1 //===- ConvertLaunchFuncToGpuRuntimeCalls.cpp - MLIR GPU lowering passes --===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements a pass to convert gpu.launch_func op into a sequence of
10 // GPU runtime calls. As most of GPU runtimes does not have a stable published
11 // ABI, this pass uses a slim runtime layer that builds on top of the public
12 // API from GPU runtime headers.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "mlir/Conversion/GPUCommon/GPUCommonPass.h"
17 
18 #include "../PassDetail.h"
19 #include "mlir/Conversion/AsyncToLLVM/AsyncToLLVM.h"
20 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h"
21 #include "mlir/Conversion/LLVMCommon/Pattern.h"
22 #include "mlir/Conversion/MemRefToLLVM/MemRefToLLVM.h"
23 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVM.h"
24 #include "mlir/Conversion/StandardToLLVM/ConvertStandardToLLVMPass.h"
25 #include "mlir/Conversion/VectorToLLVM/ConvertVectorToLLVM.h"
26 #include "mlir/Dialect/Async/IR/Async.h"
27 #include "mlir/Dialect/GPU/GPUDialect.h"
28 #include "mlir/Dialect/GPU/Passes.h"
29 #include "mlir/Dialect/LLVMIR/LLVMDialect.h"
30 #include "mlir/IR/Attributes.h"
31 #include "mlir/IR/Builders.h"
32 #include "mlir/IR/BuiltinOps.h"
33 #include "mlir/IR/BuiltinTypes.h"
34 
35 #include "llvm/ADT/STLExtras.h"
36 #include "llvm/Support/Error.h"
37 #include "llvm/Support/FormatVariadic.h"
38 
39 using namespace mlir;
40 
41 static constexpr const char *kGpuBinaryStorageSuffix = "_gpubin_cst";
42 
43 namespace {
44 
45 class GpuToLLVMConversionPass
46     : public GpuToLLVMConversionPassBase<GpuToLLVMConversionPass> {
47 public:
48   GpuToLLVMConversionPass() = default;
49 
50   GpuToLLVMConversionPass(const GpuToLLVMConversionPass &other)
51       : GpuToLLVMConversionPassBase(other) {}
52 
53   // Run the dialect converter on the module.
54   void runOnOperation() override;
55 
56 private:
57   Option<std::string> gpuBinaryAnnotation{
58       *this, "gpu-binary-annotation",
59       llvm::cl::desc("Annotation attribute string for GPU binary"),
60       llvm::cl::init(gpu::getDefaultGpuBinaryAnnotation())};
61 };
62 
63 struct FunctionCallBuilder {
64   FunctionCallBuilder(StringRef functionName, Type returnType,
65                       ArrayRef<Type> argumentTypes)
66       : functionName(functionName),
67         functionType(LLVM::LLVMFunctionType::get(returnType, argumentTypes)) {}
68   LLVM::CallOp create(Location loc, OpBuilder &builder,
69                       ArrayRef<Value> arguments) const;
70 
71   StringRef functionName;
72   LLVM::LLVMFunctionType functionType;
73 };
74 
75 template <typename OpTy>
76 class ConvertOpToGpuRuntimeCallPattern : public ConvertOpToLLVMPattern<OpTy> {
77 public:
78   explicit ConvertOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
79       : ConvertOpToLLVMPattern<OpTy>(typeConverter) {}
80 
81 protected:
82   MLIRContext *context = &this->getTypeConverter()->getContext();
83 
84   Type llvmVoidType = LLVM::LLVMVoidType::get(context);
85   Type llvmPointerType =
86       LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
87   Type llvmPointerPointerType = LLVM::LLVMPointerType::get(llvmPointerType);
88   Type llvmInt8Type = IntegerType::get(context, 8);
89   Type llvmInt32Type = IntegerType::get(context, 32);
90   Type llvmInt64Type = IntegerType::get(context, 64);
91   Type llvmIntPtrType = IntegerType::get(
92       context, this->getTypeConverter()->getPointerBitwidth(0));
93 
94   FunctionCallBuilder moduleLoadCallBuilder = {
95       "mgpuModuleLoad",
96       llvmPointerType /* void *module */,
97       {llvmPointerType /* void *cubin */}};
98   FunctionCallBuilder moduleUnloadCallBuilder = {
99       "mgpuModuleUnload", llvmVoidType, {llvmPointerType /* void *module */}};
100   FunctionCallBuilder moduleGetFunctionCallBuilder = {
101       "mgpuModuleGetFunction",
102       llvmPointerType /* void *function */,
103       {
104           llvmPointerType, /* void *module */
105           llvmPointerType  /* char *name   */
106       }};
107   FunctionCallBuilder launchKernelCallBuilder = {
108       "mgpuLaunchKernel",
109       llvmVoidType,
110       {
111           llvmPointerType,        /* void* f */
112           llvmIntPtrType,         /* intptr_t gridXDim */
113           llvmIntPtrType,         /* intptr_t gridyDim */
114           llvmIntPtrType,         /* intptr_t gridZDim */
115           llvmIntPtrType,         /* intptr_t blockXDim */
116           llvmIntPtrType,         /* intptr_t blockYDim */
117           llvmIntPtrType,         /* intptr_t blockZDim */
118           llvmInt32Type,          /* unsigned int sharedMemBytes */
119           llvmPointerType,        /* void *hstream */
120           llvmPointerPointerType, /* void **kernelParams */
121           llvmPointerPointerType  /* void **extra */
122       }};
123   FunctionCallBuilder streamCreateCallBuilder = {
124       "mgpuStreamCreate", llvmPointerType /* void *stream */, {}};
125   FunctionCallBuilder streamDestroyCallBuilder = {
126       "mgpuStreamDestroy", llvmVoidType, {llvmPointerType /* void *stream */}};
127   FunctionCallBuilder streamSynchronizeCallBuilder = {
128       "mgpuStreamSynchronize",
129       llvmVoidType,
130       {llvmPointerType /* void *stream */}};
131   FunctionCallBuilder streamWaitEventCallBuilder = {
132       "mgpuStreamWaitEvent",
133       llvmVoidType,
134       {llvmPointerType /* void *stream */, llvmPointerType /* void *event */}};
135   FunctionCallBuilder eventCreateCallBuilder = {
136       "mgpuEventCreate", llvmPointerType /* void *event */, {}};
137   FunctionCallBuilder eventDestroyCallBuilder = {
138       "mgpuEventDestroy", llvmVoidType, {llvmPointerType /* void *event */}};
139   FunctionCallBuilder eventSynchronizeCallBuilder = {
140       "mgpuEventSynchronize",
141       llvmVoidType,
142       {llvmPointerType /* void *event */}};
143   FunctionCallBuilder eventRecordCallBuilder = {
144       "mgpuEventRecord",
145       llvmVoidType,
146       {llvmPointerType /* void *event */, llvmPointerType /* void *stream */}};
147   FunctionCallBuilder hostRegisterCallBuilder = {
148       "mgpuMemHostRegisterMemRef",
149       llvmVoidType,
150       {llvmIntPtrType /* intptr_t rank */,
151        llvmPointerType /* void *memrefDesc */,
152        llvmIntPtrType /* intptr_t elementSizeBytes */}};
153   FunctionCallBuilder allocCallBuilder = {
154       "mgpuMemAlloc",
155       llvmPointerType /* void * */,
156       {llvmIntPtrType /* intptr_t sizeBytes */,
157        llvmPointerType /* void *stream */}};
158   FunctionCallBuilder deallocCallBuilder = {
159       "mgpuMemFree",
160       llvmVoidType,
161       {llvmPointerType /* void *ptr */, llvmPointerType /* void *stream */}};
162   FunctionCallBuilder memcpyCallBuilder = {
163       "mgpuMemcpy",
164       llvmVoidType,
165       {llvmPointerType /* void *dst */, llvmPointerType /* void *src */,
166        llvmIntPtrType /* intptr_t sizeBytes */,
167        llvmPointerType /* void *stream */}};
168 };
169 
170 /// A rewrite pattern to convert gpu.host_register operations into a GPU runtime
171 /// call. Currently it supports CUDA and ROCm (HIP).
172 class ConvertHostRegisterOpToGpuRuntimeCallPattern
173     : public ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp> {
174 public:
175   ConvertHostRegisterOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
176       : ConvertOpToGpuRuntimeCallPattern<gpu::HostRegisterOp>(typeConverter) {}
177 
178 private:
179   LogicalResult
180   matchAndRewrite(gpu::HostRegisterOp hostRegisterOp, ArrayRef<Value> operands,
181                   ConversionPatternRewriter &rewriter) const override;
182 };
183 
184 /// A rewrite pattern to convert gpu.alloc operations into a GPU runtime
185 /// call. Currently it supports CUDA and ROCm (HIP).
186 class ConvertAllocOpToGpuRuntimeCallPattern
187     : public ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp> {
188 public:
189   ConvertAllocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
190       : ConvertOpToGpuRuntimeCallPattern<gpu::AllocOp>(typeConverter) {}
191 
192 private:
193   LogicalResult
194   matchAndRewrite(gpu::AllocOp allocOp, ArrayRef<Value> operands,
195                   ConversionPatternRewriter &rewriter) const override;
196 };
197 
198 /// A rewrite pattern to convert gpu.dealloc operations into a GPU runtime
199 /// call. Currently it supports CUDA and ROCm (HIP).
200 class ConvertDeallocOpToGpuRuntimeCallPattern
201     : public ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp> {
202 public:
203   ConvertDeallocOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
204       : ConvertOpToGpuRuntimeCallPattern<gpu::DeallocOp>(typeConverter) {}
205 
206 private:
207   LogicalResult
208   matchAndRewrite(gpu::DeallocOp deallocOp, ArrayRef<Value> operands,
209                   ConversionPatternRewriter &rewriter) const override;
210 };
211 
212 class ConvertAsyncYieldToGpuRuntimeCallPattern
213     : public ConvertOpToGpuRuntimeCallPattern<async::YieldOp> {
214 public:
215   ConvertAsyncYieldToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
216       : ConvertOpToGpuRuntimeCallPattern<async::YieldOp>(typeConverter) {}
217 
218 private:
219   LogicalResult
220   matchAndRewrite(async::YieldOp yieldOp, ArrayRef<Value> operands,
221                   ConversionPatternRewriter &rewriter) const override;
222 };
223 
224 /// A rewrite pattern to convert gpu.wait operations into a GPU runtime
225 /// call. Currently it supports CUDA and ROCm (HIP).
226 class ConvertWaitOpToGpuRuntimeCallPattern
227     : public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
228 public:
229   ConvertWaitOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
230       : ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
231 
232 private:
233   LogicalResult
234   matchAndRewrite(gpu::WaitOp waitOp, ArrayRef<Value> operands,
235                   ConversionPatternRewriter &rewriter) const override;
236 };
237 
238 /// A rewrite pattern to convert gpu.wait async operations into a GPU runtime
239 /// call. Currently it supports CUDA and ROCm (HIP).
240 class ConvertWaitAsyncOpToGpuRuntimeCallPattern
241     : public ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp> {
242 public:
243   ConvertWaitAsyncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
244       : ConvertOpToGpuRuntimeCallPattern<gpu::WaitOp>(typeConverter) {}
245 
246 private:
247   LogicalResult
248   matchAndRewrite(gpu::WaitOp waitOp, ArrayRef<Value> operands,
249                   ConversionPatternRewriter &rewriter) const override;
250 };
251 
252 /// A rewrite patter to convert gpu.launch_func operations into a sequence of
253 /// GPU runtime calls. Currently it supports CUDA and ROCm (HIP).
254 ///
255 /// In essence, a gpu.launch_func operations gets compiled into the following
256 /// sequence of runtime calls:
257 ///
258 /// * moduleLoad        -- loads the module given the cubin / hsaco data
259 /// * moduleGetFunction -- gets a handle to the actual kernel function
260 /// * getStreamHelper   -- initializes a new compute stream on GPU
261 /// * launchKernel      -- launches the kernel on a stream
262 /// * streamSynchronize -- waits for operations on the stream to finish
263 ///
264 /// Intermediate data structures are allocated on the stack.
265 class ConvertLaunchFuncOpToGpuRuntimeCallPattern
266     : public ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp> {
267 public:
268   ConvertLaunchFuncOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter,
269                                              StringRef gpuBinaryAnnotation)
270       : ConvertOpToGpuRuntimeCallPattern<gpu::LaunchFuncOp>(typeConverter),
271         gpuBinaryAnnotation(gpuBinaryAnnotation) {}
272 
273 private:
274   Value generateParamsArray(gpu::LaunchFuncOp launchOp,
275                             ArrayRef<Value> operands, OpBuilder &builder) const;
276   Value generateKernelNameConstant(StringRef moduleName, StringRef name,
277                                    Location loc, OpBuilder &builder) const;
278 
279   LogicalResult
280   matchAndRewrite(gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
281                   ConversionPatternRewriter &rewriter) const override;
282 
283   llvm::SmallString<32> gpuBinaryAnnotation;
284 };
285 
286 class EraseGpuModuleOpPattern : public OpRewritePattern<gpu::GPUModuleOp> {
287   using OpRewritePattern<gpu::GPUModuleOp>::OpRewritePattern;
288 
289   LogicalResult matchAndRewrite(gpu::GPUModuleOp op,
290                                 PatternRewriter &rewriter) const override {
291     // GPU kernel modules are no longer necessary since we have a global
292     // constant with the CUBIN, or HSACO data.
293     rewriter.eraseOp(op);
294     return success();
295   }
296 };
297 
298 /// A rewrite pattern to convert gpu.memcpy operations into a GPU runtime
299 /// call. Currently it supports CUDA and ROCm (HIP).
300 class ConvertMemcpyOpToGpuRuntimeCallPattern
301     : public ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp> {
302 public:
303   ConvertMemcpyOpToGpuRuntimeCallPattern(LLVMTypeConverter &typeConverter)
304       : ConvertOpToGpuRuntimeCallPattern<gpu::MemcpyOp>(typeConverter) {}
305 
306 private:
307   LogicalResult
308   matchAndRewrite(gpu::MemcpyOp memcpyOp, ArrayRef<Value> operands,
309                   ConversionPatternRewriter &rewriter) const override;
310 };
311 } // namespace
312 
313 void GpuToLLVMConversionPass::runOnOperation() {
314   LLVMTypeConverter converter(&getContext());
315   RewritePatternSet patterns(&getContext());
316   LLVMConversionTarget target(getContext());
317 
318   target.addIllegalDialect<gpu::GPUDialect>();
319   target.addIllegalOp<UnrealizedConversionCastOp>();
320 
321   populateVectorToLLVMConversionPatterns(converter, patterns);
322   populateMemRefToLLVMConversionPatterns(converter, patterns);
323   populateStdToLLVMConversionPatterns(converter, patterns);
324   populateAsyncStructuralTypeConversionsAndLegality(converter, patterns,
325                                                     target);
326 
327   converter.addConversion(
328       [context = &converter.getContext()](gpu::AsyncTokenType type) -> Type {
329         return LLVM::LLVMPointerType::get(IntegerType::get(context, 8));
330       });
331   patterns.add<ConvertAllocOpToGpuRuntimeCallPattern,
332                ConvertDeallocOpToGpuRuntimeCallPattern,
333                ConvertHostRegisterOpToGpuRuntimeCallPattern,
334                ConvertMemcpyOpToGpuRuntimeCallPattern,
335                ConvertWaitAsyncOpToGpuRuntimeCallPattern,
336                ConvertWaitOpToGpuRuntimeCallPattern,
337                ConvertAsyncYieldToGpuRuntimeCallPattern>(converter);
338   patterns.add<ConvertLaunchFuncOpToGpuRuntimeCallPattern>(converter,
339                                                            gpuBinaryAnnotation);
340   patterns.add<EraseGpuModuleOpPattern>(&converter.getContext());
341 
342   if (failed(
343           applyPartialConversion(getOperation(), target, std::move(patterns))))
344     signalPassFailure();
345 }
346 
347 LLVM::CallOp FunctionCallBuilder::create(Location loc, OpBuilder &builder,
348                                          ArrayRef<Value> arguments) const {
349   auto module = builder.getBlock()->getParent()->getParentOfType<ModuleOp>();
350   auto function = [&] {
351     if (auto function = module.lookupSymbol<LLVM::LLVMFuncOp>(functionName))
352       return function;
353     return OpBuilder::atBlockEnd(module.getBody())
354         .create<LLVM::LLVMFuncOp>(loc, functionName, functionType);
355   }();
356   return builder.create<LLVM::CallOp>(loc, function, arguments);
357 }
358 
359 // Returns whether all operands are of LLVM type.
360 static LogicalResult areAllLLVMTypes(Operation *op, ValueRange operands,
361                                      ConversionPatternRewriter &rewriter) {
362   if (!llvm::all_of(operands, [](Value value) {
363         return LLVM::isCompatibleType(value.getType());
364       }))
365     return rewriter.notifyMatchFailure(
366         op, "Cannot convert if operands aren't of LLVM type.");
367   return success();
368 }
369 
370 static LogicalResult
371 isAsyncWithOneDependency(ConversionPatternRewriter &rewriter,
372                          gpu::AsyncOpInterface op) {
373   if (op.getAsyncDependencies().size() != 1)
374     return rewriter.notifyMatchFailure(
375         op, "Can only convert with exactly one async dependency.");
376 
377   if (!op.getAsyncToken())
378     return rewriter.notifyMatchFailure(op, "Can convert only async version.");
379 
380   return success();
381 }
382 
383 LogicalResult ConvertHostRegisterOpToGpuRuntimeCallPattern::matchAndRewrite(
384     gpu::HostRegisterOp hostRegisterOp, ArrayRef<Value> operands,
385     ConversionPatternRewriter &rewriter) const {
386   auto *op = hostRegisterOp.getOperation();
387   if (failed(areAllLLVMTypes(op, operands, rewriter)))
388     return failure();
389 
390   Location loc = op->getLoc();
391 
392   auto memRefType = hostRegisterOp.value().getType();
393   auto elementType = memRefType.cast<UnrankedMemRefType>().getElementType();
394   auto elementSize = getSizeInBytes(loc, elementType, rewriter);
395 
396   auto arguments = getTypeConverter()->promoteOperands(loc, op->getOperands(),
397                                                        operands, rewriter);
398   arguments.push_back(elementSize);
399   hostRegisterCallBuilder.create(loc, rewriter, arguments);
400 
401   rewriter.eraseOp(op);
402   return success();
403 }
404 
405 LogicalResult ConvertAllocOpToGpuRuntimeCallPattern::matchAndRewrite(
406     gpu::AllocOp allocOp, ArrayRef<Value> operands,
407     ConversionPatternRewriter &rewriter) const {
408   MemRefType memRefType = allocOp.getType();
409 
410   if (failed(areAllLLVMTypes(allocOp, operands, rewriter)) ||
411       !isConvertibleAndHasIdentityMaps(memRefType) ||
412       failed(isAsyncWithOneDependency(rewriter, allocOp)))
413     return failure();
414 
415   auto loc = allocOp.getLoc();
416   auto adaptor = gpu::AllocOpAdaptor(operands, allocOp->getAttrDictionary());
417 
418   // Get shape of the memref as values: static sizes are constant
419   // values and dynamic sizes are passed to 'alloc' as operands.
420   SmallVector<Value, 4> shape;
421   SmallVector<Value, 4> strides;
422   Value sizeBytes;
423   getMemRefDescriptorSizes(loc, memRefType, adaptor.dynamicSizes(), rewriter,
424                            shape, strides, sizeBytes);
425 
426   // Allocate the underlying buffer and store a pointer to it in the MemRef
427   // descriptor.
428   Type elementPtrType = this->getElementPtrType(memRefType);
429   auto stream = adaptor.asyncDependencies().front();
430   Value allocatedPtr =
431       allocCallBuilder.create(loc, rewriter, {sizeBytes, stream}).getResult(0);
432   allocatedPtr =
433       rewriter.create<LLVM::BitcastOp>(loc, elementPtrType, allocatedPtr);
434 
435   // No alignment.
436   Value alignedPtr = allocatedPtr;
437 
438   // Create the MemRef descriptor.
439   auto memRefDescriptor = this->createMemRefDescriptor(
440       loc, memRefType, allocatedPtr, alignedPtr, shape, strides, rewriter);
441 
442   rewriter.replaceOp(allocOp, {memRefDescriptor, stream});
443 
444   return success();
445 }
446 
447 LogicalResult ConvertDeallocOpToGpuRuntimeCallPattern::matchAndRewrite(
448     gpu::DeallocOp deallocOp, ArrayRef<Value> operands,
449     ConversionPatternRewriter &rewriter) const {
450   if (failed(areAllLLVMTypes(deallocOp, operands, rewriter)) ||
451       failed(isAsyncWithOneDependency(rewriter, deallocOp)))
452     return failure();
453 
454   Location loc = deallocOp.getLoc();
455 
456   auto adaptor =
457       gpu::DeallocOpAdaptor(operands, deallocOp->getAttrDictionary());
458   Value pointer =
459       MemRefDescriptor(adaptor.memref()).allocatedPtr(rewriter, loc);
460   auto casted = rewriter.create<LLVM::BitcastOp>(loc, llvmPointerType, pointer);
461   Value stream = adaptor.asyncDependencies().front();
462   deallocCallBuilder.create(loc, rewriter, {casted, stream});
463 
464   rewriter.replaceOp(deallocOp, {stream});
465   return success();
466 }
467 
468 static bool isGpuAsyncTokenType(Value value) {
469   return value.getType().isa<gpu::AsyncTokenType>();
470 }
471 
472 // Converts !gpu.async.token operands of `async.yield` to runtime calls. The
473 // !gpu.async.token are lowered to stream within the async.execute region, but
474 // are passed as events between them. For each !gpu.async.token operand, we
475 // create an event and record it on the stream.
476 LogicalResult ConvertAsyncYieldToGpuRuntimeCallPattern::matchAndRewrite(
477     async::YieldOp yieldOp, ArrayRef<Value> operands,
478     ConversionPatternRewriter &rewriter) const {
479   if (llvm::none_of(yieldOp.operands(), isGpuAsyncTokenType))
480     return rewriter.notifyMatchFailure(yieldOp, "no gpu async token operand");
481 
482   Location loc = yieldOp.getLoc();
483   SmallVector<Value, 4> newOperands(operands.begin(), operands.end());
484   llvm::SmallDenseSet<Value> streams;
485   for (auto &operand : yieldOp->getOpOperands()) {
486     if (!isGpuAsyncTokenType(operand.get()))
487       continue;
488     auto idx = operand.getOperandNumber();
489     auto stream = operands[idx];
490     auto event = eventCreateCallBuilder.create(loc, rewriter, {}).getResult(0);
491     eventRecordCallBuilder.create(loc, rewriter, {event, stream});
492     newOperands[idx] = event;
493     streams.insert(stream);
494   }
495   for (auto stream : streams)
496     streamDestroyCallBuilder.create(loc, rewriter, {stream});
497 
498   rewriter.updateRootInPlace(yieldOp,
499                              [&] { yieldOp->setOperands(newOperands); });
500   return success();
501 }
502 
503 // Returns whether `value` is the result of an LLVM::CallOp to `functionName`.
504 static bool isDefinedByCallTo(Value value, StringRef functionName) {
505   assert(value.getType().isa<LLVM::LLVMPointerType>());
506   if (auto defOp = value.getDefiningOp<LLVM::CallOp>())
507     return defOp.callee()->equals(functionName);
508   return false;
509 }
510 
511 // Converts `gpu.wait` to runtime calls. The converted op synchronizes the host
512 // with the stream/event operands. The operands are destroyed. That is, it
513 // assumes that it is not used afterwards or elsewhere. Otherwise we will get a
514 // runtime error. Eventually, we should guarantee this property.
515 LogicalResult ConvertWaitOpToGpuRuntimeCallPattern::matchAndRewrite(
516     gpu::WaitOp waitOp, ArrayRef<Value> operands,
517     ConversionPatternRewriter &rewriter) const {
518   if (waitOp.asyncToken())
519     return rewriter.notifyMatchFailure(waitOp, "Cannot convert async op.");
520 
521   Location loc = waitOp.getLoc();
522 
523   for (auto operand : operands) {
524     if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
525       // The converted operand's definition created a stream.
526       streamSynchronizeCallBuilder.create(loc, rewriter, {operand});
527       streamDestroyCallBuilder.create(loc, rewriter, {operand});
528     } else {
529       // Otherwise the converted operand is an event. This assumes that we use
530       // events in control flow code as well.
531       eventSynchronizeCallBuilder.create(loc, rewriter, {operand});
532       eventDestroyCallBuilder.create(loc, rewriter, {operand});
533     }
534   }
535 
536   rewriter.eraseOp(waitOp);
537   return success();
538 }
539 
540 // Converts `gpu.wait async` to runtime calls. The converted op creates a new
541 // stream that is synchronized with stream/event operands. The operands are
542 // destroyed. That is, it assumes that it is not used afterwards or elsewhere.
543 // Otherwise we will get a runtime error. Eventually, we should guarantee this
544 // property.
545 LogicalResult ConvertWaitAsyncOpToGpuRuntimeCallPattern::matchAndRewrite(
546     gpu::WaitOp waitOp, ArrayRef<Value> operands,
547     ConversionPatternRewriter &rewriter) const {
548   if (!waitOp.asyncToken())
549     return rewriter.notifyMatchFailure(waitOp, "Can only convert async op.");
550 
551   Location loc = waitOp.getLoc();
552 
553   auto insertionPoint = rewriter.saveInsertionPoint();
554   SmallVector<Value, 1> events;
555   for (auto pair : llvm::zip(waitOp.asyncDependencies(), operands)) {
556     auto operand = std::get<1>(pair);
557     if (isDefinedByCallTo(operand, streamCreateCallBuilder.functionName)) {
558       // The converted operand's definition created a stream. Insert an event
559       // into the stream just after the last use of the original token operand.
560       auto *defOp = std::get<0>(pair).getDefiningOp();
561       rewriter.setInsertionPointAfter(defOp);
562       auto event =
563           eventCreateCallBuilder.create(loc, rewriter, {}).getResult(0);
564       eventRecordCallBuilder.create(loc, rewriter, {event, operand});
565       events.push_back(event);
566     } else {
567       // Otherwise the converted operand is an event. This assumes that we use
568       // events in control flow code as well.
569       events.push_back(operand);
570     }
571   }
572   rewriter.restoreInsertionPoint(insertionPoint);
573   auto stream = streamCreateCallBuilder.create(loc, rewriter, {}).getResult(0);
574   for (auto event : events)
575     streamWaitEventCallBuilder.create(loc, rewriter, {stream, event});
576   for (auto event : events)
577     eventDestroyCallBuilder.create(loc, rewriter, {event});
578   rewriter.replaceOp(waitOp, {stream});
579 
580   return success();
581 }
582 
583 // Creates a struct containing all kernel parameters on the stack and returns
584 // an array of type-erased pointers to the fields of the struct. The array can
585 // then be passed to the CUDA / ROCm (HIP) kernel launch calls.
586 // The generated code is essentially as follows:
587 //
588 // %struct = alloca(sizeof(struct { Parameters... }))
589 // %array = alloca(NumParameters * sizeof(void *))
590 // for (i : [0, NumParameters))
591 //   %fieldPtr = llvm.getelementptr %struct[0, i]
592 //   llvm.store parameters[i], %fieldPtr
593 //   %elementPtr = llvm.getelementptr %array[i]
594 //   llvm.store %fieldPtr, %elementPtr
595 // return %array
596 Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateParamsArray(
597     gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
598     OpBuilder &builder) const {
599   auto loc = launchOp.getLoc();
600   auto numKernelOperands = launchOp.getNumKernelOperands();
601   auto arguments = getTypeConverter()->promoteOperands(
602       loc, launchOp.getOperands().take_back(numKernelOperands),
603       operands.take_back(numKernelOperands), builder);
604   auto numArguments = arguments.size();
605   SmallVector<Type, 4> argumentTypes;
606   argumentTypes.reserve(numArguments);
607   for (auto argument : arguments)
608     argumentTypes.push_back(argument.getType());
609   auto structType = LLVM::LLVMStructType::getNewIdentified(context, StringRef(),
610                                                            argumentTypes);
611   auto one = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
612                                               builder.getI32IntegerAttr(1));
613   auto structPtr = builder.create<LLVM::AllocaOp>(
614       loc, LLVM::LLVMPointerType::get(structType), one, /*alignment=*/0);
615   auto arraySize = builder.create<LLVM::ConstantOp>(
616       loc, llvmInt32Type, builder.getI32IntegerAttr(numArguments));
617   auto arrayPtr = builder.create<LLVM::AllocaOp>(loc, llvmPointerPointerType,
618                                                  arraySize, /*alignment=*/0);
619   auto zero = builder.create<LLVM::ConstantOp>(loc, llvmInt32Type,
620                                                builder.getI32IntegerAttr(0));
621   for (auto en : llvm::enumerate(arguments)) {
622     auto index = builder.create<LLVM::ConstantOp>(
623         loc, llvmInt32Type, builder.getI32IntegerAttr(en.index()));
624     auto fieldPtr = builder.create<LLVM::GEPOp>(
625         loc, LLVM::LLVMPointerType::get(argumentTypes[en.index()]), structPtr,
626         ArrayRef<Value>{zero, index.getResult()});
627     builder.create<LLVM::StoreOp>(loc, en.value(), fieldPtr);
628     auto elementPtr = builder.create<LLVM::GEPOp>(loc, llvmPointerPointerType,
629                                                   arrayPtr, index.getResult());
630     auto casted =
631         builder.create<LLVM::BitcastOp>(loc, llvmPointerType, fieldPtr);
632     builder.create<LLVM::StoreOp>(loc, casted, elementPtr);
633   }
634   return arrayPtr;
635 }
636 
637 // Generates an LLVM IR dialect global that contains the name of the given
638 // kernel function as a C string, and returns a pointer to its beginning.
639 // The code is essentially:
640 //
641 // llvm.global constant @kernel_name("function_name\00")
642 // func(...) {
643 //   %0 = llvm.addressof @kernel_name
644 //   %1 = llvm.constant (0 : index)
645 //   %2 = llvm.getelementptr %0[%1, %1] : !llvm<"i8*">
646 // }
647 Value ConvertLaunchFuncOpToGpuRuntimeCallPattern::generateKernelNameConstant(
648     StringRef moduleName, StringRef name, Location loc,
649     OpBuilder &builder) const {
650   // Make sure the trailing zero is included in the constant.
651   std::vector<char> kernelName(name.begin(), name.end());
652   kernelName.push_back('\0');
653 
654   std::string globalName =
655       std::string(llvm::formatv("{0}_{1}_kernel_name", moduleName, name));
656   return LLVM::createGlobalString(
657       loc, builder, globalName, StringRef(kernelName.data(), kernelName.size()),
658       LLVM::Linkage::Internal);
659 }
660 
661 // Emits LLVM IR to launch a kernel function. Expects the module that contains
662 // the compiled kernel function as a cubin in the 'nvvm.cubin' attribute, or a
663 // hsaco in the 'rocdl.hsaco' attribute of the kernel function in the IR.
664 //
665 // %0 = call %binarygetter
666 // %1 = call %moduleLoad(%0)
667 // %2 = <see generateKernelNameConstant>
668 // %3 = call %moduleGetFunction(%1, %2)
669 // %4 = call %streamCreate()
670 // %5 = <see generateParamsArray>
671 // call %launchKernel(%3, <launchOp operands 0..5>, 0, %4, %5, nullptr)
672 // call %streamSynchronize(%4)
673 // call %streamDestroy(%4)
674 // call %moduleUnload(%1)
675 //
676 // If the op is async, the stream corresponds to the (single) async dependency
677 // as well as the async token the op produces.
678 LogicalResult ConvertLaunchFuncOpToGpuRuntimeCallPattern::matchAndRewrite(
679     gpu::LaunchFuncOp launchOp, ArrayRef<Value> operands,
680     ConversionPatternRewriter &rewriter) const {
681   if (failed(areAllLLVMTypes(launchOp, operands, rewriter)))
682     return failure();
683 
684   if (launchOp.asyncDependencies().size() > 1)
685     return rewriter.notifyMatchFailure(
686         launchOp, "Cannot convert with more than one async dependency.");
687 
688   // Fail when the synchronous version of the op has async dependencies. The
689   // lowering destroys the stream, and we do not want to check that there is no
690   // use of the stream after this op.
691   if (!launchOp.asyncToken() && !launchOp.asyncDependencies().empty())
692     return rewriter.notifyMatchFailure(
693         launchOp, "Cannot convert non-async op with async dependencies.");
694 
695   Location loc = launchOp.getLoc();
696 
697   // Create an LLVM global with CUBIN extracted from the kernel annotation and
698   // obtain a pointer to the first byte in it.
699   auto kernelModule = SymbolTable::lookupNearestSymbolFrom<gpu::GPUModuleOp>(
700       launchOp, launchOp.getKernelModuleName());
701   assert(kernelModule && "expected a kernel module");
702 
703   auto binaryAttr =
704       kernelModule->getAttrOfType<StringAttr>(gpuBinaryAnnotation);
705   if (!binaryAttr) {
706     kernelModule.emitOpError()
707         << "missing " << gpuBinaryAnnotation << " attribute";
708     return failure();
709   }
710 
711   SmallString<128> nameBuffer(kernelModule.getName());
712   nameBuffer.append(kGpuBinaryStorageSuffix);
713   Value data =
714       LLVM::createGlobalString(loc, rewriter, nameBuffer.str(),
715                                binaryAttr.getValue(), LLVM::Linkage::Internal);
716 
717   auto module = moduleLoadCallBuilder.create(loc, rewriter, data);
718   // Get the function from the module. The name corresponds to the name of
719   // the kernel function.
720   auto kernelName = generateKernelNameConstant(
721       launchOp.getKernelModuleName(), launchOp.getKernelName(), loc, rewriter);
722   auto function = moduleGetFunctionCallBuilder.create(
723       loc, rewriter, {module.getResult(0), kernelName});
724   auto zero = rewriter.create<LLVM::ConstantOp>(loc, llvmInt32Type,
725                                                 rewriter.getI32IntegerAttr(0));
726   auto adaptor =
727       gpu::LaunchFuncOpAdaptor(operands, launchOp->getAttrDictionary());
728   Value stream =
729       adaptor.asyncDependencies().empty()
730           ? streamCreateCallBuilder.create(loc, rewriter, {}).getResult(0)
731           : adaptor.asyncDependencies().front();
732   // Create array of pointers to kernel arguments.
733   auto kernelParams = generateParamsArray(launchOp, operands, rewriter);
734   auto nullpointer = rewriter.create<LLVM::NullOp>(loc, llvmPointerPointerType);
735   launchKernelCallBuilder.create(loc, rewriter,
736                                  {function.getResult(0), launchOp.gridSizeX(),
737                                   launchOp.gridSizeY(), launchOp.gridSizeZ(),
738                                   launchOp.blockSizeX(), launchOp.blockSizeY(),
739                                   launchOp.blockSizeZ(),
740                                   /*sharedMemBytes=*/zero, stream, kernelParams,
741                                   /*extra=*/nullpointer});
742 
743   if (launchOp.asyncToken()) {
744     // Async launch: make dependent ops use the same stream.
745     rewriter.replaceOp(launchOp, {stream});
746   } else {
747     // Synchronize with host and destroy stream. This must be the stream created
748     // above (with no other uses) because we check that the synchronous version
749     // does not have any async dependencies.
750     streamSynchronizeCallBuilder.create(loc, rewriter, stream);
751     streamDestroyCallBuilder.create(loc, rewriter, stream);
752     rewriter.eraseOp(launchOp);
753   }
754   moduleUnloadCallBuilder.create(loc, rewriter, module.getResult(0));
755 
756   return success();
757 }
758 
759 LogicalResult ConvertMemcpyOpToGpuRuntimeCallPattern::matchAndRewrite(
760     gpu::MemcpyOp memcpyOp, ArrayRef<Value> operands,
761     ConversionPatternRewriter &rewriter) const {
762   auto memRefType = memcpyOp.src().getType().cast<MemRefType>();
763 
764   if (failed(areAllLLVMTypes(memcpyOp, operands, rewriter)) ||
765       !isConvertibleAndHasIdentityMaps(memRefType) ||
766       failed(isAsyncWithOneDependency(rewriter, memcpyOp)))
767     return failure();
768 
769   auto loc = memcpyOp.getLoc();
770   auto adaptor = gpu::MemcpyOpAdaptor(operands, memcpyOp->getAttrDictionary());
771 
772   MemRefDescriptor srcDesc(adaptor.src());
773 
774   Value numElements =
775       memRefType.hasStaticShape()
776           ? createIndexConstant(rewriter, loc, memRefType.getNumElements())
777           // For identity layouts (verified above), the number of elements is
778           // stride[0] * size[0].
779           : rewriter.create<LLVM::MulOp>(loc, srcDesc.stride(rewriter, loc, 0),
780                                          srcDesc.size(rewriter, loc, 0));
781 
782   Type elementPtrType = getElementPtrType(memRefType);
783   Value nullPtr = rewriter.create<LLVM::NullOp>(loc, elementPtrType);
784   Value gepPtr = rewriter.create<LLVM::GEPOp>(
785       loc, elementPtrType, ArrayRef<Value>{nullPtr, numElements});
786   auto sizeBytes =
787       rewriter.create<LLVM::PtrToIntOp>(loc, getIndexType(), gepPtr);
788 
789   auto src = rewriter.create<LLVM::BitcastOp>(
790       loc, llvmPointerType, srcDesc.alignedPtr(rewriter, loc));
791   auto dst = rewriter.create<LLVM::BitcastOp>(
792       loc, llvmPointerType,
793       MemRefDescriptor(adaptor.dst()).alignedPtr(rewriter, loc));
794 
795   auto stream = adaptor.asyncDependencies().front();
796   memcpyCallBuilder.create(loc, rewriter, {dst, src, sizeBytes, stream});
797 
798   rewriter.replaceOp(memcpyOp, {stream});
799 
800   return success();
801 }
802 
803 std::unique_ptr<mlir::OperationPass<mlir::ModuleOp>>
804 mlir::createGpuToLLVMConversionPass() {
805   return std::make_unique<GpuToLLVMConversionPass>();
806 }
807