1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/Support/Compiler.h"
14 
15 using namespace mlir;
16 using namespace presburger;
17 
18 using Direction = Simplex::Direction;
19 
20 const int nullIndex = std::numeric_limits<int>::max();
21 
22 // Return a + scale*b;
23 LLVM_ATTRIBUTE_UNUSED
24 static SmallVector<int64_t, 8>
25 scaleAndAddForAssert(ArrayRef<int64_t> a, int64_t scale, ArrayRef<int64_t> b) {
26   assert(a.size() == b.size());
27   SmallVector<int64_t, 8> res;
28   res.reserve(a.size());
29   for (unsigned i = 0, e = a.size(); i < e; ++i)
30     res.push_back(a[i] + scale * b[i]);
31   return res;
32 }
33 
34 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, unsigned symbolOffset,
35                          unsigned nSymbol)
36     : usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar),
37       nRedundant(0), nSymbol(nSymbol), tableau(0, nCol), empty(false) {
38   assert(symbolOffset + nSymbol <= nVar);
39 
40   colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
41   for (unsigned i = 0; i < nVar; ++i) {
42     var.emplace_back(Orientation::Column, /*restricted=*/false,
43                      /*pos=*/getNumFixedCols() + i);
44     colUnknown.push_back(i);
45   }
46 
47   // Move the symbols to be in columns [3, 3 + nSymbol).
48   for (unsigned i = 0; i < nSymbol; ++i) {
49     var[symbolOffset + i].isSymbol = true;
50     swapColumns(var[symbolOffset + i].pos, getNumFixedCols() + i);
51   }
52 }
53 
54 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
55   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
56   return index >= 0 ? var[index] : con[~index];
57 }
58 
59 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
60   assert(col < nCol && "Invalid column");
61   return unknownFromIndex(colUnknown[col]);
62 }
63 
64 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
65   assert(row < nRow && "Invalid row");
66   return unknownFromIndex(rowUnknown[row]);
67 }
68 
69 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
70   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
71   return index >= 0 ? var[index] : con[~index];
72 }
73 
74 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
75   assert(col < nCol && "Invalid column");
76   return unknownFromIndex(colUnknown[col]);
77 }
78 
79 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
80   assert(row < nRow && "Invalid row");
81   return unknownFromIndex(rowUnknown[row]);
82 }
83 
84 unsigned SimplexBase::addZeroRow(bool makeRestricted) {
85   ++nRow;
86   // If the tableau is not big enough to accomodate the extra row, we extend it.
87   if (nRow >= tableau.getNumRows())
88     tableau.resizeVertically(nRow);
89   rowUnknown.push_back(~con.size());
90   con.emplace_back(Orientation::Row, makeRestricted, nRow - 1);
91   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
92 
93   // Zero out the new row.
94   tableau.fillRow(nRow - 1, 0);
95 
96   tableau(nRow - 1, 0) = 1;
97   return con.size() - 1;
98 }
99 
100 /// Add a new row to the tableau corresponding to the given constant term and
101 /// list of coefficients. The coefficients are specified as a vector of
102 /// (variable index, coefficient) pairs.
103 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
104   assert(coeffs.size() == var.size() + 1 &&
105          "Incorrect number of coefficients!");
106 
107   addZeroRow(makeRestricted);
108   tableau(nRow - 1, 1) = coeffs.back();
109   if (usingBigM) {
110     // When the lexicographic pivot rule is used, instead of the variables
111     //
112     // x, y, z ...
113     //
114     // we internally use the variables
115     //
116     // M, M + x, M + y, M + z, ...
117     //
118     // where M is the big M parameter. As such, when the user tries to add
119     // a row ax + by + cz + d, we express it in terms of our internal variables
120     // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
121     //
122     // Symbols don't use the big M parameter since they do not get lex
123     // optimized.
124     int64_t bigMCoeff = 0;
125     for (unsigned i = 0; i < coeffs.size() - 1; ++i)
126       if (!var[i].isSymbol)
127         bigMCoeff -= coeffs[i];
128     // The coefficient to the big M parameter is stored in column 2.
129     tableau(nRow - 1, 2) = bigMCoeff;
130   }
131 
132   // Process each given variable coefficient.
133   for (unsigned i = 0; i < var.size(); ++i) {
134     unsigned pos = var[i].pos;
135     if (coeffs[i] == 0)
136       continue;
137 
138     if (var[i].orientation == Orientation::Column) {
139       // If a variable is in column position at column col, then we just add the
140       // coefficient for that variable (scaled by the common row denominator) to
141       // the corresponding entry in the new row.
142       tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
143       continue;
144     }
145 
146     // If the variable is in row position, we need to add that row to the new
147     // row, scaled by the coefficient for the variable, accounting for the two
148     // rows potentially having different denominators. The new denominator is
149     // the lcm of the two.
150     int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
151     int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
152     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
153     tableau(nRow - 1, 0) = lcm;
154     for (unsigned col = 1; col < nCol; ++col)
155       tableau(nRow - 1, col) =
156           nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
157   }
158 
159   tableau.normalizeRow(nRow - 1);
160   // Push to undo log along with the index of the new constraint.
161   return con.size() - 1;
162 }
163 
164 namespace {
165 bool signMatchesDirection(int64_t elem, Direction direction) {
166   assert(elem != 0 && "elem should not be 0");
167   return direction == Direction::Up ? elem > 0 : elem < 0;
168 }
169 
170 Direction flippedDirection(Direction direction) {
171   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
172 }
173 } // namespace
174 
175 /// We simply make the tableau consistent while maintaining a lexicopositive
176 /// basis transform, and then return the sample value. If the tableau becomes
177 /// empty, we return empty.
178 ///
179 /// Let the variables be x = (x_1, ... x_n).
180 /// Let the basis unknowns be y = (y_1, ... y_n).
181 /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
182 ///
183 /// As we will show below, A*y is either zero or lexicopositive.
184 /// Adding a lexicopositive vector to b will make it lexicographically
185 /// greater, so A*y + b is always equal to or lexicographically greater than b.
186 /// Thus, since we can attain x = b, that is the lexicographic minimum.
187 ///
188 /// We have that that every column in A is lexicopositive, i.e., has at least
189 /// one non-zero element, with the first such element being positive. Since for
190 /// the tableau to be consistent we must have non-negative sample values not
191 /// only for the constraints but also for the variables, we also have x >= 0 and
192 /// y >= 0, by which we mean every element in these vectors is non-negative.
193 ///
194 /// Proof that if every column in A is lexicopositive, and y >= 0, then
195 /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
196 /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
197 /// row. If we run out of rows, A*y is zero and we are done; otherwise, we
198 /// encounter some row A_i that has a non-zero element. Every column is
199 /// lexicopositive and so has some positive element before any negative elements
200 /// occur, so the element in this row for any column, if non-zero, must be
201 /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
202 /// non-negative, so if this is non-zero then it must be positive. Then the
203 /// first non-zero element of A*y is positive so A*y is lexicopositive.
204 ///
205 /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
206 /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
207 /// and we can completely ignore these columns of A. We now continue downwards,
208 /// looking for rows of A that have a non-zero element other than in the ignored
209 /// columns. If we find one, say A_k, once again these elements must be positive
210 /// since they are the first non-zero element in each of these columns, so if
211 /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
212 /// add these to the set of ignored columns and continue to the next row. If we
213 /// run out of rows, then A*y is zero and we are done.
214 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
215   if (restoreRationalConsistency().failed()) {
216     markEmpty();
217     return OptimumKind::Empty;
218   }
219   return getRationalSample();
220 }
221 
222 /// Given a row that has a non-integer sample value, add an inequality such
223 /// that this fractional sample value is cut away from the polytope. The added
224 /// inequality will be such that no integer points are removed. i.e., the
225 /// integer lexmin, if it exists, is the same with and without this constraint.
226 ///
227 /// Let the row be
228 /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
229 /// where s_1, ... s_m are the symbols and
230 ///       y_1, ... y_n are the other basis unknowns.
231 ///
232 /// For this to be an integer, we want
233 /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
234 /// Note that this constraint must always hold, independent of the basis,
235 /// becuse the row unknown's value always equals this expression, even if *we*
236 /// later compute the sample value from a different expression based on a
237 /// different basis.
238 ///
239 /// Let us assume that M has a factor of d in it. Imposing this constraint on M
240 /// does not in any way hinder us from finding a value of M that is big enough.
241 /// Moreover, this function is only called when the symbolic part of the sample,
242 /// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
243 ///
244 /// Also, we can safely reduce the coefficients modulo d, so we have:
245 ///
246 /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
247 ///
248 /// Note that all coefficient modulos here are non-negative. Also, all the
249 /// unknowns are non-negative here as both constraints and variables are
250 /// non-negative in LexSimplexBase. (We used the big M trick to make the
251 /// variables non-negative). Therefore, the LHS here is non-negative.
252 /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
253 /// is therefore non-negative as well.
254 ///
255 /// So we have
256 /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
257 ///
258 /// The constraint is violated when added (it would be useless otherwise)
259 /// so we immediately try to move it to a column.
260 LogicalResult LexSimplexBase::addCut(unsigned row) {
261   int64_t d = tableau(row, 0);
262   addZeroRow(/*makeRestricted=*/true);
263   tableau(nRow - 1, 0) = d;
264   tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -c%d.
265   tableau(nRow - 1, 2) = 0;
266   for (unsigned col = 3 + nSymbol; col < nCol; ++col)
267     tableau(nRow - 1, col) = mod(tableau(row, col), d); // b_i%d.
268   return moveRowUnknownToColumn(nRow - 1);
269 }
270 
271 Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
272   for (const Unknown &u : var) {
273     if (u.orientation == Orientation::Column)
274       continue;
275     // If the sample value is of the form (a/d)M + b/d, we need b to be
276     // divisible by d. We assume M contains all possible
277     // factors and is divisible by everything.
278     unsigned row = u.pos;
279     if (tableau(row, 1) % tableau(row, 0) != 0)
280       return row;
281   }
282   return {};
283 }
284 
285 MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
286   // We first try to make the tableau consistent.
287   if (restoreRationalConsistency().failed())
288     return OptimumKind::Empty;
289 
290   // Then, if the sample value is integral, we are done.
291   while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
292     // Otherwise, for the variable whose row has a non-integral sample value,
293     // we add a cut, a constraint that remove this rational point
294     // while preserving all integer points, thus keeping the lexmin the same.
295     // We then again try to make the tableau with the new constraint
296     // consistent. This continues until the tableau becomes empty, in which
297     // case there is no integer point, or until there are no variables with
298     // non-integral sample values.
299     //
300     // Failure indicates that the tableau became empty, which occurs when the
301     // polytope is integer empty.
302     if (addCut(*maybeRow).failed())
303       return OptimumKind::Empty;
304     if (restoreRationalConsistency().failed())
305       return OptimumKind::Empty;
306   }
307 
308   MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
309   assert(!sample.isEmpty() && "If we reached here the sample should exist!");
310   if (sample.isUnbounded())
311     return OptimumKind::Unbounded;
312   return llvm::to_vector<8>(
313       llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
314 }
315 
316 bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
317   SimplexRollbackScopeExit scopeExit(*this);
318   addInequality(coeffs);
319   return findIntegerLexMin().isEmpty();
320 }
321 
322 bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
323   return isSeparateInequality(getComplementIneq(coeffs));
324 }
325 
326 SmallVector<int64_t, 8>
327 SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
328   SmallVector<int64_t, 8> sample;
329   sample.reserve(nSymbol + 1);
330   for (unsigned col = 3; col < 3 + nSymbol; ++col)
331     sample.push_back(tableau(row, col));
332   sample.push_back(tableau(row, 1));
333   return sample;
334 }
335 
336 SmallVector<int64_t, 8>
337 SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
338   SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(row);
339   // The inequality is equivalent to the GCD-normalized one.
340   normalizeRange(sample);
341   return sample;
342 }
343 
344 void LexSimplexBase::appendSymbol() {
345   appendVariable();
346   swapColumns(3 + nSymbol, nCol - 1);
347   var.back().isSymbol = true;
348   nSymbol++;
349 }
350 
351 static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) {
352   assert(divisor > 0 && "divisor must be positive!");
353   return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; });
354 }
355 
356 bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
357   int64_t denom = tableau(row, 0);
358   return tableau(row, 1) % denom == 0 &&
359          isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
360 }
361 
362 /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
363 /// has a symbolic sample value with fractional coefficients.
364 ///
365 /// Let the row be
366 /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
367 /// where s_1, ... s_m are the symbols and
368 ///       y_1, ... y_n are the other basis unknowns.
369 ///
370 /// As in LexSimplex::addCut, for this to be an integer, we want
371 ///
372 /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
373 ///
374 /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
375 ///
376 /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
377 ///
378 /// where we take a modulo of the whole symbolic expression on the right to
379 /// bring it into the range [0, d - 1]. Therefore, as in addCut(),
380 /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
381 /// k >= 0 as well. If all the a_i are divisible by d, then we can add the
382 /// constraint directly.  Otherwise, we realize the modulo of the symbolic
383 /// expression by adding a division variable
384 ///
385 /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
386 ///
387 /// to the symbol domain, so the equality becomes
388 ///
389 /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
390 ///
391 /// So the cut is
392 /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
393 /// This constraint is violated when added so we immediately try to move it to a
394 /// column.
395 LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
396   int64_t d = tableau(row, 0);
397   if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) {
398     // The coefficients of symbols in the symbol numerator are divisible
399     // by the denominator, so we can add the constraint directly,
400     // i.e., ignore the symbols and add a regular cut as in addCut().
401     return addCut(row);
402   }
403 
404   // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
405   SmallVector<int64_t, 8> divCoeffs;
406   divCoeffs.reserve(nSymbol + 1);
407   int64_t divDenom = d;
408   for (unsigned col = 3; col < 3 + nSymbol; ++col)
409     divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i
410   divCoeffs.push_back(mod(-tableau(row, 1), divDenom));     // -c%d.
411   normalizeDiv(divCoeffs, divDenom);
412 
413   domainSimplex.addDivisionVariable(divCoeffs, divDenom);
414   domainPoly.addLocalFloorDiv(divCoeffs, divDenom);
415 
416   // Update `this` to account for the additional symbol we just added.
417   appendSymbol();
418 
419   // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
420   addZeroRow(/*makeRestricted=*/true);
421   tableau(nRow - 1, 0) = d;
422   tableau(nRow - 1, 2) = 0;
423 
424   tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
425   for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
426     tableau(nRow - 1, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
427   tableau(nRow - 1, 3 + nSymbol - 1) = d;                 // q*d.
428 
429   for (unsigned col = 3 + nSymbol; col < nCol; ++col)
430     tableau(nRow - 1, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
431   return moveRowUnknownToColumn(nRow - 1);
432 }
433 
434 void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
435   Matrix output(0, domainPoly.getNumIds() + 1);
436   output.reserveRows(result.lexmin.getNumOutputs());
437   for (const Unknown &u : var) {
438     if (u.isSymbol)
439       continue;
440 
441     if (u.orientation == Orientation::Column) {
442       // M + u has a sample value of zero so u has a sample value of -M, i.e,
443       // unbounded.
444       result.unboundedDomain.unionInPlace(domainPoly);
445       return;
446     }
447 
448     int64_t denom = tableau(u.pos, 0);
449     if (tableau(u.pos, 2) < denom) {
450       // M + u has a sample value of fM + something, where f < 1, so
451       // u = (f - 1)M + something, which has a negative coefficient for M,
452       // and so is unbounded.
453       result.unboundedDomain.unionInPlace(domainPoly);
454       return;
455     }
456     assert(tableau(u.pos, 2) == denom &&
457            "Coefficient of M should not be greater than 1!");
458 
459     SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos);
460     for (int64_t &elem : sample) {
461       assert(elem % denom == 0 && "coefficients must be integral!");
462       elem /= denom;
463     }
464     output.appendExtraRow(sample);
465   }
466   result.lexmin.addPiece(domainPoly, output);
467 }
468 
469 Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
470   // First look for rows that are clearly violated just from the big M
471   // coefficient, without needing to perform any simplex queries on the domain.
472   for (unsigned row = 0; row < nRow; ++row)
473     if (tableau(row, 2) < 0)
474       return row;
475 
476   for (unsigned row = 0; row < nRow; ++row) {
477     if (tableau(row, 2) > 0)
478       continue;
479     if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) {
480       // Sample numerator always takes negative values in the symbol domain.
481       return row;
482     }
483   }
484   return {};
485 }
486 
487 Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
488   for (const Unknown &u : var) {
489     if (u.orientation == Orientation::Column)
490       continue;
491     assert(!u.isSymbol && "Symbol should not be in row orientation!");
492     if (!isSymbolicSampleIntegral(u.pos))
493       return u.pos;
494   }
495   return {};
496 }
497 
498 /// The non-branching pivots are just the ones moving the rows
499 /// that are always violated in the symbol domain.
500 LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
501   while (Optional<unsigned> row = maybeGetAlwaysViolatedRow())
502     if (moveRowUnknownToColumn(*row).failed())
503       return failure();
504   return success();
505 }
506 
507 SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
508   SymbolicLexMin result(nSymbol, var.size() - nSymbol);
509 
510   /// The algorithm is more naturally expressed recursively, but we implement
511   /// it iteratively here to avoid potential issues with stack overflows in the
512   /// compiler. We explicitly maintain the stack frames in a vector.
513   ///
514   /// To "recurse", we store the current "stack frame", i.e., state variables
515   /// that we will need when we "return", into `stack`, increment `level`, and
516   /// `continue`. To "tail recurse", we just `continue`.
517   /// To "return", we decrement `level` and `continue`.
518   ///
519   /// When there is no stack frame for the current `level`, this indicates that
520   /// we have just "recursed" or "tail recursed". When there does exist one,
521   /// this indicates that we have just "returned" from recursing. There is only
522   /// one point at which non-tail calls occur so we always "return" there.
523   unsigned level = 1;
524   struct StackFrame {
525     int splitIndex;
526     unsigned snapshot;
527     unsigned domainSnapshot;
528     IntegerRelation::CountsSnapshot domainPolyCounts;
529   };
530   SmallVector<StackFrame, 8> stack;
531 
532   while (level > 0) {
533     assert(level >= stack.size());
534     if (level > stack.size()) {
535       if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
536         // No integer points; return.
537         --level;
538         continue;
539       }
540 
541       if (doNonBranchingPivots().failed()) {
542         // Could not find pivots for violated constraints; return.
543         --level;
544         continue;
545       }
546 
547       unsigned splitRow;
548       SmallVector<int64_t, 8> symbolicSample;
549       for (splitRow = 0; splitRow < nRow; ++splitRow) {
550         if (tableau(splitRow, 2) > 0)
551           continue;
552         assert(tableau(splitRow, 2) == 0 &&
553                "Non-branching pivots should have been handled already!");
554 
555         symbolicSample = getSymbolicSampleIneq(splitRow);
556         if (domainSimplex.isRedundantInequality(symbolicSample))
557           continue;
558 
559         // It's neither redundant nor separate, so it takes both positive and
560         // negative values, and hence constitutes a row for which we need to
561         // split the domain and separately run each case.
562         assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
563                "Non-branching pivots should have been handled already!");
564         break;
565       }
566 
567       if (splitRow < nRow) {
568         unsigned domainSnapshot = domainSimplex.getSnapshot();
569         IntegerRelation::CountsSnapshot domainPolyCounts =
570             domainPoly.getCounts();
571 
572         // First, we consider the part of the domain where the row is not
573         // violated. We don't have to do any pivots for the row in this case,
574         // but we record the additional constraint that defines this part of
575         // the domain.
576         domainSimplex.addInequality(symbolicSample);
577         domainPoly.addInequality(symbolicSample);
578 
579         // Recurse.
580         //
581         // On return, the basis as a set is preserved but not the internal
582         // ordering within rows or columns. Thus, we take note of the index of
583         // the Unknown that caused the split, which may be in a different
584         // row when we come back from recursing. We will need this to recurse
585         // on the other part of the split domain, where the row is violated.
586         //
587         // Note that we have to capture the index above and not a reference to
588         // the Unknown itself, since the array it lives in might get
589         // reallocated.
590         int splitIndex = rowUnknown[splitRow];
591         unsigned snapshot = getSnapshot();
592         stack.push_back(
593             {splitIndex, snapshot, domainSnapshot, domainPolyCounts});
594         ++level;
595         continue;
596       }
597 
598       // The tableau is rationally consistent for the current domain.
599       // Now we look for non-integral sample values and add cuts for them.
600       if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) {
601         if (addSymbolicCut(*row).failed()) {
602           // No integral points; return.
603           --level;
604           continue;
605         }
606 
607         // Rerun this level with the added cut constraint (tail recurse).
608         continue;
609       }
610 
611       // Record output and return.
612       recordOutput(result);
613       --level;
614       continue;
615     }
616 
617     if (level == stack.size()) {
618       // We have "returned" from "recursing".
619       const StackFrame &frame = stack.back();
620       domainPoly.truncate(frame.domainPolyCounts);
621       domainSimplex.rollback(frame.domainSnapshot);
622       rollback(frame.snapshot);
623       const Unknown &u = unknownFromIndex(frame.splitIndex);
624 
625       // Drop the frame. We don't need it anymore.
626       stack.pop_back();
627 
628       // Now we consider the part of the domain where the unknown `splitIndex`
629       // was negative.
630       assert(u.orientation == Orientation::Row &&
631              "The split row should have been returned to row orientation!");
632       SmallVector<int64_t, 8> splitIneq =
633           getComplementIneq(getSymbolicSampleIneq(u.pos));
634       normalizeRange(splitIneq);
635       if (moveRowUnknownToColumn(u.pos).failed()) {
636         // The unknown can't be made non-negative; return.
637         --level;
638         continue;
639       }
640 
641       // The unknown can be made negative; recurse with the corresponding domain
642       // constraints.
643       domainSimplex.addInequality(splitIneq);
644       domainPoly.addInequality(splitIneq);
645 
646       // We are now taking care of the second half of the domain and we don't
647       // need to do anything else here after returning, so it's a tail recurse.
648       continue;
649     }
650   }
651 
652   return result;
653 }
654 
655 bool LexSimplex::rowIsViolated(unsigned row) const {
656   if (tableau(row, 2) < 0)
657     return true;
658   if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
659     return true;
660   return false;
661 }
662 
663 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
664   for (unsigned row = 0; row < nRow; ++row)
665     if (rowIsViolated(row))
666       return row;
667   return {};
668 }
669 
670 /// We simply look for violated rows and keep trying to move them to column
671 /// orientation, which always succeeds unless the constraints have no solution
672 /// in which case we just give up and return.
673 LogicalResult LexSimplex::restoreRationalConsistency() {
674   if (empty)
675     return failure();
676   while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
677     if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
678       return failure();
679   return success();
680 }
681 
682 // Move the row unknown to column orientation while preserving lexicopositivity
683 // of the basis transform. The sample value of the row must be non-positive.
684 //
685 // We only consider pivots where the pivot element is positive. Suppose no such
686 // pivot exists, i.e., some violated row has no positive coefficient for any
687 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
688 // where d is the denominator, s is the sample value and the c_i are the basis
689 // coefficients. If s != 0, then since any feasible assignment of the basis
690 // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
691 // any feasible assignment would violate this row and therefore the constraints
692 // have no solution.
693 //
694 // We can preserve lexicopositivity by picking the pivot column with positive
695 // pivot element that makes the lexicographically smallest change to the sample
696 // point.
697 //
698 // Proof. Let
699 // x = (x_1, ... x_n) be the variables,
700 // z = (z_1, ... z_m) be the constraints,
701 // y = (y_1, ... y_n) be the current basis, and
702 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
703 // B is basically the simplex tableau of our implementation except that instead
704 // of only describing the transform to get back the non-basis unknowns, it
705 // defines the values of all the unknowns in terms of the basis unknowns.
706 // Similarly, s is the column for the sample value.
707 //
708 // Our goal is to show that each column in B, restricted to the first n
709 // rows, is lexicopositive after the pivot if it is so before. This is
710 // equivalent to saying the columns in the whole matrix are lexicopositive;
711 // there must be some non-zero element in every column in the first n rows since
712 // the n variables cannot be spanned without using all the n basis unknowns.
713 //
714 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
715 // transform for the tableau derived for SimplexBase::pivot:
716 //
717 //            pivot col    other col                   pivot col    other col
718 // pivot row     a             b       ->   pivot row     1/a         -b/a
719 // other row     c             d            other row     c/a        d - bc/a
720 //
721 // Similarly, a pivot results in B changing to B' and c to c'; the difference
722 // between the tableau and these matrices B and B' is that there is no special
723 // case for the pivot row, since it continues to represent the same unknown. The
724 // same formula applies for all rows:
725 //
726 // B'.col(j) = B.col(j) / B(i,j)
727 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
728 // and similarly, s' = s - s_i * B.col(j) / B(i,j).
729 //
730 // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
731 // the change in sample value when pivoting with column a is lexicographically
732 // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
733 // lexicographically smaller than B.col(b) / B(i, b).
734 //
735 // Since B(i, j) > 0, column j remains lexicopositive.
736 //
737 // For the other columns, suppose C.col(k) is not lexicopositive.
738 // This means that for some p, for all t < p,
739 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
740 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
741 // which is in contradiction to the fact that B.col(j) / B(i,j) must be
742 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
743 // minimizes the change in sample value.
744 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
745   Optional<unsigned> maybeColumn;
746   for (unsigned col = 3 + nSymbol; col < nCol; ++col) {
747     if (tableau(row, col) <= 0)
748       continue;
749     maybeColumn =
750         !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
751   }
752 
753   if (!maybeColumn)
754     return failure();
755 
756   pivot(row, *maybeColumn);
757   return success();
758 }
759 
760 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
761                                               unsigned colB) const {
762   // First, let's consider the non-symbolic case.
763   // A pivot causes the following change. (in the diagram the matrix elements
764   // are shown as rationals and there is no common denominator used)
765   //
766   //            pivot col    big M col      const col
767   // pivot row     a            p               b
768   // other row     c            q               d
769   //                        |
770   //                        v
771   //
772   //            pivot col    big M col      const col
773   // pivot row     1/a         -p/a           -b/a
774   // other row     c/a        q - pc/a       d - bc/a
775   //
776   // Let the sample value of the pivot row be s = pM + b before the pivot. Since
777   // the pivot row represents a violated constraint we know that s < 0.
778   //
779   // If the variable is a non-pivot column, its sample value is zero before and
780   // after the pivot.
781   //
782   // If the variable is the pivot column, then its sample value goes from 0 to
783   // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
784   // value is -s/a.
785   //
786   // If the variable is the pivot row, its sample value goes from s to 0, for a
787   // change of -s.
788   //
789   // If the variable is a non-pivot row, its sample value changes from
790   // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
791   // is -(pM + b)(c/a) = -sc/a.
792   //
793   // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
794   // fixed for all calls to this function since the row and tableau are fixed.
795   // The callee just wants to compare the return values with the return value of
796   // other invocations of the same function. So the -s is common for all
797   // comparisons involved and can be ignored, since -s is strictly positive.
798   //
799   // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
800   // appropriate. This allows us to run the entire algorithm treating M
801   // symbolically, as the pivot to be performed does not depend on the value
802   // of M, so long as the sample value s is negative. Note that this is not
803   // because of any special feature of M; by the same argument, we ignore the
804   // symbols too. The caller ensure that the sample value s is negative for
805   // all possible values of the symbols.
806   auto getSampleChangeCoeffForVar = [this, row](unsigned col,
807                                                 const Unknown &u) -> Fraction {
808     int64_t a = tableau(row, col);
809     if (u.orientation == Orientation::Column) {
810       // Pivot column case.
811       if (u.pos == col)
812         return {1, a};
813 
814       // Non-pivot column case.
815       return {0, 1};
816     }
817 
818     // Pivot row case.
819     if (u.pos == row)
820       return {1, 1};
821 
822     // Non-pivot row case.
823     int64_t c = tableau(u.pos, col);
824     return {c, a};
825   };
826 
827   for (const Unknown &u : var) {
828     Fraction changeA = getSampleChangeCoeffForVar(colA, u);
829     Fraction changeB = getSampleChangeCoeffForVar(colB, u);
830     if (changeA < changeB)
831       return colA;
832     if (changeA > changeB)
833       return colB;
834   }
835 
836   // If we reached here, both result in exactly the same changes, so it
837   // doesn't matter which we return.
838   return colA;
839 }
840 
841 /// Find a pivot to change the sample value of the row in the specified
842 /// direction. The returned pivot row will involve `row` if and only if the
843 /// unknown is unbounded in the specified direction.
844 ///
845 /// To increase (resp. decrease) the value of a row, we need to find a live
846 /// column with a non-zero coefficient. If the coefficient is positive, we need
847 /// to increase (decrease) the value of the column, and if the coefficient is
848 /// negative, we need to decrease (increase) the value of the column. Also,
849 /// we cannot decrease the sample value of restricted columns.
850 ///
851 /// If multiple columns are valid, we break ties by considering a lexicographic
852 /// ordering where we prefer unknowns with lower index.
853 Optional<SimplexBase::Pivot> Simplex::findPivot(int row,
854                                                 Direction direction) const {
855   Optional<unsigned> col;
856   for (unsigned j = 2; j < nCol; ++j) {
857     int64_t elem = tableau(row, j);
858     if (elem == 0)
859       continue;
860 
861     if (unknownFromColumn(j).restricted &&
862         !signMatchesDirection(elem, direction))
863       continue;
864     if (!col || colUnknown[j] < colUnknown[*col])
865       col = j;
866   }
867 
868   if (!col)
869     return {};
870 
871   Direction newDirection =
872       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
873   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
874   return Pivot{maybePivotRow.getValueOr(row), *col};
875 }
876 
877 /// Swap the associated unknowns for the row and the column.
878 ///
879 /// First we swap the index associated with the row and column. Then we update
880 /// the unknowns to reflect their new position and orientation.
881 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
882   std::swap(rowUnknown[row], colUnknown[col]);
883   Unknown &uCol = unknownFromColumn(col);
884   Unknown &uRow = unknownFromRow(row);
885   uCol.orientation = Orientation::Column;
886   uRow.orientation = Orientation::Row;
887   uCol.pos = col;
888   uRow.pos = row;
889 }
890 
891 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
892 
893 /// Pivot pivotRow and pivotCol.
894 ///
895 /// Let R be the pivot row unknown and let C be the pivot col unknown.
896 /// Since initially R = a*C + sum b_i * X_i
897 /// (where the sum is over the other column's unknowns, x_i)
898 /// C = (R - (sum b_i * X_i))/a
899 ///
900 /// Let u be some other row unknown.
901 /// u = c*C + sum d_i * X_i
902 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
903 ///
904 /// This results in the following transform:
905 ///            pivot col    other col                   pivot col    other col
906 /// pivot row     a             b       ->   pivot row     1/a         -b/a
907 /// other row     c             d            other row     c/a        d - bc/a
908 ///
909 /// Taking into account the common denominators p and q:
910 ///
911 ///            pivot col    other col                    pivot col   other col
912 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
913 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
914 ///
915 /// The pivot row transform is accomplished be swapping a with the pivot row's
916 /// common denominator and negating the pivot row except for the pivot column
917 /// element.
918 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
919   assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
920   assert(!unknownFromColumn(pivotCol).isSymbol);
921 
922   swapRowWithCol(pivotRow, pivotCol);
923   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
924   // We need to negate the whole pivot row except for the pivot column.
925   if (tableau(pivotRow, 0) < 0) {
926     // If the denominator is negative, we negate the row by simply negating the
927     // denominator.
928     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
929     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
930   } else {
931     for (unsigned col = 1; col < nCol; ++col) {
932       if (col == pivotCol)
933         continue;
934       tableau(pivotRow, col) = -tableau(pivotRow, col);
935     }
936   }
937   tableau.normalizeRow(pivotRow);
938 
939   for (unsigned row = 0; row < nRow; ++row) {
940     if (row == pivotRow)
941       continue;
942     if (tableau(row, pivotCol) == 0) // Nothing to do.
943       continue;
944     tableau(row, 0) *= tableau(pivotRow, 0);
945     for (unsigned j = 1; j < nCol; ++j) {
946       if (j == pivotCol)
947         continue;
948       // Add rather than subtract because the pivot row has been negated.
949       tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
950                         tableau(row, pivotCol) * tableau(pivotRow, j);
951     }
952     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
953     tableau.normalizeRow(row);
954   }
955 }
956 
957 /// Perform pivots until the unknown has a non-negative sample value or until
958 /// no more upward pivots can be performed. Return success if we were able to
959 /// bring the row to a non-negative sample value, and failure otherwise.
960 LogicalResult Simplex::restoreRow(Unknown &u) {
961   assert(u.orientation == Orientation::Row &&
962          "unknown should be in row position");
963 
964   while (tableau(u.pos, 1) < 0) {
965     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
966     if (!maybePivot)
967       break;
968 
969     pivot(*maybePivot);
970     if (u.orientation == Orientation::Column)
971       return success(); // the unknown is unbounded above.
972   }
973   return success(tableau(u.pos, 1) >= 0);
974 }
975 
976 /// Find a row that can be used to pivot the column in the specified direction.
977 /// This returns an empty optional if and only if the column is unbounded in the
978 /// specified direction (ignoring skipRow, if skipRow is set).
979 ///
980 /// If skipRow is set, this row is not considered, and (if it is restricted) its
981 /// restriction may be violated by the returned pivot. Usually, skipRow is set
982 /// because we don't want to move it to column position unless it is unbounded,
983 /// and we are either trying to increase the value of skipRow or explicitly
984 /// trying to make skipRow negative, so we are not concerned about this.
985 ///
986 /// If the direction is up (resp. down) and a restricted row has a negative
987 /// (positive) coefficient for the column, then this row imposes a bound on how
988 /// much the sample value of the column can change. Such a row with constant
989 /// term c and coefficient f for the column imposes a bound of c/|f| on the
990 /// change in sample value (in the specified direction). (note that c is
991 /// non-negative here since the row is restricted and the tableau is consistent)
992 ///
993 /// We iterate through the rows and pick the row which imposes the most
994 /// stringent bound, since pivoting with a row changes the row's sample value to
995 /// 0 and hence saturates the bound it imposes. We break ties between rows that
996 /// impose the same bound by considering a lexicographic ordering where we
997 /// prefer unknowns with lower index value.
998 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
999                                          Direction direction,
1000                                          unsigned col) const {
1001   Optional<unsigned> retRow;
1002   // Initialize these to zero in order to silence a warning about retElem and
1003   // retConst being used uninitialized in the initialization of `diff` below. In
1004   // reality, these are always initialized when that line is reached since these
1005   // are set whenever retRow is set.
1006   int64_t retElem = 0, retConst = 0;
1007   for (unsigned row = nRedundant; row < nRow; ++row) {
1008     if (skipRow && row == *skipRow)
1009       continue;
1010     int64_t elem = tableau(row, col);
1011     if (elem == 0)
1012       continue;
1013     if (!unknownFromRow(row).restricted)
1014       continue;
1015     if (signMatchesDirection(elem, direction))
1016       continue;
1017     int64_t constTerm = tableau(row, 1);
1018 
1019     if (!retRow) {
1020       retRow = row;
1021       retElem = elem;
1022       retConst = constTerm;
1023       continue;
1024     }
1025 
1026     int64_t diff = retConst * elem - constTerm * retElem;
1027     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1028         (diff != 0 && !signMatchesDirection(diff, direction))) {
1029       retRow = row;
1030       retElem = elem;
1031       retConst = constTerm;
1032     }
1033   }
1034   return retRow;
1035 }
1036 
1037 bool SimplexBase::isEmpty() const { return empty; }
1038 
1039 void SimplexBase::swapRows(unsigned i, unsigned j) {
1040   if (i == j)
1041     return;
1042   tableau.swapRows(i, j);
1043   std::swap(rowUnknown[i], rowUnknown[j]);
1044   unknownFromRow(i).pos = i;
1045   unknownFromRow(j).pos = j;
1046 }
1047 
1048 void SimplexBase::swapColumns(unsigned i, unsigned j) {
1049   assert(i < nCol && j < nCol && "Invalid columns provided!");
1050   if (i == j)
1051     return;
1052   tableau.swapColumns(i, j);
1053   std::swap(colUnknown[i], colUnknown[j]);
1054   unknownFromColumn(i).pos = i;
1055   unknownFromColumn(j).pos = j;
1056 }
1057 
1058 /// Mark this tableau empty and push an entry to the undo stack.
1059 void SimplexBase::markEmpty() {
1060   // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1061   // entry, since in that case the Simplex will be erroneously marked as
1062   // non-empty when rolling back past this point.
1063   if (empty)
1064     return;
1065   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
1066   empty = true;
1067 }
1068 
1069 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1070 /// is the current number of variables, then the corresponding inequality is
1071 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1072 ///
1073 /// We add the inequality and mark it as restricted. We then try to make its
1074 /// sample value non-negative. If this is not possible, the tableau has become
1075 /// empty and we mark it as such.
1076 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
1077   unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1078   LogicalResult result = restoreRow(con[conIndex]);
1079   if (failed(result))
1080     markEmpty();
1081 }
1082 
1083 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1084 /// is the current number of variables, then the corresponding equality is
1085 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1086 ///
1087 /// We simply add two opposing inequalities, which force the expression to
1088 /// be zero.
1089 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
1090   addInequality(coeffs);
1091   SmallVector<int64_t, 8> negatedCoeffs;
1092   for (int64_t coeff : coeffs)
1093     negatedCoeffs.emplace_back(-coeff);
1094   addInequality(negatedCoeffs);
1095 }
1096 
1097 unsigned SimplexBase::getNumVariables() const { return var.size(); }
1098 unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1099 
1100 /// Return a snapshot of the current state. This is just the current size of the
1101 /// undo log.
1102 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1103 
1104 unsigned SimplexBase::getSnapshotBasis() {
1105   SmallVector<int, 8> basis;
1106   for (int index : colUnknown) {
1107     if (index != nullIndex)
1108       basis.push_back(index);
1109   }
1110   savedBases.push_back(std::move(basis));
1111 
1112   undoLog.emplace_back(UndoLogEntry::RestoreBasis);
1113   return undoLog.size() - 1;
1114 }
1115 
1116 void SimplexBase::removeLastConstraintRowOrientation() {
1117   assert(con.back().orientation == Orientation::Row);
1118 
1119   // Move this unknown to the last row and remove the last row from the
1120   // tableau.
1121   swapRows(con.back().pos, nRow - 1);
1122   // It is not strictly necessary to shrink the tableau, but for now we
1123   // maintain the invariant that the tableau has exactly nRow rows.
1124   tableau.resizeVertically(nRow - 1);
1125   nRow--;
1126   rowUnknown.pop_back();
1127   con.pop_back();
1128 }
1129 
1130 // This doesn't find a pivot row only if the column has zero
1131 // coefficients for every row.
1132 //
1133 // If the unknown is a constraint, this can't happen, since it was added
1134 // initially as a row. Such a row could never have been pivoted to a column. So
1135 // a pivot row will always be found if we have a constraint.
1136 //
1137 // If we have a variable, then the column has zero coefficients for every row
1138 // iff no constraints have been added with a non-zero coefficient for this row.
1139 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1140   for (unsigned row = nRedundant; row < nRow; ++row)
1141     if (tableau(row, col) != 0)
1142       return row;
1143   return {};
1144 }
1145 
1146 // It's not valid to remove the constraint by deleting the column since this
1147 // would result in an invalid basis.
1148 void Simplex::undoLastConstraint() {
1149   if (con.back().orientation == Orientation::Column) {
1150     // We try to find any pivot row for this column that preserves tableau
1151     // consistency (except possibly the column itself, which is going to be
1152     // deallocated anyway).
1153     //
1154     // If no pivot row is found in either direction, then the unknown is
1155     // unbounded in both directions and we are free to perform any pivot at
1156     // all. To do this, we just need to find any row with a non-zero
1157     // coefficient for the column. findAnyPivotRow will always be able to
1158     // find such a row for a constraint.
1159     unsigned column = con.back().pos;
1160     if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) {
1161       pivot(*maybeRow, column);
1162     } else if (Optional<unsigned> maybeRow =
1163                    findPivotRow({}, Direction::Down, column)) {
1164       pivot(*maybeRow, column);
1165     } else {
1166       Optional<unsigned> row = findAnyPivotRow(column);
1167       assert(row.hasValue() && "Pivot should always exist for a constraint!");
1168       pivot(*row, column);
1169     }
1170   }
1171   removeLastConstraintRowOrientation();
1172 }
1173 
1174 // It's not valid to remove the constraint by deleting the column since this
1175 // would result in an invalid basis.
1176 void LexSimplexBase::undoLastConstraint() {
1177   if (con.back().orientation == Orientation::Column) {
1178     // When removing the last constraint during a rollback, we just need to find
1179     // any pivot at all, i.e., any row with non-zero coefficient for the
1180     // column, because when rolling back a lexicographic simplex, we always
1181     // end by restoring the exact basis that was present at the time of the
1182     // snapshot, so what pivots we perform while undoing doesn't matter as
1183     // long as we get the unknown to row orientation and remove it.
1184     unsigned column = con.back().pos;
1185     Optional<unsigned> row = findAnyPivotRow(column);
1186     assert(row.hasValue() && "Pivot should always exist for a constraint!");
1187     pivot(*row, column);
1188   }
1189   removeLastConstraintRowOrientation();
1190 }
1191 
1192 void SimplexBase::undo(UndoLogEntry entry) {
1193   if (entry == UndoLogEntry::RemoveLastConstraint) {
1194     // Simplex and LexSimplex handle this differently, so we call out to a
1195     // virtual function to handle this.
1196     undoLastConstraint();
1197   } else if (entry == UndoLogEntry::RemoveLastVariable) {
1198     // Whenever we are rolling back the addition of a variable, it is guaranteed
1199     // that the variable will be in column position.
1200     //
1201     // We can see this as follows: any constraint that depends on this variable
1202     // was added after this variable was added, so the addition of such
1203     // constraints should already have been rolled back by the time we get to
1204     // rolling back the addition of the variable. Therefore, no constraint
1205     // currently has a component along the variable, so the variable itself must
1206     // be part of the basis.
1207     assert(var.back().orientation == Orientation::Column &&
1208            "Variable to be removed must be in column orientation!");
1209 
1210     if (var.back().isSymbol)
1211       nSymbol--;
1212 
1213     // Move this variable to the last column and remove the column from the
1214     // tableau.
1215     swapColumns(var.back().pos, nCol - 1);
1216     tableau.resizeHorizontally(nCol - 1);
1217     var.pop_back();
1218     colUnknown.pop_back();
1219     nCol--;
1220   } else if (entry == UndoLogEntry::UnmarkEmpty) {
1221     empty = false;
1222   } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1223     nRedundant--;
1224   } else if (entry == UndoLogEntry::RestoreBasis) {
1225     assert(!savedBases.empty() && "No bases saved!");
1226 
1227     SmallVector<int, 8> basis = std::move(savedBases.back());
1228     savedBases.pop_back();
1229 
1230     for (int index : basis) {
1231       Unknown &u = unknownFromIndex(index);
1232       if (u.orientation == Orientation::Column)
1233         continue;
1234       for (unsigned col = getNumFixedCols(); col < nCol; col++) {
1235         assert(colUnknown[col] != nullIndex &&
1236                "Column should not be a fixed column!");
1237         if (std::find(basis.begin(), basis.end(), colUnknown[col]) !=
1238             basis.end())
1239           continue;
1240         if (tableau(u.pos, col) == 0)
1241           continue;
1242         pivot(u.pos, col);
1243         break;
1244       }
1245 
1246       assert(u.orientation == Orientation::Column && "No pivot found!");
1247     }
1248   }
1249 }
1250 
1251 /// Rollback to the specified snapshot.
1252 ///
1253 /// We undo all the log entries until the log size when the snapshot was taken
1254 /// is reached.
1255 void SimplexBase::rollback(unsigned snapshot) {
1256   while (undoLog.size() > snapshot) {
1257     undo(undoLog.back());
1258     undoLog.pop_back();
1259   }
1260 }
1261 
1262 /// We add the usual floor division constraints:
1263 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1264 /// variable.
1265 ///
1266 /// This constrains the remainder `coeffs - denom*q` to be in the
1267 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
1268 void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) {
1269   assert(denom != 0 && "Cannot divide by zero!\n");
1270   appendVariable();
1271 
1272   SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end());
1273   int64_t constTerm = ineq.back();
1274   ineq.back() = -denom;
1275   ineq.push_back(constTerm);
1276   addInequality(ineq);
1277 
1278   for (int64_t &coeff : ineq)
1279     coeff = -coeff;
1280   ineq.back() += denom - 1;
1281   addInequality(ineq);
1282 }
1283 
1284 void SimplexBase::appendVariable(unsigned count) {
1285   if (count == 0)
1286     return;
1287   var.reserve(var.size() + count);
1288   colUnknown.reserve(colUnknown.size() + count);
1289   for (unsigned i = 0; i < count; ++i) {
1290     nCol++;
1291     var.emplace_back(Orientation::Column, /*restricted=*/false,
1292                      /*pos=*/nCol - 1);
1293     colUnknown.push_back(var.size() - 1);
1294   }
1295   tableau.resizeHorizontally(nCol);
1296   undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
1297 }
1298 
1299 /// Add all the constraints from the given IntegerRelation.
1300 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1301   assert(rel.getNumIds() == getNumVariables() &&
1302          "IntegerRelation must have same dimensionality as simplex");
1303   for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1304     addInequality(rel.getInequality(i));
1305   for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1306     addEquality(rel.getEquality(i));
1307 }
1308 
1309 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1310                                                   unsigned row) {
1311   // Keep trying to find a pivot for the row in the specified direction.
1312   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
1313     // If findPivot returns a pivot involving the row itself, then the optimum
1314     // is unbounded, so we return None.
1315     if (maybePivot->row == row)
1316       return OptimumKind::Unbounded;
1317     pivot(*maybePivot);
1318   }
1319 
1320   // The row has reached its optimal sample value, which we return.
1321   // The sample value is the entry in the constant column divided by the common
1322   // denominator for this row.
1323   return Fraction(tableau(row, 1), tableau(row, 0));
1324 }
1325 
1326 /// Compute the optimum of the specified expression in the specified direction,
1327 /// or None if it is unbounded.
1328 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1329                                                ArrayRef<int64_t> coeffs) {
1330   if (empty)
1331     return OptimumKind::Empty;
1332 
1333   SimplexRollbackScopeExit scopeExit(*this);
1334   unsigned conIndex = addRow(coeffs);
1335   unsigned row = con[conIndex].pos;
1336   MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1337   return optimum;
1338 }
1339 
1340 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1341                                                Unknown &u) {
1342   if (empty)
1343     return OptimumKind::Empty;
1344   if (u.orientation == Orientation::Column) {
1345     unsigned column = u.pos;
1346     Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
1347     // If no pivot is returned, the constraint is unbounded in the specified
1348     // direction.
1349     if (!pivotRow)
1350       return OptimumKind::Unbounded;
1351     pivot(*pivotRow, column);
1352   }
1353 
1354   unsigned row = u.pos;
1355   MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1356   if (u.restricted && direction == Direction::Down &&
1357       (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1358     if (failed(restoreRow(u)))
1359       llvm_unreachable("Could not restore row!");
1360   }
1361   return optimum;
1362 }
1363 
1364 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1365   assert(!empty && "It is not meaningful to ask whether a direction is bounded "
1366                    "in an empty set.");
1367   // The constraint's perpendicular is already bounded below, since it is a
1368   // constraint. If it is also bounded above, we can return true.
1369   return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
1370 }
1371 
1372 /// Redundant constraints are those that are in row orientation and lie in
1373 /// rows 0 to nRedundant - 1.
1374 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1375   const Unknown &u = con[constraintIndex];
1376   return u.orientation == Orientation::Row && u.pos < nRedundant;
1377 }
1378 
1379 /// Mark the specified row redundant.
1380 ///
1381 /// This is done by moving the unknown to the end of the block of redundant
1382 /// rows (namely, to row nRedundant) and incrementing nRedundant to
1383 /// accomodate the new redundant row.
1384 void Simplex::markRowRedundant(Unknown &u) {
1385   assert(u.orientation == Orientation::Row &&
1386          "Unknown should be in row position!");
1387   assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
1388   swapRows(u.pos, nRedundant);
1389   ++nRedundant;
1390   undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
1391 }
1392 
1393 /// Find a subset of constraints that is redundant and mark them redundant.
1394 void Simplex::detectRedundant() {
1395   // It is not meaningful to talk about redundancy for empty sets.
1396   if (empty)
1397     return;
1398 
1399   // Iterate through the constraints and check for each one if it can attain
1400   // negative sample values. If it can, it's not redundant. Otherwise, it is.
1401   // We mark redundant constraints redundant.
1402   //
1403   // Constraints that get marked redundant in one iteration are not respected
1404   // when checking constraints in later iterations. This prevents, for example,
1405   // two identical constraints both being marked redundant since each is
1406   // redundant given the other one. In this example, only the first of the
1407   // constraints that is processed will get marked redundant, as it should be.
1408   for (Unknown &u : con) {
1409     if (u.orientation == Orientation::Column) {
1410       unsigned column = u.pos;
1411       Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
1412       // If no downward pivot is returned, the constraint is unbounded below
1413       // and hence not redundant.
1414       if (!pivotRow)
1415         continue;
1416       pivot(*pivotRow, column);
1417     }
1418 
1419     unsigned row = u.pos;
1420     MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
1421     if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1422       // Constraint is unbounded below or can attain negative sample values and
1423       // hence is not redundant.
1424       if (failed(restoreRow(u)))
1425         llvm_unreachable("Could not restore non-redundant row!");
1426       continue;
1427     }
1428 
1429     markRowRedundant(u);
1430   }
1431 }
1432 
1433 bool Simplex::isUnbounded() {
1434   if (empty)
1435     return false;
1436 
1437   SmallVector<int64_t, 8> dir(var.size() + 1);
1438   for (unsigned i = 0; i < var.size(); ++i) {
1439     dir[i] = 1;
1440 
1441     if (computeOptimum(Direction::Up, dir).isUnbounded())
1442       return true;
1443 
1444     if (computeOptimum(Direction::Down, dir).isUnbounded())
1445       return true;
1446 
1447     dir[i] = 0;
1448   }
1449   return false;
1450 }
1451 
1452 /// Make a tableau to represent a pair of points in the original tableau.
1453 ///
1454 /// The product constraints and variables are stored as: first A's, then B's.
1455 ///
1456 /// The product tableau has row layout:
1457 ///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1458 ///
1459 /// It has column layout:
1460 ///   denominator, constant, A's columns, B's columns.
1461 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1462   unsigned numVar = a.getNumVariables() + b.getNumVariables();
1463   unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1464   Simplex result(numVar);
1465 
1466   result.tableau.resizeVertically(numCon);
1467   result.empty = a.empty || b.empty;
1468 
1469   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1470     SmallVector<Unknown, 8> result;
1471     result.reserve(v.size() + w.size());
1472     result.insert(result.end(), v.begin(), v.end());
1473     result.insert(result.end(), w.begin(), w.end());
1474     return result;
1475   };
1476   result.con = concat(a.con, b.con);
1477   result.var = concat(a.var, b.var);
1478 
1479   auto indexFromBIndex = [&](int index) {
1480     return index >= 0 ? a.getNumVariables() + index
1481                       : ~(a.getNumConstraints() + ~index);
1482   };
1483 
1484   result.colUnknown.assign(2, nullIndex);
1485   for (unsigned i = 2; i < a.nCol; ++i) {
1486     result.colUnknown.push_back(a.colUnknown[i]);
1487     result.unknownFromIndex(result.colUnknown.back()).pos =
1488         result.colUnknown.size() - 1;
1489   }
1490   for (unsigned i = 2; i < b.nCol; ++i) {
1491     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
1492     result.unknownFromIndex(result.colUnknown.back()).pos =
1493         result.colUnknown.size() - 1;
1494   }
1495 
1496   auto appendRowFromA = [&](unsigned row) {
1497     for (unsigned col = 0; col < a.nCol; ++col)
1498       result.tableau(result.nRow, col) = a.tableau(row, col);
1499     result.rowUnknown.push_back(a.rowUnknown[row]);
1500     result.unknownFromIndex(result.rowUnknown.back()).pos =
1501         result.rowUnknown.size() - 1;
1502     result.nRow++;
1503   };
1504 
1505   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1506   // may be).
1507   auto appendRowFromB = [&](unsigned row) {
1508     result.tableau(result.nRow, 0) = b.tableau(row, 0);
1509     result.tableau(result.nRow, 1) = b.tableau(row, 1);
1510 
1511     unsigned offset = a.nCol - 2;
1512     for (unsigned col = 2; col < b.nCol; ++col)
1513       result.tableau(result.nRow, offset + col) = b.tableau(row, col);
1514     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
1515     result.unknownFromIndex(result.rowUnknown.back()).pos =
1516         result.rowUnknown.size() - 1;
1517     result.nRow++;
1518   };
1519 
1520   result.nRedundant = a.nRedundant + b.nRedundant;
1521   for (unsigned row = 0; row < a.nRedundant; ++row)
1522     appendRowFromA(row);
1523   for (unsigned row = 0; row < b.nRedundant; ++row)
1524     appendRowFromB(row);
1525   for (unsigned row = a.nRedundant; row < a.nRow; ++row)
1526     appendRowFromA(row);
1527   for (unsigned row = b.nRedundant; row < b.nRow; ++row)
1528     appendRowFromB(row);
1529 
1530   return result;
1531 }
1532 
1533 Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1534   if (empty)
1535     return {};
1536 
1537   SmallVector<Fraction, 8> sample;
1538   sample.reserve(var.size());
1539   // Push the sample value for each variable into the vector.
1540   for (const Unknown &u : var) {
1541     if (u.orientation == Orientation::Column) {
1542       // If the variable is in column position, its sample value is zero.
1543       sample.emplace_back(0, 1);
1544     } else {
1545       // If the variable is in row position, its sample value is the
1546       // entry in the constant column divided by the denominator.
1547       int64_t denom = tableau(u.pos, 0);
1548       sample.emplace_back(tableau(u.pos, 1), denom);
1549     }
1550   }
1551   return sample;
1552 }
1553 
1554 void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) {
1555   addRow(coeffs, /*makeRestricted=*/true);
1556 }
1557 
1558 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1559   if (empty)
1560     return OptimumKind::Empty;
1561 
1562   SmallVector<Fraction, 8> sample;
1563   sample.reserve(var.size());
1564   // Push the sample value for each variable into the vector.
1565   for (const Unknown &u : var) {
1566     // When the big M parameter is being used, each variable x is represented
1567     // as M + x, so its sample value is finite if and only if it is of the
1568     // form 1*M + c. If the coefficient of M is not one then the sample value
1569     // is infinite, and we return an empty optional.
1570 
1571     if (u.orientation == Orientation::Column) {
1572       // If the variable is in column position, the sample value of M + x is
1573       // zero, so x = -M which is unbounded.
1574       return OptimumKind::Unbounded;
1575     }
1576 
1577     // If the variable is in row position, its sample value is the
1578     // entry in the constant column divided by the denominator.
1579     int64_t denom = tableau(u.pos, 0);
1580     if (usingBigM)
1581       if (tableau(u.pos, 2) != denom)
1582         return OptimumKind::Unbounded;
1583     sample.emplace_back(tableau(u.pos, 1), denom);
1584   }
1585   return sample;
1586 }
1587 
1588 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
1589   // If the tableau is empty, no sample point exists.
1590   if (empty)
1591     return {};
1592 
1593   // The value will always exist since the Simplex is non-empty.
1594   SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1595   SmallVector<int64_t, 8> integerSample;
1596   integerSample.reserve(var.size());
1597   for (const Fraction &coord : rationalSample) {
1598     // If the sample is non-integral, return None.
1599     if (coord.num % coord.den != 0)
1600       return {};
1601     integerSample.push_back(coord.num / coord.den);
1602   }
1603   return integerSample;
1604 }
1605 
1606 /// Given a simplex for a polytope, construct a new simplex whose variables are
1607 /// identified with a pair of points (x, y) in the original polytope. Supports
1608 /// some operations needed for generalized basis reduction. In what follows,
1609 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1610 /// dimension of the original polytope.
1611 ///
1612 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1613 /// also supports rolling back this addition, by maintaining a snapshot stack
1614 /// that contains a snapshot of the Simplex's state for each equality, just
1615 /// before that equality was added.
1616 class presburger::GBRSimplex {
1617   using Orientation = Simplex::Orientation;
1618 
1619 public:
1620   GBRSimplex(const Simplex &originalSimplex)
1621       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
1622         simplexConstraintOffset(simplex.getNumConstraints()) {}
1623 
1624   /// Add an equality dotProduct(dir, x - y) == 0.
1625   /// First pushes a snapshot for the current simplex state to the stack so
1626   /// that this can be rolled back later.
1627   void addEqualityForDirection(ArrayRef<int64_t> dir) {
1628     assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) &&
1629            "Direction passed is the zero vector!");
1630     snapshotStack.push_back(simplex.getSnapshot());
1631     simplex.addEquality(getCoeffsForDirection(dir));
1632   }
1633   /// Compute max(dotProduct(dir, x - y)).
1634   Fraction computeWidth(ArrayRef<int64_t> dir) {
1635     MaybeOptimum<Fraction> maybeWidth =
1636         simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
1637     assert(maybeWidth.isBounded() && "Width should be bounded!");
1638     return *maybeWidth;
1639   }
1640 
1641   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1642   /// the direction equalities to `dual`.
1643   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
1644                                 SmallVectorImpl<int64_t> &dual,
1645                                 int64_t &dualDenom) {
1646     // We can't just call into computeWidth or computeOptimum since we need to
1647     // access the state of the tableau after computing the optimum, and these
1648     // functions rollback the insertion of the objective function into the
1649     // tableau before returning. We instead add a row for the objective function
1650     // ourselves, call into computeOptimum, compute the duals from the tableau
1651     // state, and finally rollback the addition of the row before returning.
1652     SimplexRollbackScopeExit scopeExit(simplex);
1653     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
1654     unsigned row = simplex.con[conIndex].pos;
1655     MaybeOptimum<Fraction> maybeWidth =
1656         simplex.computeRowOptimum(Simplex::Direction::Up, row);
1657     assert(maybeWidth.isBounded() && "Width should be bounded!");
1658     dualDenom = simplex.tableau(row, 0);
1659     dual.clear();
1660 
1661     // The increment is i += 2 because equalities are added as two inequalities,
1662     // one positive and one negative. Each iteration processes one equality.
1663     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1664       // The dual variable for an inequality in column orientation is the
1665       // negative of its coefficient at the objective row. If the inequality is
1666       // in row orientation, the corresponding dual variable is zero.
1667       //
1668       // We want the dual for the original equality, which corresponds to two
1669       // inequalities: a positive inequality, which has the same coefficients as
1670       // the equality, and a negative equality, which has negated coefficients.
1671       //
1672       // Note that at most one of these inequalities can be in column
1673       // orientation because the column unknowns should form a basis and hence
1674       // must be linearly independent. If the positive inequality is in column
1675       // position, its dual is the dual corresponding to the equality. If the
1676       // negative inequality is in column position, the negation of its dual is
1677       // the dual corresponding to the equality. If neither is in column
1678       // position, then that means that this equality is redundant, and its dual
1679       // is zero.
1680       //
1681       // Note that it is NOT valid to perform pivots during the computation of
1682       // the duals. This entire dual computation must be performed on the same
1683       // tableau configuration.
1684       assert(!(simplex.con[i].orientation == Orientation::Column &&
1685                simplex.con[i + 1].orientation == Orientation::Column) &&
1686              "Both inequalities for the equality cannot be in column "
1687              "orientation!");
1688       if (simplex.con[i].orientation == Orientation::Column)
1689         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
1690       else if (simplex.con[i + 1].orientation == Orientation::Column)
1691         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
1692       else
1693         dual.emplace_back(0);
1694     }
1695     return *maybeWidth;
1696   }
1697 
1698   /// Remove the last equality that was added through addEqualityForDirection.
1699   ///
1700   /// We do this by rolling back to the snapshot at the top of the stack, which
1701   /// should be a snapshot taken just before the last equality was added.
1702   void removeLastEquality() {
1703     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
1704     simplex.rollback(snapshotStack.back());
1705     snapshotStack.pop_back();
1706   }
1707 
1708 private:
1709   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1710   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1711   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1712   /// where n is the dimension of the original polytope.
1713   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
1714     assert(2 * dir.size() == simplex.getNumVariables() &&
1715            "Direction vector has wrong dimensionality");
1716     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
1717     coeffs.reserve(2 * dir.size());
1718     for (int64_t coeff : dir)
1719       coeffs.push_back(-coeff);
1720     coeffs.emplace_back(0); // constant term
1721     return coeffs;
1722   }
1723 
1724   Simplex simplex;
1725   /// The first index of the equality constraints, the index immediately after
1726   /// the last constraint in the initial product simplex.
1727   unsigned simplexConstraintOffset;
1728   /// A stack of snapshots, used for rolling back.
1729   SmallVector<unsigned, 8> snapshotStack;
1730 };
1731 
1732 /// Reduce the basis to try and find a direction in which the polytope is
1733 /// "thin". This only works for bounded polytopes.
1734 ///
1735 /// This is an implementation of the algorithm described in the paper
1736 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
1737 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1738 ///
1739 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1740 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
1741 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1742 ///
1743 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1744 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1745 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1746 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1747 /// minimizing value of u, if it were allowed to be fractional. Due to
1748 /// convexity, the minimizing integer value is either floor(dual_i) or
1749 /// ceil(dual_i), so we just need to check which of these gives a lower
1750 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1751 ///
1752 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1753 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1754 /// same i). Otherwise, we increment i.
1755 ///
1756 /// We keep f values and duals cached and invalidate them when necessary.
1757 /// Whenever possible, we use them instead of recomputing them. We implement the
1758 /// algorithm as follows.
1759 ///
1760 /// In an iteration at i we need to compute:
1761 ///   a) width_i(b_{i + 1})
1762 ///   b) width_i(b_i)
1763 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1764 ///
1765 /// If width_i(b_i) is not already cached, we compute it.
1766 ///
1767 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1768 /// store the duals from this computation.
1769 ///
1770 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1771 /// of u as explained before, caches the duals from this computation, sets
1772 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1773 ///
1774 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1775 /// decrement i, resulting in the basis
1776 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1777 /// with corresponding f values
1778 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1779 /// The values up to i - 1 remain unchanged. We have just gotten the middle
1780 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1781 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1782 /// the cache. The iteration after decrementing needs exactly the duals from the
1783 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1784 ///
1785 /// When incrementing i, no cached f values get invalidated. However, the cached
1786 /// duals do get invalidated as the duals for the higher levels are different.
1787 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
1788   const Fraction epsilon(3, 4);
1789 
1790   if (level == basis.getNumRows() - 1)
1791     return;
1792 
1793   GBRSimplex gbrSimplex(*this);
1794   SmallVector<Fraction, 8> width;
1795   SmallVector<int64_t, 8> dual;
1796   int64_t dualDenom;
1797 
1798   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1799   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1800   // the new value of width_i(b_{i+1}).
1801   //
1802   // If dual_i is not an integer, the minimizing value must be either
1803   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1804   // choose the minimizing value.
1805   //
1806   // If dual_i is an integer, we don't need to perform these computations. We
1807   // know that in this case,
1808   //   a) u = dual_i.
1809   //   b) one can show that dual_j for j < i are the same duals we would have
1810   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1811   //      are the ones already in the cache.
1812   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1813   //   which
1814   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1815   //      be in the cache, so we get it from there and return it.
1816   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1817     assert(i < level + dual.size() && "dual_i is not known!");
1818 
1819     int64_t u = floorDiv(dual[i - level], dualDenom);
1820     basis.addToRow(i, i + 1, u);
1821     if (dual[i - level] % dualDenom != 0) {
1822       SmallVector<int64_t, 8> candidateDual[2];
1823       int64_t candidateDualDenom[2];
1824       Fraction widthI[2];
1825 
1826       // Initially u is floor(dual) and basis reflects this.
1827       widthI[0] = gbrSimplex.computeWidthAndDuals(
1828           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
1829 
1830       // Now try ceil(dual), i.e. floor(dual) + 1.
1831       ++u;
1832       basis.addToRow(i, i + 1, 1);
1833       widthI[1] = gbrSimplex.computeWidthAndDuals(
1834           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
1835 
1836       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1837       if (j == 0)
1838         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1839         basis.addToRow(i, i + 1, -1);
1840 
1841       // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1842       // We assert that this holds by checking that the values of width_i at
1843       // u - 1 and u + 1 are greater than or equal to the value at u. If the
1844       // width is lesser at either of the adjacent values, then our computed
1845       // value of u is clearly not the minimizer. Otherwise by convexity the
1846       // computed value of u is really the minimizer.
1847 
1848       // Check the value at u - 1.
1849       assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1850                  basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
1851              "Computed u value does not minimize the width!");
1852       // Check the value at u + 1.
1853       assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1854                  basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
1855              "Computed u value does not minimize the width!");
1856 
1857       dual = std::move(candidateDual[j]);
1858       dualDenom = candidateDualDenom[j];
1859       return widthI[j];
1860     }
1861 
1862     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1863     // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1864     // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1865     // the above expression is equal to basis.getRow(i+1) below.)
1866     assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1867            width[i + 1 - level]);
1868     return width[i + 1 - level];
1869   };
1870 
1871   // In the ith iteration of the loop, gbrSimplex has constraints for directions
1872   // from `level` to i - 1.
1873   unsigned i = level;
1874   while (i < basis.getNumRows() - 1) {
1875     if (i >= level + width.size()) {
1876       // We don't even know the value of f_i(b_i), so let's find that first.
1877       // We have to do this first since later we assume that width already
1878       // contains values up to and including i.
1879 
1880       assert((i == 0 || i - 1 < level + width.size()) &&
1881              "We are at level i but we don't know the value of width_{i-1}");
1882 
1883       // We don't actually use these duals at all, but it doesn't matter
1884       // because this case should only occur when i is level, and there are no
1885       // duals in that case anyway.
1886       assert(i == level && "This case should only occur when i == level");
1887       width.push_back(
1888           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1889     }
1890 
1891     if (i >= level + dual.size()) {
1892       assert(i + 1 >= level + width.size() &&
1893              "We don't know dual_i but we know width_{i+1}");
1894       // We don't know dual for our level, so let's find it.
1895       gbrSimplex.addEqualityForDirection(basis.getRow(i));
1896       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1897                                                       dualDenom));
1898       gbrSimplex.removeLastEquality();
1899     }
1900 
1901     // This variable stores width_i(b_{i+1} + u*b_i).
1902     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1903     if (widthICandidate < epsilon * width[i - level]) {
1904       basis.swapRows(i, i + 1);
1905       width[i - level] = widthICandidate;
1906       // The values of width_{i+1}(b_{i+1}) and higher may change after the
1907       // swap, so we remove the cached values here.
1908       width.resize(i - level + 1);
1909       if (i == level) {
1910         dual.clear();
1911         continue;
1912       }
1913 
1914       gbrSimplex.removeLastEquality();
1915       i--;
1916       continue;
1917     }
1918 
1919     // Invalidate duals since the higher level needs to recompute its own duals.
1920     dual.clear();
1921     gbrSimplex.addEqualityForDirection(basis.getRow(i));
1922     i++;
1923   }
1924 }
1925 
1926 /// Search for an integer sample point using a branch and bound algorithm.
1927 ///
1928 /// Each row in the basis matrix is a vector, and the set of basis vectors
1929 /// should span the space. Initially this is the identity matrix,
1930 /// i.e., the basis vectors are just the variables.
1931 ///
1932 /// In every level, a value is assigned to the level-th basis vector, as
1933 /// follows. Compute the minimum and maximum rational values of this direction.
1934 /// If only one integer point lies in this range, constrain the variable to
1935 /// have this value and recurse to the next variable.
1936 ///
1937 /// If the range has multiple values, perform generalized basis reduction via
1938 /// reduceBasis and then compute the bounds again. Now we try constraining
1939 /// this direction in the first value in this range and "recurse" to the next
1940 /// level. If we fail to find a sample, we try assigning the direction the next
1941 /// value in this range, and so on.
1942 ///
1943 /// If no integer sample is found from any of the assignments, or if the range
1944 /// contains no integer value, then of course the polytope is empty for the
1945 /// current assignment of the values in previous levels, so we return to
1946 /// the previous level.
1947 ///
1948 /// If we reach the last level where all the variables have been assigned values
1949 /// already, then we simply return the current sample point if it is integral,
1950 /// and go back to the previous level otherwise.
1951 ///
1952 /// To avoid potentially arbitrarily large recursion depths leading to stack
1953 /// overflows, this algorithm is implemented iteratively.
1954 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1955   if (empty)
1956     return {};
1957 
1958   unsigned nDims = var.size();
1959   Matrix basis = Matrix::identity(nDims);
1960 
1961   unsigned level = 0;
1962   // The snapshot just before constraining a direction to a value at each level.
1963   SmallVector<unsigned, 8> snapshotStack;
1964   // The maximum value in the range of the direction for each level.
1965   SmallVector<int64_t, 8> upperBoundStack;
1966   // The next value to try constraining the basis vector to at each level.
1967   SmallVector<int64_t, 8> nextValueStack;
1968 
1969   snapshotStack.reserve(basis.getNumRows());
1970   upperBoundStack.reserve(basis.getNumRows());
1971   nextValueStack.reserve(basis.getNumRows());
1972   while (level != -1u) {
1973     if (level == basis.getNumRows()) {
1974       // We've assigned values to all variables. Return if we have a sample,
1975       // or go back up to the previous level otherwise.
1976       if (auto maybeSample = getSamplePointIfIntegral())
1977         return maybeSample;
1978       level--;
1979       continue;
1980     }
1981 
1982     if (level >= upperBoundStack.size()) {
1983       // We haven't populated the stack values for this level yet, so we have
1984       // just come down a level ("recursed"). Find the lower and upper bounds.
1985       // If there is more than one integer point in the range, perform
1986       // generalized basis reduction.
1987       SmallVector<int64_t, 8> basisCoeffs =
1988           llvm::to_vector<8>(basis.getRow(level));
1989       basisCoeffs.emplace_back(0);
1990 
1991       MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown;
1992       std::tie(minRoundedUp, maxRoundedDown) =
1993           computeIntegerBounds(basisCoeffs);
1994 
1995       // We don't have any integer values in the range.
1996       // Pop the stack and return up a level.
1997       if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
1998         assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
1999                "If one bound is empty, both should be.");
2000         snapshotStack.pop_back();
2001         nextValueStack.pop_back();
2002         upperBoundStack.pop_back();
2003         level--;
2004         continue;
2005       }
2006 
2007       // We already checked the empty case above.
2008       assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
2009              "Polyhedron should be bounded!");
2010 
2011       // Heuristic: if the sample point is integral at this point, just return
2012       // it.
2013       if (auto maybeSample = getSamplePointIfIntegral())
2014         return *maybeSample;
2015 
2016       if (*minRoundedUp < *maxRoundedDown) {
2017         reduceBasis(basis, level);
2018         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
2019         basisCoeffs.emplace_back(0);
2020         std::tie(minRoundedUp, maxRoundedDown) =
2021             computeIntegerBounds(basisCoeffs);
2022       }
2023 
2024       snapshotStack.push_back(getSnapshot());
2025       // The smallest value in the range is the next value to try.
2026       // The values in the optionals are guaranteed to exist since we know the
2027       // polytope is bounded.
2028       nextValueStack.push_back(*minRoundedUp);
2029       upperBoundStack.push_back(*maxRoundedDown);
2030     }
2031 
2032     assert((snapshotStack.size() - 1 == level &&
2033             nextValueStack.size() - 1 == level &&
2034             upperBoundStack.size() - 1 == level) &&
2035            "Mismatched variable stack sizes!");
2036 
2037     // Whether we "recursed" or "returned" from a lower level, we rollback
2038     // to the snapshot of the starting state at this level. (in the "recursed"
2039     // case this has no effect)
2040     rollback(snapshotStack.back());
2041     int64_t nextValue = nextValueStack.back();
2042     ++nextValueStack.back();
2043     if (nextValue > upperBoundStack.back()) {
2044       // We have exhausted the range and found no solution. Pop the stack and
2045       // return up a level.
2046       snapshotStack.pop_back();
2047       nextValueStack.pop_back();
2048       upperBoundStack.pop_back();
2049       level--;
2050       continue;
2051     }
2052 
2053     // Try the next value in the range and "recurse" into the next level.
2054     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
2055                                         basis.getRow(level).end());
2056     basisCoeffs.push_back(-nextValue);
2057     addEquality(basisCoeffs);
2058     level++;
2059   }
2060 
2061   return {};
2062 }
2063 
2064 /// Compute the minimum and maximum integer values the expression can take. We
2065 /// compute each separately.
2066 std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>>
2067 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
2068   MaybeOptimum<int64_t> minRoundedUp(
2069       computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
2070   MaybeOptimum<int64_t> maxRoundedDown(
2071       computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
2072   return {minRoundedUp, maxRoundedDown};
2073 }
2074 
2075 void SimplexBase::print(raw_ostream &os) const {
2076   os << "rows = " << nRow << ", columns = " << nCol << "\n";
2077   if (empty)
2078     os << "Simplex marked empty!\n";
2079   os << "var: ";
2080   for (unsigned i = 0; i < var.size(); ++i) {
2081     if (i > 0)
2082       os << ", ";
2083     var[i].print(os);
2084   }
2085   os << "\ncon: ";
2086   for (unsigned i = 0; i < con.size(); ++i) {
2087     if (i > 0)
2088       os << ", ";
2089     con[i].print(os);
2090   }
2091   os << '\n';
2092   for (unsigned row = 0; row < nRow; ++row) {
2093     if (row > 0)
2094       os << ", ";
2095     os << "r" << row << ": " << rowUnknown[row];
2096   }
2097   os << '\n';
2098   os << "c0: denom, c1: const";
2099   for (unsigned col = 2; col < nCol; ++col)
2100     os << ", c" << col << ": " << colUnknown[col];
2101   os << '\n';
2102   for (unsigned row = 0; row < nRow; ++row) {
2103     for (unsigned col = 0; col < nCol; ++col)
2104       os << tableau(row, col) << '\t';
2105     os << '\n';
2106   }
2107   os << '\n';
2108 }
2109 
2110 void SimplexBase::dump() const { print(llvm::errs()); }
2111 
2112 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2113   if (isEmpty())
2114     return true;
2115 
2116   for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2117     if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
2118       return false;
2119 
2120   for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2121     if (!isRedundantEquality(rel.getEquality(i)))
2122       return false;
2123 
2124   return true;
2125 }
2126 
2127 /// Returns the type of the inequality with coefficients `coeffs`.
2128 /// Possible types are:
2129 /// Redundant   The inequality is satisfied by all points in the polytope
2130 /// Cut         The inequality is satisfied by some points, but not by others
2131 /// Separate    The inequality is not satisfied by any point
2132 ///
2133 /// Internally, this computes the minimum and the maximum the inequality with
2134 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2135 /// for all points in the polytope, so it is redundant.  If the minimum is <= 0
2136 /// and the maximum is >= 0, the points in between the minimum and the
2137 /// inequality do not satisfy it, the points in between the inequality and the
2138 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2139 /// points of the polytope satisfy the inequality, which means it is a separate
2140 /// inequality.
2141 Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) {
2142   MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2143   if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2144     return IneqType::Redundant;
2145   }
2146   MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2147   if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2148       (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2149     return IneqType::Cut;
2150   }
2151   return IneqType::Separate;
2152 }
2153 
2154 /// Checks whether the type of the inequality with coefficients `coeffs`
2155 /// is Redundant.
2156 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
2157   assert(!empty &&
2158          "It is not meaningful to ask about redundancy in an empty set!");
2159   return findIneqType(coeffs) == IneqType::Redundant;
2160 }
2161 
2162 /// Check whether the equality given by `coeffs == 0` is redundant given
2163 /// the existing constraints. This is redundant when `coeffs` is already
2164 /// always zero under the existing constraints. `coeffs` is always zero
2165 /// when the minimum and maximum value that `coeffs` can take are both zero.
2166 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
2167   assert(!empty &&
2168          "It is not meaningful to ask about redundancy in an empty set!");
2169   MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2170   MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2171   assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
2172          "Optima should be non-empty for a non-empty set");
2173   return minimum.isBounded() && maximum.isBounded() &&
2174          *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2175 }
2176