1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 
14 namespace mlir {
15 using Direction = Simplex::Direction;
16 
17 const int nullIndex = std::numeric_limits<int>::max();
18 
19 /// Construct a Simplex object with `nVar` variables.
20 Simplex::Simplex(unsigned nVar)
21     : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
22   colUnknown.push_back(nullIndex);
23   colUnknown.push_back(nullIndex);
24   for (unsigned i = 0; i < nVar; ++i) {
25     var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
26     colUnknown.push_back(i);
27     nCol++;
28   }
29 }
30 
31 Simplex::Simplex(const FlatAffineConstraints &constraints)
32     : Simplex(constraints.getNumIds()) {
33   for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
34        i < numIneqs; ++i)
35     addInequality(constraints.getInequality(i));
36   for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
37     addEquality(constraints.getEquality(i));
38 }
39 
40 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
41   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
42   return index >= 0 ? var[index] : con[~index];
43 }
44 
45 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
46   assert(col < nCol && "Invalid column");
47   return unknownFromIndex(colUnknown[col]);
48 }
49 
50 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
51   assert(row < nRow && "Invalid row");
52   return unknownFromIndex(rowUnknown[row]);
53 }
54 
55 Simplex::Unknown &Simplex::unknownFromIndex(int index) {
56   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
57   return index >= 0 ? var[index] : con[~index];
58 }
59 
60 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
61   assert(col < nCol && "Invalid column");
62   return unknownFromIndex(colUnknown[col]);
63 }
64 
65 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
66   assert(row < nRow && "Invalid row");
67   return unknownFromIndex(rowUnknown[row]);
68 }
69 
70 /// Add a new row to the tableau corresponding to the given constant term and
71 /// list of coefficients. The coefficients are specified as a vector of
72 /// (variable index, coefficient) pairs.
73 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
74   assert(coeffs.size() == 1 + var.size() &&
75          "Incorrect number of coefficients!");
76 
77   ++nRow;
78   // If the tableau is not big enough to accomodate the extra row, we extend it.
79   if (nRow >= tableau.getNumRows())
80     tableau.resizeVertically(nRow);
81   rowUnknown.push_back(~con.size());
82   con.emplace_back(Orientation::Row, false, nRow - 1);
83 
84   tableau(nRow - 1, 0) = 1;
85   tableau(nRow - 1, 1) = coeffs.back();
86   for (unsigned col = 2; col < nCol; ++col)
87     tableau(nRow - 1, col) = 0;
88 
89   // Process each given variable coefficient.
90   for (unsigned i = 0; i < var.size(); ++i) {
91     unsigned pos = var[i].pos;
92     if (coeffs[i] == 0)
93       continue;
94 
95     if (var[i].orientation == Orientation::Column) {
96       // If a variable is in column position at column col, then we just add the
97       // coefficient for that variable (scaled by the common row denominator) to
98       // the corresponding entry in the new row.
99       tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
100       continue;
101     }
102 
103     // If the variable is in row position, we need to add that row to the new
104     // row, scaled by the coefficient for the variable, accounting for the two
105     // rows potentially having different denominators. The new denominator is
106     // the lcm of the two.
107     int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
108     int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
109     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
110     tableau(nRow - 1, 0) = lcm;
111     for (unsigned col = 1; col < nCol; ++col)
112       tableau(nRow - 1, col) =
113           nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
114   }
115 
116   normalizeRow(nRow - 1);
117   // Push to undo log along with the index of the new constraint.
118   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
119   return con.size() - 1;
120 }
121 
122 /// Normalize the row by removing factors that are common between the
123 /// denominator and all the numerator coefficients.
124 void Simplex::normalizeRow(unsigned row) {
125   int64_t gcd = 0;
126   for (unsigned col = 0; col < nCol; ++col) {
127     if (gcd == 1)
128       break;
129     gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
130   }
131   for (unsigned col = 0; col < nCol; ++col)
132     tableau(row, col) /= gcd;
133 }
134 
135 namespace {
136 bool signMatchesDirection(int64_t elem, Direction direction) {
137   assert(elem != 0 && "elem should not be 0");
138   return direction == Direction::Up ? elem > 0 : elem < 0;
139 }
140 
141 Direction flippedDirection(Direction direction) {
142   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
143 }
144 } // anonymous namespace
145 
146 /// Find a pivot to change the sample value of the row in the specified
147 /// direction. The returned pivot row will involve `row` if and only if the
148 /// unknown is unbounded in the specified direction.
149 ///
150 /// To increase (resp. decrease) the value of a row, we need to find a live
151 /// column with a non-zero coefficient. If the coefficient is positive, we need
152 /// to increase (decrease) the value of the column, and if the coefficient is
153 /// negative, we need to decrease (increase) the value of the column. Also,
154 /// we cannot decrease the sample value of restricted columns.
155 ///
156 /// If multiple columns are valid, we break ties by considering a lexicographic
157 /// ordering where we prefer unknowns with lower index.
158 Optional<Simplex::Pivot> Simplex::findPivot(int row,
159                                             Direction direction) const {
160   Optional<unsigned> col;
161   for (unsigned j = 2; j < nCol; ++j) {
162     int64_t elem = tableau(row, j);
163     if (elem == 0)
164       continue;
165 
166     if (unknownFromColumn(j).restricted &&
167         !signMatchesDirection(elem, direction))
168       continue;
169     if (!col || colUnknown[j] < colUnknown[*col])
170       col = j;
171   }
172 
173   if (!col)
174     return {};
175 
176   Direction newDirection =
177       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
178   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
179   return Pivot{maybePivotRow.getValueOr(row), *col};
180 }
181 
182 /// Swap the associated unknowns for the row and the column.
183 ///
184 /// First we swap the index associated with the row and column. Then we update
185 /// the unknowns to reflect their new position and orientation.
186 void Simplex::swapRowWithCol(unsigned row, unsigned col) {
187   std::swap(rowUnknown[row], colUnknown[col]);
188   Unknown &uCol = unknownFromColumn(col);
189   Unknown &uRow = unknownFromRow(row);
190   uCol.orientation = Orientation::Column;
191   uRow.orientation = Orientation::Row;
192   uCol.pos = col;
193   uRow.pos = row;
194 }
195 
196 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
197 
198 /// Pivot pivotRow and pivotCol.
199 ///
200 /// Let R be the pivot row unknown and let C be the pivot col unknown.
201 /// Since initially R = a*C + sum b_i * X_i
202 /// (where the sum is over the other column's unknowns, x_i)
203 /// C = (R - (sum b_i * X_i))/a
204 ///
205 /// Let u be some other row unknown.
206 /// u = c*C + sum d_i * X_i
207 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
208 ///
209 /// This results in the following transform:
210 ///            pivot col    other col                   pivot col    other col
211 /// pivot row     a             b       ->   pivot row     1/a         -b/a
212 /// other row     c             d            other row     c/a        d - bc/a
213 ///
214 /// Taking into account the common denominators p and q:
215 ///
216 ///            pivot col    other col                    pivot col   other col
217 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
218 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
219 ///
220 /// The pivot row transform is accomplished be swapping a with the pivot row's
221 /// common denominator and negating the pivot row except for the pivot column
222 /// element.
223 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
224   assert(pivotCol >= 2 && "Refusing to pivot invalid column");
225 
226   swapRowWithCol(pivotRow, pivotCol);
227   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
228   // We need to negate the whole pivot row except for the pivot column.
229   if (tableau(pivotRow, 0) < 0) {
230     // If the denominator is negative, we negate the row by simply negating the
231     // denominator.
232     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
233     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
234   } else {
235     for (unsigned col = 1; col < nCol; ++col) {
236       if (col == pivotCol)
237         continue;
238       tableau(pivotRow, col) = -tableau(pivotRow, col);
239     }
240   }
241   normalizeRow(pivotRow);
242 
243   for (unsigned row = nRedundant; row < nRow; ++row) {
244     if (row == pivotRow)
245       continue;
246     if (tableau(row, pivotCol) == 0) // Nothing to do.
247       continue;
248     tableau(row, 0) *= tableau(pivotRow, 0);
249     for (unsigned j = 1; j < nCol; ++j) {
250       if (j == pivotCol)
251         continue;
252       // Add rather than subtract because the pivot row has been negated.
253       tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
254                         tableau(row, pivotCol) * tableau(pivotRow, j);
255     }
256     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
257     normalizeRow(row);
258   }
259 }
260 
261 /// Perform pivots until the unknown has a non-negative sample value or until
262 /// no more upward pivots can be performed. Return the sign of the final sample
263 /// value.
264 LogicalResult Simplex::restoreRow(Unknown &u) {
265   assert(u.orientation == Orientation::Row &&
266          "unknown should be in row position");
267 
268   while (tableau(u.pos, 1) < 0) {
269     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
270     if (!maybePivot)
271       break;
272 
273     pivot(*maybePivot);
274     if (u.orientation == Orientation::Column)
275       return success(); // the unknown is unbounded above.
276   }
277   return success(tableau(u.pos, 1) >= 0);
278 }
279 
280 /// Find a row that can be used to pivot the column in the specified direction.
281 /// This returns an empty optional if and only if the column is unbounded in the
282 /// specified direction (ignoring skipRow, if skipRow is set).
283 ///
284 /// If skipRow is set, this row is not considered, and (if it is restricted) its
285 /// restriction may be violated by the returned pivot. Usually, skipRow is set
286 /// because we don't want to move it to column position unless it is unbounded,
287 /// and we are either trying to increase the value of skipRow or explicitly
288 /// trying to make skipRow negative, so we are not concerned about this.
289 ///
290 /// If the direction is up (resp. down) and a restricted row has a negative
291 /// (positive) coefficient for the column, then this row imposes a bound on how
292 /// much the sample value of the column can change. Such a row with constant
293 /// term c and coefficient f for the column imposes a bound of c/|f| on the
294 /// change in sample value (in the specified direction). (note that c is
295 /// non-negative here since the row is restricted and the tableau is consistent)
296 ///
297 /// We iterate through the rows and pick the row which imposes the most
298 /// stringent bound, since pivoting with a row changes the row's sample value to
299 /// 0 and hence saturates the bound it imposes. We break ties between rows that
300 /// impose the same bound by considering a lexicographic ordering where we
301 /// prefer unknowns with lower index value.
302 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
303                                          Direction direction,
304                                          unsigned col) const {
305   Optional<unsigned> retRow;
306   int64_t retElem, retConst;
307   for (unsigned row = nRedundant; row < nRow; ++row) {
308     if (skipRow && row == *skipRow)
309       continue;
310     int64_t elem = tableau(row, col);
311     if (elem == 0)
312       continue;
313     if (!unknownFromRow(row).restricted)
314       continue;
315     if (signMatchesDirection(elem, direction))
316       continue;
317     int64_t constTerm = tableau(row, 1);
318 
319     if (!retRow) {
320       retRow = row;
321       retElem = elem;
322       retConst = constTerm;
323       continue;
324     }
325 
326     int64_t diff = retConst * elem - constTerm * retElem;
327     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
328         (diff != 0 && !signMatchesDirection(diff, direction))) {
329       retRow = row;
330       retElem = elem;
331       retConst = constTerm;
332     }
333   }
334   return retRow;
335 }
336 
337 bool Simplex::isEmpty() const { return empty; }
338 
339 void Simplex::swapRows(unsigned i, unsigned j) {
340   if (i == j)
341     return;
342   tableau.swapRows(i, j);
343   std::swap(rowUnknown[i], rowUnknown[j]);
344   unknownFromRow(i).pos = i;
345   unknownFromRow(j).pos = j;
346 }
347 
348 /// Mark this tableau empty and push an entry to the undo stack.
349 void Simplex::markEmpty() {
350   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
351   empty = true;
352 }
353 
354 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
355 /// is the current number of variables, then the corresponding inequality is
356 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
357 ///
358 /// We add the inequality and mark it as restricted. We then try to make its
359 /// sample value non-negative. If this is not possible, the tableau has become
360 /// empty and we mark it as such.
361 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
362   unsigned conIndex = addRow(coeffs);
363   Unknown &u = con[conIndex];
364   u.restricted = true;
365   LogicalResult result = restoreRow(u);
366   if (failed(result))
367     markEmpty();
368 }
369 
370 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
371 /// is the current number of variables, then the corresponding equality is
372 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
373 ///
374 /// We simply add two opposing inequalities, which force the expression to
375 /// be zero.
376 void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
377   addInequality(coeffs);
378   SmallVector<int64_t, 8> negatedCoeffs;
379   for (int64_t coeff : coeffs)
380     negatedCoeffs.emplace_back(-coeff);
381   addInequality(negatedCoeffs);
382 }
383 
384 unsigned Simplex::numVariables() const { return var.size(); }
385 unsigned Simplex::numConstraints() const { return con.size(); }
386 
387 /// Return a snapshot of the current state. This is just the current size of the
388 /// undo log.
389 unsigned Simplex::getSnapshot() const { return undoLog.size(); }
390 
391 void Simplex::undo(UndoLogEntry entry) {
392   if (entry == UndoLogEntry::RemoveLastConstraint) {
393     Unknown &constraint = con.back();
394     if (constraint.orientation == Orientation::Column) {
395       unsigned column = constraint.pos;
396       Optional<unsigned> row;
397 
398       // Try to find any pivot row for this column that preserves tableau
399       // consistency (except possibly the column itself, which is going to be
400       // deallocated anyway).
401       //
402       // If no pivot row is found in either direction, then the unknown is
403       // unbounded in both directions and we are free to
404       // perform any pivot at all. To do this, we just need to find any row with
405       // a non-zero coefficient for the column.
406       if (Optional<unsigned> maybeRow =
407               findPivotRow({}, Direction::Up, column)) {
408         row = *maybeRow;
409       } else if (Optional<unsigned> maybeRow =
410                      findPivotRow({}, Direction::Down, column)) {
411         row = *maybeRow;
412       } else {
413         // The loop doesn't find a pivot row only if the column has zero
414         // coefficients for every row. But the unknown is a constraint,
415         // so it was added initially as a row. Such a row could never have been
416         // pivoted to a column. So a pivot row will always be found.
417         for (unsigned i = nRedundant; i < nRow; ++i) {
418           if (tableau(i, column) != 0) {
419             row = i;
420             break;
421           }
422         }
423       }
424       assert(row.hasValue() && "No pivot row found!");
425       pivot(*row, column);
426     }
427 
428     // Move this unknown to the last row and remove the last row from the
429     // tableau.
430     swapRows(constraint.pos, nRow - 1);
431     // It is not strictly necessary to shrink the tableau, but for now we
432     // maintain the invariant that the tableau has exactly nRow rows.
433     tableau.resizeVertically(nRow - 1);
434     nRow--;
435     rowUnknown.pop_back();
436     con.pop_back();
437   } else if (entry == UndoLogEntry::UnmarkEmpty) {
438     empty = false;
439   } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
440     nRedundant--;
441   }
442 }
443 
444 /// Rollback to the specified snapshot.
445 ///
446 /// We undo all the log entries until the log size when the snapshot was taken
447 /// is reached.
448 void Simplex::rollback(unsigned snapshot) {
449   while (undoLog.size() > snapshot) {
450     undo(undoLog.back());
451     undoLog.pop_back();
452   }
453 }
454 
455 /// Add all the constraints from the given FlatAffineConstraints.
456 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) {
457   assert(fac.getNumIds() == numVariables() &&
458          "FlatAffineConstraints must have same dimensionality as simplex");
459   for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i)
460     addInequality(fac.getInequality(i));
461   for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i)
462     addEquality(fac.getEquality(i));
463 }
464 
465 Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
466                                               unsigned row) {
467   // Keep trying to find a pivot for the row in the specified direction.
468   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
469     // If findPivot returns a pivot involving the row itself, then the optimum
470     // is unbounded, so we return None.
471     if (maybePivot->row == row)
472       return {};
473     pivot(*maybePivot);
474   }
475 
476   // The row has reached its optimal sample value, which we return.
477   // The sample value is the entry in the constant column divided by the common
478   // denominator for this row.
479   return Fraction(tableau(row, 1), tableau(row, 0));
480 }
481 
482 /// Compute the optimum of the specified expression in the specified direction,
483 /// or None if it is unbounded.
484 Optional<Fraction> Simplex::computeOptimum(Direction direction,
485                                            ArrayRef<int64_t> coeffs) {
486   assert(!empty && "Simplex should not be empty");
487 
488   unsigned snapshot = getSnapshot();
489   unsigned conIndex = addRow(coeffs);
490   unsigned row = con[conIndex].pos;
491   Optional<Fraction> optimum = computeRowOptimum(direction, row);
492   rollback(snapshot);
493   return optimum;
494 }
495 
496 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) {
497   assert(!empty && "Simplex should not be empty!");
498   if (u.orientation == Orientation::Column) {
499     unsigned column = u.pos;
500     Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
501     // If no pivot is returned, the constraint is unbounded in the specified
502     // direction.
503     if (!pivotRow)
504       return {};
505     pivot(*pivotRow, column);
506   }
507 
508   unsigned row = u.pos;
509   Optional<Fraction> optimum = computeRowOptimum(direction, row);
510   if (u.restricted && direction == Direction::Down &&
511       (!optimum || *optimum < Fraction(0, 1)))
512     (void)restoreRow(u);
513   return optimum;
514 }
515 
516 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
517   assert(!empty && "It is not meaningful to ask whether a direction is bounded "
518                    "in an empty set.");
519   // The constraint's perpendicular is already bounded below, since it is a
520   // constraint. If it is also bounded above, we can return true.
521   return computeOptimum(Direction::Up, con[constraintIndex]).hasValue();
522 }
523 
524 /// Redundant constraints are those that are in row orientation and lie in
525 /// rows 0 to nRedundant - 1.
526 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
527   const Unknown &u = con[constraintIndex];
528   return u.orientation == Orientation::Row && u.pos < nRedundant;
529 }
530 
531 /// Mark the specified row redundant.
532 ///
533 /// This is done by moving the unknown to the end of the block of redundant
534 /// rows (namely, to row nRedundant) and incrementing nRedundant to
535 /// accomodate the new redundant row.
536 void Simplex::markRowRedundant(Unknown &u) {
537   assert(u.orientation == Orientation::Row &&
538          "Unknown should be in row position!");
539   swapRows(u.pos, nRedundant);
540   ++nRedundant;
541   undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
542 }
543 
544 /// Find a subset of constraints that is redundant and mark them redundant.
545 void Simplex::detectRedundant() {
546   // It is not meaningful to talk about redundancy for empty sets.
547   if (empty)
548     return;
549 
550   // Iterate through the constraints and check for each one if it can attain
551   // negative sample values. If it can, it's not redundant. Otherwise, it is.
552   // We mark redundant constraints redundant.
553   //
554   // Constraints that get marked redundant in one iteration are not respected
555   // when checking constraints in later iterations. This prevents, for example,
556   // two identical constraints both being marked redundant since each is
557   // redundant given the other one. In this example, only the first of the
558   // constraints that is processed will get marked redundant, as it should be.
559   for (Unknown &u : con) {
560     if (u.orientation == Orientation::Column) {
561       unsigned column = u.pos;
562       Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
563       // If no downward pivot is returned, the constraint is unbounded below
564       // and hence not redundant.
565       if (!pivotRow)
566         continue;
567       pivot(*pivotRow, column);
568     }
569 
570     unsigned row = u.pos;
571     Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
572     if (!minimum || *minimum < Fraction(0, 1)) {
573       // Constraint is unbounded below or can attain negative sample values and
574       // hence is not redundant.
575       (void)restoreRow(u);
576       continue;
577     }
578 
579     markRowRedundant(u);
580   }
581 }
582 
583 bool Simplex::isUnbounded() {
584   if (empty)
585     return false;
586 
587   SmallVector<int64_t, 8> dir(var.size() + 1);
588   for (unsigned i = 0; i < var.size(); ++i) {
589     dir[i] = 1;
590 
591     Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
592     if (!maybeMax)
593       return true;
594 
595     Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
596     if (!maybeMin)
597       return true;
598 
599     dir[i] = 0;
600   }
601   return false;
602 }
603 
604 /// Make a tableau to represent a pair of points in the original tableau.
605 ///
606 /// The product constraints and variables are stored as: first A's, then B's.
607 ///
608 /// The product tableau has row layout:
609 ///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
610 ///
611 /// It has column layout:
612 ///   denominator, constant, A's columns, B's columns.
613 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
614   unsigned numVar = a.numVariables() + b.numVariables();
615   unsigned numCon = a.numConstraints() + b.numConstraints();
616   Simplex result(numVar);
617 
618   result.tableau.resizeVertically(numCon);
619   result.empty = a.empty || b.empty;
620 
621   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
622     SmallVector<Unknown, 8> result;
623     result.reserve(v.size() + w.size());
624     result.insert(result.end(), v.begin(), v.end());
625     result.insert(result.end(), w.begin(), w.end());
626     return result;
627   };
628   result.con = concat(a.con, b.con);
629   result.var = concat(a.var, b.var);
630 
631   auto indexFromBIndex = [&](int index) {
632     return index >= 0 ? a.numVariables() + index
633                       : ~(a.numConstraints() + ~index);
634   };
635 
636   result.colUnknown.assign(2, nullIndex);
637   for (unsigned i = 2; i < a.nCol; ++i) {
638     result.colUnknown.push_back(a.colUnknown[i]);
639     result.unknownFromIndex(result.colUnknown.back()).pos =
640         result.colUnknown.size() - 1;
641   }
642   for (unsigned i = 2; i < b.nCol; ++i) {
643     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
644     result.unknownFromIndex(result.colUnknown.back()).pos =
645         result.colUnknown.size() - 1;
646   }
647 
648   auto appendRowFromA = [&](unsigned row) {
649     for (unsigned col = 0; col < a.nCol; ++col)
650       result.tableau(result.nRow, col) = a.tableau(row, col);
651     result.rowUnknown.push_back(a.rowUnknown[row]);
652     result.unknownFromIndex(result.rowUnknown.back()).pos =
653         result.rowUnknown.size() - 1;
654     result.nRow++;
655   };
656 
657   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
658   // may be).
659   auto appendRowFromB = [&](unsigned row) {
660     result.tableau(result.nRow, 0) = b.tableau(row, 0);
661     result.tableau(result.nRow, 1) = b.tableau(row, 1);
662 
663     unsigned offset = a.nCol - 2;
664     for (unsigned col = 2; col < b.nCol; ++col)
665       result.tableau(result.nRow, offset + col) = b.tableau(row, col);
666     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
667     result.unknownFromIndex(result.rowUnknown.back()).pos =
668         result.rowUnknown.size() - 1;
669     result.nRow++;
670   };
671 
672   result.nRedundant = a.nRedundant + b.nRedundant;
673   for (unsigned row = 0; row < a.nRedundant; ++row)
674     appendRowFromA(row);
675   for (unsigned row = 0; row < b.nRedundant; ++row)
676     appendRowFromB(row);
677   for (unsigned row = a.nRedundant; row < a.nRow; ++row)
678     appendRowFromA(row);
679   for (unsigned row = b.nRedundant; row < b.nRow; ++row)
680     appendRowFromB(row);
681 
682   return result;
683 }
684 
685 SmallVector<Fraction, 8> Simplex::getRationalSample() const {
686   assert(!empty && "This should not be called when Simplex is empty.");
687 
688   SmallVector<Fraction, 8> sample;
689   sample.reserve(var.size());
690   // Push the sample value for each variable into the vector.
691   for (const Unknown &u : var) {
692     if (u.orientation == Orientation::Column) {
693       // If the variable is in column position, its sample value is zero.
694       sample.emplace_back(0, 1);
695     } else {
696       // If the variable is in row position, its sample value is the entry in
697       // the constant column divided by the entry in the common denominator
698       // column.
699       sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0));
700     }
701   }
702   return sample;
703 }
704 
705 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
706   // If the tableau is empty, no sample point exists.
707   if (empty)
708     return {};
709   SmallVector<Fraction, 8> rationalSample = getRationalSample();
710   SmallVector<int64_t, 8> integerSample;
711   integerSample.reserve(var.size());
712   for (const Fraction &coord : rationalSample) {
713     // If the sample is non-integral, return None.
714     if (coord.num % coord.den != 0)
715       return {};
716     integerSample.push_back(coord.num / coord.den);
717   }
718   return integerSample;
719 }
720 
721 /// Given a simplex for a polytope, construct a new simplex whose variables are
722 /// identified with a pair of points (x, y) in the original polytope. Supports
723 /// some operations needed for generalized basis reduction. In what follows,
724 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
725 /// dimension of the original polytope.
726 ///
727 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
728 /// also supports rolling back this addition, by maintaining a snapshot stack
729 /// that contains a snapshot of the Simplex's state for each equality, just
730 /// before that equality was added.
731 class GBRSimplex {
732   using Orientation = Simplex::Orientation;
733 
734 public:
735   GBRSimplex(const Simplex &originalSimplex)
736       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
737         simplexConstraintOffset(simplex.numConstraints()) {}
738 
739   /// Add an equality dotProduct(dir, x - y) == 0.
740   /// First pushes a snapshot for the current simplex state to the stack so
741   /// that this can be rolled back later.
742   void addEqualityForDirection(ArrayRef<int64_t> dir) {
743     assert(
744         std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
745         "Direction passed is the zero vector!");
746     snapshotStack.push_back(simplex.getSnapshot());
747     simplex.addEquality(getCoeffsForDirection(dir));
748   }
749 
750   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
751   /// the direction equalities to `dual`.
752   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
753                                 SmallVectorImpl<int64_t> &dual,
754                                 int64_t &dualDenom) {
755     unsigned snap = simplex.getSnapshot();
756     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
757     unsigned row = simplex.con[conIndex].pos;
758     Optional<Fraction> maybeWidth =
759         simplex.computeRowOptimum(Simplex::Direction::Up, row);
760     assert(maybeWidth.hasValue() && "Width should not be unbounded!");
761     dualDenom = simplex.tableau(row, 0);
762     dual.clear();
763     // The increment is i += 2 because equalities are added as two inequalities,
764     // one positive and one negative. Each iteration processes one equality.
765     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
766       // The dual variable is the negative of the coefficient of the new row
767       // in the column of the constraint, if the constraint is in a column.
768       // Note that the second inequality for the equality is negated.
769       //
770       // We want the dual for the original equality. If the positive inequality
771       // is in column position, the negative of its row coefficient is the
772       // desired dual. If the negative inequality is in column position, its row
773       // coefficient is the desired dual. (its coefficients are already the
774       // negated coefficients of the original equality, so we don't need to
775       // negate it now.)
776       //
777       // If neither are in column position, we move the negated inequality to
778       // column position. Since the inequality must have sample value zero
779       // (since it corresponds to an equality), we are free to pivot with
780       // any column. Since both the unknowns have sample value before and after
781       // pivoting, no other sample values will change and the tableau will
782       // remain consistent. To pivot, we just need to find a column that has a
783       // non-zero coefficient in this row. There must be one since otherwise the
784       // equality would be 0 == 0, which should never be passed to
785       // addEqualityForDirection.
786       //
787       // After finding a column, we pivot with the column, after which we can
788       // get the dual from the inequality in column position as explained above.
789       if (simplex.con[i].orientation == Orientation::Column) {
790         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
791       } else {
792         if (simplex.con[i + 1].orientation == Orientation::Row) {
793           unsigned ineqRow = simplex.con[i + 1].pos;
794           // Since it is an equality, the sample value must be zero.
795           assert(simplex.tableau(ineqRow, 1) == 0 &&
796                  "Equality's sample value must be zero.");
797           for (unsigned col = 2; col < simplex.nCol; ++col) {
798             if (simplex.tableau(ineqRow, col) != 0) {
799               simplex.pivot(ineqRow, col);
800               break;
801             }
802           }
803           assert(simplex.con[i + 1].orientation == Orientation::Column &&
804                  "No pivot found. Equality has all-zeros row in tableau!");
805         }
806         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
807       }
808     }
809     simplex.rollback(snap);
810     return *maybeWidth;
811   }
812 
813   /// Remove the last equality that was added through addEqualityForDirection.
814   ///
815   /// We do this by rolling back to the snapshot at the top of the stack, which
816   /// should be a snapshot taken just before the last equality was added.
817   void removeLastEquality() {
818     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
819     simplex.rollback(snapshotStack.back());
820     snapshotStack.pop_back();
821   }
822 
823 private:
824   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
825   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
826   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
827   /// where n is the dimension of the original polytope.
828   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
829     assert(2 * dir.size() == simplex.numVariables() &&
830            "Direction vector has wrong dimensionality");
831     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
832     coeffs.reserve(2 * dir.size());
833     for (int64_t coeff : dir)
834       coeffs.push_back(-coeff);
835     coeffs.push_back(0); // constant term
836     return coeffs;
837   }
838 
839   Simplex simplex;
840   /// The first index of the equality constraints, the index immediately after
841   /// the last constraint in the initial product simplex.
842   unsigned simplexConstraintOffset;
843   /// A stack of snapshots, used for rolling back.
844   SmallVector<unsigned, 8> snapshotStack;
845 };
846 
847 /// Reduce the basis to try and find a direction in which the polytope is
848 /// "thin". This only works for bounded polytopes.
849 ///
850 /// This is an implementation of the algorithm described in the paper
851 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
852 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
853 ///
854 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
855 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
856 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
857 ///
858 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
859 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
860 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
861 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
862 /// minimizing value of u, if it were allowed to be fractional. Due to
863 /// convexity, the minimizing integer value is either floor(dual_i) or
864 /// ceil(dual_i), so we just need to check which of these gives a lower
865 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
866 ///
867 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
868 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
869 /// same i). Otherwise, we increment i.
870 ///
871 /// We keep f values and duals cached and invalidate them when necessary.
872 /// Whenever possible, we use them instead of recomputing them. We implement the
873 /// algorithm as follows.
874 ///
875 /// In an iteration at i we need to compute:
876 ///   a) width_i(b_{i + 1})
877 ///   b) width_i(b_i)
878 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
879 ///
880 /// If width_i(b_i) is not already cached, we compute it.
881 ///
882 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
883 /// store the duals from this computation.
884 ///
885 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
886 /// of u as explained before, caches the duals from this computation, sets
887 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
888 ///
889 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
890 /// decrement i, resulting in the basis
891 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
892 /// with corresponding f values
893 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
894 /// The values up to i - 1 remain unchanged. We have just gotten the middle
895 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
896 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
897 /// the cache. The iteration after decrementing needs exactly the duals from the
898 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
899 ///
900 /// When incrementing i, no cached f values get invalidated. However, the cached
901 /// duals do get invalidated as the duals for the higher levels are different.
902 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
903   const Fraction epsilon(3, 4);
904 
905   if (level == basis.getNumRows() - 1)
906     return;
907 
908   GBRSimplex gbrSimplex(*this);
909   SmallVector<Fraction, 8> width;
910   SmallVector<int64_t, 8> dual;
911   int64_t dualDenom;
912 
913   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
914   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
915   // the new value of width_i(b_{i+1}).
916   //
917   // If dual_i is not an integer, the minimizing value must be either
918   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
919   // choose the minimizing value.
920   //
921   // If dual_i is an integer, we don't need to perform these computations. We
922   // know that in this case,
923   //   a) u = dual_i.
924   //   b) one can show that dual_j for j < i are the same duals we would have
925   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
926   //      are the ones already in the cache.
927   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
928   //   which
929   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
930   //      be in the cache, so we get it from there and return it.
931   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
932     assert(i < level + dual.size() && "dual_i is not known!");
933 
934     int64_t u = floorDiv(dual[i - level], dualDenom);
935     basis.addToRow(i, i + 1, u);
936     if (dual[i - level] % dualDenom != 0) {
937       SmallVector<int64_t, 8> candidateDual[2];
938       int64_t candidateDualDenom[2];
939       Fraction widthI[2];
940 
941       // Initially u is floor(dual) and basis reflects this.
942       widthI[0] = gbrSimplex.computeWidthAndDuals(
943           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
944 
945       // Now try ceil(dual), i.e. floor(dual) + 1.
946       ++u;
947       basis.addToRow(i, i + 1, 1);
948       widthI[1] = gbrSimplex.computeWidthAndDuals(
949           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
950 
951       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
952       if (j == 0)
953         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
954         basis.addToRow(i, i + 1, -1);
955       dual = std::move(candidateDual[j]);
956       dualDenom = candidateDualDenom[j];
957       return widthI[j];
958     }
959     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
960     // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
961     // width_{i+1}(b_{i+1}).
962     return width[i + 1 - level];
963   };
964 
965   // In the ith iteration of the loop, gbrSimplex has constraints for directions
966   // from `level` to i - 1.
967   unsigned i = level;
968   while (i < basis.getNumRows() - 1) {
969     if (i >= level + width.size()) {
970       // We don't even know the value of f_i(b_i), so let's find that first.
971       // We have to do this first since later we assume that width already
972       // contains values up to and including i.
973 
974       assert((i == 0 || i - 1 < level + width.size()) &&
975              "We are at level i but we don't know the value of width_{i-1}");
976 
977       // We don't actually use these duals at all, but it doesn't matter
978       // because this case should only occur when i is level, and there are no
979       // duals in that case anyway.
980       assert(i == level && "This case should only occur when i == level");
981       width.push_back(
982           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
983     }
984 
985     if (i >= level + dual.size()) {
986       assert(i + 1 >= level + width.size() &&
987              "We don't know dual_i but we know width_{i+1}");
988       // We don't know dual for our level, so let's find it.
989       gbrSimplex.addEqualityForDirection(basis.getRow(i));
990       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
991                                                       dualDenom));
992       gbrSimplex.removeLastEquality();
993     }
994 
995     // This variable stores width_i(b_{i+1} + u*b_i).
996     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
997     if (widthICandidate < epsilon * width[i - level]) {
998       basis.swapRows(i, i + 1);
999       width[i - level] = widthICandidate;
1000       // The values of width_{i+1}(b_{i+1}) and higher may change after the
1001       // swap, so we remove the cached values here.
1002       width.resize(i - level + 1);
1003       if (i == level) {
1004         dual.clear();
1005         continue;
1006       }
1007 
1008       gbrSimplex.removeLastEquality();
1009       i--;
1010       continue;
1011     }
1012 
1013     // Invalidate duals since the higher level needs to recompute its own duals.
1014     dual.clear();
1015     gbrSimplex.addEqualityForDirection(basis.getRow(i));
1016     i++;
1017   }
1018 }
1019 
1020 /// Search for an integer sample point using a branch and bound algorithm.
1021 ///
1022 /// Each row in the basis matrix is a vector, and the set of basis vectors
1023 /// should span the space. Initially this is the identity matrix,
1024 /// i.e., the basis vectors are just the variables.
1025 ///
1026 /// In every level, a value is assigned to the level-th basis vector, as
1027 /// follows. Compute the minimum and maximum rational values of this direction.
1028 /// If only one integer point lies in this range, constrain the variable to
1029 /// have this value and recurse to the next variable.
1030 ///
1031 /// If the range has multiple values, perform generalized basis reduction via
1032 /// reduceBasis and then compute the bounds again. Now we try constraining
1033 /// this direction in the first value in this range and "recurse" to the next
1034 /// level. If we fail to find a sample, we try assigning the direction the next
1035 /// value in this range, and so on.
1036 ///
1037 /// If no integer sample is found from any of the assignments, or if the range
1038 /// contains no integer value, then of course the polytope is empty for the
1039 /// current assignment of the values in previous levels, so we return to
1040 /// the previous level.
1041 ///
1042 /// If we reach the last level where all the variables have been assigned values
1043 /// already, then we simply return the current sample point if it is integral,
1044 /// and go back to the previous level otherwise.
1045 ///
1046 /// To avoid potentially arbitrarily large recursion depths leading to stack
1047 /// overflows, this algorithm is implemented iteratively.
1048 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1049   if (empty)
1050     return {};
1051 
1052   unsigned nDims = var.size();
1053   Matrix basis = Matrix::identity(nDims);
1054 
1055   unsigned level = 0;
1056   // The snapshot just before constraining a direction to a value at each level.
1057   SmallVector<unsigned, 8> snapshotStack;
1058   // The maximum value in the range of the direction for each level.
1059   SmallVector<int64_t, 8> upperBoundStack;
1060   // The next value to try constraining the basis vector to at each level.
1061   SmallVector<int64_t, 8> nextValueStack;
1062 
1063   snapshotStack.reserve(basis.getNumRows());
1064   upperBoundStack.reserve(basis.getNumRows());
1065   nextValueStack.reserve(basis.getNumRows());
1066   while (level != -1u) {
1067     if (level == basis.getNumRows()) {
1068       // We've assigned values to all variables. Return if we have a sample,
1069       // or go back up to the previous level otherwise.
1070       if (auto maybeSample = getSamplePointIfIntegral())
1071         return maybeSample;
1072       level--;
1073       continue;
1074     }
1075 
1076     if (level >= upperBoundStack.size()) {
1077       // We haven't populated the stack values for this level yet, so we have
1078       // just come down a level ("recursed"). Find the lower and upper bounds.
1079       // If there is more than one integer point in the range, perform
1080       // generalized basis reduction.
1081       SmallVector<int64_t, 8> basisCoeffs =
1082           llvm::to_vector<8>(basis.getRow(level));
1083       basisCoeffs.push_back(0);
1084 
1085       int64_t minRoundedUp, maxRoundedDown;
1086       std::tie(minRoundedUp, maxRoundedDown) =
1087           computeIntegerBounds(basisCoeffs);
1088 
1089       // Heuristic: if the sample point is integral at this point, just return
1090       // it.
1091       if (auto maybeSample = getSamplePointIfIntegral())
1092         return *maybeSample;
1093 
1094       if (minRoundedUp < maxRoundedDown) {
1095         reduceBasis(basis, level);
1096         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
1097         basisCoeffs.push_back(0);
1098         std::tie(minRoundedUp, maxRoundedDown) =
1099             computeIntegerBounds(basisCoeffs);
1100       }
1101 
1102       snapshotStack.push_back(getSnapshot());
1103       // The smallest value in the range is the next value to try.
1104       nextValueStack.push_back(minRoundedUp);
1105       upperBoundStack.push_back(maxRoundedDown);
1106     }
1107 
1108     assert((snapshotStack.size() - 1 == level &&
1109             nextValueStack.size() - 1 == level &&
1110             upperBoundStack.size() - 1 == level) &&
1111            "Mismatched variable stack sizes!");
1112 
1113     // Whether we "recursed" or "returned" from a lower level, we rollback
1114     // to the snapshot of the starting state at this level. (in the "recursed"
1115     // case this has no effect)
1116     rollback(snapshotStack.back());
1117     int64_t nextValue = nextValueStack.back();
1118     nextValueStack.back()++;
1119     if (nextValue > upperBoundStack.back()) {
1120       // We have exhausted the range and found no solution. Pop the stack and
1121       // return up a level.
1122       snapshotStack.pop_back();
1123       nextValueStack.pop_back();
1124       upperBoundStack.pop_back();
1125       level--;
1126       continue;
1127     }
1128 
1129     // Try the next value in the range and "recurse" into the next level.
1130     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
1131                                         basis.getRow(level).end());
1132     basisCoeffs.push_back(-nextValue);
1133     addEquality(basisCoeffs);
1134     level++;
1135   }
1136 
1137   return {};
1138 }
1139 
1140 /// Compute the minimum and maximum integer values the expression can take. We
1141 /// compute each separately.
1142 std::pair<int64_t, int64_t>
1143 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
1144   int64_t minRoundedUp;
1145   if (Optional<Fraction> maybeMin =
1146           computeOptimum(Simplex::Direction::Down, coeffs))
1147     minRoundedUp = ceil(*maybeMin);
1148   else
1149     llvm_unreachable("Tableau should not be unbounded");
1150 
1151   int64_t maxRoundedDown;
1152   if (Optional<Fraction> maybeMax =
1153           computeOptimum(Simplex::Direction::Up, coeffs))
1154     maxRoundedDown = floor(*maybeMax);
1155   else
1156     llvm_unreachable("Tableau should not be unbounded");
1157 
1158   return {minRoundedUp, maxRoundedDown};
1159 }
1160 
1161 void Simplex::print(raw_ostream &os) const {
1162   os << "rows = " << nRow << ", columns = " << nCol << "\n";
1163   if (empty)
1164     os << "Simplex marked empty!\n";
1165   os << "var: ";
1166   for (unsigned i = 0; i < var.size(); ++i) {
1167     if (i > 0)
1168       os << ", ";
1169     var[i].print(os);
1170   }
1171   os << "\ncon: ";
1172   for (unsigned i = 0; i < con.size(); ++i) {
1173     if (i > 0)
1174       os << ", ";
1175     con[i].print(os);
1176   }
1177   os << '\n';
1178   for (unsigned row = 0; row < nRow; ++row) {
1179     if (row > 0)
1180       os << ", ";
1181     os << "r" << row << ": " << rowUnknown[row];
1182   }
1183   os << '\n';
1184   os << "c0: denom, c1: const";
1185   for (unsigned col = 2; col < nCol; ++col)
1186     os << ", c" << col << ": " << colUnknown[col];
1187   os << '\n';
1188   for (unsigned row = 0; row < nRow; ++row) {
1189     for (unsigned col = 0; col < nCol; ++col)
1190       os << tableau(row, col) << '\t';
1191     os << '\n';
1192   }
1193   os << '\n';
1194 }
1195 
1196 void Simplex::dump() const { print(llvm::errs()); }
1197 
1198 } // namespace mlir
1199