1 //===- FuncToLLVM.cpp - Func to LLVM dialect conversion -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file implements a pass to convert MLIR Func and builtin dialects 10 // into the LLVM IR dialect. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "../PassDetail.h" 15 #include "mlir/Analysis/DataLayoutAnalysis.h" 16 #include "mlir/Conversion/ArithmeticToLLVM/ArithmeticToLLVM.h" 17 #include "mlir/Conversion/ControlFlowToLLVM/ControlFlowToLLVM.h" 18 #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVM.h" 19 #include "mlir/Conversion/FuncToLLVM/ConvertFuncToLLVMPass.h" 20 #include "mlir/Conversion/LLVMCommon/ConversionTarget.h" 21 #include "mlir/Conversion/LLVMCommon/Pattern.h" 22 #include "mlir/Conversion/LLVMCommon/VectorPattern.h" 23 #include "mlir/Dialect/Func/IR/FuncOps.h" 24 #include "mlir/Dialect/LLVMIR/FunctionCallUtils.h" 25 #include "mlir/Dialect/LLVMIR/LLVMDialect.h" 26 #include "mlir/Dialect/Utils/StaticValueUtils.h" 27 #include "mlir/IR/Attributes.h" 28 #include "mlir/IR/BlockAndValueMapping.h" 29 #include "mlir/IR/Builders.h" 30 #include "mlir/IR/BuiltinOps.h" 31 #include "mlir/IR/PatternMatch.h" 32 #include "mlir/IR/TypeUtilities.h" 33 #include "mlir/Support/LogicalResult.h" 34 #include "mlir/Support/MathExtras.h" 35 #include "mlir/Transforms/DialectConversion.h" 36 #include "mlir/Transforms/Passes.h" 37 #include "llvm/ADT/TypeSwitch.h" 38 #include "llvm/IR/DerivedTypes.h" 39 #include "llvm/IR/IRBuilder.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/Support/CommandLine.h" 42 #include "llvm/Support/FormatVariadic.h" 43 #include <algorithm> 44 #include <functional> 45 46 using namespace mlir; 47 48 #define PASS_NAME "convert-func-to-llvm" 49 50 /// Only retain those attributes that are not constructed by 51 /// `LLVMFuncOp::build`. If `filterArgAttrs` is set, also filter out argument 52 /// attributes. 53 static void filterFuncAttributes(ArrayRef<NamedAttribute> attrs, 54 bool filterArgAndResAttrs, 55 SmallVectorImpl<NamedAttribute> &result) { 56 for (const auto &attr : attrs) { 57 if (attr.getName() == SymbolTable::getSymbolAttrName() || 58 attr.getName() == FunctionOpInterface::getTypeAttrName() || 59 attr.getName() == "func.varargs" || 60 (filterArgAndResAttrs && 61 (attr.getName() == FunctionOpInterface::getArgDictAttrName() || 62 attr.getName() == FunctionOpInterface::getResultDictAttrName()))) 63 continue; 64 result.push_back(attr); 65 } 66 } 67 68 /// Helper function for wrapping all attributes into a single DictionaryAttr 69 static auto wrapAsStructAttrs(OpBuilder &b, ArrayAttr attrs) { 70 return DictionaryAttr::get( 71 b.getContext(), 72 b.getNamedAttr(LLVM::LLVMDialect::getStructAttrsAttrName(), attrs)); 73 } 74 75 /// Combines all result attributes into a single DictionaryAttr 76 /// and prepends to argument attrs. 77 /// This is intended to be used to format the attributes for a C wrapper 78 /// function when the result(s) is converted to the first function argument 79 /// (in the multiple return case, all returns get wrapped into a single 80 /// argument). The total number of argument attributes should be equal to 81 /// (number of function arguments) + 1. 82 static void 83 prependResAttrsToArgAttrs(OpBuilder &builder, 84 SmallVectorImpl<NamedAttribute> &attributes, 85 size_t numArguments) { 86 auto allAttrs = SmallVector<Attribute>( 87 numArguments + 1, DictionaryAttr::get(builder.getContext())); 88 NamedAttribute *argAttrs = nullptr; 89 for (auto *it = attributes.begin(); it != attributes.end();) { 90 if (it->getName() == FunctionOpInterface::getArgDictAttrName()) { 91 auto arrayAttrs = it->getValue().cast<ArrayAttr>(); 92 assert(arrayAttrs.size() == numArguments && 93 "Number of arg attrs and args should match"); 94 std::copy(arrayAttrs.begin(), arrayAttrs.end(), allAttrs.begin() + 1); 95 argAttrs = it; 96 } else if (it->getName() == FunctionOpInterface::getResultDictAttrName()) { 97 auto arrayAttrs = it->getValue().cast<ArrayAttr>(); 98 assert(!arrayAttrs.empty() && "expected array to be non-empty"); 99 allAttrs[0] = (arrayAttrs.size() == 1) 100 ? arrayAttrs[0] 101 : wrapAsStructAttrs(builder, arrayAttrs); 102 it = attributes.erase(it); 103 continue; 104 } 105 it++; 106 } 107 108 auto newArgAttrs = 109 builder.getNamedAttr(FunctionOpInterface::getArgDictAttrName(), 110 builder.getArrayAttr(allAttrs)); 111 if (!argAttrs) { 112 attributes.emplace_back(newArgAttrs); 113 return; 114 } 115 *argAttrs = newArgAttrs; 116 } 117 118 /// Creates an auxiliary function with pointer-to-memref-descriptor-struct 119 /// arguments instead of unpacked arguments. This function can be called from C 120 /// by passing a pointer to a C struct corresponding to a memref descriptor. 121 /// Similarly, returned memrefs are passed via pointers to a C struct that is 122 /// passed as additional argument. 123 /// Internally, the auxiliary function unpacks the descriptor into individual 124 /// components and forwards them to `newFuncOp` and forwards the results to 125 /// the extra arguments. 126 static void wrapForExternalCallers(OpBuilder &rewriter, Location loc, 127 LLVMTypeConverter &typeConverter, 128 func::FuncOp funcOp, 129 LLVM::LLVMFuncOp newFuncOp) { 130 auto type = funcOp.getFunctionType(); 131 SmallVector<NamedAttribute, 4> attributes; 132 filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/false, 133 attributes); 134 Type wrapperFuncType; 135 bool resultIsNowArg; 136 std::tie(wrapperFuncType, resultIsNowArg) = 137 typeConverter.convertFunctionTypeCWrapper(type); 138 if (resultIsNowArg) 139 prependResAttrsToArgAttrs(rewriter, attributes, funcOp.getNumArguments()); 140 auto wrapperFuncOp = rewriter.create<LLVM::LLVMFuncOp>( 141 loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(), 142 wrapperFuncType, LLVM::Linkage::External, /*dsoLocal*/ false, attributes); 143 144 OpBuilder::InsertionGuard guard(rewriter); 145 rewriter.setInsertionPointToStart(wrapperFuncOp.addEntryBlock()); 146 147 SmallVector<Value, 8> args; 148 size_t argOffset = resultIsNowArg ? 1 : 0; 149 for (auto &en : llvm::enumerate(type.getInputs())) { 150 Value arg = wrapperFuncOp.getArgument(en.index() + argOffset); 151 if (auto memrefType = en.value().dyn_cast<MemRefType>()) { 152 Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg); 153 MemRefDescriptor::unpack(rewriter, loc, loaded, memrefType, args); 154 continue; 155 } 156 if (en.value().isa<UnrankedMemRefType>()) { 157 Value loaded = rewriter.create<LLVM::LoadOp>(loc, arg); 158 UnrankedMemRefDescriptor::unpack(rewriter, loc, loaded, args); 159 continue; 160 } 161 162 args.push_back(arg); 163 } 164 165 auto call = rewriter.create<LLVM::CallOp>(loc, newFuncOp, args); 166 167 if (resultIsNowArg) { 168 rewriter.create<LLVM::StoreOp>(loc, call.getResult(0), 169 wrapperFuncOp.getArgument(0)); 170 rewriter.create<LLVM::ReturnOp>(loc, ValueRange{}); 171 } else { 172 rewriter.create<LLVM::ReturnOp>(loc, call.getResults()); 173 } 174 } 175 176 /// Creates an auxiliary function with pointer-to-memref-descriptor-struct 177 /// arguments instead of unpacked arguments. Creates a body for the (external) 178 /// `newFuncOp` that allocates a memref descriptor on stack, packs the 179 /// individual arguments into this descriptor and passes a pointer to it into 180 /// the auxiliary function. If the result of the function cannot be directly 181 /// returned, we write it to a special first argument that provides a pointer 182 /// to a corresponding struct. This auxiliary external function is now 183 /// compatible with functions defined in C using pointers to C structs 184 /// corresponding to a memref descriptor. 185 static void wrapExternalFunction(OpBuilder &builder, Location loc, 186 LLVMTypeConverter &typeConverter, 187 func::FuncOp funcOp, 188 LLVM::LLVMFuncOp newFuncOp) { 189 OpBuilder::InsertionGuard guard(builder); 190 191 Type wrapperType; 192 bool resultIsNowArg; 193 std::tie(wrapperType, resultIsNowArg) = 194 typeConverter.convertFunctionTypeCWrapper(funcOp.getFunctionType()); 195 // This conversion can only fail if it could not convert one of the argument 196 // types. But since it has been applied to a non-wrapper function before, it 197 // should have failed earlier and not reach this point at all. 198 assert(wrapperType && "unexpected type conversion failure"); 199 200 SmallVector<NamedAttribute, 4> attributes; 201 filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/false, 202 attributes); 203 204 if (resultIsNowArg) 205 prependResAttrsToArgAttrs(builder, attributes, funcOp.getNumArguments()); 206 // Create the auxiliary function. 207 auto wrapperFunc = builder.create<LLVM::LLVMFuncOp>( 208 loc, llvm::formatv("_mlir_ciface_{0}", funcOp.getName()).str(), 209 wrapperType, LLVM::Linkage::External, /*dsoLocal*/ false, attributes); 210 211 builder.setInsertionPointToStart(newFuncOp.addEntryBlock()); 212 213 // Get a ValueRange containing arguments. 214 FunctionType type = funcOp.getFunctionType(); 215 SmallVector<Value, 8> args; 216 args.reserve(type.getNumInputs()); 217 ValueRange wrapperArgsRange(newFuncOp.getArguments()); 218 219 if (resultIsNowArg) { 220 // Allocate the struct on the stack and pass the pointer. 221 Type resultType = 222 wrapperType.cast<LLVM::LLVMFunctionType>().getParamType(0); 223 Value one = builder.create<LLVM::ConstantOp>( 224 loc, typeConverter.convertType(builder.getIndexType()), 225 builder.getIntegerAttr(builder.getIndexType(), 1)); 226 Value result = builder.create<LLVM::AllocaOp>(loc, resultType, one); 227 args.push_back(result); 228 } 229 230 // Iterate over the inputs of the original function and pack values into 231 // memref descriptors if the original type is a memref. 232 for (auto &en : llvm::enumerate(type.getInputs())) { 233 Value arg; 234 int numToDrop = 1; 235 auto memRefType = en.value().dyn_cast<MemRefType>(); 236 auto unrankedMemRefType = en.value().dyn_cast<UnrankedMemRefType>(); 237 if (memRefType || unrankedMemRefType) { 238 numToDrop = memRefType 239 ? MemRefDescriptor::getNumUnpackedValues(memRefType) 240 : UnrankedMemRefDescriptor::getNumUnpackedValues(); 241 Value packed = 242 memRefType 243 ? MemRefDescriptor::pack(builder, loc, typeConverter, memRefType, 244 wrapperArgsRange.take_front(numToDrop)) 245 : UnrankedMemRefDescriptor::pack( 246 builder, loc, typeConverter, unrankedMemRefType, 247 wrapperArgsRange.take_front(numToDrop)); 248 249 auto ptrTy = LLVM::LLVMPointerType::get(packed.getType()); 250 Value one = builder.create<LLVM::ConstantOp>( 251 loc, typeConverter.convertType(builder.getIndexType()), 252 builder.getIntegerAttr(builder.getIndexType(), 1)); 253 Value allocated = 254 builder.create<LLVM::AllocaOp>(loc, ptrTy, one, /*alignment=*/0); 255 builder.create<LLVM::StoreOp>(loc, packed, allocated); 256 arg = allocated; 257 } else { 258 arg = wrapperArgsRange[0]; 259 } 260 261 args.push_back(arg); 262 wrapperArgsRange = wrapperArgsRange.drop_front(numToDrop); 263 } 264 assert(wrapperArgsRange.empty() && "did not map some of the arguments"); 265 266 auto call = builder.create<LLVM::CallOp>(loc, wrapperFunc, args); 267 268 if (resultIsNowArg) { 269 Value result = builder.create<LLVM::LoadOp>(loc, args.front()); 270 builder.create<LLVM::ReturnOp>(loc, ValueRange{result}); 271 } else { 272 builder.create<LLVM::ReturnOp>(loc, call.getResults()); 273 } 274 } 275 276 namespace { 277 278 struct FuncOpConversionBase : public ConvertOpToLLVMPattern<func::FuncOp> { 279 protected: 280 using ConvertOpToLLVMPattern<func::FuncOp>::ConvertOpToLLVMPattern; 281 282 // Convert input FuncOp to LLVMFuncOp by using the LLVMTypeConverter provided 283 // to this legalization pattern. 284 LLVM::LLVMFuncOp 285 convertFuncOpToLLVMFuncOp(func::FuncOp funcOp, 286 ConversionPatternRewriter &rewriter) const { 287 // Convert the original function arguments. They are converted using the 288 // LLVMTypeConverter provided to this legalization pattern. 289 auto varargsAttr = funcOp->getAttrOfType<BoolAttr>("func.varargs"); 290 TypeConverter::SignatureConversion result(funcOp.getNumArguments()); 291 auto llvmType = getTypeConverter()->convertFunctionSignature( 292 funcOp.getFunctionType(), varargsAttr && varargsAttr.getValue(), 293 result); 294 if (!llvmType) 295 return nullptr; 296 297 // Propagate argument/result attributes to all converted arguments/result 298 // obtained after converting a given original argument/result. 299 SmallVector<NamedAttribute, 4> attributes; 300 filterFuncAttributes(funcOp->getAttrs(), /*filterArgAndResAttrs=*/true, 301 attributes); 302 if (ArrayAttr resAttrDicts = funcOp.getAllResultAttrs()) { 303 assert(!resAttrDicts.empty() && "expected array to be non-empty"); 304 auto newResAttrDicts = 305 (funcOp.getNumResults() == 1) 306 ? resAttrDicts 307 : rewriter.getArrayAttr( 308 {wrapAsStructAttrs(rewriter, resAttrDicts)}); 309 attributes.push_back(rewriter.getNamedAttr( 310 FunctionOpInterface::getResultDictAttrName(), newResAttrDicts)); 311 } 312 if (ArrayAttr argAttrDicts = funcOp.getAllArgAttrs()) { 313 SmallVector<Attribute, 4> newArgAttrs( 314 llvmType.cast<LLVM::LLVMFunctionType>().getNumParams()); 315 for (unsigned i = 0, e = funcOp.getNumArguments(); i < e; ++i) { 316 auto mapping = result.getInputMapping(i); 317 assert(mapping.hasValue() && 318 "unexpected deletion of function argument"); 319 for (size_t j = 0; j < mapping->size; ++j) 320 newArgAttrs[mapping->inputNo + j] = argAttrDicts[i]; 321 } 322 attributes.push_back( 323 rewriter.getNamedAttr(FunctionOpInterface::getArgDictAttrName(), 324 rewriter.getArrayAttr(newArgAttrs))); 325 } 326 for (const auto &pair : llvm::enumerate(attributes)) { 327 if (pair.value().getName() == "llvm.linkage") { 328 attributes.erase(attributes.begin() + pair.index()); 329 break; 330 } 331 } 332 333 // Create an LLVM function, use external linkage by default until MLIR 334 // functions have linkage. 335 LLVM::Linkage linkage = LLVM::Linkage::External; 336 if (funcOp->hasAttr("llvm.linkage")) { 337 auto attr = 338 funcOp->getAttr("llvm.linkage").dyn_cast<mlir::LLVM::LinkageAttr>(); 339 if (!attr) { 340 funcOp->emitError() 341 << "Contains llvm.linkage attribute not of type LLVM::LinkageAttr"; 342 return nullptr; 343 } 344 linkage = attr.getLinkage(); 345 } 346 auto newFuncOp = rewriter.create<LLVM::LLVMFuncOp>( 347 funcOp.getLoc(), funcOp.getName(), llvmType, linkage, 348 /*dsoLocal*/ false, attributes); 349 rewriter.inlineRegionBefore(funcOp.getBody(), newFuncOp.getBody(), 350 newFuncOp.end()); 351 if (failed(rewriter.convertRegionTypes(&newFuncOp.getBody(), *typeConverter, 352 &result))) 353 return nullptr; 354 355 return newFuncOp; 356 } 357 }; 358 359 /// FuncOp legalization pattern that converts MemRef arguments to pointers to 360 /// MemRef descriptors (LLVM struct data types) containing all the MemRef type 361 /// information. 362 static constexpr StringRef kEmitIfaceAttrName = "llvm.emit_c_interface"; 363 struct FuncOpConversion : public FuncOpConversionBase { 364 FuncOpConversion(LLVMTypeConverter &converter) 365 : FuncOpConversionBase(converter) {} 366 367 LogicalResult 368 matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, 369 ConversionPatternRewriter &rewriter) const override { 370 auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter); 371 if (!newFuncOp) 372 return failure(); 373 374 if (getTypeConverter()->getOptions().emitCWrappers || 375 funcOp->getAttrOfType<UnitAttr>(kEmitIfaceAttrName)) { 376 if (newFuncOp.isExternal()) 377 wrapExternalFunction(rewriter, funcOp.getLoc(), *getTypeConverter(), 378 funcOp, newFuncOp); 379 else 380 wrapForExternalCallers(rewriter, funcOp.getLoc(), *getTypeConverter(), 381 funcOp, newFuncOp); 382 } 383 384 rewriter.eraseOp(funcOp); 385 return success(); 386 } 387 }; 388 389 /// FuncOp legalization pattern that converts MemRef arguments to bare pointers 390 /// to the MemRef element type. This will impact the calling convention and ABI. 391 struct BarePtrFuncOpConversion : public FuncOpConversionBase { 392 using FuncOpConversionBase::FuncOpConversionBase; 393 394 LogicalResult 395 matchAndRewrite(func::FuncOp funcOp, OpAdaptor adaptor, 396 ConversionPatternRewriter &rewriter) const override { 397 398 // TODO: bare ptr conversion could be handled by argument materialization 399 // and most of the code below would go away. But to do this, we would need a 400 // way to distinguish between FuncOp and other regions in the 401 // addArgumentMaterialization hook. 402 403 // Store the type of memref-typed arguments before the conversion so that we 404 // can promote them to MemRef descriptor at the beginning of the function. 405 SmallVector<Type, 8> oldArgTypes = 406 llvm::to_vector<8>(funcOp.getFunctionType().getInputs()); 407 408 auto newFuncOp = convertFuncOpToLLVMFuncOp(funcOp, rewriter); 409 if (!newFuncOp) 410 return failure(); 411 if (newFuncOp.getBody().empty()) { 412 rewriter.eraseOp(funcOp); 413 return success(); 414 } 415 416 // Promote bare pointers from memref arguments to memref descriptors at the 417 // beginning of the function so that all the memrefs in the function have a 418 // uniform representation. 419 Block *entryBlock = &newFuncOp.getBody().front(); 420 auto blockArgs = entryBlock->getArguments(); 421 assert(blockArgs.size() == oldArgTypes.size() && 422 "The number of arguments and types doesn't match"); 423 424 OpBuilder::InsertionGuard guard(rewriter); 425 rewriter.setInsertionPointToStart(entryBlock); 426 for (auto it : llvm::zip(blockArgs, oldArgTypes)) { 427 BlockArgument arg = std::get<0>(it); 428 Type argTy = std::get<1>(it); 429 430 // Unranked memrefs are not supported in the bare pointer calling 431 // convention. We should have bailed out before in the presence of 432 // unranked memrefs. 433 assert(!argTy.isa<UnrankedMemRefType>() && 434 "Unranked memref is not supported"); 435 auto memrefTy = argTy.dyn_cast<MemRefType>(); 436 if (!memrefTy) 437 continue; 438 439 // Replace barePtr with a placeholder (undef), promote barePtr to a ranked 440 // or unranked memref descriptor and replace placeholder with the last 441 // instruction of the memref descriptor. 442 // TODO: The placeholder is needed to avoid replacing barePtr uses in the 443 // MemRef descriptor instructions. We may want to have a utility in the 444 // rewriter to properly handle this use case. 445 Location loc = funcOp.getLoc(); 446 auto placeholder = rewriter.create<LLVM::UndefOp>( 447 loc, getTypeConverter()->convertType(memrefTy)); 448 rewriter.replaceUsesOfBlockArgument(arg, placeholder); 449 450 Value desc = MemRefDescriptor::fromStaticShape( 451 rewriter, loc, *getTypeConverter(), memrefTy, arg); 452 rewriter.replaceOp(placeholder, {desc}); 453 } 454 455 rewriter.eraseOp(funcOp); 456 return success(); 457 } 458 }; 459 460 struct ConstantOpLowering : public ConvertOpToLLVMPattern<func::ConstantOp> { 461 using ConvertOpToLLVMPattern<func::ConstantOp>::ConvertOpToLLVMPattern; 462 463 LogicalResult 464 matchAndRewrite(func::ConstantOp op, OpAdaptor adaptor, 465 ConversionPatternRewriter &rewriter) const override { 466 auto type = typeConverter->convertType(op.getResult().getType()); 467 if (!type || !LLVM::isCompatibleType(type)) 468 return rewriter.notifyMatchFailure(op, "failed to convert result type"); 469 470 auto newOp = 471 rewriter.create<LLVM::AddressOfOp>(op.getLoc(), type, op.getValue()); 472 for (const NamedAttribute &attr : op->getAttrs()) { 473 if (attr.getName().strref() == "value") 474 continue; 475 newOp->setAttr(attr.getName(), attr.getValue()); 476 } 477 rewriter.replaceOp(op, newOp->getResults()); 478 return success(); 479 } 480 }; 481 482 // A CallOp automatically promotes MemRefType to a sequence of alloca/store and 483 // passes the pointer to the MemRef across function boundaries. 484 template <typename CallOpType> 485 struct CallOpInterfaceLowering : public ConvertOpToLLVMPattern<CallOpType> { 486 using ConvertOpToLLVMPattern<CallOpType>::ConvertOpToLLVMPattern; 487 using Super = CallOpInterfaceLowering<CallOpType>; 488 using Base = ConvertOpToLLVMPattern<CallOpType>; 489 490 LogicalResult 491 matchAndRewrite(CallOpType callOp, typename CallOpType::Adaptor adaptor, 492 ConversionPatternRewriter &rewriter) const override { 493 // Pack the result types into a struct. 494 Type packedResult = nullptr; 495 unsigned numResults = callOp.getNumResults(); 496 auto resultTypes = llvm::to_vector<4>(callOp.getResultTypes()); 497 498 if (numResults != 0) { 499 if (!(packedResult = 500 this->getTypeConverter()->packFunctionResults(resultTypes))) 501 return failure(); 502 } 503 504 auto promoted = this->getTypeConverter()->promoteOperands( 505 callOp.getLoc(), /*opOperands=*/callOp->getOperands(), 506 adaptor.getOperands(), rewriter); 507 auto newOp = rewriter.create<LLVM::CallOp>( 508 callOp.getLoc(), packedResult ? TypeRange(packedResult) : TypeRange(), 509 promoted, callOp->getAttrs()); 510 511 SmallVector<Value, 4> results; 512 if (numResults < 2) { 513 // If < 2 results, packing did not do anything and we can just return. 514 results.append(newOp.result_begin(), newOp.result_end()); 515 } else { 516 // Otherwise, it had been converted to an operation producing a structure. 517 // Extract individual results from the structure and return them as list. 518 results.reserve(numResults); 519 for (unsigned i = 0; i < numResults; ++i) { 520 auto type = 521 this->typeConverter->convertType(callOp.getResult(i).getType()); 522 results.push_back(rewriter.create<LLVM::ExtractValueOp>( 523 callOp.getLoc(), type, newOp->getResult(0), 524 rewriter.getI64ArrayAttr(i))); 525 } 526 } 527 528 if (this->getTypeConverter()->getOptions().useBarePtrCallConv) { 529 // For the bare-ptr calling convention, promote memref results to 530 // descriptors. 531 assert(results.size() == resultTypes.size() && 532 "The number of arguments and types doesn't match"); 533 this->getTypeConverter()->promoteBarePtrsToDescriptors( 534 rewriter, callOp.getLoc(), resultTypes, results); 535 } else if (failed(this->copyUnrankedDescriptors(rewriter, callOp.getLoc(), 536 resultTypes, results, 537 /*toDynamic=*/false))) { 538 return failure(); 539 } 540 541 rewriter.replaceOp(callOp, results); 542 return success(); 543 } 544 }; 545 546 struct CallOpLowering : public CallOpInterfaceLowering<func::CallOp> { 547 using Super::Super; 548 }; 549 550 struct CallIndirectOpLowering 551 : public CallOpInterfaceLowering<func::CallIndirectOp> { 552 using Super::Super; 553 }; 554 555 struct UnrealizedConversionCastOpLowering 556 : public ConvertOpToLLVMPattern<UnrealizedConversionCastOp> { 557 using ConvertOpToLLVMPattern< 558 UnrealizedConversionCastOp>::ConvertOpToLLVMPattern; 559 560 LogicalResult 561 matchAndRewrite(UnrealizedConversionCastOp op, OpAdaptor adaptor, 562 ConversionPatternRewriter &rewriter) const override { 563 SmallVector<Type> convertedTypes; 564 if (succeeded(typeConverter->convertTypes(op.getOutputs().getTypes(), 565 convertedTypes)) && 566 convertedTypes == adaptor.getInputs().getTypes()) { 567 rewriter.replaceOp(op, adaptor.getInputs()); 568 return success(); 569 } 570 571 convertedTypes.clear(); 572 if (succeeded(typeConverter->convertTypes(adaptor.getInputs().getTypes(), 573 convertedTypes)) && 574 convertedTypes == op.getOutputs().getType()) { 575 rewriter.replaceOp(op, adaptor.getInputs()); 576 return success(); 577 } 578 return failure(); 579 } 580 }; 581 582 // Special lowering pattern for `ReturnOps`. Unlike all other operations, 583 // `ReturnOp` interacts with the function signature and must have as many 584 // operands as the function has return values. Because in LLVM IR, functions 585 // can only return 0 or 1 value, we pack multiple values into a structure type. 586 // Emit `UndefOp` followed by `InsertValueOp`s to create such structure if 587 // necessary before returning it 588 struct ReturnOpLowering : public ConvertOpToLLVMPattern<func::ReturnOp> { 589 using ConvertOpToLLVMPattern<func::ReturnOp>::ConvertOpToLLVMPattern; 590 591 LogicalResult 592 matchAndRewrite(func::ReturnOp op, OpAdaptor adaptor, 593 ConversionPatternRewriter &rewriter) const override { 594 Location loc = op.getLoc(); 595 unsigned numArguments = op.getNumOperands(); 596 SmallVector<Value, 4> updatedOperands; 597 598 if (getTypeConverter()->getOptions().useBarePtrCallConv) { 599 // For the bare-ptr calling convention, extract the aligned pointer to 600 // be returned from the memref descriptor. 601 for (auto it : llvm::zip(op->getOperands(), adaptor.getOperands())) { 602 Type oldTy = std::get<0>(it).getType(); 603 Value newOperand = std::get<1>(it); 604 if (oldTy.isa<MemRefType>() && getTypeConverter()->canConvertToBarePtr( 605 oldTy.cast<BaseMemRefType>())) { 606 MemRefDescriptor memrefDesc(newOperand); 607 newOperand = memrefDesc.alignedPtr(rewriter, loc); 608 } else if (oldTy.isa<UnrankedMemRefType>()) { 609 // Unranked memref is not supported in the bare pointer calling 610 // convention. 611 return failure(); 612 } 613 updatedOperands.push_back(newOperand); 614 } 615 } else { 616 updatedOperands = llvm::to_vector<4>(adaptor.getOperands()); 617 (void)copyUnrankedDescriptors(rewriter, loc, op.getOperands().getTypes(), 618 updatedOperands, 619 /*toDynamic=*/true); 620 } 621 622 // If ReturnOp has 0 or 1 operand, create it and return immediately. 623 if (numArguments == 0) { 624 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), ValueRange(), 625 op->getAttrs()); 626 return success(); 627 } 628 if (numArguments == 1) { 629 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>( 630 op, TypeRange(), updatedOperands, op->getAttrs()); 631 return success(); 632 } 633 634 // Otherwise, we need to pack the arguments into an LLVM struct type before 635 // returning. 636 auto packedType = getTypeConverter()->packFunctionResults( 637 llvm::to_vector<4>(op.getOperandTypes())); 638 639 Value packed = rewriter.create<LLVM::UndefOp>(loc, packedType); 640 for (unsigned i = 0; i < numArguments; ++i) { 641 packed = rewriter.create<LLVM::InsertValueOp>( 642 loc, packedType, packed, updatedOperands[i], 643 rewriter.getI64ArrayAttr(i)); 644 } 645 rewriter.replaceOpWithNewOp<LLVM::ReturnOp>(op, TypeRange(), packed, 646 op->getAttrs()); 647 return success(); 648 } 649 }; 650 } // namespace 651 652 void mlir::populateFuncToLLVMFuncOpConversionPattern( 653 LLVMTypeConverter &converter, RewritePatternSet &patterns) { 654 if (converter.getOptions().useBarePtrCallConv) 655 patterns.add<BarePtrFuncOpConversion>(converter); 656 else 657 patterns.add<FuncOpConversion>(converter); 658 } 659 660 void mlir::populateFuncToLLVMConversionPatterns(LLVMTypeConverter &converter, 661 RewritePatternSet &patterns) { 662 populateFuncToLLVMFuncOpConversionPattern(converter, patterns); 663 // clang-format off 664 patterns.add< 665 CallIndirectOpLowering, 666 CallOpLowering, 667 ConstantOpLowering, 668 ReturnOpLowering>(converter); 669 // clang-format on 670 } 671 672 namespace { 673 /// A pass converting Func operations into the LLVM IR dialect. 674 struct ConvertFuncToLLVMPass 675 : public ConvertFuncToLLVMBase<ConvertFuncToLLVMPass> { 676 ConvertFuncToLLVMPass() = default; 677 ConvertFuncToLLVMPass(bool useBarePtrCallConv, bool emitCWrappers, 678 unsigned indexBitwidth, bool useAlignedAlloc, 679 const llvm::DataLayout &dataLayout) { 680 this->useBarePtrCallConv = useBarePtrCallConv; 681 this->emitCWrappers = emitCWrappers; 682 this->indexBitwidth = indexBitwidth; 683 this->dataLayout = dataLayout.getStringRepresentation(); 684 } 685 686 /// Run the dialect converter on the module. 687 void runOnOperation() override { 688 if (useBarePtrCallConv && emitCWrappers) { 689 getOperation().emitError() 690 << "incompatible conversion options: bare-pointer calling convention " 691 "and C wrapper emission"; 692 signalPassFailure(); 693 return; 694 } 695 if (failed(LLVM::LLVMDialect::verifyDataLayoutString( 696 this->dataLayout, [this](const Twine &message) { 697 getOperation().emitError() << message.str(); 698 }))) { 699 signalPassFailure(); 700 return; 701 } 702 703 ModuleOp m = getOperation(); 704 const auto &dataLayoutAnalysis = getAnalysis<DataLayoutAnalysis>(); 705 706 LowerToLLVMOptions options(&getContext(), 707 dataLayoutAnalysis.getAtOrAbove(m)); 708 options.useBarePtrCallConv = useBarePtrCallConv; 709 options.emitCWrappers = emitCWrappers; 710 if (indexBitwidth != kDeriveIndexBitwidthFromDataLayout) 711 options.overrideIndexBitwidth(indexBitwidth); 712 options.dataLayout = llvm::DataLayout(this->dataLayout); 713 714 LLVMTypeConverter typeConverter(&getContext(), options, 715 &dataLayoutAnalysis); 716 717 RewritePatternSet patterns(&getContext()); 718 populateFuncToLLVMConversionPatterns(typeConverter, patterns); 719 720 // TODO: Remove these in favor of their dedicated conversion passes. 721 arith::populateArithmeticToLLVMConversionPatterns(typeConverter, patterns); 722 cf::populateControlFlowToLLVMConversionPatterns(typeConverter, patterns); 723 724 LLVMConversionTarget target(getContext()); 725 if (failed(applyPartialConversion(m, target, std::move(patterns)))) 726 signalPassFailure(); 727 728 m->setAttr(LLVM::LLVMDialect::getDataLayoutAttrName(), 729 StringAttr::get(m.getContext(), this->dataLayout)); 730 } 731 }; 732 } // namespace 733 734 std::unique_ptr<OperationPass<ModuleOp>> mlir::createConvertFuncToLLVMPass() { 735 return std::make_unique<ConvertFuncToLLVMPass>(); 736 } 737 738 std::unique_ptr<OperationPass<ModuleOp>> 739 mlir::createConvertFuncToLLVMPass(const LowerToLLVMOptions &options) { 740 auto allocLowering = options.allocLowering; 741 // There is no way to provide additional patterns for pass, so 742 // AllocLowering::None will always fail. 743 assert(allocLowering != LowerToLLVMOptions::AllocLowering::None && 744 "ConvertFuncToLLVMPass doesn't support AllocLowering::None"); 745 bool useAlignedAlloc = 746 (allocLowering == LowerToLLVMOptions::AllocLowering::AlignedAlloc); 747 return std::make_unique<ConvertFuncToLLVMPass>( 748 options.useBarePtrCallConv, options.emitCWrappers, 749 options.getIndexBitwidth(), useAlignedAlloc, options.dataLayout); 750 } 751