1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 namespace mlir { 15 using Direction = Simplex::Direction; 16 17 const int nullIndex = std::numeric_limits<int>::max(); 18 19 /// Construct a Simplex object with `nVar` variables. 20 Simplex::Simplex(unsigned nVar) 21 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { 22 colUnknown.push_back(nullIndex); 23 colUnknown.push_back(nullIndex); 24 for (unsigned i = 0; i < nVar; ++i) { 25 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); 26 colUnknown.push_back(i); 27 nCol++; 28 } 29 } 30 31 Simplex::Simplex(const FlatAffineConstraints &constraints) 32 : Simplex(constraints.getNumIds()) { 33 for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); 34 i < numIneqs; ++i) 35 addInequality(constraints.getInequality(i)); 36 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) 37 addEquality(constraints.getEquality(i)); 38 } 39 40 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const { 41 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 42 return index >= 0 ? var[index] : con[~index]; 43 } 44 45 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const { 46 assert(col < nCol && "Invalid column"); 47 return unknownFromIndex(colUnknown[col]); 48 } 49 50 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const { 51 assert(row < nRow && "Invalid row"); 52 return unknownFromIndex(rowUnknown[row]); 53 } 54 55 Simplex::Unknown &Simplex::unknownFromIndex(int index) { 56 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 57 return index >= 0 ? var[index] : con[~index]; 58 } 59 60 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) { 61 assert(col < nCol && "Invalid column"); 62 return unknownFromIndex(colUnknown[col]); 63 } 64 65 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) { 66 assert(row < nRow && "Invalid row"); 67 return unknownFromIndex(rowUnknown[row]); 68 } 69 70 /// Add a new row to the tableau corresponding to the given constant term and 71 /// list of coefficients. The coefficients are specified as a vector of 72 /// (variable index, coefficient) pairs. 73 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) { 74 assert(coeffs.size() == 1 + var.size() && 75 "Incorrect number of coefficients!"); 76 77 ++nRow; 78 // If the tableau is not big enough to accomodate the extra row, we extend it. 79 if (nRow >= tableau.getNumRows()) 80 tableau.resizeVertically(nRow); 81 rowUnknown.push_back(~con.size()); 82 con.emplace_back(Orientation::Row, false, nRow - 1); 83 84 tableau(nRow - 1, 0) = 1; 85 tableau(nRow - 1, 1) = coeffs.back(); 86 for (unsigned col = 2; col < nCol; ++col) 87 tableau(nRow - 1, col) = 0; 88 89 // Process each given variable coefficient. 90 for (unsigned i = 0; i < var.size(); ++i) { 91 unsigned pos = var[i].pos; 92 if (coeffs[i] == 0) 93 continue; 94 95 if (var[i].orientation == Orientation::Column) { 96 // If a variable is in column position at column col, then we just add the 97 // coefficient for that variable (scaled by the common row denominator) to 98 // the corresponding entry in the new row. 99 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 100 continue; 101 } 102 103 // If the variable is in row position, we need to add that row to the new 104 // row, scaled by the coefficient for the variable, accounting for the two 105 // rows potentially having different denominators. The new denominator is 106 // the lcm of the two. 107 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 108 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 109 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 110 tableau(nRow - 1, 0) = lcm; 111 for (unsigned col = 1; col < nCol; ++col) 112 tableau(nRow - 1, col) = 113 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 114 } 115 116 normalizeRow(nRow - 1); 117 // Push to undo log along with the index of the new constraint. 118 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 119 return con.size() - 1; 120 } 121 122 /// Normalize the row by removing factors that are common between the 123 /// denominator and all the numerator coefficients. 124 void Simplex::normalizeRow(unsigned row) { 125 int64_t gcd = 0; 126 for (unsigned col = 0; col < nCol; ++col) { 127 if (gcd == 1) 128 break; 129 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 130 } 131 for (unsigned col = 0; col < nCol; ++col) 132 tableau(row, col) /= gcd; 133 } 134 135 namespace { 136 bool signMatchesDirection(int64_t elem, Direction direction) { 137 assert(elem != 0 && "elem should not be 0"); 138 return direction == Direction::Up ? elem > 0 : elem < 0; 139 } 140 141 Direction flippedDirection(Direction direction) { 142 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 143 } 144 } // anonymous namespace 145 146 /// Find a pivot to change the sample value of the row in the specified 147 /// direction. The returned pivot row will involve `row` if and only if the 148 /// unknown is unbounded in the specified direction. 149 /// 150 /// To increase (resp. decrease) the value of a row, we need to find a live 151 /// column with a non-zero coefficient. If the coefficient is positive, we need 152 /// to increase (decrease) the value of the column, and if the coefficient is 153 /// negative, we need to decrease (increase) the value of the column. Also, 154 /// we cannot decrease the sample value of restricted columns. 155 /// 156 /// If multiple columns are valid, we break ties by considering a lexicographic 157 /// ordering where we prefer unknowns with lower index. 158 Optional<Simplex::Pivot> Simplex::findPivot(int row, 159 Direction direction) const { 160 Optional<unsigned> col; 161 for (unsigned j = 2; j < nCol; ++j) { 162 int64_t elem = tableau(row, j); 163 if (elem == 0) 164 continue; 165 166 if (unknownFromColumn(j).restricted && 167 !signMatchesDirection(elem, direction)) 168 continue; 169 if (!col || colUnknown[j] < colUnknown[*col]) 170 col = j; 171 } 172 173 if (!col) 174 return {}; 175 176 Direction newDirection = 177 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 178 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 179 return Pivot{maybePivotRow.getValueOr(row), *col}; 180 } 181 182 /// Swap the associated unknowns for the row and the column. 183 /// 184 /// First we swap the index associated with the row and column. Then we update 185 /// the unknowns to reflect their new position and orientation. 186 void Simplex::swapRowWithCol(unsigned row, unsigned col) { 187 std::swap(rowUnknown[row], colUnknown[col]); 188 Unknown &uCol = unknownFromColumn(col); 189 Unknown &uRow = unknownFromRow(row); 190 uCol.orientation = Orientation::Column; 191 uRow.orientation = Orientation::Row; 192 uCol.pos = col; 193 uRow.pos = row; 194 } 195 196 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); } 197 198 /// Pivot pivotRow and pivotCol. 199 /// 200 /// Let R be the pivot row unknown and let C be the pivot col unknown. 201 /// Since initially R = a*C + sum b_i * X_i 202 /// (where the sum is over the other column's unknowns, x_i) 203 /// C = (R - (sum b_i * X_i))/a 204 /// 205 /// Let u be some other row unknown. 206 /// u = c*C + sum d_i * X_i 207 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 208 /// 209 /// This results in the following transform: 210 /// pivot col other col pivot col other col 211 /// pivot row a b -> pivot row 1/a -b/a 212 /// other row c d other row c/a d - bc/a 213 /// 214 /// Taking into account the common denominators p and q: 215 /// 216 /// pivot col other col pivot col other col 217 /// pivot row a/p b/p -> pivot row p/a -b/a 218 /// other row c/q d/q other row cp/aq (da - bc)/aq 219 /// 220 /// The pivot row transform is accomplished be swapping a with the pivot row's 221 /// common denominator and negating the pivot row except for the pivot column 222 /// element. 223 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) { 224 assert(pivotCol >= 2 && "Refusing to pivot invalid column"); 225 226 swapRowWithCol(pivotRow, pivotCol); 227 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 228 // We need to negate the whole pivot row except for the pivot column. 229 if (tableau(pivotRow, 0) < 0) { 230 // If the denominator is negative, we negate the row by simply negating the 231 // denominator. 232 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 233 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 234 } else { 235 for (unsigned col = 1; col < nCol; ++col) { 236 if (col == pivotCol) 237 continue; 238 tableau(pivotRow, col) = -tableau(pivotRow, col); 239 } 240 } 241 normalizeRow(pivotRow); 242 243 for (unsigned row = nRedundant; row < nRow; ++row) { 244 if (row == pivotRow) 245 continue; 246 if (tableau(row, pivotCol) == 0) // Nothing to do. 247 continue; 248 tableau(row, 0) *= tableau(pivotRow, 0); 249 for (unsigned j = 1; j < nCol; ++j) { 250 if (j == pivotCol) 251 continue; 252 // Add rather than subtract because the pivot row has been negated. 253 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 254 tableau(row, pivotCol) * tableau(pivotRow, j); 255 } 256 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 257 normalizeRow(row); 258 } 259 } 260 261 /// Perform pivots until the unknown has a non-negative sample value or until 262 /// no more upward pivots can be performed. Return the sign of the final sample 263 /// value. 264 LogicalResult Simplex::restoreRow(Unknown &u) { 265 assert(u.orientation == Orientation::Row && 266 "unknown should be in row position"); 267 268 while (tableau(u.pos, 1) < 0) { 269 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 270 if (!maybePivot) 271 break; 272 273 pivot(*maybePivot); 274 if (u.orientation == Orientation::Column) 275 return success(); // the unknown is unbounded above. 276 } 277 return success(tableau(u.pos, 1) >= 0); 278 } 279 280 /// Find a row that can be used to pivot the column in the specified direction. 281 /// This returns an empty optional if and only if the column is unbounded in the 282 /// specified direction (ignoring skipRow, if skipRow is set). 283 /// 284 /// If skipRow is set, this row is not considered, and (if it is restricted) its 285 /// restriction may be violated by the returned pivot. Usually, skipRow is set 286 /// because we don't want to move it to column position unless it is unbounded, 287 /// and we are either trying to increase the value of skipRow or explicitly 288 /// trying to make skipRow negative, so we are not concerned about this. 289 /// 290 /// If the direction is up (resp. down) and a restricted row has a negative 291 /// (positive) coefficient for the column, then this row imposes a bound on how 292 /// much the sample value of the column can change. Such a row with constant 293 /// term c and coefficient f for the column imposes a bound of c/|f| on the 294 /// change in sample value (in the specified direction). (note that c is 295 /// non-negative here since the row is restricted and the tableau is consistent) 296 /// 297 /// We iterate through the rows and pick the row which imposes the most 298 /// stringent bound, since pivoting with a row changes the row's sample value to 299 /// 0 and hence saturates the bound it imposes. We break ties between rows that 300 /// impose the same bound by considering a lexicographic ordering where we 301 /// prefer unknowns with lower index value. 302 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 303 Direction direction, 304 unsigned col) const { 305 Optional<unsigned> retRow; 306 int64_t retElem, retConst; 307 for (unsigned row = nRedundant; row < nRow; ++row) { 308 if (skipRow && row == *skipRow) 309 continue; 310 int64_t elem = tableau(row, col); 311 if (elem == 0) 312 continue; 313 if (!unknownFromRow(row).restricted) 314 continue; 315 if (signMatchesDirection(elem, direction)) 316 continue; 317 int64_t constTerm = tableau(row, 1); 318 319 if (!retRow) { 320 retRow = row; 321 retElem = elem; 322 retConst = constTerm; 323 continue; 324 } 325 326 int64_t diff = retConst * elem - constTerm * retElem; 327 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 328 (diff != 0 && !signMatchesDirection(diff, direction))) { 329 retRow = row; 330 retElem = elem; 331 retConst = constTerm; 332 } 333 } 334 return retRow; 335 } 336 337 bool Simplex::isEmpty() const { return empty; } 338 339 void Simplex::swapRows(unsigned i, unsigned j) { 340 if (i == j) 341 return; 342 tableau.swapRows(i, j); 343 std::swap(rowUnknown[i], rowUnknown[j]); 344 unknownFromRow(i).pos = i; 345 unknownFromRow(j).pos = j; 346 } 347 348 /// Mark this tableau empty and push an entry to the undo stack. 349 void Simplex::markEmpty() { 350 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 351 empty = true; 352 } 353 354 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 355 /// is the current number of variables, then the corresponding inequality is 356 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 357 /// 358 /// We add the inequality and mark it as restricted. We then try to make its 359 /// sample value non-negative. If this is not possible, the tableau has become 360 /// empty and we mark it as such. 361 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 362 unsigned conIndex = addRow(coeffs); 363 Unknown &u = con[conIndex]; 364 u.restricted = true; 365 LogicalResult result = restoreRow(u); 366 if (failed(result)) 367 markEmpty(); 368 } 369 370 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 371 /// is the current number of variables, then the corresponding equality is 372 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 373 /// 374 /// We simply add two opposing inequalities, which force the expression to 375 /// be zero. 376 void Simplex::addEquality(ArrayRef<int64_t> coeffs) { 377 addInequality(coeffs); 378 SmallVector<int64_t, 8> negatedCoeffs; 379 for (int64_t coeff : coeffs) 380 negatedCoeffs.emplace_back(-coeff); 381 addInequality(negatedCoeffs); 382 } 383 384 unsigned Simplex::numVariables() const { return var.size(); } 385 unsigned Simplex::numConstraints() const { return con.size(); } 386 387 /// Return a snapshot of the current state. This is just the current size of the 388 /// undo log. 389 unsigned Simplex::getSnapshot() const { return undoLog.size(); } 390 391 void Simplex::undo(UndoLogEntry entry) { 392 if (entry == UndoLogEntry::RemoveLastConstraint) { 393 Unknown &constraint = con.back(); 394 if (constraint.orientation == Orientation::Column) { 395 unsigned column = constraint.pos; 396 Optional<unsigned> row; 397 398 // Try to find any pivot row for this column that preserves tableau 399 // consistency (except possibly the column itself, which is going to be 400 // deallocated anyway). 401 // 402 // If no pivot row is found in either direction, then the unknown is 403 // unbounded in both directions and we are free to 404 // perform any pivot at all. To do this, we just need to find any row with 405 // a non-zero coefficient for the column. 406 if (Optional<unsigned> maybeRow = 407 findPivotRow({}, Direction::Up, column)) { 408 row = *maybeRow; 409 } else if (Optional<unsigned> maybeRow = 410 findPivotRow({}, Direction::Down, column)) { 411 row = *maybeRow; 412 } else { 413 // The loop doesn't find a pivot row only if the column has zero 414 // coefficients for every row. But the unknown is a constraint, 415 // so it was added initially as a row. Such a row could never have been 416 // pivoted to a column. So a pivot row will always be found. 417 for (unsigned i = nRedundant; i < nRow; ++i) { 418 if (tableau(i, column) != 0) { 419 row = i; 420 break; 421 } 422 } 423 } 424 assert(row.hasValue() && "No pivot row found!"); 425 pivot(*row, column); 426 } 427 428 // Move this unknown to the last row and remove the last row from the 429 // tableau. 430 swapRows(constraint.pos, nRow - 1); 431 // It is not strictly necessary to shrink the tableau, but for now we 432 // maintain the invariant that the tableau has exactly nRow rows. 433 tableau.resizeVertically(nRow - 1); 434 nRow--; 435 rowUnknown.pop_back(); 436 con.pop_back(); 437 } else if (entry == UndoLogEntry::UnmarkEmpty) { 438 empty = false; 439 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 440 nRedundant--; 441 } 442 } 443 444 /// Rollback to the specified snapshot. 445 /// 446 /// We undo all the log entries until the log size when the snapshot was taken 447 /// is reached. 448 void Simplex::rollback(unsigned snapshot) { 449 while (undoLog.size() > snapshot) { 450 undo(undoLog.back()); 451 undoLog.pop_back(); 452 } 453 } 454 455 /// Add all the constraints from the given FlatAffineConstraints. 456 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) { 457 assert(fac.getNumIds() == numVariables() && 458 "FlatAffineConstraints must have same dimensionality as simplex"); 459 for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) 460 addInequality(fac.getInequality(i)); 461 for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) 462 addEquality(fac.getEquality(i)); 463 } 464 465 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 466 unsigned row) { 467 // Keep trying to find a pivot for the row in the specified direction. 468 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 469 // If findPivot returns a pivot involving the row itself, then the optimum 470 // is unbounded, so we return None. 471 if (maybePivot->row == row) 472 return {}; 473 pivot(*maybePivot); 474 } 475 476 // The row has reached its optimal sample value, which we return. 477 // The sample value is the entry in the constant column divided by the common 478 // denominator for this row. 479 return Fraction(tableau(row, 1), tableau(row, 0)); 480 } 481 482 /// Compute the optimum of the specified expression in the specified direction, 483 /// or None if it is unbounded. 484 Optional<Fraction> Simplex::computeOptimum(Direction direction, 485 ArrayRef<int64_t> coeffs) { 486 assert(!empty && "Simplex should not be empty"); 487 488 unsigned snapshot = getSnapshot(); 489 unsigned conIndex = addRow(coeffs); 490 unsigned row = con[conIndex].pos; 491 Optional<Fraction> optimum = computeRowOptimum(direction, row); 492 rollback(snapshot); 493 return optimum; 494 } 495 496 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) { 497 assert(!empty && "Simplex should not be empty!"); 498 if (u.orientation == Orientation::Column) { 499 unsigned column = u.pos; 500 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 501 // If no pivot is returned, the constraint is unbounded in the specified 502 // direction. 503 if (!pivotRow) 504 return {}; 505 pivot(*pivotRow, column); 506 } 507 508 unsigned row = u.pos; 509 Optional<Fraction> optimum = computeRowOptimum(direction, row); 510 if (u.restricted && direction == Direction::Down && 511 (!optimum || *optimum < Fraction(0, 1))) 512 (void)restoreRow(u); 513 return optimum; 514 } 515 516 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 517 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 518 "in an empty set."); 519 // The constraint's perpendicular is already bounded below, since it is a 520 // constraint. If it is also bounded above, we can return true. 521 return computeOptimum(Direction::Up, con[constraintIndex]).hasValue(); 522 } 523 524 /// Redundant constraints are those that are in row orientation and lie in 525 /// rows 0 to nRedundant - 1. 526 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 527 const Unknown &u = con[constraintIndex]; 528 return u.orientation == Orientation::Row && u.pos < nRedundant; 529 } 530 531 /// Mark the specified row redundant. 532 /// 533 /// This is done by moving the unknown to the end of the block of redundant 534 /// rows (namely, to row nRedundant) and incrementing nRedundant to 535 /// accomodate the new redundant row. 536 void Simplex::markRowRedundant(Unknown &u) { 537 assert(u.orientation == Orientation::Row && 538 "Unknown should be in row position!"); 539 swapRows(u.pos, nRedundant); 540 ++nRedundant; 541 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 542 } 543 544 /// Find a subset of constraints that is redundant and mark them redundant. 545 void Simplex::detectRedundant() { 546 // It is not meaningful to talk about redundancy for empty sets. 547 if (empty) 548 return; 549 550 // Iterate through the constraints and check for each one if it can attain 551 // negative sample values. If it can, it's not redundant. Otherwise, it is. 552 // We mark redundant constraints redundant. 553 // 554 // Constraints that get marked redundant in one iteration are not respected 555 // when checking constraints in later iterations. This prevents, for example, 556 // two identical constraints both being marked redundant since each is 557 // redundant given the other one. In this example, only the first of the 558 // constraints that is processed will get marked redundant, as it should be. 559 for (Unknown &u : con) { 560 if (u.orientation == Orientation::Column) { 561 unsigned column = u.pos; 562 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 563 // If no downward pivot is returned, the constraint is unbounded below 564 // and hence not redundant. 565 if (!pivotRow) 566 continue; 567 pivot(*pivotRow, column); 568 } 569 570 unsigned row = u.pos; 571 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 572 if (!minimum || *minimum < Fraction(0, 1)) { 573 // Constraint is unbounded below or can attain negative sample values and 574 // hence is not redundant. 575 (void)restoreRow(u); 576 continue; 577 } 578 579 markRowRedundant(u); 580 } 581 } 582 583 bool Simplex::isUnbounded() { 584 if (empty) 585 return false; 586 587 SmallVector<int64_t, 8> dir(var.size() + 1); 588 for (unsigned i = 0; i < var.size(); ++i) { 589 dir[i] = 1; 590 591 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 592 if (!maybeMax) 593 return true; 594 595 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 596 if (!maybeMin) 597 return true; 598 599 dir[i] = 0; 600 } 601 return false; 602 } 603 604 /// Make a tableau to represent a pair of points in the original tableau. 605 /// 606 /// The product constraints and variables are stored as: first A's, then B's. 607 /// 608 /// The product tableau has row layout: 609 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 610 /// 611 /// It has column layout: 612 /// denominator, constant, A's columns, B's columns. 613 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 614 unsigned numVar = a.numVariables() + b.numVariables(); 615 unsigned numCon = a.numConstraints() + b.numConstraints(); 616 Simplex result(numVar); 617 618 result.tableau.resizeVertically(numCon); 619 result.empty = a.empty || b.empty; 620 621 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 622 SmallVector<Unknown, 8> result; 623 result.reserve(v.size() + w.size()); 624 result.insert(result.end(), v.begin(), v.end()); 625 result.insert(result.end(), w.begin(), w.end()); 626 return result; 627 }; 628 result.con = concat(a.con, b.con); 629 result.var = concat(a.var, b.var); 630 631 auto indexFromBIndex = [&](int index) { 632 return index >= 0 ? a.numVariables() + index 633 : ~(a.numConstraints() + ~index); 634 }; 635 636 result.colUnknown.assign(2, nullIndex); 637 for (unsigned i = 2; i < a.nCol; ++i) { 638 result.colUnknown.push_back(a.colUnknown[i]); 639 result.unknownFromIndex(result.colUnknown.back()).pos = 640 result.colUnknown.size() - 1; 641 } 642 for (unsigned i = 2; i < b.nCol; ++i) { 643 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 644 result.unknownFromIndex(result.colUnknown.back()).pos = 645 result.colUnknown.size() - 1; 646 } 647 648 auto appendRowFromA = [&](unsigned row) { 649 for (unsigned col = 0; col < a.nCol; ++col) 650 result.tableau(result.nRow, col) = a.tableau(row, col); 651 result.rowUnknown.push_back(a.rowUnknown[row]); 652 result.unknownFromIndex(result.rowUnknown.back()).pos = 653 result.rowUnknown.size() - 1; 654 result.nRow++; 655 }; 656 657 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 658 // may be). 659 auto appendRowFromB = [&](unsigned row) { 660 result.tableau(result.nRow, 0) = b.tableau(row, 0); 661 result.tableau(result.nRow, 1) = b.tableau(row, 1); 662 663 unsigned offset = a.nCol - 2; 664 for (unsigned col = 2; col < b.nCol; ++col) 665 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 666 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 667 result.unknownFromIndex(result.rowUnknown.back()).pos = 668 result.rowUnknown.size() - 1; 669 result.nRow++; 670 }; 671 672 result.nRedundant = a.nRedundant + b.nRedundant; 673 for (unsigned row = 0; row < a.nRedundant; ++row) 674 appendRowFromA(row); 675 for (unsigned row = 0; row < b.nRedundant; ++row) 676 appendRowFromB(row); 677 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 678 appendRowFromA(row); 679 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 680 appendRowFromB(row); 681 682 return result; 683 } 684 685 SmallVector<Fraction, 8> Simplex::getRationalSample() const { 686 assert(!empty && "This should not be called when Simplex is empty."); 687 688 SmallVector<Fraction, 8> sample; 689 sample.reserve(var.size()); 690 // Push the sample value for each variable into the vector. 691 for (const Unknown &u : var) { 692 if (u.orientation == Orientation::Column) { 693 // If the variable is in column position, its sample value is zero. 694 sample.emplace_back(0, 1); 695 } else { 696 // If the variable is in row position, its sample value is the entry in 697 // the constant column divided by the entry in the common denominator 698 // column. 699 sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0)); 700 } 701 } 702 return sample; 703 } 704 705 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 706 // If the tableau is empty, no sample point exists. 707 if (empty) 708 return {}; 709 SmallVector<Fraction, 8> rationalSample = getRationalSample(); 710 SmallVector<int64_t, 8> integerSample; 711 integerSample.reserve(var.size()); 712 for (const Fraction &coord : rationalSample) { 713 // If the sample is non-integral, return None. 714 if (coord.num % coord.den != 0) 715 return {}; 716 integerSample.push_back(coord.num / coord.den); 717 } 718 return integerSample; 719 } 720 721 /// Given a simplex for a polytope, construct a new simplex whose variables are 722 /// identified with a pair of points (x, y) in the original polytope. Supports 723 /// some operations needed for generalized basis reduction. In what follows, 724 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 725 /// dimension of the original polytope. 726 /// 727 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 728 /// also supports rolling back this addition, by maintaining a snapshot stack 729 /// that contains a snapshot of the Simplex's state for each equality, just 730 /// before that equality was added. 731 class GBRSimplex { 732 using Orientation = Simplex::Orientation; 733 734 public: 735 GBRSimplex(const Simplex &originalSimplex) 736 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 737 simplexConstraintOffset(simplex.numConstraints()) {} 738 739 /// Add an equality dotProduct(dir, x - y) == 0. 740 /// First pushes a snapshot for the current simplex state to the stack so 741 /// that this can be rolled back later. 742 void addEqualityForDirection(ArrayRef<int64_t> dir) { 743 assert( 744 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 745 "Direction passed is the zero vector!"); 746 snapshotStack.push_back(simplex.getSnapshot()); 747 simplex.addEquality(getCoeffsForDirection(dir)); 748 } 749 750 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 751 /// the direction equalities to `dual`. 752 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 753 SmallVectorImpl<int64_t> &dual, 754 int64_t &dualDenom) { 755 unsigned snap = simplex.getSnapshot(); 756 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 757 unsigned row = simplex.con[conIndex].pos; 758 Optional<Fraction> maybeWidth = 759 simplex.computeRowOptimum(Simplex::Direction::Up, row); 760 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 761 dualDenom = simplex.tableau(row, 0); 762 dual.clear(); 763 // The increment is i += 2 because equalities are added as two inequalities, 764 // one positive and one negative. Each iteration processes one equality. 765 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 766 // The dual variable is the negative of the coefficient of the new row 767 // in the column of the constraint, if the constraint is in a column. 768 // Note that the second inequality for the equality is negated. 769 // 770 // We want the dual for the original equality. If the positive inequality 771 // is in column position, the negative of its row coefficient is the 772 // desired dual. If the negative inequality is in column position, its row 773 // coefficient is the desired dual. (its coefficients are already the 774 // negated coefficients of the original equality, so we don't need to 775 // negate it now.) 776 // 777 // If neither are in column position, we move the negated inequality to 778 // column position. Since the inequality must have sample value zero 779 // (since it corresponds to an equality), we are free to pivot with 780 // any column. Since both the unknowns have sample value before and after 781 // pivoting, no other sample values will change and the tableau will 782 // remain consistent. To pivot, we just need to find a column that has a 783 // non-zero coefficient in this row. There must be one since otherwise the 784 // equality would be 0 == 0, which should never be passed to 785 // addEqualityForDirection. 786 // 787 // After finding a column, we pivot with the column, after which we can 788 // get the dual from the inequality in column position as explained above. 789 if (simplex.con[i].orientation == Orientation::Column) { 790 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 791 } else { 792 if (simplex.con[i + 1].orientation == Orientation::Row) { 793 unsigned ineqRow = simplex.con[i + 1].pos; 794 // Since it is an equality, the sample value must be zero. 795 assert(simplex.tableau(ineqRow, 1) == 0 && 796 "Equality's sample value must be zero."); 797 for (unsigned col = 2; col < simplex.nCol; ++col) { 798 if (simplex.tableau(ineqRow, col) != 0) { 799 simplex.pivot(ineqRow, col); 800 break; 801 } 802 } 803 assert(simplex.con[i + 1].orientation == Orientation::Column && 804 "No pivot found. Equality has all-zeros row in tableau!"); 805 } 806 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 807 } 808 } 809 simplex.rollback(snap); 810 return *maybeWidth; 811 } 812 813 /// Remove the last equality that was added through addEqualityForDirection. 814 /// 815 /// We do this by rolling back to the snapshot at the top of the stack, which 816 /// should be a snapshot taken just before the last equality was added. 817 void removeLastEquality() { 818 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 819 simplex.rollback(snapshotStack.back()); 820 snapshotStack.pop_back(); 821 } 822 823 private: 824 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 825 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 826 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 827 /// where n is the dimension of the original polytope. 828 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 829 assert(2 * dir.size() == simplex.numVariables() && 830 "Direction vector has wrong dimensionality"); 831 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 832 coeffs.reserve(2 * dir.size()); 833 for (int64_t coeff : dir) 834 coeffs.push_back(-coeff); 835 coeffs.push_back(0); // constant term 836 return coeffs; 837 } 838 839 Simplex simplex; 840 /// The first index of the equality constraints, the index immediately after 841 /// the last constraint in the initial product simplex. 842 unsigned simplexConstraintOffset; 843 /// A stack of snapshots, used for rolling back. 844 SmallVector<unsigned, 8> snapshotStack; 845 }; 846 847 /// Reduce the basis to try and find a direction in which the polytope is 848 /// "thin". This only works for bounded polytopes. 849 /// 850 /// This is an implementation of the algorithm described in the paper 851 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 852 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 853 /// 854 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 855 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 856 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 857 /// 858 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 859 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 860 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 861 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 862 /// minimizing value of u, if it were allowed to be fractional. Due to 863 /// convexity, the minimizing integer value is either floor(dual_i) or 864 /// ceil(dual_i), so we just need to check which of these gives a lower 865 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 866 /// 867 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 868 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 869 /// same i). Otherwise, we increment i. 870 /// 871 /// We keep f values and duals cached and invalidate them when necessary. 872 /// Whenever possible, we use them instead of recomputing them. We implement the 873 /// algorithm as follows. 874 /// 875 /// In an iteration at i we need to compute: 876 /// a) width_i(b_{i + 1}) 877 /// b) width_i(b_i) 878 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 879 /// 880 /// If width_i(b_i) is not already cached, we compute it. 881 /// 882 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 883 /// store the duals from this computation. 884 /// 885 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 886 /// of u as explained before, caches the duals from this computation, sets 887 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 888 /// 889 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 890 /// decrement i, resulting in the basis 891 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 892 /// with corresponding f values 893 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 894 /// The values up to i - 1 remain unchanged. We have just gotten the middle 895 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 896 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 897 /// the cache. The iteration after decrementing needs exactly the duals from the 898 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 899 /// 900 /// When incrementing i, no cached f values get invalidated. However, the cached 901 /// duals do get invalidated as the duals for the higher levels are different. 902 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 903 const Fraction epsilon(3, 4); 904 905 if (level == basis.getNumRows() - 1) 906 return; 907 908 GBRSimplex gbrSimplex(*this); 909 SmallVector<Fraction, 8> width; 910 SmallVector<int64_t, 8> dual; 911 int64_t dualDenom; 912 913 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 914 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 915 // the new value of width_i(b_{i+1}). 916 // 917 // If dual_i is not an integer, the minimizing value must be either 918 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 919 // choose the minimizing value. 920 // 921 // If dual_i is an integer, we don't need to perform these computations. We 922 // know that in this case, 923 // a) u = dual_i. 924 // b) one can show that dual_j for j < i are the same duals we would have 925 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 926 // are the ones already in the cache. 927 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 928 // which 929 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 930 // be in the cache, so we get it from there and return it. 931 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 932 assert(i < level + dual.size() && "dual_i is not known!"); 933 934 int64_t u = floorDiv(dual[i - level], dualDenom); 935 basis.addToRow(i, i + 1, u); 936 if (dual[i - level] % dualDenom != 0) { 937 SmallVector<int64_t, 8> candidateDual[2]; 938 int64_t candidateDualDenom[2]; 939 Fraction widthI[2]; 940 941 // Initially u is floor(dual) and basis reflects this. 942 widthI[0] = gbrSimplex.computeWidthAndDuals( 943 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 944 945 // Now try ceil(dual), i.e. floor(dual) + 1. 946 ++u; 947 basis.addToRow(i, i + 1, 1); 948 widthI[1] = gbrSimplex.computeWidthAndDuals( 949 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 950 951 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 952 if (j == 0) 953 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 954 basis.addToRow(i, i + 1, -1); 955 dual = std::move(candidateDual[j]); 956 dualDenom = candidateDualDenom[j]; 957 return widthI[j]; 958 } 959 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 960 // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to 961 // width_{i+1}(b_{i+1}). 962 return width[i + 1 - level]; 963 }; 964 965 // In the ith iteration of the loop, gbrSimplex has constraints for directions 966 // from `level` to i - 1. 967 unsigned i = level; 968 while (i < basis.getNumRows() - 1) { 969 if (i >= level + width.size()) { 970 // We don't even know the value of f_i(b_i), so let's find that first. 971 // We have to do this first since later we assume that width already 972 // contains values up to and including i. 973 974 assert((i == 0 || i - 1 < level + width.size()) && 975 "We are at level i but we don't know the value of width_{i-1}"); 976 977 // We don't actually use these duals at all, but it doesn't matter 978 // because this case should only occur when i is level, and there are no 979 // duals in that case anyway. 980 assert(i == level && "This case should only occur when i == level"); 981 width.push_back( 982 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 983 } 984 985 if (i >= level + dual.size()) { 986 assert(i + 1 >= level + width.size() && 987 "We don't know dual_i but we know width_{i+1}"); 988 // We don't know dual for our level, so let's find it. 989 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 990 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 991 dualDenom)); 992 gbrSimplex.removeLastEquality(); 993 } 994 995 // This variable stores width_i(b_{i+1} + u*b_i). 996 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 997 if (widthICandidate < epsilon * width[i - level]) { 998 basis.swapRows(i, i + 1); 999 width[i - level] = widthICandidate; 1000 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1001 // swap, so we remove the cached values here. 1002 width.resize(i - level + 1); 1003 if (i == level) { 1004 dual.clear(); 1005 continue; 1006 } 1007 1008 gbrSimplex.removeLastEquality(); 1009 i--; 1010 continue; 1011 } 1012 1013 // Invalidate duals since the higher level needs to recompute its own duals. 1014 dual.clear(); 1015 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1016 i++; 1017 } 1018 } 1019 1020 /// Search for an integer sample point using a branch and bound algorithm. 1021 /// 1022 /// Each row in the basis matrix is a vector, and the set of basis vectors 1023 /// should span the space. Initially this is the identity matrix, 1024 /// i.e., the basis vectors are just the variables. 1025 /// 1026 /// In every level, a value is assigned to the level-th basis vector, as 1027 /// follows. Compute the minimum and maximum rational values of this direction. 1028 /// If only one integer point lies in this range, constrain the variable to 1029 /// have this value and recurse to the next variable. 1030 /// 1031 /// If the range has multiple values, perform generalized basis reduction via 1032 /// reduceBasis and then compute the bounds again. Now we try constraining 1033 /// this direction in the first value in this range and "recurse" to the next 1034 /// level. If we fail to find a sample, we try assigning the direction the next 1035 /// value in this range, and so on. 1036 /// 1037 /// If no integer sample is found from any of the assignments, or if the range 1038 /// contains no integer value, then of course the polytope is empty for the 1039 /// current assignment of the values in previous levels, so we return to 1040 /// the previous level. 1041 /// 1042 /// If we reach the last level where all the variables have been assigned values 1043 /// already, then we simply return the current sample point if it is integral, 1044 /// and go back to the previous level otherwise. 1045 /// 1046 /// To avoid potentially arbitrarily large recursion depths leading to stack 1047 /// overflows, this algorithm is implemented iteratively. 1048 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1049 if (empty) 1050 return {}; 1051 1052 unsigned nDims = var.size(); 1053 Matrix basis = Matrix::identity(nDims); 1054 1055 unsigned level = 0; 1056 // The snapshot just before constraining a direction to a value at each level. 1057 SmallVector<unsigned, 8> snapshotStack; 1058 // The maximum value in the range of the direction for each level. 1059 SmallVector<int64_t, 8> upperBoundStack; 1060 // The next value to try constraining the basis vector to at each level. 1061 SmallVector<int64_t, 8> nextValueStack; 1062 1063 snapshotStack.reserve(basis.getNumRows()); 1064 upperBoundStack.reserve(basis.getNumRows()); 1065 nextValueStack.reserve(basis.getNumRows()); 1066 while (level != -1u) { 1067 if (level == basis.getNumRows()) { 1068 // We've assigned values to all variables. Return if we have a sample, 1069 // or go back up to the previous level otherwise. 1070 if (auto maybeSample = getSamplePointIfIntegral()) 1071 return maybeSample; 1072 level--; 1073 continue; 1074 } 1075 1076 if (level >= upperBoundStack.size()) { 1077 // We haven't populated the stack values for this level yet, so we have 1078 // just come down a level ("recursed"). Find the lower and upper bounds. 1079 // If there is more than one integer point in the range, perform 1080 // generalized basis reduction. 1081 SmallVector<int64_t, 8> basisCoeffs = 1082 llvm::to_vector<8>(basis.getRow(level)); 1083 basisCoeffs.push_back(0); 1084 1085 int64_t minRoundedUp, maxRoundedDown; 1086 std::tie(minRoundedUp, maxRoundedDown) = 1087 computeIntegerBounds(basisCoeffs); 1088 1089 // Heuristic: if the sample point is integral at this point, just return 1090 // it. 1091 if (auto maybeSample = getSamplePointIfIntegral()) 1092 return *maybeSample; 1093 1094 if (minRoundedUp < maxRoundedDown) { 1095 reduceBasis(basis, level); 1096 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1097 basisCoeffs.push_back(0); 1098 std::tie(minRoundedUp, maxRoundedDown) = 1099 computeIntegerBounds(basisCoeffs); 1100 } 1101 1102 snapshotStack.push_back(getSnapshot()); 1103 // The smallest value in the range is the next value to try. 1104 nextValueStack.push_back(minRoundedUp); 1105 upperBoundStack.push_back(maxRoundedDown); 1106 } 1107 1108 assert((snapshotStack.size() - 1 == level && 1109 nextValueStack.size() - 1 == level && 1110 upperBoundStack.size() - 1 == level) && 1111 "Mismatched variable stack sizes!"); 1112 1113 // Whether we "recursed" or "returned" from a lower level, we rollback 1114 // to the snapshot of the starting state at this level. (in the "recursed" 1115 // case this has no effect) 1116 rollback(snapshotStack.back()); 1117 int64_t nextValue = nextValueStack.back(); 1118 nextValueStack.back()++; 1119 if (nextValue > upperBoundStack.back()) { 1120 // We have exhausted the range and found no solution. Pop the stack and 1121 // return up a level. 1122 snapshotStack.pop_back(); 1123 nextValueStack.pop_back(); 1124 upperBoundStack.pop_back(); 1125 level--; 1126 continue; 1127 } 1128 1129 // Try the next value in the range and "recurse" into the next level. 1130 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1131 basis.getRow(level).end()); 1132 basisCoeffs.push_back(-nextValue); 1133 addEquality(basisCoeffs); 1134 level++; 1135 } 1136 1137 return {}; 1138 } 1139 1140 /// Compute the minimum and maximum integer values the expression can take. We 1141 /// compute each separately. 1142 std::pair<int64_t, int64_t> 1143 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1144 int64_t minRoundedUp; 1145 if (Optional<Fraction> maybeMin = 1146 computeOptimum(Simplex::Direction::Down, coeffs)) 1147 minRoundedUp = ceil(*maybeMin); 1148 else 1149 llvm_unreachable("Tableau should not be unbounded"); 1150 1151 int64_t maxRoundedDown; 1152 if (Optional<Fraction> maybeMax = 1153 computeOptimum(Simplex::Direction::Up, coeffs)) 1154 maxRoundedDown = floor(*maybeMax); 1155 else 1156 llvm_unreachable("Tableau should not be unbounded"); 1157 1158 return {minRoundedUp, maxRoundedDown}; 1159 } 1160 1161 void Simplex::print(raw_ostream &os) const { 1162 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1163 if (empty) 1164 os << "Simplex marked empty!\n"; 1165 os << "var: "; 1166 for (unsigned i = 0; i < var.size(); ++i) { 1167 if (i > 0) 1168 os << ", "; 1169 var[i].print(os); 1170 } 1171 os << "\ncon: "; 1172 for (unsigned i = 0; i < con.size(); ++i) { 1173 if (i > 0) 1174 os << ", "; 1175 con[i].print(os); 1176 } 1177 os << '\n'; 1178 for (unsigned row = 0; row < nRow; ++row) { 1179 if (row > 0) 1180 os << ", "; 1181 os << "r" << row << ": " << rowUnknown[row]; 1182 } 1183 os << '\n'; 1184 os << "c0: denom, c1: const"; 1185 for (unsigned col = 2; col < nCol; ++col) 1186 os << ", c" << col << ": " << colUnknown[col]; 1187 os << '\n'; 1188 for (unsigned row = 0; row < nRow; ++row) { 1189 for (unsigned col = 0; col < nCol; ++col) 1190 os << tableau(row, col) << '\t'; 1191 os << '\n'; 1192 } 1193 os << '\n'; 1194 } 1195 1196 void Simplex::dump() const { print(llvm::errs()); } 1197 1198 } // namespace mlir 1199