1 //===- Utils.cpp - General utilities for Presburger library ---------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Utility functions required by the Presburger Library. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "mlir/Analysis/Presburger/Utils.h" 14 #include "mlir/Analysis/Presburger/IntegerPolyhedron.h" 15 #include "mlir/Support/LogicalResult.h" 16 #include "mlir/Support/MathExtras.h" 17 18 using namespace mlir; 19 20 /// Normalize a division's `dividend` and the `divisor` by their GCD. For 21 /// example: if the dividend and divisor are [2,0,4] and 4 respectively, 22 /// they get normalized to [1,0,2] and 2. 23 static void normalizeDivisionByGCD(SmallVectorImpl<int64_t> ÷nd, 24 unsigned &divisor) { 25 if (divisor == 0 || dividend.empty()) 26 return; 27 int64_t gcd = llvm::greatestCommonDivisor(dividend.front(), int64_t(divisor)); 28 29 // The reason for ignoring the constant term is as follows. 30 // For a division: 31 // floor((a + m.f(x))/(m.d)) 32 // It can be replaced by: 33 // floor((floor(a/m) + f(x))/d) 34 // Since `{a/m}/d` in the dividend satisfies 0 <= {a/m}/d < 1/d, it will not 35 // influence the result of the floor division and thus, can be ignored. 36 for (size_t i = 1, m = dividend.size() - 1; i < m; i++) { 37 gcd = llvm::greatestCommonDivisor(dividend[i], gcd); 38 if (gcd == 1) 39 return; 40 } 41 42 // Normalize the dividend and the denominator. 43 std::transform(dividend.begin(), dividend.end(), dividend.begin(), 44 [gcd](int64_t &n) { return floor(n / gcd); }); 45 divisor /= gcd; 46 } 47 48 /// Check if the pos^th identifier can be represented as a division using upper 49 /// bound inequality at position `ubIneq` and lower bound inequality at position 50 /// `lbIneq`. 51 /// 52 /// Let `id` be the pos^th identifier, then `id` is equivalent to 53 /// `expr floordiv divisor` if there are constraints of the form: 54 /// 0 <= expr - divisor * id <= divisor - 1 55 /// Rearranging, we have: 56 /// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id' 57 /// -divisor * id + expr >= 0 <-- Upper bound for 'id' 58 /// 59 /// For example: 60 /// 32*k >= 16*i + j - 31 <-- Lower bound for 'k' 61 /// 32*k <= 16*i + j <-- Upper bound for 'k' 62 /// expr = 16*i + j, divisor = 32 63 /// k = ( 16*i + j ) floordiv 32 64 /// 65 /// 4q >= i + j - 2 <-- Lower bound for 'q' 66 /// 4q <= i + j + 1 <-- Upper bound for 'q' 67 /// expr = i + j + 1, divisor = 4 68 /// q = (i + j + 1) floordiv 4 69 // 70 /// This function also supports detecting divisions from bounds that are 71 /// strictly tighter than the division bounds described above, since tighter 72 /// bounds imply the division bounds. For example: 73 /// 4q - i - j + 2 >= 0 <-- Lower bound for 'q' 74 /// -4q + i + j >= 0 <-- Tight upper bound for 'q' 75 /// 76 /// To extract floor divisions with tighter bounds, we assume that that the 77 /// constraints are of the form: 78 /// c <= expr - divisior * id <= divisor - 1, where 0 <= c <= divisor - 1 79 /// Rearranging, we have: 80 /// divisor * id - expr + (divisor - 1) >= 0 <-- Lower bound for 'id' 81 /// -divisor * id + expr - c >= 0 <-- Upper bound for 'id' 82 /// 83 /// If successful, `expr` is set to dividend of the division and `divisor` is 84 /// set to the denominator of the division. The final division expression is 85 /// normalized by GCD. 86 static LogicalResult getDivRepr(const IntegerPolyhedron &cst, unsigned pos, 87 unsigned ubIneq, unsigned lbIneq, 88 SmallVector<int64_t, 8> &expr, 89 unsigned &divisor) { 90 91 assert(pos <= cst.getNumIds() && "Invalid identifier position"); 92 assert(ubIneq <= cst.getNumInequalities() && 93 "Invalid upper bound inequality position"); 94 assert(lbIneq <= cst.getNumInequalities() && 95 "Invalid upper bound inequality position"); 96 97 // Extract divisor from the lower bound. 98 divisor = cst.atIneq(lbIneq, pos); 99 100 // First, check if the constraints are opposite of each other except the 101 // constant term. 102 unsigned i = 0, e = 0; 103 for (i = 0, e = cst.getNumIds(); i < e; ++i) 104 if (cst.atIneq(ubIneq, i) != -cst.atIneq(lbIneq, i)) 105 break; 106 107 if (i < e) 108 return failure(); 109 110 // Then, check if the constant term is of the proper form. 111 // Due to the form of the upper/lower bound inequalities, the sum of their 112 // constants is `divisor - 1 - c`. From this, we can extract c: 113 int64_t constantSum = cst.atIneq(lbIneq, cst.getNumCols() - 1) + 114 cst.atIneq(ubIneq, cst.getNumCols() - 1); 115 int64_t c = divisor - 1 - constantSum; 116 117 // Check if `c` satisfies the condition `0 <= c <= divisor - 1`. This also 118 // implictly checks that `divisor` is positive. 119 if (!(c >= 0 && c <= divisor - 1)) 120 return failure(); 121 122 // The inequality pair can be used to extract the division. 123 // Set `expr` to the dividend of the division except the constant term, which 124 // is set below. 125 expr.resize(cst.getNumCols(), 0); 126 for (i = 0, e = cst.getNumIds(); i < e; ++i) 127 if (i != pos) 128 expr[i] = cst.atIneq(ubIneq, i); 129 130 // From the upper bound inequality's form, its constant term is equal to the 131 // constant term of `expr`, minus `c`. From this, 132 // constant term of `expr` = constant term of upper bound + `c`. 133 expr.back() = cst.atIneq(ubIneq, cst.getNumCols() - 1) + c; 134 normalizeDivisionByGCD(expr, divisor); 135 136 return success(); 137 } 138 139 /// Check if the pos^th identifier can be expressed as a floordiv of an affine 140 /// function of other identifiers (where the divisor is a positive constant). 141 /// `foundRepr` contains a boolean for each identifier indicating if the 142 /// explicit representation for that identifier has already been computed. 143 /// Returns the upper and lower bound inequalities using which the floordiv can 144 /// be computed. If the representation could be computed, `dividend` and 145 /// `denominator` are set. If the representation could not be computed, 146 /// `llvm::None` is returned. 147 Optional<std::pair<unsigned, unsigned>> presburger_utils::computeSingleVarRepr( 148 const IntegerPolyhedron &cst, ArrayRef<bool> foundRepr, unsigned pos, 149 SmallVector<int64_t, 8> ÷nd, unsigned &divisor) { 150 assert(pos < cst.getNumIds() && "invalid position"); 151 assert(foundRepr.size() == cst.getNumIds() && 152 "Size of foundRepr does not match total number of variables"); 153 154 SmallVector<unsigned, 4> lbIndices, ubIndices; 155 cst.getLowerAndUpperBoundIndices(pos, &lbIndices, &ubIndices); 156 157 for (unsigned ubPos : ubIndices) { 158 for (unsigned lbPos : lbIndices) { 159 // Attempt to get divison representation from ubPos, lbPos. 160 if (failed(getDivRepr(cst, pos, ubPos, lbPos, dividend, divisor))) 161 continue; 162 163 // Check if the inequalities depend on a variable for which 164 // an explicit representation has not been found yet. 165 // Exit to avoid circular dependencies between divisions. 166 unsigned c, f; 167 for (c = 0, f = cst.getNumIds(); c < f; ++c) { 168 if (c == pos) 169 continue; 170 if (!foundRepr[c] && dividend[c] != 0) 171 break; 172 } 173 174 // Expression can't be constructed as it depends on a yet unknown 175 // identifier. 176 // TODO: Visit/compute the identifiers in an order so that this doesn't 177 // happen. More complex but much more efficient. 178 if (c < f) 179 continue; 180 181 return std::make_pair(ubPos, lbPos); 182 } 183 } 184 185 return llvm::None; 186 } 187