1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 
14 namespace mlir {
15 using Direction = Simplex::Direction;
16 
17 const int nullIndex = std::numeric_limits<int>::max();
18 
19 /// Construct a Simplex object with `nVar` variables.
20 Simplex::Simplex(unsigned nVar)
21     : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
22   colUnknown.push_back(nullIndex);
23   colUnknown.push_back(nullIndex);
24   for (unsigned i = 0; i < nVar; ++i) {
25     var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
26     colUnknown.push_back(i);
27     nCol++;
28   }
29 }
30 
31 Simplex::Simplex(const FlatAffineConstraints &constraints)
32     : Simplex(constraints.getNumIds()) {
33   for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
34        i < numIneqs; ++i)
35     addInequality(constraints.getInequality(i));
36   for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
37     addEquality(constraints.getEquality(i));
38 }
39 
40 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
41   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
42   return index >= 0 ? var[index] : con[~index];
43 }
44 
45 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
46   assert(col < nCol && "Invalid column");
47   return unknownFromIndex(colUnknown[col]);
48 }
49 
50 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
51   assert(row < nRow && "Invalid row");
52   return unknownFromIndex(rowUnknown[row]);
53 }
54 
55 Simplex::Unknown &Simplex::unknownFromIndex(int index) {
56   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
57   return index >= 0 ? var[index] : con[~index];
58 }
59 
60 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
61   assert(col < nCol && "Invalid column");
62   return unknownFromIndex(colUnknown[col]);
63 }
64 
65 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
66   assert(row < nRow && "Invalid row");
67   return unknownFromIndex(rowUnknown[row]);
68 }
69 
70 /// Add a new row to the tableau corresponding to the given constant term and
71 /// list of coefficients. The coefficients are specified as a vector of
72 /// (variable index, coefficient) pairs.
73 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
74   assert(coeffs.size() == 1 + var.size() &&
75          "Incorrect number of coefficients!");
76 
77   ++nRow;
78   // If the tableau is not big enough to accomodate the extra row, we extend it.
79   if (nRow >= tableau.getNumRows())
80     tableau.resizeVertically(nRow);
81   rowUnknown.push_back(~con.size());
82   con.emplace_back(Orientation::Row, false, nRow - 1);
83 
84   tableau(nRow - 1, 0) = 1;
85   tableau(nRow - 1, 1) = coeffs.back();
86   for (unsigned col = 2; col < nCol; ++col)
87     tableau(nRow - 1, col) = 0;
88 
89   // Process each given variable coefficient.
90   for (unsigned i = 0; i < var.size(); ++i) {
91     unsigned pos = var[i].pos;
92     if (coeffs[i] == 0)
93       continue;
94 
95     if (var[i].orientation == Orientation::Column) {
96       // If a variable is in column position at column col, then we just add the
97       // coefficient for that variable (scaled by the common row denominator) to
98       // the corresponding entry in the new row.
99       tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
100       continue;
101     }
102 
103     // If the variable is in row position, we need to add that row to the new
104     // row, scaled by the coefficient for the variable, accounting for the two
105     // rows potentially having different denominators. The new denominator is
106     // the lcm of the two.
107     int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
108     int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
109     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
110     tableau(nRow - 1, 0) = lcm;
111     for (unsigned col = 1; col < nCol; ++col)
112       tableau(nRow - 1, col) =
113           nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
114   }
115 
116   normalizeRow(nRow - 1);
117   // Push to undo log along with the index of the new constraint.
118   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
119   return con.size() - 1;
120 }
121 
122 /// Normalize the row by removing factors that are common between the
123 /// denominator and all the numerator coefficients.
124 void Simplex::normalizeRow(unsigned row) {
125   int64_t gcd = 0;
126   for (unsigned col = 0; col < nCol; ++col) {
127     if (gcd == 1)
128       break;
129     gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
130   }
131   for (unsigned col = 0; col < nCol; ++col)
132     tableau(row, col) /= gcd;
133 }
134 
135 namespace {
136 bool signMatchesDirection(int64_t elem, Direction direction) {
137   assert(elem != 0 && "elem should not be 0");
138   return direction == Direction::Up ? elem > 0 : elem < 0;
139 }
140 
141 Direction flippedDirection(Direction direction) {
142   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
143 }
144 } // anonymous namespace
145 
146 /// Find a pivot to change the sample value of the row in the specified
147 /// direction. The returned pivot row will involve `row` if and only if the
148 /// unknown is unbounded in the specified direction.
149 ///
150 /// To increase (resp. decrease) the value of a row, we need to find a live
151 /// column with a non-zero coefficient. If the coefficient is positive, we need
152 /// to increase (decrease) the value of the column, and if the coefficient is
153 /// negative, we need to decrease (increase) the value of the column. Also,
154 /// we cannot decrease the sample value of restricted columns.
155 ///
156 /// If multiple columns are valid, we break ties by considering a lexicographic
157 /// ordering where we prefer unknowns with lower index.
158 Optional<Simplex::Pivot> Simplex::findPivot(int row,
159                                             Direction direction) const {
160   Optional<unsigned> col;
161   for (unsigned j = 2; j < nCol; ++j) {
162     int64_t elem = tableau(row, j);
163     if (elem == 0)
164       continue;
165 
166     if (unknownFromColumn(j).restricted &&
167         !signMatchesDirection(elem, direction))
168       continue;
169     if (!col || colUnknown[j] < colUnknown[*col])
170       col = j;
171   }
172 
173   if (!col)
174     return {};
175 
176   Direction newDirection =
177       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
178   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
179   return Pivot{maybePivotRow.getValueOr(row), *col};
180 }
181 
182 /// Swap the associated unknowns for the row and the column.
183 ///
184 /// First we swap the index associated with the row and column. Then we update
185 /// the unknowns to reflect their new position and orientation.
186 void Simplex::swapRowWithCol(unsigned row, unsigned col) {
187   std::swap(rowUnknown[row], colUnknown[col]);
188   Unknown &uCol = unknownFromColumn(col);
189   Unknown &uRow = unknownFromRow(row);
190   uCol.orientation = Orientation::Column;
191   uRow.orientation = Orientation::Row;
192   uCol.pos = col;
193   uRow.pos = row;
194 }
195 
196 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
197 
198 /// Pivot pivotRow and pivotCol.
199 ///
200 /// Let R be the pivot row unknown and let C be the pivot col unknown.
201 /// Since initially R = a*C + sum b_i * X_i
202 /// (where the sum is over the other column's unknowns, x_i)
203 /// C = (R - (sum b_i * X_i))/a
204 ///
205 /// Let u be some other row unknown.
206 /// u = c*C + sum d_i * X_i
207 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
208 ///
209 /// This results in the following transform:
210 ///            pivot col    other col                   pivot col    other col
211 /// pivot row     a             b       ->   pivot row     1/a         -b/a
212 /// other row     c             d            other row     c/a        d - bc/a
213 ///
214 /// Taking into account the common denominators p and q:
215 ///
216 ///            pivot col    other col                    pivot col   other col
217 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
218 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
219 ///
220 /// The pivot row transform is accomplished be swapping a with the pivot row's
221 /// common denominator and negating the pivot row except for the pivot column
222 /// element.
223 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
224   assert(pivotCol >= 2 && "Refusing to pivot invalid column");
225 
226   swapRowWithCol(pivotRow, pivotCol);
227   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
228   // We need to negate the whole pivot row except for the pivot column.
229   if (tableau(pivotRow, 0) < 0) {
230     // If the denominator is negative, we negate the row by simply negating the
231     // denominator.
232     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
233     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
234   } else {
235     for (unsigned col = 1; col < nCol; ++col) {
236       if (col == pivotCol)
237         continue;
238       tableau(pivotRow, col) = -tableau(pivotRow, col);
239     }
240   }
241   normalizeRow(pivotRow);
242 
243   for (unsigned row = nRedundant; row < nRow; ++row) {
244     if (row == pivotRow)
245       continue;
246     if (tableau(row, pivotCol) == 0) // Nothing to do.
247       continue;
248     tableau(row, 0) *= tableau(pivotRow, 0);
249     for (unsigned j = 1; j < nCol; ++j) {
250       if (j == pivotCol)
251         continue;
252       // Add rather than subtract because the pivot row has been negated.
253       tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
254                         tableau(row, pivotCol) * tableau(pivotRow, j);
255     }
256     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
257     normalizeRow(row);
258   }
259 }
260 
261 /// Perform pivots until the unknown has a non-negative sample value or until
262 /// no more upward pivots can be performed. Return success if we were able to
263 /// bring the row to a non-negative sample value, and failure otherwise.
264 LogicalResult Simplex::restoreRow(Unknown &u) {
265   assert(u.orientation == Orientation::Row &&
266          "unknown should be in row position");
267 
268   while (tableau(u.pos, 1) < 0) {
269     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
270     if (!maybePivot)
271       break;
272 
273     pivot(*maybePivot);
274     if (u.orientation == Orientation::Column)
275       return success(); // the unknown is unbounded above.
276   }
277   return success(tableau(u.pos, 1) >= 0);
278 }
279 
280 /// Find a row that can be used to pivot the column in the specified direction.
281 /// This returns an empty optional if and only if the column is unbounded in the
282 /// specified direction (ignoring skipRow, if skipRow is set).
283 ///
284 /// If skipRow is set, this row is not considered, and (if it is restricted) its
285 /// restriction may be violated by the returned pivot. Usually, skipRow is set
286 /// because we don't want to move it to column position unless it is unbounded,
287 /// and we are either trying to increase the value of skipRow or explicitly
288 /// trying to make skipRow negative, so we are not concerned about this.
289 ///
290 /// If the direction is up (resp. down) and a restricted row has a negative
291 /// (positive) coefficient for the column, then this row imposes a bound on how
292 /// much the sample value of the column can change. Such a row with constant
293 /// term c and coefficient f for the column imposes a bound of c/|f| on the
294 /// change in sample value (in the specified direction). (note that c is
295 /// non-negative here since the row is restricted and the tableau is consistent)
296 ///
297 /// We iterate through the rows and pick the row which imposes the most
298 /// stringent bound, since pivoting with a row changes the row's sample value to
299 /// 0 and hence saturates the bound it imposes. We break ties between rows that
300 /// impose the same bound by considering a lexicographic ordering where we
301 /// prefer unknowns with lower index value.
302 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
303                                          Direction direction,
304                                          unsigned col) const {
305   Optional<unsigned> retRow;
306   int64_t retElem, retConst;
307   for (unsigned row = nRedundant; row < nRow; ++row) {
308     if (skipRow && row == *skipRow)
309       continue;
310     int64_t elem = tableau(row, col);
311     if (elem == 0)
312       continue;
313     if (!unknownFromRow(row).restricted)
314       continue;
315     if (signMatchesDirection(elem, direction))
316       continue;
317     int64_t constTerm = tableau(row, 1);
318 
319     if (!retRow) {
320       retRow = row;
321       retElem = elem;
322       retConst = constTerm;
323       continue;
324     }
325 
326     int64_t diff = retConst * elem - constTerm * retElem;
327     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
328         (diff != 0 && !signMatchesDirection(diff, direction))) {
329       retRow = row;
330       retElem = elem;
331       retConst = constTerm;
332     }
333   }
334   return retRow;
335 }
336 
337 bool Simplex::isEmpty() const { return empty; }
338 
339 void Simplex::swapRows(unsigned i, unsigned j) {
340   if (i == j)
341     return;
342   tableau.swapRows(i, j);
343   std::swap(rowUnknown[i], rowUnknown[j]);
344   unknownFromRow(i).pos = i;
345   unknownFromRow(j).pos = j;
346 }
347 
348 void Simplex::swapColumns(unsigned i, unsigned j) {
349   assert(i < nCol && j < nCol && "Invalid columns provided!");
350   if (i == j)
351     return;
352   tableau.swapColumns(i, j);
353   std::swap(colUnknown[i], colUnknown[j]);
354   unknownFromColumn(i).pos = i;
355   unknownFromColumn(j).pos = j;
356 }
357 
358 /// Mark this tableau empty and push an entry to the undo stack.
359 void Simplex::markEmpty() {
360   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
361   empty = true;
362 }
363 
364 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
365 /// is the current number of variables, then the corresponding inequality is
366 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
367 ///
368 /// We add the inequality and mark it as restricted. We then try to make its
369 /// sample value non-negative. If this is not possible, the tableau has become
370 /// empty and we mark it as such.
371 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
372   unsigned conIndex = addRow(coeffs);
373   Unknown &u = con[conIndex];
374   u.restricted = true;
375   LogicalResult result = restoreRow(u);
376   if (failed(result))
377     markEmpty();
378 }
379 
380 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
381 /// is the current number of variables, then the corresponding equality is
382 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
383 ///
384 /// We simply add two opposing inequalities, which force the expression to
385 /// be zero.
386 void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
387   addInequality(coeffs);
388   SmallVector<int64_t, 8> negatedCoeffs;
389   for (int64_t coeff : coeffs)
390     negatedCoeffs.emplace_back(-coeff);
391   addInequality(negatedCoeffs);
392 }
393 
394 unsigned Simplex::getNumVariables() const { return var.size(); }
395 unsigned Simplex::getNumConstraints() const { return con.size(); }
396 
397 /// Return a snapshot of the current state. This is just the current size of the
398 /// undo log.
399 unsigned Simplex::getSnapshot() const { return undoLog.size(); }
400 
401 void Simplex::undo(UndoLogEntry entry) {
402   if (entry == UndoLogEntry::RemoveLastConstraint) {
403     Unknown &constraint = con.back();
404     if (constraint.orientation == Orientation::Column) {
405       unsigned column = constraint.pos;
406       Optional<unsigned> row;
407 
408       // Try to find any pivot row for this column that preserves tableau
409       // consistency (except possibly the column itself, which is going to be
410       // deallocated anyway).
411       //
412       // If no pivot row is found in either direction, then the unknown is
413       // unbounded in both directions and we are free to
414       // perform any pivot at all. To do this, we just need to find any row with
415       // a non-zero coefficient for the column.
416       if (Optional<unsigned> maybeRow =
417               findPivotRow({}, Direction::Up, column)) {
418         row = *maybeRow;
419       } else if (Optional<unsigned> maybeRow =
420                      findPivotRow({}, Direction::Down, column)) {
421         row = *maybeRow;
422       } else {
423         // The loop doesn't find a pivot row only if the column has zero
424         // coefficients for every row. But the unknown is a constraint,
425         // so it was added initially as a row. Such a row could never have been
426         // pivoted to a column. So a pivot row will always be found.
427         for (unsigned i = nRedundant; i < nRow; ++i) {
428           if (tableau(i, column) != 0) {
429             row = i;
430             break;
431           }
432         }
433       }
434       assert(row.hasValue() && "No pivot row found!");
435       pivot(*row, column);
436     }
437 
438     // Move this unknown to the last row and remove the last row from the
439     // tableau.
440     swapRows(constraint.pos, nRow - 1);
441     // It is not strictly necessary to shrink the tableau, but for now we
442     // maintain the invariant that the tableau has exactly nRow rows.
443     tableau.resizeVertically(nRow - 1);
444     nRow--;
445     rowUnknown.pop_back();
446     con.pop_back();
447   } else if (entry == UndoLogEntry::RemoveLastVariable) {
448     // Whenever we are rolling back the addition of a variable, it is guaranteed
449     // that the variable will be in column position.
450     //
451     // We can see this as follows: any constraint that depends on this variable
452     // was added after this variable was added, so the addition of such
453     // constraints should already have been rolled back by the time we get to
454     // rolling back the addition of the variable. Therefore, no constraint
455     // currently has a component along the variable, so the variable itself must
456     // be part of the basis.
457     assert(var.back().orientation == Orientation::Column &&
458            "Variable to be removed must be in column orientation!");
459 
460     // Move this variable to the last column and remove the column from the
461     // tableau.
462     swapColumns(var.back().pos, nCol - 1);
463     tableau.resizeHorizontally(nCol - 1);
464     var.pop_back();
465     colUnknown.pop_back();
466     nCol--;
467   } else if (entry == UndoLogEntry::UnmarkEmpty) {
468     empty = false;
469   } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
470     nRedundant--;
471   }
472 }
473 
474 /// Rollback to the specified snapshot.
475 ///
476 /// We undo all the log entries until the log size when the snapshot was taken
477 /// is reached.
478 void Simplex::rollback(unsigned snapshot) {
479   while (undoLog.size() > snapshot) {
480     undo(undoLog.back());
481     undoLog.pop_back();
482   }
483 }
484 
485 void Simplex::appendVariable(unsigned count) {
486   if (count == 0)
487     return;
488   var.reserve(var.size() + count);
489   colUnknown.reserve(colUnknown.size() + count);
490   for (unsigned i = 0; i < count; ++i) {
491     nCol++;
492     var.emplace_back(Orientation::Column, /*restricted=*/false,
493                      /*pos=*/nCol - 1);
494     colUnknown.push_back(var.size() - 1);
495   }
496   tableau.resizeHorizontally(nCol);
497   undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
498 }
499 
500 /// Add all the constraints from the given FlatAffineConstraints.
501 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) {
502   assert(fac.getNumIds() == getNumVariables() &&
503          "FlatAffineConstraints must have same dimensionality as simplex");
504   for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
505     addInequality(fac.getInequality(i));
506   for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
507     addEquality(fac.getEquality(i));
508 }
509 
510 Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
511                                               unsigned row) {
512   // Keep trying to find a pivot for the row in the specified direction.
513   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
514     // If findPivot returns a pivot involving the row itself, then the optimum
515     // is unbounded, so we return None.
516     if (maybePivot->row == row)
517       return {};
518     pivot(*maybePivot);
519   }
520 
521   // The row has reached its optimal sample value, which we return.
522   // The sample value is the entry in the constant column divided by the common
523   // denominator for this row.
524   return Fraction(tableau(row, 1), tableau(row, 0));
525 }
526 
527 /// Compute the optimum of the specified expression in the specified direction,
528 /// or None if it is unbounded.
529 Optional<Fraction> Simplex::computeOptimum(Direction direction,
530                                            ArrayRef<int64_t> coeffs) {
531   assert(!empty && "Simplex should not be empty");
532 
533   unsigned snapshot = getSnapshot();
534   unsigned conIndex = addRow(coeffs);
535   unsigned row = con[conIndex].pos;
536   Optional<Fraction> optimum = computeRowOptimum(direction, row);
537   rollback(snapshot);
538   return optimum;
539 }
540 
541 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) {
542   assert(!empty && "Simplex should not be empty!");
543   if (u.orientation == Orientation::Column) {
544     unsigned column = u.pos;
545     Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
546     // If no pivot is returned, the constraint is unbounded in the specified
547     // direction.
548     if (!pivotRow)
549       return {};
550     pivot(*pivotRow, column);
551   }
552 
553   unsigned row = u.pos;
554   Optional<Fraction> optimum = computeRowOptimum(direction, row);
555   if (u.restricted && direction == Direction::Down &&
556       (!optimum || *optimum < Fraction(0, 1)))
557     (void)restoreRow(u);
558   return optimum;
559 }
560 
561 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
562   assert(!empty && "It is not meaningful to ask whether a direction is bounded "
563                    "in an empty set.");
564   // The constraint's perpendicular is already bounded below, since it is a
565   // constraint. If it is also bounded above, we can return true.
566   return computeOptimum(Direction::Up, con[constraintIndex]).hasValue();
567 }
568 
569 /// Redundant constraints are those that are in row orientation and lie in
570 /// rows 0 to nRedundant - 1.
571 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
572   const Unknown &u = con[constraintIndex];
573   return u.orientation == Orientation::Row && u.pos < nRedundant;
574 }
575 
576 /// Mark the specified row redundant.
577 ///
578 /// This is done by moving the unknown to the end of the block of redundant
579 /// rows (namely, to row nRedundant) and incrementing nRedundant to
580 /// accomodate the new redundant row.
581 void Simplex::markRowRedundant(Unknown &u) {
582   assert(u.orientation == Orientation::Row &&
583          "Unknown should be in row position!");
584   assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
585   swapRows(u.pos, nRedundant);
586   ++nRedundant;
587   undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
588 }
589 
590 /// Find a subset of constraints that is redundant and mark them redundant.
591 void Simplex::detectRedundant() {
592   // It is not meaningful to talk about redundancy for empty sets.
593   if (empty)
594     return;
595 
596   // Iterate through the constraints and check for each one if it can attain
597   // negative sample values. If it can, it's not redundant. Otherwise, it is.
598   // We mark redundant constraints redundant.
599   //
600   // Constraints that get marked redundant in one iteration are not respected
601   // when checking constraints in later iterations. This prevents, for example,
602   // two identical constraints both being marked redundant since each is
603   // redundant given the other one. In this example, only the first of the
604   // constraints that is processed will get marked redundant, as it should be.
605   for (Unknown &u : con) {
606     if (u.orientation == Orientation::Column) {
607       unsigned column = u.pos;
608       Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
609       // If no downward pivot is returned, the constraint is unbounded below
610       // and hence not redundant.
611       if (!pivotRow)
612         continue;
613       pivot(*pivotRow, column);
614     }
615 
616     unsigned row = u.pos;
617     Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
618     if (!minimum || *minimum < Fraction(0, 1)) {
619       // Constraint is unbounded below or can attain negative sample values and
620       // hence is not redundant.
621       (void)restoreRow(u);
622       continue;
623     }
624 
625     markRowRedundant(u);
626   }
627 }
628 
629 bool Simplex::isUnbounded() {
630   if (empty)
631     return false;
632 
633   SmallVector<int64_t, 8> dir(var.size() + 1);
634   for (unsigned i = 0; i < var.size(); ++i) {
635     dir[i] = 1;
636 
637     Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
638     if (!maybeMax)
639       return true;
640 
641     Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
642     if (!maybeMin)
643       return true;
644 
645     dir[i] = 0;
646   }
647   return false;
648 }
649 
650 /// Make a tableau to represent a pair of points in the original tableau.
651 ///
652 /// The product constraints and variables are stored as: first A's, then B's.
653 ///
654 /// The product tableau has row layout:
655 ///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
656 ///
657 /// It has column layout:
658 ///   denominator, constant, A's columns, B's columns.
659 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
660   unsigned numVar = a.getNumVariables() + b.getNumVariables();
661   unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
662   Simplex result(numVar);
663 
664   result.tableau.resizeVertically(numCon);
665   result.empty = a.empty || b.empty;
666 
667   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
668     SmallVector<Unknown, 8> result;
669     result.reserve(v.size() + w.size());
670     result.insert(result.end(), v.begin(), v.end());
671     result.insert(result.end(), w.begin(), w.end());
672     return result;
673   };
674   result.con = concat(a.con, b.con);
675   result.var = concat(a.var, b.var);
676 
677   auto indexFromBIndex = [&](int index) {
678     return index >= 0 ? a.getNumVariables() + index
679                       : ~(a.getNumConstraints() + ~index);
680   };
681 
682   result.colUnknown.assign(2, nullIndex);
683   for (unsigned i = 2; i < a.nCol; ++i) {
684     result.colUnknown.push_back(a.colUnknown[i]);
685     result.unknownFromIndex(result.colUnknown.back()).pos =
686         result.colUnknown.size() - 1;
687   }
688   for (unsigned i = 2; i < b.nCol; ++i) {
689     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
690     result.unknownFromIndex(result.colUnknown.back()).pos =
691         result.colUnknown.size() - 1;
692   }
693 
694   auto appendRowFromA = [&](unsigned row) {
695     for (unsigned col = 0; col < a.nCol; ++col)
696       result.tableau(result.nRow, col) = a.tableau(row, col);
697     result.rowUnknown.push_back(a.rowUnknown[row]);
698     result.unknownFromIndex(result.rowUnknown.back()).pos =
699         result.rowUnknown.size() - 1;
700     result.nRow++;
701   };
702 
703   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
704   // may be).
705   auto appendRowFromB = [&](unsigned row) {
706     result.tableau(result.nRow, 0) = b.tableau(row, 0);
707     result.tableau(result.nRow, 1) = b.tableau(row, 1);
708 
709     unsigned offset = a.nCol - 2;
710     for (unsigned col = 2; col < b.nCol; ++col)
711       result.tableau(result.nRow, offset + col) = b.tableau(row, col);
712     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
713     result.unknownFromIndex(result.rowUnknown.back()).pos =
714         result.rowUnknown.size() - 1;
715     result.nRow++;
716   };
717 
718   result.nRedundant = a.nRedundant + b.nRedundant;
719   for (unsigned row = 0; row < a.nRedundant; ++row)
720     appendRowFromA(row);
721   for (unsigned row = 0; row < b.nRedundant; ++row)
722     appendRowFromB(row);
723   for (unsigned row = a.nRedundant; row < a.nRow; ++row)
724     appendRowFromA(row);
725   for (unsigned row = b.nRedundant; row < b.nRow; ++row)
726     appendRowFromB(row);
727 
728   return result;
729 }
730 
731 SmallVector<Fraction, 8> Simplex::getRationalSample() const {
732   assert(!empty && "This should not be called when Simplex is empty.");
733 
734   SmallVector<Fraction, 8> sample;
735   sample.reserve(var.size());
736   // Push the sample value for each variable into the vector.
737   for (const Unknown &u : var) {
738     if (u.orientation == Orientation::Column) {
739       // If the variable is in column position, its sample value is zero.
740       sample.emplace_back(0, 1);
741     } else {
742       // If the variable is in row position, its sample value is the entry in
743       // the constant column divided by the entry in the common denominator
744       // column.
745       sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0));
746     }
747   }
748   return sample;
749 }
750 
751 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
752   // If the tableau is empty, no sample point exists.
753   if (empty)
754     return {};
755   SmallVector<Fraction, 8> rationalSample = getRationalSample();
756   SmallVector<int64_t, 8> integerSample;
757   integerSample.reserve(var.size());
758   for (const Fraction &coord : rationalSample) {
759     // If the sample is non-integral, return None.
760     if (coord.num % coord.den != 0)
761       return {};
762     integerSample.push_back(coord.num / coord.den);
763   }
764   return integerSample;
765 }
766 
767 /// Given a simplex for a polytope, construct a new simplex whose variables are
768 /// identified with a pair of points (x, y) in the original polytope. Supports
769 /// some operations needed for generalized basis reduction. In what follows,
770 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
771 /// dimension of the original polytope.
772 ///
773 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
774 /// also supports rolling back this addition, by maintaining a snapshot stack
775 /// that contains a snapshot of the Simplex's state for each equality, just
776 /// before that equality was added.
777 class GBRSimplex {
778   using Orientation = Simplex::Orientation;
779 
780 public:
781   GBRSimplex(const Simplex &originalSimplex)
782       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
783         simplexConstraintOffset(simplex.getNumConstraints()) {}
784 
785   /// Add an equality dotProduct(dir, x - y) == 0.
786   /// First pushes a snapshot for the current simplex state to the stack so
787   /// that this can be rolled back later.
788   void addEqualityForDirection(ArrayRef<int64_t> dir) {
789     assert(
790         std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
791         "Direction passed is the zero vector!");
792     snapshotStack.push_back(simplex.getSnapshot());
793     simplex.addEquality(getCoeffsForDirection(dir));
794   }
795 
796   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
797   /// the direction equalities to `dual`.
798   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
799                                 SmallVectorImpl<int64_t> &dual,
800                                 int64_t &dualDenom) {
801     unsigned snap = simplex.getSnapshot();
802     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
803     unsigned row = simplex.con[conIndex].pos;
804     Optional<Fraction> maybeWidth =
805         simplex.computeRowOptimum(Simplex::Direction::Up, row);
806     assert(maybeWidth.hasValue() && "Width should not be unbounded!");
807     dualDenom = simplex.tableau(row, 0);
808     dual.clear();
809     // The increment is i += 2 because equalities are added as two inequalities,
810     // one positive and one negative. Each iteration processes one equality.
811     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
812       // The dual variable is the negative of the coefficient of the new row
813       // in the column of the constraint, if the constraint is in a column.
814       // Note that the second inequality for the equality is negated.
815       //
816       // We want the dual for the original equality. If the positive inequality
817       // is in column position, the negative of its row coefficient is the
818       // desired dual. If the negative inequality is in column position, its row
819       // coefficient is the desired dual. (its coefficients are already the
820       // negated coefficients of the original equality, so we don't need to
821       // negate it now.)
822       //
823       // If neither are in column position, we move the negated inequality to
824       // column position. Since the inequality must have sample value zero
825       // (since it corresponds to an equality), we are free to pivot with
826       // any column. Since both the unknowns have sample value before and after
827       // pivoting, no other sample values will change and the tableau will
828       // remain consistent. To pivot, we just need to find a column that has a
829       // non-zero coefficient in this row. There must be one since otherwise the
830       // equality would be 0 == 0, which should never be passed to
831       // addEqualityForDirection.
832       //
833       // After finding a column, we pivot with the column, after which we can
834       // get the dual from the inequality in column position as explained above.
835       if (simplex.con[i].orientation == Orientation::Column) {
836         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
837       } else {
838         if (simplex.con[i + 1].orientation == Orientation::Row) {
839           unsigned ineqRow = simplex.con[i + 1].pos;
840           // Since it is an equality, the sample value must be zero.
841           assert(simplex.tableau(ineqRow, 1) == 0 &&
842                  "Equality's sample value must be zero.");
843           for (unsigned col = 2; col < simplex.nCol; ++col) {
844             if (simplex.tableau(ineqRow, col) != 0) {
845               simplex.pivot(ineqRow, col);
846               break;
847             }
848           }
849           assert(simplex.con[i + 1].orientation == Orientation::Column &&
850                  "No pivot found. Equality has all-zeros row in tableau!");
851         }
852         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
853       }
854     }
855     simplex.rollback(snap);
856     return *maybeWidth;
857   }
858 
859   /// Remove the last equality that was added through addEqualityForDirection.
860   ///
861   /// We do this by rolling back to the snapshot at the top of the stack, which
862   /// should be a snapshot taken just before the last equality was added.
863   void removeLastEquality() {
864     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
865     simplex.rollback(snapshotStack.back());
866     snapshotStack.pop_back();
867   }
868 
869 private:
870   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
871   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
872   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
873   /// where n is the dimension of the original polytope.
874   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
875     assert(2 * dir.size() == simplex.getNumVariables() &&
876            "Direction vector has wrong dimensionality");
877     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
878     coeffs.reserve(2 * dir.size());
879     for (int64_t coeff : dir)
880       coeffs.push_back(-coeff);
881     coeffs.push_back(0); // constant term
882     return coeffs;
883   }
884 
885   Simplex simplex;
886   /// The first index of the equality constraints, the index immediately after
887   /// the last constraint in the initial product simplex.
888   unsigned simplexConstraintOffset;
889   /// A stack of snapshots, used for rolling back.
890   SmallVector<unsigned, 8> snapshotStack;
891 };
892 
893 /// Reduce the basis to try and find a direction in which the polytope is
894 /// "thin". This only works for bounded polytopes.
895 ///
896 /// This is an implementation of the algorithm described in the paper
897 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
898 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
899 ///
900 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
901 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
902 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
903 ///
904 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
905 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
906 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
907 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
908 /// minimizing value of u, if it were allowed to be fractional. Due to
909 /// convexity, the minimizing integer value is either floor(dual_i) or
910 /// ceil(dual_i), so we just need to check which of these gives a lower
911 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
912 ///
913 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
914 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
915 /// same i). Otherwise, we increment i.
916 ///
917 /// We keep f values and duals cached and invalidate them when necessary.
918 /// Whenever possible, we use them instead of recomputing them. We implement the
919 /// algorithm as follows.
920 ///
921 /// In an iteration at i we need to compute:
922 ///   a) width_i(b_{i + 1})
923 ///   b) width_i(b_i)
924 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
925 ///
926 /// If width_i(b_i) is not already cached, we compute it.
927 ///
928 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
929 /// store the duals from this computation.
930 ///
931 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
932 /// of u as explained before, caches the duals from this computation, sets
933 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
934 ///
935 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
936 /// decrement i, resulting in the basis
937 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
938 /// with corresponding f values
939 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
940 /// The values up to i - 1 remain unchanged. We have just gotten the middle
941 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
942 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
943 /// the cache. The iteration after decrementing needs exactly the duals from the
944 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
945 ///
946 /// When incrementing i, no cached f values get invalidated. However, the cached
947 /// duals do get invalidated as the duals for the higher levels are different.
948 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
949   const Fraction epsilon(3, 4);
950 
951   if (level == basis.getNumRows() - 1)
952     return;
953 
954   GBRSimplex gbrSimplex(*this);
955   SmallVector<Fraction, 8> width;
956   SmallVector<int64_t, 8> dual;
957   int64_t dualDenom;
958 
959   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
960   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
961   // the new value of width_i(b_{i+1}).
962   //
963   // If dual_i is not an integer, the minimizing value must be either
964   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
965   // choose the minimizing value.
966   //
967   // If dual_i is an integer, we don't need to perform these computations. We
968   // know that in this case,
969   //   a) u = dual_i.
970   //   b) one can show that dual_j for j < i are the same duals we would have
971   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
972   //      are the ones already in the cache.
973   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
974   //   which
975   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
976   //      be in the cache, so we get it from there and return it.
977   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
978     assert(i < level + dual.size() && "dual_i is not known!");
979 
980     int64_t u = floorDiv(dual[i - level], dualDenom);
981     basis.addToRow(i, i + 1, u);
982     if (dual[i - level] % dualDenom != 0) {
983       SmallVector<int64_t, 8> candidateDual[2];
984       int64_t candidateDualDenom[2];
985       Fraction widthI[2];
986 
987       // Initially u is floor(dual) and basis reflects this.
988       widthI[0] = gbrSimplex.computeWidthAndDuals(
989           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
990 
991       // Now try ceil(dual), i.e. floor(dual) + 1.
992       ++u;
993       basis.addToRow(i, i + 1, 1);
994       widthI[1] = gbrSimplex.computeWidthAndDuals(
995           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
996 
997       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
998       if (j == 0)
999         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1000         basis.addToRow(i, i + 1, -1);
1001       dual = std::move(candidateDual[j]);
1002       dualDenom = candidateDualDenom[j];
1003       return widthI[j];
1004     }
1005     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1006     // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
1007     // width_{i+1}(b_{i+1}).
1008     return width[i + 1 - level];
1009   };
1010 
1011   // In the ith iteration of the loop, gbrSimplex has constraints for directions
1012   // from `level` to i - 1.
1013   unsigned i = level;
1014   while (i < basis.getNumRows() - 1) {
1015     if (i >= level + width.size()) {
1016       // We don't even know the value of f_i(b_i), so let's find that first.
1017       // We have to do this first since later we assume that width already
1018       // contains values up to and including i.
1019 
1020       assert((i == 0 || i - 1 < level + width.size()) &&
1021              "We are at level i but we don't know the value of width_{i-1}");
1022 
1023       // We don't actually use these duals at all, but it doesn't matter
1024       // because this case should only occur when i is level, and there are no
1025       // duals in that case anyway.
1026       assert(i == level && "This case should only occur when i == level");
1027       width.push_back(
1028           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1029     }
1030 
1031     if (i >= level + dual.size()) {
1032       assert(i + 1 >= level + width.size() &&
1033              "We don't know dual_i but we know width_{i+1}");
1034       // We don't know dual for our level, so let's find it.
1035       gbrSimplex.addEqualityForDirection(basis.getRow(i));
1036       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1037                                                       dualDenom));
1038       gbrSimplex.removeLastEquality();
1039     }
1040 
1041     // This variable stores width_i(b_{i+1} + u*b_i).
1042     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1043     if (widthICandidate < epsilon * width[i - level]) {
1044       basis.swapRows(i, i + 1);
1045       width[i - level] = widthICandidate;
1046       // The values of width_{i+1}(b_{i+1}) and higher may change after the
1047       // swap, so we remove the cached values here.
1048       width.resize(i - level + 1);
1049       if (i == level) {
1050         dual.clear();
1051         continue;
1052       }
1053 
1054       gbrSimplex.removeLastEquality();
1055       i--;
1056       continue;
1057     }
1058 
1059     // Invalidate duals since the higher level needs to recompute its own duals.
1060     dual.clear();
1061     gbrSimplex.addEqualityForDirection(basis.getRow(i));
1062     i++;
1063   }
1064 }
1065 
1066 /// Search for an integer sample point using a branch and bound algorithm.
1067 ///
1068 /// Each row in the basis matrix is a vector, and the set of basis vectors
1069 /// should span the space. Initially this is the identity matrix,
1070 /// i.e., the basis vectors are just the variables.
1071 ///
1072 /// In every level, a value is assigned to the level-th basis vector, as
1073 /// follows. Compute the minimum and maximum rational values of this direction.
1074 /// If only one integer point lies in this range, constrain the variable to
1075 /// have this value and recurse to the next variable.
1076 ///
1077 /// If the range has multiple values, perform generalized basis reduction via
1078 /// reduceBasis and then compute the bounds again. Now we try constraining
1079 /// this direction in the first value in this range and "recurse" to the next
1080 /// level. If we fail to find a sample, we try assigning the direction the next
1081 /// value in this range, and so on.
1082 ///
1083 /// If no integer sample is found from any of the assignments, or if the range
1084 /// contains no integer value, then of course the polytope is empty for the
1085 /// current assignment of the values in previous levels, so we return to
1086 /// the previous level.
1087 ///
1088 /// If we reach the last level where all the variables have been assigned values
1089 /// already, then we simply return the current sample point if it is integral,
1090 /// and go back to the previous level otherwise.
1091 ///
1092 /// To avoid potentially arbitrarily large recursion depths leading to stack
1093 /// overflows, this algorithm is implemented iteratively.
1094 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1095   if (empty)
1096     return {};
1097 
1098   unsigned nDims = var.size();
1099   Matrix basis = Matrix::identity(nDims);
1100 
1101   unsigned level = 0;
1102   // The snapshot just before constraining a direction to a value at each level.
1103   SmallVector<unsigned, 8> snapshotStack;
1104   // The maximum value in the range of the direction for each level.
1105   SmallVector<int64_t, 8> upperBoundStack;
1106   // The next value to try constraining the basis vector to at each level.
1107   SmallVector<int64_t, 8> nextValueStack;
1108 
1109   snapshotStack.reserve(basis.getNumRows());
1110   upperBoundStack.reserve(basis.getNumRows());
1111   nextValueStack.reserve(basis.getNumRows());
1112   while (level != -1u) {
1113     if (level == basis.getNumRows()) {
1114       // We've assigned values to all variables. Return if we have a sample,
1115       // or go back up to the previous level otherwise.
1116       if (auto maybeSample = getSamplePointIfIntegral())
1117         return maybeSample;
1118       level--;
1119       continue;
1120     }
1121 
1122     if (level >= upperBoundStack.size()) {
1123       // We haven't populated the stack values for this level yet, so we have
1124       // just come down a level ("recursed"). Find the lower and upper bounds.
1125       // If there is more than one integer point in the range, perform
1126       // generalized basis reduction.
1127       SmallVector<int64_t, 8> basisCoeffs =
1128           llvm::to_vector<8>(basis.getRow(level));
1129       basisCoeffs.push_back(0);
1130 
1131       int64_t minRoundedUp, maxRoundedDown;
1132       std::tie(minRoundedUp, maxRoundedDown) =
1133           computeIntegerBounds(basisCoeffs);
1134 
1135       // Heuristic: if the sample point is integral at this point, just return
1136       // it.
1137       if (auto maybeSample = getSamplePointIfIntegral())
1138         return *maybeSample;
1139 
1140       if (minRoundedUp < maxRoundedDown) {
1141         reduceBasis(basis, level);
1142         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
1143         basisCoeffs.push_back(0);
1144         std::tie(minRoundedUp, maxRoundedDown) =
1145             computeIntegerBounds(basisCoeffs);
1146       }
1147 
1148       snapshotStack.push_back(getSnapshot());
1149       // The smallest value in the range is the next value to try.
1150       nextValueStack.push_back(minRoundedUp);
1151       upperBoundStack.push_back(maxRoundedDown);
1152     }
1153 
1154     assert((snapshotStack.size() - 1 == level &&
1155             nextValueStack.size() - 1 == level &&
1156             upperBoundStack.size() - 1 == level) &&
1157            "Mismatched variable stack sizes!");
1158 
1159     // Whether we "recursed" or "returned" from a lower level, we rollback
1160     // to the snapshot of the starting state at this level. (in the "recursed"
1161     // case this has no effect)
1162     rollback(snapshotStack.back());
1163     int64_t nextValue = nextValueStack.back();
1164     nextValueStack.back()++;
1165     if (nextValue > upperBoundStack.back()) {
1166       // We have exhausted the range and found no solution. Pop the stack and
1167       // return up a level.
1168       snapshotStack.pop_back();
1169       nextValueStack.pop_back();
1170       upperBoundStack.pop_back();
1171       level--;
1172       continue;
1173     }
1174 
1175     // Try the next value in the range and "recurse" into the next level.
1176     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
1177                                         basis.getRow(level).end());
1178     basisCoeffs.push_back(-nextValue);
1179     addEquality(basisCoeffs);
1180     level++;
1181   }
1182 
1183   return {};
1184 }
1185 
1186 /// Compute the minimum and maximum integer values the expression can take. We
1187 /// compute each separately.
1188 std::pair<int64_t, int64_t>
1189 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
1190   int64_t minRoundedUp;
1191   if (Optional<Fraction> maybeMin =
1192           computeOptimum(Simplex::Direction::Down, coeffs))
1193     minRoundedUp = ceil(*maybeMin);
1194   else
1195     llvm_unreachable("Tableau should not be unbounded");
1196 
1197   int64_t maxRoundedDown;
1198   if (Optional<Fraction> maybeMax =
1199           computeOptimum(Simplex::Direction::Up, coeffs))
1200     maxRoundedDown = floor(*maybeMax);
1201   else
1202     llvm_unreachable("Tableau should not be unbounded");
1203 
1204   return {minRoundedUp, maxRoundedDown};
1205 }
1206 
1207 void Simplex::print(raw_ostream &os) const {
1208   os << "rows = " << nRow << ", columns = " << nCol << "\n";
1209   if (empty)
1210     os << "Simplex marked empty!\n";
1211   os << "var: ";
1212   for (unsigned i = 0; i < var.size(); ++i) {
1213     if (i > 0)
1214       os << ", ";
1215     var[i].print(os);
1216   }
1217   os << "\ncon: ";
1218   for (unsigned i = 0; i < con.size(); ++i) {
1219     if (i > 0)
1220       os << ", ";
1221     con[i].print(os);
1222   }
1223   os << '\n';
1224   for (unsigned row = 0; row < nRow; ++row) {
1225     if (row > 0)
1226       os << ", ";
1227     os << "r" << row << ": " << rowUnknown[row];
1228   }
1229   os << '\n';
1230   os << "c0: denom, c1: const";
1231   for (unsigned col = 2; col < nCol; ++col)
1232     os << ", c" << col << ": " << colUnknown[col];
1233   os << '\n';
1234   for (unsigned row = 0; row < nRow; ++row) {
1235     for (unsigned col = 0; col < nCol; ++col)
1236       os << tableau(row, col) << '\t';
1237     os << '\n';
1238   }
1239   os << '\n';
1240 }
1241 
1242 void Simplex::dump() const { print(llvm::errs()); }
1243 
1244 } // namespace mlir
1245