1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 using namespace mlir; 15 using namespace presburger; 16 17 using Direction = Simplex::Direction; 18 19 const int nullIndex = std::numeric_limits<int>::max(); 20 21 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM) 22 : usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar), 23 nRedundant(0), tableau(0, nCol), empty(false) { 24 colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex); 25 for (unsigned i = 0; i < nVar; ++i) { 26 var.emplace_back(Orientation::Column, /*restricted=*/false, 27 /*pos=*/getNumFixedCols() + i); 28 colUnknown.push_back(i); 29 } 30 } 31 32 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { 33 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 34 return index >= 0 ? var[index] : con[~index]; 35 } 36 37 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { 38 assert(col < nCol && "Invalid column"); 39 return unknownFromIndex(colUnknown[col]); 40 } 41 42 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { 43 assert(row < nRow && "Invalid row"); 44 return unknownFromIndex(rowUnknown[row]); 45 } 46 47 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { 48 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 49 return index >= 0 ? var[index] : con[~index]; 50 } 51 52 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { 53 assert(col < nCol && "Invalid column"); 54 return unknownFromIndex(colUnknown[col]); 55 } 56 57 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { 58 assert(row < nRow && "Invalid row"); 59 return unknownFromIndex(rowUnknown[row]); 60 } 61 62 unsigned SimplexBase::addZeroRow(bool makeRestricted) { 63 ++nRow; 64 // If the tableau is not big enough to accomodate the extra row, we extend it. 65 if (nRow >= tableau.getNumRows()) 66 tableau.resizeVertically(nRow); 67 rowUnknown.push_back(~con.size()); 68 con.emplace_back(Orientation::Row, makeRestricted, nRow - 1); 69 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 70 71 // Zero out the new row. 72 tableau.fillRow(nRow - 1, 0); 73 74 tableau(nRow - 1, 0) = 1; 75 return con.size() - 1; 76 } 77 78 /// Add a new row to the tableau corresponding to the given constant term and 79 /// list of coefficients. The coefficients are specified as a vector of 80 /// (variable index, coefficient) pairs. 81 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) { 82 assert(coeffs.size() == var.size() + 1 && 83 "Incorrect number of coefficients!"); 84 85 addZeroRow(makeRestricted); 86 tableau(nRow - 1, 1) = coeffs.back(); 87 if (usingBigM) { 88 // When the lexicographic pivot rule is used, instead of the variables 89 // 90 // x, y, z ... 91 // 92 // we internally use the variables 93 // 94 // M, M + x, M + y, M + z, ... 95 // 96 // where M is the big M parameter. As such, when the user tries to add 97 // a row ax + by + cz + d, we express it in terms of our internal variables 98 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. 99 int64_t bigMCoeff = 0; 100 for (unsigned i = 0; i < coeffs.size() - 1; ++i) 101 bigMCoeff -= coeffs[i]; 102 // The coefficient to the big M parameter is stored in column 2. 103 tableau(nRow - 1, 2) = bigMCoeff; 104 } 105 106 // Process each given variable coefficient. 107 for (unsigned i = 0; i < var.size(); ++i) { 108 unsigned pos = var[i].pos; 109 if (coeffs[i] == 0) 110 continue; 111 112 if (var[i].orientation == Orientation::Column) { 113 // If a variable is in column position at column col, then we just add the 114 // coefficient for that variable (scaled by the common row denominator) to 115 // the corresponding entry in the new row. 116 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 117 continue; 118 } 119 120 // If the variable is in row position, we need to add that row to the new 121 // row, scaled by the coefficient for the variable, accounting for the two 122 // rows potentially having different denominators. The new denominator is 123 // the lcm of the two. 124 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 125 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 126 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 127 tableau(nRow - 1, 0) = lcm; 128 for (unsigned col = 1; col < nCol; ++col) 129 tableau(nRow - 1, col) = 130 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 131 } 132 133 normalizeRow(nRow - 1); 134 // Push to undo log along with the index of the new constraint. 135 return con.size() - 1; 136 } 137 138 /// Normalize the row by removing factors that are common between the 139 /// denominator and all the numerator coefficients. 140 void SimplexBase::normalizeRow(unsigned row) { 141 int64_t gcd = 0; 142 for (unsigned col = 0; col < nCol; ++col) { 143 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 144 // If the gcd becomes 1 then the row is already normalized. 145 if (gcd == 1) 146 return; 147 } 148 149 // Note that the gcd can never become zero since the first element of the row, 150 // the denominator, is non-zero. 151 assert(gcd != 0); 152 for (unsigned col = 0; col < nCol; ++col) 153 tableau(row, col) /= gcd; 154 } 155 156 namespace { 157 bool signMatchesDirection(int64_t elem, Direction direction) { 158 assert(elem != 0 && "elem should not be 0"); 159 return direction == Direction::Up ? elem > 0 : elem < 0; 160 } 161 162 Direction flippedDirection(Direction direction) { 163 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 164 } 165 } // namespace 166 167 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() { 168 restoreRationalConsistency(); 169 return getRationalSample(); 170 } 171 172 LogicalResult LexSimplexBase::addCut(unsigned row) { 173 int64_t denom = tableau(row, 0); 174 addZeroRow(/*makeRestricted=*/true); 175 tableau(nRow - 1, 0) = denom; 176 tableau(nRow - 1, 1) = -mod(-tableau(row, 1), denom); 177 tableau(nRow - 1, 2) = 0; // M has all factors in it. 178 for (unsigned col = 3; col < nCol; ++col) 179 tableau(nRow - 1, col) = mod(tableau(row, col), denom); 180 return moveRowUnknownToColumn(nRow - 1); 181 } 182 183 Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const { 184 for (const Unknown &u : var) { 185 if (u.orientation == Orientation::Column) 186 continue; 187 // If the sample value is of the form (a/d)M + b/d, we need b to be 188 // divisible by d. We assume M is very large and contains all possible 189 // factors and is divisible by everything. 190 unsigned row = u.pos; 191 if (tableau(row, 1) % tableau(row, 0) != 0) 192 return row; 193 } 194 return {}; 195 } 196 197 MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() { 198 while (!empty) { 199 restoreRationalConsistency(); 200 if (empty) 201 return OptimumKind::Empty; 202 203 if (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) { 204 // Failure occurs when the polytope is integer empty. 205 if (failed(addCut(*maybeRow))) 206 return OptimumKind::Empty; 207 continue; 208 } 209 210 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample(); 211 assert(!sample.isEmpty() && "If we reached here the sample should exist!"); 212 if (sample.isUnbounded()) 213 return OptimumKind::Unbounded; 214 return llvm::to_vector<8>( 215 llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger))); 216 } 217 218 // Polytope is integer empty. 219 return OptimumKind::Empty; 220 } 221 222 bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) { 223 SimplexRollbackScopeExit scopeExit(*this); 224 addInequality(coeffs); 225 return findIntegerLexMin().isEmpty(); 226 } 227 228 bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 229 return isSeparateInequality(getComplementIneq(coeffs)); 230 } 231 bool LexSimplex::rowIsViolated(unsigned row) const { 232 if (tableau(row, 2) < 0) 233 return true; 234 if (tableau(row, 2) == 0 && tableau(row, 1) < 0) 235 return true; 236 return false; 237 } 238 239 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const { 240 for (unsigned row = 0; row < nRow; ++row) 241 if (rowIsViolated(row)) 242 return row; 243 return {}; 244 } 245 246 // We simply look for violated rows and keep trying to move them to column 247 // orientation, which always succeeds unless the constraints have no solution 248 // in which case we just give up and return. 249 void LexSimplex::restoreRationalConsistency() { 250 while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) { 251 LogicalResult status = moveRowUnknownToColumn(*maybeViolatedRow); 252 if (failed(status)) 253 return; 254 } 255 } 256 257 // Move the row unknown to column orientation while preserving lexicopositivity 258 // of the basis transform. 259 // 260 // We only consider pivots where the pivot element is positive. Suppose no such 261 // pivot exists, i.e., some violated row has no positive coefficient for any 262 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, 263 // where d is the denominator, s is the sample value and the c_i are the basis 264 // coefficients. Since any feasible assignment of the basis satisfies u_i >= 0 265 // for all i, and we have s < 0 as well as c_i < 0 for all i, any feasible 266 // assignment would violate this row and therefore the constraints have no 267 // solution. 268 // 269 // We can preserve lexicopositivity by picking the pivot column with positive 270 // pivot element that makes the lexicographically smallest change to the sample 271 // point. 272 // 273 // Proof. Let 274 // x = (x_1, ... x_n) be the variables, 275 // z = (z_1, ... z_m) be the constraints, 276 // y = (y_1, ... y_n) be the current basis, and 277 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. 278 // B is basically the simplex tableau of our implementation except that instead 279 // of only describing the transform to get back the non-basis unknowns, it 280 // defines the values of all the unknowns in terms of the basis unknowns. 281 // Similarly, s is the column for the sample value. 282 // 283 // Our goal is to show that each column in B, restricted to the first n 284 // rows, is lexicopositive after the pivot if it is so before. This is 285 // equivalent to saying the columns in the whole matrix are lexicopositive; 286 // there must be some non-zero element in every column in the first n rows since 287 // the n variables cannot be spanned without using all the n basis unknowns. 288 // 289 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot 290 // transform for the tableau derived for SimplexBase::pivot: 291 // 292 // pivot col other col pivot col other col 293 // pivot row a b -> pivot row 1/a -b/a 294 // other row c d other row c/a d - bc/a 295 // 296 // Similarly, a pivot results in B changing to B' and c to c'; the difference 297 // between the tableau and these matrices B and B' is that there is no special 298 // case for the pivot row, since it continues to represent the same unknown. The 299 // same formula applies for all rows: 300 // 301 // B'.col(j) = B.col(j) / B(i,j) 302 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j 303 // and similarly, s' = s - s_i * B.col(j) / B(i,j). 304 // 305 // Since the row is violated, we have s_i < 0, so the change in sample value 306 // when pivoting with column a is lexicographically smaller than that when 307 // pivoting with column b iff B.col(a) / B(i, a) is lexicographically smaller 308 // than B.col(b) / B(i, b). 309 // 310 // Since B(i, j) > 0, column j remains lexicopositive. 311 // 312 // For the other columns, suppose C.col(k) is not lexicopositive. 313 // This means that for some p, for all t < p, 314 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and 315 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), 316 // which is in contradiction to the fact that B.col(j) / B(i,j) must be 317 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically 318 // minimizes the change in sample value. 319 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) { 320 Optional<unsigned> maybeColumn; 321 for (unsigned col = 3; col < nCol; ++col) { 322 if (tableau(row, col) <= 0) 323 continue; 324 maybeColumn = 325 !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col); 326 } 327 328 if (!maybeColumn) { 329 markEmpty(); 330 return failure(); 331 } 332 333 pivot(row, *maybeColumn); 334 return success(); 335 } 336 337 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA, 338 unsigned colB) const { 339 // A pivot causes the following change. (in the diagram the matrix elements 340 // are shown as rationals and there is no common denominator used) 341 // 342 // pivot col big M col const col 343 // pivot row a p b 344 // other row c q d 345 // | 346 // v 347 // 348 // pivot col big M col const col 349 // pivot row 1/a -p/a -b/a 350 // other row c/a q - pc/a d - bc/a 351 // 352 // Let the sample value of the pivot row be s = pM + b before the pivot. Since 353 // the pivot row represents a violated constraint we know that s < 0. 354 // 355 // If the variable is a non-pivot column, its sample value is zero before and 356 // after the pivot. 357 // 358 // If the variable is the pivot column, then its sample value goes from 0 to 359 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample 360 // value is -s/a. 361 // 362 // If the variable is the pivot row, it sampel value goes from s to 0, for a 363 // change of -s. 364 // 365 // If the variable is a non-pivot row, its sample value changes from 366 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value 367 // is -(pM + b)(c/a) = -sc/a. 368 // 369 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is 370 // fixed for all calls to this function since the row and tableau are fixed. 371 // The callee just wants to compare the return values with the return value of 372 // other invocations of the same function. So the -s is common for all 373 // comparisons involved and can be ignored, since -s is strictly positive. 374 // 375 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as 376 // appropriate. This allows us to run the entire algorithm without ever having 377 // to fix a value of M. 378 auto getSampleChangeCoeffForVar = [this, row](unsigned col, 379 const Unknown &u) -> Fraction { 380 int64_t a = tableau(row, col); 381 if (u.orientation == Orientation::Column) { 382 // Pivot column case. 383 if (u.pos == col) 384 return {1, a}; 385 386 // Non-pivot column case. 387 return {0, 1}; 388 } 389 390 // Pivot row case. 391 if (u.pos == row) 392 return {1, 1}; 393 394 // Non-pivot row case. 395 int64_t c = tableau(u.pos, col); 396 return {c, a}; 397 }; 398 399 for (const Unknown &u : var) { 400 Fraction changeA = getSampleChangeCoeffForVar(colA, u); 401 Fraction changeB = getSampleChangeCoeffForVar(colB, u); 402 if (changeA < changeB) 403 return colA; 404 if (changeA > changeB) 405 return colB; 406 } 407 408 // If we reached here, both result in exactly the same changes, so it 409 // doesn't matter which we return. 410 return colA; 411 } 412 413 /// Find a pivot to change the sample value of the row in the specified 414 /// direction. The returned pivot row will involve `row` if and only if the 415 /// unknown is unbounded in the specified direction. 416 /// 417 /// To increase (resp. decrease) the value of a row, we need to find a live 418 /// column with a non-zero coefficient. If the coefficient is positive, we need 419 /// to increase (decrease) the value of the column, and if the coefficient is 420 /// negative, we need to decrease (increase) the value of the column. Also, 421 /// we cannot decrease the sample value of restricted columns. 422 /// 423 /// If multiple columns are valid, we break ties by considering a lexicographic 424 /// ordering where we prefer unknowns with lower index. 425 Optional<SimplexBase::Pivot> Simplex::findPivot(int row, 426 Direction direction) const { 427 Optional<unsigned> col; 428 for (unsigned j = 2; j < nCol; ++j) { 429 int64_t elem = tableau(row, j); 430 if (elem == 0) 431 continue; 432 433 if (unknownFromColumn(j).restricted && 434 !signMatchesDirection(elem, direction)) 435 continue; 436 if (!col || colUnknown[j] < colUnknown[*col]) 437 col = j; 438 } 439 440 if (!col) 441 return {}; 442 443 Direction newDirection = 444 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 445 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 446 return Pivot{maybePivotRow.getValueOr(row), *col}; 447 } 448 449 /// Swap the associated unknowns for the row and the column. 450 /// 451 /// First we swap the index associated with the row and column. Then we update 452 /// the unknowns to reflect their new position and orientation. 453 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { 454 std::swap(rowUnknown[row], colUnknown[col]); 455 Unknown &uCol = unknownFromColumn(col); 456 Unknown &uRow = unknownFromRow(row); 457 uCol.orientation = Orientation::Column; 458 uRow.orientation = Orientation::Row; 459 uCol.pos = col; 460 uRow.pos = row; 461 } 462 463 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } 464 465 /// Pivot pivotRow and pivotCol. 466 /// 467 /// Let R be the pivot row unknown and let C be the pivot col unknown. 468 /// Since initially R = a*C + sum b_i * X_i 469 /// (where the sum is over the other column's unknowns, x_i) 470 /// C = (R - (sum b_i * X_i))/a 471 /// 472 /// Let u be some other row unknown. 473 /// u = c*C + sum d_i * X_i 474 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 475 /// 476 /// This results in the following transform: 477 /// pivot col other col pivot col other col 478 /// pivot row a b -> pivot row 1/a -b/a 479 /// other row c d other row c/a d - bc/a 480 /// 481 /// Taking into account the common denominators p and q: 482 /// 483 /// pivot col other col pivot col other col 484 /// pivot row a/p b/p -> pivot row p/a -b/a 485 /// other row c/q d/q other row cp/aq (da - bc)/aq 486 /// 487 /// The pivot row transform is accomplished be swapping a with the pivot row's 488 /// common denominator and negating the pivot row except for the pivot column 489 /// element. 490 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { 491 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column"); 492 493 swapRowWithCol(pivotRow, pivotCol); 494 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 495 // We need to negate the whole pivot row except for the pivot column. 496 if (tableau(pivotRow, 0) < 0) { 497 // If the denominator is negative, we negate the row by simply negating the 498 // denominator. 499 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 500 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 501 } else { 502 for (unsigned col = 1; col < nCol; ++col) { 503 if (col == pivotCol) 504 continue; 505 tableau(pivotRow, col) = -tableau(pivotRow, col); 506 } 507 } 508 normalizeRow(pivotRow); 509 510 for (unsigned row = 0; row < nRow; ++row) { 511 if (row == pivotRow) 512 continue; 513 if (tableau(row, pivotCol) == 0) // Nothing to do. 514 continue; 515 tableau(row, 0) *= tableau(pivotRow, 0); 516 for (unsigned j = 1; j < nCol; ++j) { 517 if (j == pivotCol) 518 continue; 519 // Add rather than subtract because the pivot row has been negated. 520 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 521 tableau(row, pivotCol) * tableau(pivotRow, j); 522 } 523 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 524 normalizeRow(row); 525 } 526 } 527 528 /// Perform pivots until the unknown has a non-negative sample value or until 529 /// no more upward pivots can be performed. Return success if we were able to 530 /// bring the row to a non-negative sample value, and failure otherwise. 531 LogicalResult Simplex::restoreRow(Unknown &u) { 532 assert(u.orientation == Orientation::Row && 533 "unknown should be in row position"); 534 535 while (tableau(u.pos, 1) < 0) { 536 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 537 if (!maybePivot) 538 break; 539 540 pivot(*maybePivot); 541 if (u.orientation == Orientation::Column) 542 return success(); // the unknown is unbounded above. 543 } 544 return success(tableau(u.pos, 1) >= 0); 545 } 546 547 /// Find a row that can be used to pivot the column in the specified direction. 548 /// This returns an empty optional if and only if the column is unbounded in the 549 /// specified direction (ignoring skipRow, if skipRow is set). 550 /// 551 /// If skipRow is set, this row is not considered, and (if it is restricted) its 552 /// restriction may be violated by the returned pivot. Usually, skipRow is set 553 /// because we don't want to move it to column position unless it is unbounded, 554 /// and we are either trying to increase the value of skipRow or explicitly 555 /// trying to make skipRow negative, so we are not concerned about this. 556 /// 557 /// If the direction is up (resp. down) and a restricted row has a negative 558 /// (positive) coefficient for the column, then this row imposes a bound on how 559 /// much the sample value of the column can change. Such a row with constant 560 /// term c and coefficient f for the column imposes a bound of c/|f| on the 561 /// change in sample value (in the specified direction). (note that c is 562 /// non-negative here since the row is restricted and the tableau is consistent) 563 /// 564 /// We iterate through the rows and pick the row which imposes the most 565 /// stringent bound, since pivoting with a row changes the row's sample value to 566 /// 0 and hence saturates the bound it imposes. We break ties between rows that 567 /// impose the same bound by considering a lexicographic ordering where we 568 /// prefer unknowns with lower index value. 569 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 570 Direction direction, 571 unsigned col) const { 572 Optional<unsigned> retRow; 573 // Initialize these to zero in order to silence a warning about retElem and 574 // retConst being used uninitialized in the initialization of `diff` below. In 575 // reality, these are always initialized when that line is reached since these 576 // are set whenever retRow is set. 577 int64_t retElem = 0, retConst = 0; 578 for (unsigned row = nRedundant; row < nRow; ++row) { 579 if (skipRow && row == *skipRow) 580 continue; 581 int64_t elem = tableau(row, col); 582 if (elem == 0) 583 continue; 584 if (!unknownFromRow(row).restricted) 585 continue; 586 if (signMatchesDirection(elem, direction)) 587 continue; 588 int64_t constTerm = tableau(row, 1); 589 590 if (!retRow) { 591 retRow = row; 592 retElem = elem; 593 retConst = constTerm; 594 continue; 595 } 596 597 int64_t diff = retConst * elem - constTerm * retElem; 598 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 599 (diff != 0 && !signMatchesDirection(diff, direction))) { 600 retRow = row; 601 retElem = elem; 602 retConst = constTerm; 603 } 604 } 605 return retRow; 606 } 607 608 bool SimplexBase::isEmpty() const { return empty; } 609 610 void SimplexBase::swapRows(unsigned i, unsigned j) { 611 if (i == j) 612 return; 613 tableau.swapRows(i, j); 614 std::swap(rowUnknown[i], rowUnknown[j]); 615 unknownFromRow(i).pos = i; 616 unknownFromRow(j).pos = j; 617 } 618 619 void SimplexBase::swapColumns(unsigned i, unsigned j) { 620 assert(i < nCol && j < nCol && "Invalid columns provided!"); 621 if (i == j) 622 return; 623 tableau.swapColumns(i, j); 624 std::swap(colUnknown[i], colUnknown[j]); 625 unknownFromColumn(i).pos = i; 626 unknownFromColumn(j).pos = j; 627 } 628 629 /// Mark this tableau empty and push an entry to the undo stack. 630 void SimplexBase::markEmpty() { 631 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 632 // entry, since in that case the Simplex will be erroneously marked as 633 // non-empty when rolling back past this point. 634 if (empty) 635 return; 636 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 637 empty = true; 638 } 639 640 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 641 /// is the current number of variables, then the corresponding inequality is 642 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 643 /// 644 /// We add the inequality and mark it as restricted. We then try to make its 645 /// sample value non-negative. If this is not possible, the tableau has become 646 /// empty and we mark it as such. 647 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 648 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); 649 LogicalResult result = restoreRow(con[conIndex]); 650 if (failed(result)) 651 markEmpty(); 652 } 653 654 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 655 /// is the current number of variables, then the corresponding equality is 656 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 657 /// 658 /// We simply add two opposing inequalities, which force the expression to 659 /// be zero. 660 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) { 661 addInequality(coeffs); 662 SmallVector<int64_t, 8> negatedCoeffs; 663 for (int64_t coeff : coeffs) 664 negatedCoeffs.emplace_back(-coeff); 665 addInequality(negatedCoeffs); 666 } 667 668 unsigned SimplexBase::getNumVariables() const { return var.size(); } 669 unsigned SimplexBase::getNumConstraints() const { return con.size(); } 670 671 /// Return a snapshot of the current state. This is just the current size of the 672 /// undo log. 673 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } 674 675 unsigned SimplexBase::getSnapshotBasis() { 676 SmallVector<int, 8> basis; 677 for (int index : colUnknown) { 678 if (index != nullIndex) 679 basis.push_back(index); 680 } 681 savedBases.push_back(std::move(basis)); 682 683 undoLog.emplace_back(UndoLogEntry::RestoreBasis); 684 return undoLog.size() - 1; 685 } 686 687 void SimplexBase::removeLastConstraintRowOrientation() { 688 assert(con.back().orientation == Orientation::Row); 689 690 // Move this unknown to the last row and remove the last row from the 691 // tableau. 692 swapRows(con.back().pos, nRow - 1); 693 // It is not strictly necessary to shrink the tableau, but for now we 694 // maintain the invariant that the tableau has exactly nRow rows. 695 tableau.resizeVertically(nRow - 1); 696 nRow--; 697 rowUnknown.pop_back(); 698 con.pop_back(); 699 } 700 701 // This doesn't find a pivot row only if the column has zero 702 // coefficients for every row. 703 // 704 // If the unknown is a constraint, this can't happen, since it was added 705 // initially as a row. Such a row could never have been pivoted to a column. So 706 // a pivot row will always be found if we have a constraint. 707 // 708 // If we have a variable, then the column has zero coefficients for every row 709 // iff no constraints have been added with a non-zero coefficient for this row. 710 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) { 711 for (unsigned row = nRedundant; row < nRow; ++row) 712 if (tableau(row, col) != 0) 713 return row; 714 return {}; 715 } 716 717 // It's not valid to remove the constraint by deleting the column since this 718 // would result in an invalid basis. 719 void Simplex::undoLastConstraint() { 720 if (con.back().orientation == Orientation::Column) { 721 // We try to find any pivot row for this column that preserves tableau 722 // consistency (except possibly the column itself, which is going to be 723 // deallocated anyway). 724 // 725 // If no pivot row is found in either direction, then the unknown is 726 // unbounded in both directions and we are free to perform any pivot at 727 // all. To do this, we just need to find any row with a non-zero 728 // coefficient for the column. findAnyPivotRow will always be able to 729 // find such a row for a constraint. 730 unsigned column = con.back().pos; 731 if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) { 732 pivot(*maybeRow, column); 733 } else if (Optional<unsigned> maybeRow = 734 findPivotRow({}, Direction::Down, column)) { 735 pivot(*maybeRow, column); 736 } else { 737 Optional<unsigned> row = findAnyPivotRow(column); 738 assert(row.hasValue() && "Pivot should always exist for a constraint!"); 739 pivot(*row, column); 740 } 741 } 742 removeLastConstraintRowOrientation(); 743 } 744 745 // It's not valid to remove the constraint by deleting the column since this 746 // would result in an invalid basis. 747 void LexSimplexBase::undoLastConstraint() { 748 if (con.back().orientation == Orientation::Column) { 749 // When removing the last constraint during a rollback, we just need to find 750 // any pivot at all, i.e., any row with non-zero coefficient for the 751 // column, because when rolling back a lexicographic simplex, we always 752 // end by restoring the exact basis that was present at the time of the 753 // snapshot, so what pivots we perform while undoing doesn't matter as 754 // long as we get the unknown to row orientation and remove it. 755 unsigned column = con.back().pos; 756 Optional<unsigned> row = findAnyPivotRow(column); 757 assert(row.hasValue() && "Pivot should always exist for a constraint!"); 758 pivot(*row, column); 759 } 760 removeLastConstraintRowOrientation(); 761 } 762 763 void SimplexBase::undo(UndoLogEntry entry) { 764 if (entry == UndoLogEntry::RemoveLastConstraint) { 765 // Simplex and LexSimplex handle this differently, so we call out to a 766 // virtual function to handle this. 767 undoLastConstraint(); 768 } else if (entry == UndoLogEntry::RemoveLastVariable) { 769 // Whenever we are rolling back the addition of a variable, it is guaranteed 770 // that the variable will be in column position. 771 // 772 // We can see this as follows: any constraint that depends on this variable 773 // was added after this variable was added, so the addition of such 774 // constraints should already have been rolled back by the time we get to 775 // rolling back the addition of the variable. Therefore, no constraint 776 // currently has a component along the variable, so the variable itself must 777 // be part of the basis. 778 assert(var.back().orientation == Orientation::Column && 779 "Variable to be removed must be in column orientation!"); 780 781 // Move this variable to the last column and remove the column from the 782 // tableau. 783 swapColumns(var.back().pos, nCol - 1); 784 tableau.resizeHorizontally(nCol - 1); 785 var.pop_back(); 786 colUnknown.pop_back(); 787 nCol--; 788 } else if (entry == UndoLogEntry::UnmarkEmpty) { 789 empty = false; 790 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 791 nRedundant--; 792 } else if (entry == UndoLogEntry::RestoreBasis) { 793 assert(!savedBases.empty() && "No bases saved!"); 794 795 SmallVector<int, 8> basis = std::move(savedBases.back()); 796 savedBases.pop_back(); 797 798 for (int index : basis) { 799 Unknown &u = unknownFromIndex(index); 800 if (u.orientation == Orientation::Column) 801 continue; 802 for (unsigned col = getNumFixedCols(); col < nCol; col++) { 803 assert(colUnknown[col] != nullIndex && 804 "Column should not be a fixed column!"); 805 if (std::find(basis.begin(), basis.end(), colUnknown[col]) != 806 basis.end()) 807 continue; 808 if (tableau(u.pos, col) == 0) 809 continue; 810 pivot(u.pos, col); 811 break; 812 } 813 814 assert(u.orientation == Orientation::Column && "No pivot found!"); 815 } 816 } 817 } 818 819 /// Rollback to the specified snapshot. 820 /// 821 /// We undo all the log entries until the log size when the snapshot was taken 822 /// is reached. 823 void SimplexBase::rollback(unsigned snapshot) { 824 while (undoLog.size() > snapshot) { 825 undo(undoLog.back()); 826 undoLog.pop_back(); 827 } 828 } 829 830 /// We add the usual floor division constraints: 831 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division 832 /// variable. 833 /// 834 /// This constrains the remainder `coeffs - denom*q` to be in the 835 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`. 836 void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) { 837 assert(denom != 0 && "Cannot divide by zero!\n"); 838 appendVariable(); 839 840 SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end()); 841 int64_t constTerm = ineq.back(); 842 ineq.back() = -denom; 843 ineq.push_back(constTerm); 844 addInequality(ineq); 845 846 for (int64_t &coeff : ineq) 847 coeff = -coeff; 848 ineq.back() += denom - 1; 849 addInequality(ineq); 850 } 851 852 void SimplexBase::appendVariable(unsigned count) { 853 if (count == 0) 854 return; 855 var.reserve(var.size() + count); 856 colUnknown.reserve(colUnknown.size() + count); 857 for (unsigned i = 0; i < count; ++i) { 858 nCol++; 859 var.emplace_back(Orientation::Column, /*restricted=*/false, 860 /*pos=*/nCol - 1); 861 colUnknown.push_back(var.size() - 1); 862 } 863 tableau.resizeHorizontally(nCol); 864 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 865 } 866 867 /// Add all the constraints from the given IntegerRelation. 868 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) { 869 assert(rel.getNumIds() == getNumVariables() && 870 "IntegerRelation must have same dimensionality as simplex"); 871 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 872 addInequality(rel.getInequality(i)); 873 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 874 addEquality(rel.getEquality(i)); 875 } 876 877 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction, 878 unsigned row) { 879 // Keep trying to find a pivot for the row in the specified direction. 880 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 881 // If findPivot returns a pivot involving the row itself, then the optimum 882 // is unbounded, so we return None. 883 if (maybePivot->row == row) 884 return OptimumKind::Unbounded; 885 pivot(*maybePivot); 886 } 887 888 // The row has reached its optimal sample value, which we return. 889 // The sample value is the entry in the constant column divided by the common 890 // denominator for this row. 891 return Fraction(tableau(row, 1), tableau(row, 0)); 892 } 893 894 /// Compute the optimum of the specified expression in the specified direction, 895 /// or None if it is unbounded. 896 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, 897 ArrayRef<int64_t> coeffs) { 898 if (empty) 899 return OptimumKind::Empty; 900 901 SimplexRollbackScopeExit scopeExit(*this); 902 unsigned conIndex = addRow(coeffs); 903 unsigned row = con[conIndex].pos; 904 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); 905 return optimum; 906 } 907 908 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, 909 Unknown &u) { 910 if (empty) 911 return OptimumKind::Empty; 912 if (u.orientation == Orientation::Column) { 913 unsigned column = u.pos; 914 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 915 // If no pivot is returned, the constraint is unbounded in the specified 916 // direction. 917 if (!pivotRow) 918 return OptimumKind::Unbounded; 919 pivot(*pivotRow, column); 920 } 921 922 unsigned row = u.pos; 923 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); 924 if (u.restricted && direction == Direction::Down && 925 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) { 926 if (failed(restoreRow(u))) 927 llvm_unreachable("Could not restore row!"); 928 } 929 return optimum; 930 } 931 932 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 933 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 934 "in an empty set."); 935 // The constraint's perpendicular is already bounded below, since it is a 936 // constraint. If it is also bounded above, we can return true. 937 return computeOptimum(Direction::Up, con[constraintIndex]).isBounded(); 938 } 939 940 /// Redundant constraints are those that are in row orientation and lie in 941 /// rows 0 to nRedundant - 1. 942 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 943 const Unknown &u = con[constraintIndex]; 944 return u.orientation == Orientation::Row && u.pos < nRedundant; 945 } 946 947 /// Mark the specified row redundant. 948 /// 949 /// This is done by moving the unknown to the end of the block of redundant 950 /// rows (namely, to row nRedundant) and incrementing nRedundant to 951 /// accomodate the new redundant row. 952 void Simplex::markRowRedundant(Unknown &u) { 953 assert(u.orientation == Orientation::Row && 954 "Unknown should be in row position!"); 955 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 956 swapRows(u.pos, nRedundant); 957 ++nRedundant; 958 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 959 } 960 961 /// Find a subset of constraints that is redundant and mark them redundant. 962 void Simplex::detectRedundant() { 963 // It is not meaningful to talk about redundancy for empty sets. 964 if (empty) 965 return; 966 967 // Iterate through the constraints and check for each one if it can attain 968 // negative sample values. If it can, it's not redundant. Otherwise, it is. 969 // We mark redundant constraints redundant. 970 // 971 // Constraints that get marked redundant in one iteration are not respected 972 // when checking constraints in later iterations. This prevents, for example, 973 // two identical constraints both being marked redundant since each is 974 // redundant given the other one. In this example, only the first of the 975 // constraints that is processed will get marked redundant, as it should be. 976 for (Unknown &u : con) { 977 if (u.orientation == Orientation::Column) { 978 unsigned column = u.pos; 979 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 980 // If no downward pivot is returned, the constraint is unbounded below 981 // and hence not redundant. 982 if (!pivotRow) 983 continue; 984 pivot(*pivotRow, column); 985 } 986 987 unsigned row = u.pos; 988 MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row); 989 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) { 990 // Constraint is unbounded below or can attain negative sample values and 991 // hence is not redundant. 992 if (failed(restoreRow(u))) 993 llvm_unreachable("Could not restore non-redundant row!"); 994 continue; 995 } 996 997 markRowRedundant(u); 998 } 999 } 1000 1001 bool Simplex::isUnbounded() { 1002 if (empty) 1003 return false; 1004 1005 SmallVector<int64_t, 8> dir(var.size() + 1); 1006 for (unsigned i = 0; i < var.size(); ++i) { 1007 dir[i] = 1; 1008 1009 if (computeOptimum(Direction::Up, dir).isUnbounded()) 1010 return true; 1011 1012 if (computeOptimum(Direction::Down, dir).isUnbounded()) 1013 return true; 1014 1015 dir[i] = 0; 1016 } 1017 return false; 1018 } 1019 1020 /// Make a tableau to represent a pair of points in the original tableau. 1021 /// 1022 /// The product constraints and variables are stored as: first A's, then B's. 1023 /// 1024 /// The product tableau has row layout: 1025 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 1026 /// 1027 /// It has column layout: 1028 /// denominator, constant, A's columns, B's columns. 1029 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 1030 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 1031 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 1032 Simplex result(numVar); 1033 1034 result.tableau.resizeVertically(numCon); 1035 result.empty = a.empty || b.empty; 1036 1037 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 1038 SmallVector<Unknown, 8> result; 1039 result.reserve(v.size() + w.size()); 1040 result.insert(result.end(), v.begin(), v.end()); 1041 result.insert(result.end(), w.begin(), w.end()); 1042 return result; 1043 }; 1044 result.con = concat(a.con, b.con); 1045 result.var = concat(a.var, b.var); 1046 1047 auto indexFromBIndex = [&](int index) { 1048 return index >= 0 ? a.getNumVariables() + index 1049 : ~(a.getNumConstraints() + ~index); 1050 }; 1051 1052 result.colUnknown.assign(2, nullIndex); 1053 for (unsigned i = 2; i < a.nCol; ++i) { 1054 result.colUnknown.push_back(a.colUnknown[i]); 1055 result.unknownFromIndex(result.colUnknown.back()).pos = 1056 result.colUnknown.size() - 1; 1057 } 1058 for (unsigned i = 2; i < b.nCol; ++i) { 1059 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 1060 result.unknownFromIndex(result.colUnknown.back()).pos = 1061 result.colUnknown.size() - 1; 1062 } 1063 1064 auto appendRowFromA = [&](unsigned row) { 1065 for (unsigned col = 0; col < a.nCol; ++col) 1066 result.tableau(result.nRow, col) = a.tableau(row, col); 1067 result.rowUnknown.push_back(a.rowUnknown[row]); 1068 result.unknownFromIndex(result.rowUnknown.back()).pos = 1069 result.rowUnknown.size() - 1; 1070 result.nRow++; 1071 }; 1072 1073 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 1074 // may be). 1075 auto appendRowFromB = [&](unsigned row) { 1076 result.tableau(result.nRow, 0) = b.tableau(row, 0); 1077 result.tableau(result.nRow, 1) = b.tableau(row, 1); 1078 1079 unsigned offset = a.nCol - 2; 1080 for (unsigned col = 2; col < b.nCol; ++col) 1081 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 1082 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 1083 result.unknownFromIndex(result.rowUnknown.back()).pos = 1084 result.rowUnknown.size() - 1; 1085 result.nRow++; 1086 }; 1087 1088 result.nRedundant = a.nRedundant + b.nRedundant; 1089 for (unsigned row = 0; row < a.nRedundant; ++row) 1090 appendRowFromA(row); 1091 for (unsigned row = 0; row < b.nRedundant; ++row) 1092 appendRowFromB(row); 1093 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 1094 appendRowFromA(row); 1095 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 1096 appendRowFromB(row); 1097 1098 return result; 1099 } 1100 1101 Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const { 1102 if (empty) 1103 return {}; 1104 1105 SmallVector<Fraction, 8> sample; 1106 sample.reserve(var.size()); 1107 // Push the sample value for each variable into the vector. 1108 for (const Unknown &u : var) { 1109 if (u.orientation == Orientation::Column) { 1110 // If the variable is in column position, its sample value is zero. 1111 sample.emplace_back(0, 1); 1112 } else { 1113 // If the variable is in row position, its sample value is the 1114 // entry in the constant column divided by the denominator. 1115 int64_t denom = tableau(u.pos, 0); 1116 sample.emplace_back(tableau(u.pos, 1), denom); 1117 } 1118 } 1119 return sample; 1120 } 1121 1122 void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) { 1123 addRow(coeffs, /*makeRestricted=*/true); 1124 } 1125 1126 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const { 1127 if (empty) 1128 return OptimumKind::Empty; 1129 1130 SmallVector<Fraction, 8> sample; 1131 sample.reserve(var.size()); 1132 // Push the sample value for each variable into the vector. 1133 for (const Unknown &u : var) { 1134 // When the big M parameter is being used, each variable x is represented 1135 // as M + x, so its sample value is finite if and only if it is of the 1136 // form 1*M + c. If the coefficient of M is not one then the sample value 1137 // is infinite, and we return an empty optional. 1138 1139 if (u.orientation == Orientation::Column) { 1140 // If the variable is in column position, the sample value of M + x is 1141 // zero, so x = -M which is unbounded. 1142 return OptimumKind::Unbounded; 1143 } 1144 1145 // If the variable is in row position, its sample value is the 1146 // entry in the constant column divided by the denominator. 1147 int64_t denom = tableau(u.pos, 0); 1148 if (usingBigM) 1149 if (tableau(u.pos, 2) != denom) 1150 return OptimumKind::Unbounded; 1151 sample.emplace_back(tableau(u.pos, 1), denom); 1152 } 1153 return sample; 1154 } 1155 1156 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 1157 // If the tableau is empty, no sample point exists. 1158 if (empty) 1159 return {}; 1160 1161 // The value will always exist since the Simplex is non-empty. 1162 SmallVector<Fraction, 8> rationalSample = *getRationalSample(); 1163 SmallVector<int64_t, 8> integerSample; 1164 integerSample.reserve(var.size()); 1165 for (const Fraction &coord : rationalSample) { 1166 // If the sample is non-integral, return None. 1167 if (coord.num % coord.den != 0) 1168 return {}; 1169 integerSample.push_back(coord.num / coord.den); 1170 } 1171 return integerSample; 1172 } 1173 1174 /// Given a simplex for a polytope, construct a new simplex whose variables are 1175 /// identified with a pair of points (x, y) in the original polytope. Supports 1176 /// some operations needed for generalized basis reduction. In what follows, 1177 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 1178 /// dimension of the original polytope. 1179 /// 1180 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 1181 /// also supports rolling back this addition, by maintaining a snapshot stack 1182 /// that contains a snapshot of the Simplex's state for each equality, just 1183 /// before that equality was added. 1184 class presburger::GBRSimplex { 1185 using Orientation = Simplex::Orientation; 1186 1187 public: 1188 GBRSimplex(const Simplex &originalSimplex) 1189 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 1190 simplexConstraintOffset(simplex.getNumConstraints()) {} 1191 1192 /// Add an equality dotProduct(dir, x - y) == 0. 1193 /// First pushes a snapshot for the current simplex state to the stack so 1194 /// that this can be rolled back later. 1195 void addEqualityForDirection(ArrayRef<int64_t> dir) { 1196 assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) && 1197 "Direction passed is the zero vector!"); 1198 snapshotStack.push_back(simplex.getSnapshot()); 1199 simplex.addEquality(getCoeffsForDirection(dir)); 1200 } 1201 /// Compute max(dotProduct(dir, x - y)). 1202 Fraction computeWidth(ArrayRef<int64_t> dir) { 1203 MaybeOptimum<Fraction> maybeWidth = 1204 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); 1205 assert(maybeWidth.isBounded() && "Width should be bounded!"); 1206 return *maybeWidth; 1207 } 1208 1209 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 1210 /// the direction equalities to `dual`. 1211 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 1212 SmallVectorImpl<int64_t> &dual, 1213 int64_t &dualDenom) { 1214 // We can't just call into computeWidth or computeOptimum since we need to 1215 // access the state of the tableau after computing the optimum, and these 1216 // functions rollback the insertion of the objective function into the 1217 // tableau before returning. We instead add a row for the objective function 1218 // ourselves, call into computeOptimum, compute the duals from the tableau 1219 // state, and finally rollback the addition of the row before returning. 1220 SimplexRollbackScopeExit scopeExit(simplex); 1221 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 1222 unsigned row = simplex.con[conIndex].pos; 1223 MaybeOptimum<Fraction> maybeWidth = 1224 simplex.computeRowOptimum(Simplex::Direction::Up, row); 1225 assert(maybeWidth.isBounded() && "Width should be bounded!"); 1226 dualDenom = simplex.tableau(row, 0); 1227 dual.clear(); 1228 1229 // The increment is i += 2 because equalities are added as two inequalities, 1230 // one positive and one negative. Each iteration processes one equality. 1231 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 1232 // The dual variable for an inequality in column orientation is the 1233 // negative of its coefficient at the objective row. If the inequality is 1234 // in row orientation, the corresponding dual variable is zero. 1235 // 1236 // We want the dual for the original equality, which corresponds to two 1237 // inequalities: a positive inequality, which has the same coefficients as 1238 // the equality, and a negative equality, which has negated coefficients. 1239 // 1240 // Note that at most one of these inequalities can be in column 1241 // orientation because the column unknowns should form a basis and hence 1242 // must be linearly independent. If the positive inequality is in column 1243 // position, its dual is the dual corresponding to the equality. If the 1244 // negative inequality is in column position, the negation of its dual is 1245 // the dual corresponding to the equality. If neither is in column 1246 // position, then that means that this equality is redundant, and its dual 1247 // is zero. 1248 // 1249 // Note that it is NOT valid to perform pivots during the computation of 1250 // the duals. This entire dual computation must be performed on the same 1251 // tableau configuration. 1252 assert(!(simplex.con[i].orientation == Orientation::Column && 1253 simplex.con[i + 1].orientation == Orientation::Column) && 1254 "Both inequalities for the equality cannot be in column " 1255 "orientation!"); 1256 if (simplex.con[i].orientation == Orientation::Column) 1257 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 1258 else if (simplex.con[i + 1].orientation == Orientation::Column) 1259 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 1260 else 1261 dual.push_back(0); 1262 } 1263 return *maybeWidth; 1264 } 1265 1266 /// Remove the last equality that was added through addEqualityForDirection. 1267 /// 1268 /// We do this by rolling back to the snapshot at the top of the stack, which 1269 /// should be a snapshot taken just before the last equality was added. 1270 void removeLastEquality() { 1271 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 1272 simplex.rollback(snapshotStack.back()); 1273 snapshotStack.pop_back(); 1274 } 1275 1276 private: 1277 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 1278 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 1279 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 1280 /// where n is the dimension of the original polytope. 1281 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 1282 assert(2 * dir.size() == simplex.getNumVariables() && 1283 "Direction vector has wrong dimensionality"); 1284 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 1285 coeffs.reserve(2 * dir.size()); 1286 for (int64_t coeff : dir) 1287 coeffs.push_back(-coeff); 1288 coeffs.push_back(0); // constant term 1289 return coeffs; 1290 } 1291 1292 Simplex simplex; 1293 /// The first index of the equality constraints, the index immediately after 1294 /// the last constraint in the initial product simplex. 1295 unsigned simplexConstraintOffset; 1296 /// A stack of snapshots, used for rolling back. 1297 SmallVector<unsigned, 8> snapshotStack; 1298 }; 1299 1300 // Return a + scale*b; 1301 static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale, 1302 ArrayRef<int64_t> b) { 1303 assert(a.size() == b.size()); 1304 SmallVector<int64_t, 8> res; 1305 res.reserve(a.size()); 1306 for (unsigned i = 0, e = a.size(); i < e; ++i) 1307 res.push_back(a[i] + scale * b[i]); 1308 return res; 1309 } 1310 1311 /// Reduce the basis to try and find a direction in which the polytope is 1312 /// "thin". This only works for bounded polytopes. 1313 /// 1314 /// This is an implementation of the algorithm described in the paper 1315 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 1316 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 1317 /// 1318 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 1319 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 1320 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 1321 /// 1322 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 1323 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 1324 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 1325 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 1326 /// minimizing value of u, if it were allowed to be fractional. Due to 1327 /// convexity, the minimizing integer value is either floor(dual_i) or 1328 /// ceil(dual_i), so we just need to check which of these gives a lower 1329 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 1330 /// 1331 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 1332 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 1333 /// same i). Otherwise, we increment i. 1334 /// 1335 /// We keep f values and duals cached and invalidate them when necessary. 1336 /// Whenever possible, we use them instead of recomputing them. We implement the 1337 /// algorithm as follows. 1338 /// 1339 /// In an iteration at i we need to compute: 1340 /// a) width_i(b_{i + 1}) 1341 /// b) width_i(b_i) 1342 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 1343 /// 1344 /// If width_i(b_i) is not already cached, we compute it. 1345 /// 1346 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 1347 /// store the duals from this computation. 1348 /// 1349 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 1350 /// of u as explained before, caches the duals from this computation, sets 1351 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 1352 /// 1353 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 1354 /// decrement i, resulting in the basis 1355 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 1356 /// with corresponding f values 1357 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 1358 /// The values up to i - 1 remain unchanged. We have just gotten the middle 1359 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 1360 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 1361 /// the cache. The iteration after decrementing needs exactly the duals from the 1362 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 1363 /// 1364 /// When incrementing i, no cached f values get invalidated. However, the cached 1365 /// duals do get invalidated as the duals for the higher levels are different. 1366 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 1367 const Fraction epsilon(3, 4); 1368 1369 if (level == basis.getNumRows() - 1) 1370 return; 1371 1372 GBRSimplex gbrSimplex(*this); 1373 SmallVector<Fraction, 8> width; 1374 SmallVector<int64_t, 8> dual; 1375 int64_t dualDenom; 1376 1377 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 1378 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 1379 // the new value of width_i(b_{i+1}). 1380 // 1381 // If dual_i is not an integer, the minimizing value must be either 1382 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 1383 // choose the minimizing value. 1384 // 1385 // If dual_i is an integer, we don't need to perform these computations. We 1386 // know that in this case, 1387 // a) u = dual_i. 1388 // b) one can show that dual_j for j < i are the same duals we would have 1389 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 1390 // are the ones already in the cache. 1391 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 1392 // which 1393 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 1394 // be in the cache, so we get it from there and return it. 1395 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 1396 assert(i < level + dual.size() && "dual_i is not known!"); 1397 1398 int64_t u = floorDiv(dual[i - level], dualDenom); 1399 basis.addToRow(i, i + 1, u); 1400 if (dual[i - level] % dualDenom != 0) { 1401 SmallVector<int64_t, 8> candidateDual[2]; 1402 int64_t candidateDualDenom[2]; 1403 Fraction widthI[2]; 1404 1405 // Initially u is floor(dual) and basis reflects this. 1406 widthI[0] = gbrSimplex.computeWidthAndDuals( 1407 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 1408 1409 // Now try ceil(dual), i.e. floor(dual) + 1. 1410 ++u; 1411 basis.addToRow(i, i + 1, 1); 1412 widthI[1] = gbrSimplex.computeWidthAndDuals( 1413 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1414 1415 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1416 if (j == 0) 1417 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1418 basis.addToRow(i, i + 1, -1); 1419 1420 // width_i(b{i+1} + u*b_i) should be minimized at our value of u. 1421 // We assert that this holds by checking that the values of width_i at 1422 // u - 1 and u + 1 are greater than or equal to the value at u. If the 1423 // width is lesser at either of the adjacent values, then our computed 1424 // value of u is clearly not the minimizer. Otherwise by convexity the 1425 // computed value of u is really the minimizer. 1426 1427 // Check the value at u - 1. 1428 assert(gbrSimplex.computeWidth(scaleAndAdd( 1429 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && 1430 "Computed u value does not minimize the width!"); 1431 // Check the value at u + 1. 1432 assert(gbrSimplex.computeWidth(scaleAndAdd( 1433 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && 1434 "Computed u value does not minimize the width!"); 1435 1436 dual = std::move(candidateDual[j]); 1437 dualDenom = candidateDualDenom[j]; 1438 return widthI[j]; 1439 } 1440 1441 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1442 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the 1443 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in 1444 // the above expression is equal to basis.getRow(i+1) below.) 1445 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == 1446 width[i + 1 - level]); 1447 return width[i + 1 - level]; 1448 }; 1449 1450 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1451 // from `level` to i - 1. 1452 unsigned i = level; 1453 while (i < basis.getNumRows() - 1) { 1454 if (i >= level + width.size()) { 1455 // We don't even know the value of f_i(b_i), so let's find that first. 1456 // We have to do this first since later we assume that width already 1457 // contains values up to and including i. 1458 1459 assert((i == 0 || i - 1 < level + width.size()) && 1460 "We are at level i but we don't know the value of width_{i-1}"); 1461 1462 // We don't actually use these duals at all, but it doesn't matter 1463 // because this case should only occur when i is level, and there are no 1464 // duals in that case anyway. 1465 assert(i == level && "This case should only occur when i == level"); 1466 width.push_back( 1467 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1468 } 1469 1470 if (i >= level + dual.size()) { 1471 assert(i + 1 >= level + width.size() && 1472 "We don't know dual_i but we know width_{i+1}"); 1473 // We don't know dual for our level, so let's find it. 1474 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1475 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 1476 dualDenom)); 1477 gbrSimplex.removeLastEquality(); 1478 } 1479 1480 // This variable stores width_i(b_{i+1} + u*b_i). 1481 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1482 if (widthICandidate < epsilon * width[i - level]) { 1483 basis.swapRows(i, i + 1); 1484 width[i - level] = widthICandidate; 1485 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1486 // swap, so we remove the cached values here. 1487 width.resize(i - level + 1); 1488 if (i == level) { 1489 dual.clear(); 1490 continue; 1491 } 1492 1493 gbrSimplex.removeLastEquality(); 1494 i--; 1495 continue; 1496 } 1497 1498 // Invalidate duals since the higher level needs to recompute its own duals. 1499 dual.clear(); 1500 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1501 i++; 1502 } 1503 } 1504 1505 /// Search for an integer sample point using a branch and bound algorithm. 1506 /// 1507 /// Each row in the basis matrix is a vector, and the set of basis vectors 1508 /// should span the space. Initially this is the identity matrix, 1509 /// i.e., the basis vectors are just the variables. 1510 /// 1511 /// In every level, a value is assigned to the level-th basis vector, as 1512 /// follows. Compute the minimum and maximum rational values of this direction. 1513 /// If only one integer point lies in this range, constrain the variable to 1514 /// have this value and recurse to the next variable. 1515 /// 1516 /// If the range has multiple values, perform generalized basis reduction via 1517 /// reduceBasis and then compute the bounds again. Now we try constraining 1518 /// this direction in the first value in this range and "recurse" to the next 1519 /// level. If we fail to find a sample, we try assigning the direction the next 1520 /// value in this range, and so on. 1521 /// 1522 /// If no integer sample is found from any of the assignments, or if the range 1523 /// contains no integer value, then of course the polytope is empty for the 1524 /// current assignment of the values in previous levels, so we return to 1525 /// the previous level. 1526 /// 1527 /// If we reach the last level where all the variables have been assigned values 1528 /// already, then we simply return the current sample point if it is integral, 1529 /// and go back to the previous level otherwise. 1530 /// 1531 /// To avoid potentially arbitrarily large recursion depths leading to stack 1532 /// overflows, this algorithm is implemented iteratively. 1533 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1534 if (empty) 1535 return {}; 1536 1537 unsigned nDims = var.size(); 1538 Matrix basis = Matrix::identity(nDims); 1539 1540 unsigned level = 0; 1541 // The snapshot just before constraining a direction to a value at each level. 1542 SmallVector<unsigned, 8> snapshotStack; 1543 // The maximum value in the range of the direction for each level. 1544 SmallVector<int64_t, 8> upperBoundStack; 1545 // The next value to try constraining the basis vector to at each level. 1546 SmallVector<int64_t, 8> nextValueStack; 1547 1548 snapshotStack.reserve(basis.getNumRows()); 1549 upperBoundStack.reserve(basis.getNumRows()); 1550 nextValueStack.reserve(basis.getNumRows()); 1551 while (level != -1u) { 1552 if (level == basis.getNumRows()) { 1553 // We've assigned values to all variables. Return if we have a sample, 1554 // or go back up to the previous level otherwise. 1555 if (auto maybeSample = getSamplePointIfIntegral()) 1556 return maybeSample; 1557 level--; 1558 continue; 1559 } 1560 1561 if (level >= upperBoundStack.size()) { 1562 // We haven't populated the stack values for this level yet, so we have 1563 // just come down a level ("recursed"). Find the lower and upper bounds. 1564 // If there is more than one integer point in the range, perform 1565 // generalized basis reduction. 1566 SmallVector<int64_t, 8> basisCoeffs = 1567 llvm::to_vector<8>(basis.getRow(level)); 1568 basisCoeffs.push_back(0); 1569 1570 MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown; 1571 std::tie(minRoundedUp, maxRoundedDown) = 1572 computeIntegerBounds(basisCoeffs); 1573 1574 // We don't have any integer values in the range. 1575 // Pop the stack and return up a level. 1576 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) { 1577 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && 1578 "If one bound is empty, both should be."); 1579 snapshotStack.pop_back(); 1580 nextValueStack.pop_back(); 1581 upperBoundStack.pop_back(); 1582 level--; 1583 continue; 1584 } 1585 1586 // We already checked the empty case above. 1587 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && 1588 "Polyhedron should be bounded!"); 1589 1590 // Heuristic: if the sample point is integral at this point, just return 1591 // it. 1592 if (auto maybeSample = getSamplePointIfIntegral()) 1593 return *maybeSample; 1594 1595 if (*minRoundedUp < *maxRoundedDown) { 1596 reduceBasis(basis, level); 1597 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1598 basisCoeffs.push_back(0); 1599 std::tie(minRoundedUp, maxRoundedDown) = 1600 computeIntegerBounds(basisCoeffs); 1601 } 1602 1603 snapshotStack.push_back(getSnapshot()); 1604 // The smallest value in the range is the next value to try. 1605 // The values in the optionals are guaranteed to exist since we know the 1606 // polytope is bounded. 1607 nextValueStack.push_back(*minRoundedUp); 1608 upperBoundStack.push_back(*maxRoundedDown); 1609 } 1610 1611 assert((snapshotStack.size() - 1 == level && 1612 nextValueStack.size() - 1 == level && 1613 upperBoundStack.size() - 1 == level) && 1614 "Mismatched variable stack sizes!"); 1615 1616 // Whether we "recursed" or "returned" from a lower level, we rollback 1617 // to the snapshot of the starting state at this level. (in the "recursed" 1618 // case this has no effect) 1619 rollback(snapshotStack.back()); 1620 int64_t nextValue = nextValueStack.back(); 1621 nextValueStack.back()++; 1622 if (nextValue > upperBoundStack.back()) { 1623 // We have exhausted the range and found no solution. Pop the stack and 1624 // return up a level. 1625 snapshotStack.pop_back(); 1626 nextValueStack.pop_back(); 1627 upperBoundStack.pop_back(); 1628 level--; 1629 continue; 1630 } 1631 1632 // Try the next value in the range and "recurse" into the next level. 1633 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1634 basis.getRow(level).end()); 1635 basisCoeffs.push_back(-nextValue); 1636 addEquality(basisCoeffs); 1637 level++; 1638 } 1639 1640 return {}; 1641 } 1642 1643 /// Compute the minimum and maximum integer values the expression can take. We 1644 /// compute each separately. 1645 std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>> 1646 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1647 MaybeOptimum<int64_t> minRoundedUp( 1648 computeOptimum(Simplex::Direction::Down, coeffs).map(ceil)); 1649 MaybeOptimum<int64_t> maxRoundedDown( 1650 computeOptimum(Simplex::Direction::Up, coeffs).map(floor)); 1651 return {minRoundedUp, maxRoundedDown}; 1652 } 1653 1654 void SimplexBase::print(raw_ostream &os) const { 1655 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1656 if (empty) 1657 os << "Simplex marked empty!\n"; 1658 os << "var: "; 1659 for (unsigned i = 0; i < var.size(); ++i) { 1660 if (i > 0) 1661 os << ", "; 1662 var[i].print(os); 1663 } 1664 os << "\ncon: "; 1665 for (unsigned i = 0; i < con.size(); ++i) { 1666 if (i > 0) 1667 os << ", "; 1668 con[i].print(os); 1669 } 1670 os << '\n'; 1671 for (unsigned row = 0; row < nRow; ++row) { 1672 if (row > 0) 1673 os << ", "; 1674 os << "r" << row << ": " << rowUnknown[row]; 1675 } 1676 os << '\n'; 1677 os << "c0: denom, c1: const"; 1678 for (unsigned col = 2; col < nCol; ++col) 1679 os << ", c" << col << ": " << colUnknown[col]; 1680 os << '\n'; 1681 for (unsigned row = 0; row < nRow; ++row) { 1682 for (unsigned col = 0; col < nCol; ++col) 1683 os << tableau(row, col) << '\t'; 1684 os << '\n'; 1685 } 1686 os << '\n'; 1687 } 1688 1689 void SimplexBase::dump() const { print(llvm::errs()); } 1690 1691 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) { 1692 if (isEmpty()) 1693 return true; 1694 1695 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 1696 if (findIneqType(rel.getInequality(i)) != IneqType::Redundant) 1697 return false; 1698 1699 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 1700 if (!isRedundantEquality(rel.getEquality(i))) 1701 return false; 1702 1703 return true; 1704 } 1705 1706 /// Returns the type of the inequality with coefficients `coeffs`. 1707 /// Possible types are: 1708 /// Redundant The inequality is satisfied by all points in the polytope 1709 /// Cut The inequality is satisfied by some points, but not by others 1710 /// Separate The inequality is not satisfied by any point 1711 /// 1712 /// Internally, this computes the minimum and the maximum the inequality with 1713 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds 1714 /// for all points in the polytope, so it is redundant. If the minimum is <= 0 1715 /// and the maximum is >= 0, the points in between the minimum and the 1716 /// inequality do not satisfy it, the points in between the inequality and the 1717 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no 1718 /// points of the polytope satisfy the inequality, which means it is a separate 1719 /// inequality. 1720 Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) { 1721 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1722 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) { 1723 return IneqType::Redundant; 1724 } 1725 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 1726 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) && 1727 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) { 1728 return IneqType::Cut; 1729 } 1730 return IneqType::Separate; 1731 } 1732 1733 /// Checks whether the type of the inequality with coefficients `coeffs` 1734 /// is Redundant. 1735 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 1736 assert(!empty && 1737 "It is not meaningful to ask about redundancy in an empty set!"); 1738 return findIneqType(coeffs) == IneqType::Redundant; 1739 } 1740 1741 /// Check whether the equality given by `coeffs == 0` is redundant given 1742 /// the existing constraints. This is redundant when `coeffs` is already 1743 /// always zero under the existing constraints. `coeffs` is always zero 1744 /// when the minimum and maximum value that `coeffs` can take are both zero. 1745 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) { 1746 assert(!empty && 1747 "It is not meaningful to ask about redundancy in an empty set!"); 1748 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1749 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 1750 assert((!minimum.isEmpty() && !maximum.isEmpty()) && 1751 "Optima should be non-empty for a non-empty set"); 1752 return minimum.isBounded() && maximum.isBounded() && 1753 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1); 1754 } 1755