefType.getRank(); 1289 1290 // Extract strides needed to compute offset. 1291 SmallVector<Value, 4> strideValues; 1292 strideValues.reserve(inferredShapeRank); 1293 for (unsigned i = 0; i < inferredShapeRank; ++i) 1294 strideValues.push_back(sourceMemRef.stride(rewriter, loc, i)); 1295 1296 // Offset. 1297 auto llvmIndexType = typeConverter->convertType(rewriter.getIndexType()); 1298 if (!ShapedType::isDynamicStrideOrOffset(offset)) { 1299 targetMemRef.setConstantOffset(rewriter, loc, offset); 1300 } else { 1301 Value baseOffset = sourceMemRef.offset(rewriter, loc); 1302 // `inferredShapeRank` may be larger than the number of offset operands 1303 // because of trailing semantics. In this case, the offset is guaranteed 1304 // to be interpreted as 0 and we can just skip the extra dimensions. 1305 for (unsigned i = 0, e = std::min(inferredShapeRank, 1306 subViewOp.getMixedOffsets().size()); 1307 i < e; ++i) { 1308 Value offset = 1309 // TODO: need OpFoldResult ODS adaptor to clean this up. 1310 subViewOp.isDynamicOffset(i) 1311 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicOffset(i)] 1312 : rewriter.create<LLVM::ConstantOp>( 1313 loc, llvmIndexType, 1314 rewriter.getI64IntegerAttr(subViewOp.getStaticOffset(i))); 1315 Value mul = rewriter.create<LLVM::MulOp>(loc, offset, strideValues[i]); 1316 baseOffset = rewriter.create<LLVM::AddOp>(loc, baseOffset, mul); 1317 } 1318 targetMemRef.setOffset(rewriter, loc, baseOffset); 1319 } 1320 1321 // Update sizes and strides. 1322 SmallVector<OpFoldResult> mixedSizes = subViewOp.getMixedSizes(); 1323 SmallVector<OpFoldResult> mixedStrides = subViewOp.getMixedStrides(); 1324 assert(mixedSizes.size() == mixedStrides.size() && 1325 "expected sizes and strides of equal length"); 1326 llvm::SmallDenseSet<unsigned> unusedDims = subViewOp.getDroppedDims(); 1327 for (int i = inferredShapeRank - 1, j = resultShapeRank - 1; 1328 i >= 0 && j >= 0; --i) { 1329 if (unusedDims.contains(i)) 1330 continue; 1331 1332 // `i` may overflow subViewOp.getMixedSizes because of trailing semantics. 1333 // In this case, the size is guaranteed to be interpreted as Dim and the 1334 // stride as 1. 1335 Value size, stride; 1336 if (static_cast<unsigned>(i) >= mixedSizes.size()) { 1337 // If the static size is available, use it directly. This is similar to 1338 // the folding of dim(constant-op) but removes the need for dim to be 1339 // aware of LLVM constants and for this pass to be aware of std 1340 // constants. 1341 int64_t staticSize = 1342 subViewOp.source().getType().cast<MemRefType>().getShape()[i]; 1343 if (staticSize != ShapedType::kDynamicSize) { 1344 size = rewriter.create<LLVM::ConstantOp>( 1345 loc, llvmIndexType, rewriter.getI64IntegerAttr(staticSize)); 1346 } else { 1347 Value pos = rewriter.create<LLVM::ConstantOp>( 1348 loc, llvmIndexType, rewriter.getI64IntegerAttr(i)); 1349 Value dim = 1350 rewriter.create<memref::DimOp>(loc, subViewOp.source(), pos); 1351 auto cast = rewriter.create<UnrealizedConversionCastOp>( 1352 loc, llvmIndexType, dim); 1353 size = cast.getResult(0); 1354 } 1355 stride = rewriter.create<LLVM::ConstantOp>( 1356 loc, llvmIndexType, rewriter.getI64IntegerAttr(1)); 1357 } else { 1358 // TODO: need OpFoldResult ODS adaptor to clean this up. 1359 size = 1360 subViewOp.isDynamicSize(i) 1361 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicSize(i)] 1362 : rewriter.create<LLVM::ConstantOp>( 1363 loc, llvmIndexType, 1364 rewriter.getI64IntegerAttr(subViewOp.getStaticSize(i))); 1365 if (!ShapedType::isDynamicStrideOrOffset(strides[i])) { 1366 stride = rewriter.create<LLVM::ConstantOp>( 1367 loc, llvmIndexType, rewriter.getI64IntegerAttr(strides[i])); 1368 } else { 1369 stride = 1370 subViewOp.isDynamicStride(i) 1371 ? adaptor.getOperands()[subViewOp.getIndexOfDynamicStride(i)] 1372 : rewriter.create<LLVM::ConstantOp>( 1373 loc, llvmIndexType, 1374 rewriter.getI64IntegerAttr( 1375 subViewOp.getStaticStride(i))); 1376 stride = rewriter.create<LLVM::MulOp>(loc, stride, strideValues[i]); 1377 } 1378 } 1379 targetMemRef.setSize(rewriter, loc, j, size); 1380 targetMemRef.setStride(rewriter, loc, j, stride); 1381 j--; 1382 } 1383 1384 rewriter.replaceOp(subViewOp, {targetMemRef}); 1385 return success(); 1386 } 1387 }; 1388 1389 /// Conversion pattern that transforms a transpose op into: 1390 /// 1. A function entry `alloca` operation to allocate a ViewDescriptor. 1391 /// 2. A load of the ViewDescriptor from the pointer allocated in 1. 1392 /// 3. Updates to the ViewDescriptor to introduce the data ptr, offset, size 1393 /// and stride. Size and stride are permutations of the original values. 1394 /// 4. A store of the resulting ViewDescriptor to the alloca'ed pointer. 1395 /// The transpose op is replaced by the alloca'ed pointer. 1396 class TransposeOpLowering : public ConvertOpToLLVMPattern<memref::TransposeOp> { 1397 public: 1398 using ConvertOpToLLVMPattern<memref::TransposeOp>::ConvertOpToLLVMPattern; 1399 1400 LogicalResult 1401 matchAndRewrite(memref::TransposeOp transposeOp, OpAdaptor adaptor, 1402 ConversionPatternRewriter &rewriter) const override { 1403 auto loc = transposeOp.getLoc(); 1404 MemRefDescriptor viewMemRef(adaptor.in()); 1405 1406 // No permutation, early exit. 1407 if (transposeOp.permutation().isIdentity()) 1408 return rewriter.replaceOp(transposeOp, {viewMemRef}), success(); 1409 1410 auto targetMemRef = MemRefDescriptor::undef( 1411 rewriter, loc, typeConverter->convertType(transposeOp.getShapedType())); 1412 1413 // Copy the base and aligned pointers from the old descriptor to the new 1414 // one. 1415 targetMemRef.setAllocatedPtr(rewriter, loc, 1416 viewMemRef.allocatedPtr(rewriter, loc)); 1417 targetMemRef.setAlignedPtr(rewriter, loc, 1418 viewMemRef.alignedPtr(rewriter, loc)); 1419 1420 // Copy the offset pointer from the old descriptor to the new one. 1421 targetMemRef.setOffset(rewriter, loc, viewMemRef.offset(rewriter, loc)); 1422 1423 // Iterate over the dimensions and apply size/stride permutation. 1424 for (const auto &en : 1425 llvm::enumerate(transposeOp.permutation().getResults())) { 1426 int sourcePos = en.index(); 1427 int targetPos = en.value().cast<AffineDimExpr>().getPosition(); 1428 targetMemRef.setSize(rewriter, loc, targetPos, 1429 viewMemRef.size(rewriter, loc, sourcePos)); 1430 targetMemRef.setStride(rewriter, loc, targetPos, 1431 viewMemRef.stride(rewriter, loc, sourcePos)); 1432 } 1433 1434 rewriter.replaceOp(transposeOp, {targetMemRef}); 1435 return success(); 1436 } 1437 }; 1438 1439 /// Conversion pattern that transforms an op into: 1440 /// 1. An `llvm.mlir.undef` operation to create a memref descriptor 1441 /// 2. Updates to the descriptor to introduce the data ptr, offset, size 1442 /// and stride. 1443 /// The view op is replaced by the descriptor. 1444 struct ViewOpLowering : public ConvertOpToLLVMPattern<memref::ViewOp> { 1445 using ConvertOpToLLVMPattern<memref::ViewOp>::ConvertOpToLLVMPattern; 1446 1447 // Build and return the value for the idx^th shape dimension, either by 1448 // returning the constant shape dimension or counting the proper dynamic size. 1449 Value getSize(ConversionPatternRewriter &rewriter, Location loc, 1450 ArrayRef<int64_t> shape, ValueRange dynamicSizes, 1451 unsigned idx) const { 1452 assert(idx < shape.size()); 1453 if (!ShapedType::isDynamic(shape[idx])) 1454 return createIndexConstant(rewriter, loc, shape[idx]); 1455 // Count the number of dynamic dims in range [0, idx] 1456 unsigned nDynamic = llvm::count_if(shape.take_front(idx), [](int64_t v) { 1457 return ShapedType::isDynamic(v); 1458 }); 1459 return dynamicSizes[nDynamic]; 1460 } 1461 1462 // Build and return the idx^th stride, either by returning the constant stride 1463 // or by computing the dynamic stride from the current `runningStride` and 1464 // `nextSize`. The caller should keep a running stride and update it with the 1465 // result returned by this function. 1466 Value getStride(ConversionPatternRewriter &rewriter, Location loc, 1467 ArrayRef<int64_t> strides, Value nextSize, 1468 Value runningStride, unsigned idx) const { 1469 assert(idx < strides.size()); 1470 if (!MemRefType::isDynamicStrideOrOffset(strides[idx])) 1471 return createIndexConstant(rewriter, loc, strides[idx]); 1472 if (nextSize) 1473 return runningStride 1474 ? rewriter.create<LLVM::MulOp>(loc, runningStride, nextSize) 1475 : nextSize; 1476 assert(!runningStride); 1477 return createIndexConstant(rewriter, loc, 1); 1478 } 1479 1480 LogicalResult 1481 matchAndRewrite(memref::ViewOp viewOp, OpAdaptor adaptor, 1482 ConversionPatternRewriter &rewriter) const override { 1483 auto loc = viewOp.getLoc(); 1484 1485 auto viewMemRefType = viewOp.getType(); 1486 auto targetElementTy = 1487 typeConverter->convertType(viewMemRefType.getElementType()); 1488 auto targetDescTy = typeConverter->convertType(viewMemRefType); 1489 if (!targetDescTy || !targetElementTy || 1490 !LLVM::isCompatibleType(targetElementTy) || 1491 !LLVM::isCompatibleType(targetDescTy)) 1492 return viewOp.emitWarning("Target descriptor type not converted to LLVM"), 1493 failure(); 1494 1495 int64_t offset; 1496 SmallVector<int64_t, 4> strides; 1497 auto successStrides = getStridesAndOffset(viewMemRefType, strides, offset); 1498 if (failed(successStrides)) 1499 return viewOp.emitWarning("cannot cast to non-strided shape"), failure(); 1500 assert(offset == 0 && "expected offset to be 0"); 1501 1502 // Create the descriptor. 1503 MemRefDescriptor sourceMemRef(adaptor.source()); 1504 auto targetMemRef = MemRefDescriptor::undef(rewriter, loc, targetDescTy); 1505 1506 // Field 1: Copy the allocated pointer, used for malloc/free. 1507 Value allocatedPtr = sourceMemRef.allocatedPtr(rewriter, loc); 1508 auto srcMemRefType = viewOp.source().getType().cast<MemRefType>(); 1509 Value bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1510 loc, 1511 LLVM::LLVMPointerType::get(targetElementTy, 1512 srcMemRefType.getMemorySpaceAsInt()), 1513 allocatedPtr); 1514 targetMemRef.setAllocatedPtr(rewriter, loc, bitcastPtr); 1515 1516 // Field 2: Copy the actual aligned pointer to payload. 1517 Value alignedPtr = sourceMemRef.alignedPtr(rewriter, loc); 1518 alignedPtr = rewriter.create<LLVM::GEPOp>(loc, alignedPtr.getType(), 1519 alignedPtr, adaptor.byte_shift()); 1520 bitcastPtr = rewriter.create<LLVM::BitcastOp>( 1521 loc, 1522 LLVM::LLVMPointerType::get(targetElementTy, 1523 srcMemRefType.getMemorySpaceAsInt()), 1524 alignedPtr); 1525 targetMemRef.setAlignedPtr(rewriter, loc, bitcastPtr); 1526 1527 // Field 3: The offset in the resulting type must be 0. This is because of 1528 // the type change: an offset on srcType* may not be expressible as an 1529 // offset on dstType*. 1530 targetMemRef.setOffset(rewriter, loc, 1531 createIndexConstant(rewriter, loc, offset)); 1532 1533 // Early exit for 0-D corner case. 1534 if (viewMemRefType.getRank() == 0) 1535 return rewriter.replaceOp(viewOp, {targetMemRef}), success(); 1536 1537 // Fields 4 and 5: Update sizes and strides. 1538 if (strides.back() != 1) 1539 return viewOp.emitWarning("cannot cast to non-contiguous shape"), 1540 failure(); 1541 Value stride = nullptr, nextSize = nullptr; 1542 for (int i = viewMemRefType.getRank() - 1; i >= 0; --i) { 1543 // Update size. 1544 Value size = 1545 getSize(rewriter, loc, viewMemRefType.getShape(), adaptor.sizes(), i); 1546 targetMemRef.setSize(rewriter, loc, i, size); 1547 // Update stride. 1548 stride = getStride(rewriter, loc, strides, nextSize, stride, i); 1549 targetMemRef.setStride(rewriter, loc, i, stride); 1550 nextSize = size; 1551 } 1552 1553 rewriter.replaceOp(viewOp, {targetMemRef}); 1554 return success(); 1555 } 1556 }; 1557 1558 //===----------------------------------------------------------------------===// 1559 // AtomicRMWOpLowering 1560 //===----------------------------------------------------------------------===// 1561 1562 /// Try to match the kind of a std.atomic_rmw to determine whether to use a 1563 /// lowering to llvm.atomicrmw or fallback to llvm.cmpxchg. 1564 static Optional<LLVM::AtomicBinOp> 1565 matchSimpleAtomicOp(memref::AtomicRMWOp atomicOp) { 1566 switch (atomicOp.kind()) { 1567 case arith::AtomicRMWKind::addf: 1568 return LLVM::AtomicBinOp::fadd; 1569 case arith::AtomicRMWKind::addi: 1570 return LLVM::AtomicBinOp::add; 1571 case arith::AtomicRMWKind::assign: 1572 return LLVM::AtomicBinOp::xchg; 1573 case arith::AtomicRMWKind::maxs: 1574 return LLVM::AtomicBinOp::max; 1575 case arith::AtomicRMWKind::maxu: 1576 return LLVM::AtomicBinOp::umax; 1577 case arith::AtomicRMWKind::mins: 1578 return LLVM::AtomicBinOp::min; 1579 case arith::AtomicRMWKind::minu: 1580 return LLVM::AtomicBinOp::umin; 1581 case arith::AtomicRMWKind::ori: 1582 return LLVM::AtomicBinOp::_or; 1583 case arith::AtomicRMWKind::andi: 1584 return LLVM::AtomicBinOp::_and; 1585 default: 1586 return llvm::None; 1587 } 1588 llvm_unreachable("Invalid AtomicRMWKind"); 1589 } 1590 1591 struct AtomicRMWOpLowering : public LoadStoreOpLowering<memref::AtomicRMWOp> { 1592 using Base::Base; 1593 1594 LogicalResult 1595 matchAndRewrite(memref::AtomicRMWOp atomicOp, OpAdaptor adaptor, 1596 ConversionPatternRewriter &rewriter) const override { 1597 if (failed(match(atomicOp))) 1598 return failure(); 1599 auto maybeKind = matchSimpleAtomicOp(atomicOp); 1600 if (!maybeKind) 1601 return failure(); 1602 auto resultType = adaptor.value().getType(); 1603 auto memRefType = atomicOp.getMemRefType(); 1604 auto dataPtr = 1605 getStridedElementPtr(atomicOp.getLoc(), memRefType, adaptor.memref(), 1606 adaptor.indices(), rewriter); 1607 rewriter.replaceOpWithNewOp<LLVM::AtomicRMWOp>( 1608 atomicOp, resultType, *maybeKind, dataPtr, adaptor.value(), 1609 LLVM::AtomicOrdering::acq_rel); 1610 return success(); 1611 } 1612 }; 1613 1614 } // namespace 1615 1616 void mlir::populateMemRefToLLVMConversionPatterns(LLVMTypeConverter &converter, 1617 RewritePatternSet &patterns) { 1618 // clang-format off 1619 patterns.add< 1620 AllocaOpLowering, 1621 AllocaScopeOpLowering, 1622 AtomicRMWOpLowering, 1623 AssumeAlignmentOpLowering, 1624 DimOpLowering, 1625 GlobalMemrefOpLowering, 1626 GetGlobalMemrefOpLowering, 1627 LoadOpLowering, 1628 MemRefCastOpLowering, 1629 MemRefCopyOpLowering, 1630 MemRefReinterpretCastOpLowering, 1631 MemRefReshapeOpLowering, 1632 PrefetchOpLowering, 1633 RankOpLowering, 1634 ReassociatingReshapeOpConversion<memref::ExpandShapeOp>, 1635 ReassociatingReshapeOpConversion<memref::CollapseShapeOp>, 1636 StoreOpLowering, 1637 SubViewOpLowering, 1638 TransposeOpLowering, 1639 ViewOpLowering>(converter); 1640 // clang-format on 1641 auto allocLowering = converter.getOptions().allocLowering; 1642 if (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc) 1643 patterns.add<AlignedAllocOpLowering, DeallocOpLowering>(converter); 1644 else if (allocLowering == LowerToLLVMOptions::AllocLowering::Malloc) 1645 patterns.add<AllocOpLowering, DeallocOpLowering>(converter); 1646 } 1647 1648 namespace { 1649 struct MemRefToLLVMPass : public ConvertMemRefToLLVMBase<MemRefToLLVMPass> { 1650 MemRefToLLVMPass() = default; 1651 1652 void runOnOperation() override { 1653 Operation *op = getOperation(); 1654 const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); 1655 LowerToLLVMOptions options(&getContext(), 1656 dataLayoutAnalysis.getAtOrAbove(op)); 1657 options.allocLowering = 1658 (useAlignedAlloc ? LowerToLLVMOptions::AllocLowering::AlignedAlloc 1659 : LowerToLLVMOptions::AllocLowering::Malloc); 1660 if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) 1661 options.overrideIndexBitwidth(indexBitwidth); 1662 1663 LLVMTypeConverter typeConverter(&getContext(), options, 1664 &dataLayoutAnalysis); 1665 RewritePatternSet patterns(&getContext()); 1666 populateMemRefToLLVMConversionPatterns(typeConverter, patterns); 1667 LLVMConversionTarget target(getContext()); 1668 target.addLegalOp<FuncOp>(); 1669 if (failed(applyPartialConversion(op, target, std::move(patterns)))) 1670 signalPassFailure(); 1671 } 1672 }; 1673 } // namespace 1674 1675 std::unique_ptr<Pass> mlir::createMemRefToLLVMPass() { 1676 return std::make_unique<MemRefToLLVMPass>(); 1677 } 1678