1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/Support/Compiler.h"
14 
15 using namespace mlir;
16 using namespace presburger;
17 
18 using Direction = Simplex::Direction;
19 
20 const int nullIndex = std::numeric_limits<int>::max();
21 
22 // Return a + scale*b;
23 LLVM_ATTRIBUTE_UNUSED
24 static SmallVector<int64_t, 8>
25 scaleAndAddForAssert(ArrayRef<int64_t> a, int64_t scale, ArrayRef<int64_t> b) {
26   assert(a.size() == b.size());
27   SmallVector<int64_t, 8> res;
28   res.reserve(a.size());
29   for (unsigned i = 0, e = a.size(); i < e; ++i)
30     res.push_back(a[i] + scale * b[i]);
31   return res;
32 }
33 
34 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, unsigned symbolOffset,
35                          unsigned nSymbol)
36     : usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar),
37       nRedundant(0), nSymbol(nSymbol), tableau(0, nCol), empty(false) {
38   assert(symbolOffset + nSymbol <= nVar);
39 
40   colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
41   for (unsigned i = 0; i < nVar; ++i) {
42     var.emplace_back(Orientation::Column, /*restricted=*/false,
43                      /*pos=*/getNumFixedCols() + i);
44     colUnknown.push_back(i);
45   }
46 
47   // Move the symbols to be in columns [3, 3 + nSymbol).
48   for (unsigned i = 0; i < nSymbol; ++i) {
49     var[symbolOffset + i].isSymbol = true;
50     swapColumns(var[symbolOffset + i].pos, getNumFixedCols() + i);
51   }
52 }
53 
54 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
55   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
56   return index >= 0 ? var[index] : con[~index];
57 }
58 
59 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
60   assert(col < nCol && "Invalid column");
61   return unknownFromIndex(colUnknown[col]);
62 }
63 
64 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
65   assert(row < nRow && "Invalid row");
66   return unknownFromIndex(rowUnknown[row]);
67 }
68 
69 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
70   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
71   return index >= 0 ? var[index] : con[~index];
72 }
73 
74 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
75   assert(col < nCol && "Invalid column");
76   return unknownFromIndex(colUnknown[col]);
77 }
78 
79 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
80   assert(row < nRow && "Invalid row");
81   return unknownFromIndex(rowUnknown[row]);
82 }
83 
84 unsigned SimplexBase::addZeroRow(bool makeRestricted) {
85   ++nRow;
86   // If the tableau is not big enough to accomodate the extra row, we extend it.
87   if (nRow >= tableau.getNumRows())
88     tableau.resizeVertically(nRow);
89   rowUnknown.push_back(~con.size());
90   con.emplace_back(Orientation::Row, makeRestricted, nRow - 1);
91   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
92 
93   // Zero out the new row.
94   tableau.fillRow(nRow - 1, 0);
95 
96   tableau(nRow - 1, 0) = 1;
97   return con.size() - 1;
98 }
99 
100 /// Add a new row to the tableau corresponding to the given constant term and
101 /// list of coefficients. The coefficients are specified as a vector of
102 /// (variable index, coefficient) pairs.
103 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
104   assert(coeffs.size() == var.size() + 1 &&
105          "Incorrect number of coefficients!");
106 
107   addZeroRow(makeRestricted);
108   tableau(nRow - 1, 1) = coeffs.back();
109   if (usingBigM) {
110     // When the lexicographic pivot rule is used, instead of the variables
111     //
112     // x, y, z ...
113     //
114     // we internally use the variables
115     //
116     // M, M + x, M + y, M + z, ...
117     //
118     // where M is the big M parameter. As such, when the user tries to add
119     // a row ax + by + cz + d, we express it in terms of our internal variables
120     // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
121     //
122     // Symbols don't use the big M parameter since they do not get lex
123     // optimized.
124     int64_t bigMCoeff = 0;
125     for (unsigned i = 0; i < coeffs.size() - 1; ++i)
126       if (!var[i].isSymbol)
127         bigMCoeff -= coeffs[i];
128     // The coefficient to the big M parameter is stored in column 2.
129     tableau(nRow - 1, 2) = bigMCoeff;
130   }
131 
132   // Process each given variable coefficient.
133   for (unsigned i = 0; i < var.size(); ++i) {
134     unsigned pos = var[i].pos;
135     if (coeffs[i] == 0)
136       continue;
137 
138     if (var[i].orientation == Orientation::Column) {
139       // If a variable is in column position at column col, then we just add the
140       // coefficient for that variable (scaled by the common row denominator) to
141       // the corresponding entry in the new row.
142       tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
143       continue;
144     }
145 
146     // If the variable is in row position, we need to add that row to the new
147     // row, scaled by the coefficient for the variable, accounting for the two
148     // rows potentially having different denominators. The new denominator is
149     // the lcm of the two.
150     int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
151     int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
152     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
153     tableau(nRow - 1, 0) = lcm;
154     for (unsigned col = 1; col < nCol; ++col)
155       tableau(nRow - 1, col) =
156           nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
157   }
158 
159   normalizeRow(nRow - 1);
160   // Push to undo log along with the index of the new constraint.
161   return con.size() - 1;
162 }
163 
164 /// Normalize the row by removing factors that are common between the
165 /// denominator and all the numerator coefficients.
166 void SimplexBase::normalizeRow(unsigned row) {
167   int64_t gcd = 0;
168   for (unsigned col = 0; col < nCol; ++col) {
169     gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
170     // If the gcd becomes 1 then the row is already normalized.
171     if (gcd == 1)
172       return;
173   }
174 
175   // Note that the gcd can never become zero since the first element of the row,
176   // the denominator, is non-zero.
177   assert(gcd != 0);
178   for (unsigned col = 0; col < nCol; ++col)
179     tableau(row, col) /= gcd;
180 }
181 
182 namespace {
183 bool signMatchesDirection(int64_t elem, Direction direction) {
184   assert(elem != 0 && "elem should not be 0");
185   return direction == Direction::Up ? elem > 0 : elem < 0;
186 }
187 
188 Direction flippedDirection(Direction direction) {
189   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
190 }
191 } // namespace
192 
193 /// We simply make the tableau consistent while maintaining a lexicopositive
194 /// basis transform, and then return the sample value. If the tableau becomes
195 /// empty, we return empty.
196 ///
197 /// Let the variables be x = (x_1, ... x_n).
198 /// Let the basis unknowns be y = (y_1, ... y_n).
199 /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
200 ///
201 /// As we will show below, A*y is either zero or lexicopositive.
202 /// Adding a lexicopositive vector to b will make it lexicographically
203 /// greater, so A*y + b is always equal to or lexicographically greater than b.
204 /// Thus, since we can attain x = b, that is the lexicographic minimum.
205 ///
206 /// We have that that every column in A is lexicopositive, i.e., has at least
207 /// one non-zero element, with the first such element being positive. Since for
208 /// the tableau to be consistent we must have non-negative sample values not
209 /// only for the constraints but also for the variables, we also have x >= 0 and
210 /// y >= 0, by which we mean every element in these vectors is non-negative.
211 ///
212 /// Proof that if every column in A is lexicopositive, and y >= 0, then
213 /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
214 /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
215 /// row. If we run out of rows, A*y is zero and we are done; otherwise, we
216 /// encounter some row A_i that has a non-zero element. Every column is
217 /// lexicopositive and so has some positive element before any negative elements
218 /// occur, so the element in this row for any column, if non-zero, must be
219 /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
220 /// non-negative, so if this is non-zero then it must be positive. Then the
221 /// first non-zero element of A*y is positive so A*y is lexicopositive.
222 ///
223 /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
224 /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
225 /// and we can completely ignore these columns of A. We now continue downwards,
226 /// looking for rows of A that have a non-zero element other than in the ignored
227 /// columns. If we find one, say A_k, once again these elements must be positive
228 /// since they are the first non-zero element in each of these columns, so if
229 /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
230 /// add these to the set of ignored columns and continue to the next row. If we
231 /// run out of rows, then A*y is zero and we are done.
232 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
233   if (restoreRationalConsistency().failed())
234     return OptimumKind::Empty;
235   return getRationalSample();
236 }
237 
238 /// Given a row that has a non-integer sample value, add an inequality such
239 /// that this fractional sample value is cut away from the polytope. The added
240 /// inequality will be such that no integer points are removed. i.e., the
241 /// integer lexmin, if it exists, is the same with and without this constraint.
242 ///
243 /// Let the row be
244 /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
245 /// where s_1, ... s_m are the symbols and
246 ///       y_1, ... y_n are the other basis unknowns.
247 ///
248 /// For this to be an integer, we want
249 /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
250 /// Note that this constraint must always hold, independent of the basis,
251 /// becuse the row unknown's value always equals this expression, even if *we*
252 /// later compute the sample value from a different expression based on a
253 /// different basis.
254 ///
255 /// Let us assume that M has a factor of d in it. Imposing this constraint on M
256 /// does not in any way hinder us from finding a value of M that is big enough.
257 /// Moreover, this function is only called when the symbolic part of the sample,
258 /// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
259 ///
260 /// Also, we can safely reduce the coefficients modulo d, so we have:
261 ///
262 /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
263 ///
264 /// Note that all coefficient modulos here are non-negative. Also, all the
265 /// unknowns are non-negative here as both constraints and variables are
266 /// non-negative in LexSimplexBase. (We used the big M trick to make the
267 /// variables non-negative). Therefore, the LHS here is non-negative.
268 /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
269 /// is therefore non-negative as well.
270 ///
271 /// So we have
272 /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
273 ///
274 /// The constraint is violated when added (it would be useless otherwise)
275 /// so we immediately try to move it to a column.
276 LogicalResult LexSimplexBase::addCut(unsigned row) {
277   int64_t d = tableau(row, 0);
278   addZeroRow(/*makeRestricted=*/true);
279   tableau(nRow - 1, 0) = d;
280   tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -c%d.
281   tableau(nRow - 1, 2) = 0;
282   for (unsigned col = 3 + nSymbol; col < nCol; ++col)
283     tableau(nRow - 1, col) = mod(tableau(row, col), d); // b_i%d.
284   return moveRowUnknownToColumn(nRow - 1);
285 }
286 
287 Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
288   for (const Unknown &u : var) {
289     if (u.orientation == Orientation::Column)
290       continue;
291     // If the sample value is of the form (a/d)M + b/d, we need b to be
292     // divisible by d. We assume M contains all possible
293     // factors and is divisible by everything.
294     unsigned row = u.pos;
295     if (tableau(row, 1) % tableau(row, 0) != 0)
296       return row;
297   }
298   return {};
299 }
300 
301 MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
302   // We first try to make the tableau consistent.
303   if (restoreRationalConsistency().failed())
304     return OptimumKind::Empty;
305 
306   // Then, if the sample value is integral, we are done.
307   while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
308     // Otherwise, for the variable whose row has a non-integral sample value,
309     // we add a cut, a constraint that remove this rational point
310     // while preserving all integer points, thus keeping the lexmin the same.
311     // We then again try to make the tableau with the new constraint
312     // consistent. This continues until the tableau becomes empty, in which
313     // case there is no integer point, or until there are no variables with
314     // non-integral sample values.
315     //
316     // Failure indicates that the tableau became empty, which occurs when the
317     // polytope is integer empty.
318     if (addCut(*maybeRow).failed())
319       return OptimumKind::Empty;
320     if (restoreRationalConsistency().failed())
321       return OptimumKind::Empty;
322   }
323 
324   MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
325   assert(!sample.isEmpty() && "If we reached here the sample should exist!");
326   if (sample.isUnbounded())
327     return OptimumKind::Unbounded;
328   return llvm::to_vector<8>(
329       llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
330 }
331 
332 bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
333   SimplexRollbackScopeExit scopeExit(*this);
334   addInequality(coeffs);
335   return findIntegerLexMin().isEmpty();
336 }
337 
338 bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
339   return isSeparateInequality(getComplementIneq(coeffs));
340 }
341 
342 SmallVector<int64_t, 8>
343 SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
344   SmallVector<int64_t, 8> sample;
345   sample.reserve(nSymbol + 1);
346   for (unsigned col = 3; col < 3 + nSymbol; ++col)
347     sample.push_back(tableau(row, col));
348   sample.push_back(tableau(row, 1));
349   return sample;
350 }
351 
352 void LexSimplexBase::appendSymbol() {
353   appendVariable();
354   swapColumns(3 + nSymbol, nCol - 1);
355   var.back().isSymbol = true;
356   nSymbol++;
357 }
358 
359 static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) {
360   assert(divisor > 0 && "divisor must be positive!");
361   return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; });
362 }
363 
364 bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
365   int64_t denom = tableau(row, 0);
366   return tableau(row, 1) % denom == 0 &&
367          isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
368 }
369 
370 /// This proceeds similarly to LexSimplex::addCut(). We are given a row that has
371 /// a symbolic sample value with fractional coefficients.
372 ///
373 /// Let the row be
374 /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
375 /// where s_1, ... s_m are the symbols and
376 ///       y_1, ... y_n are the other basis unknowns.
377 ///
378 /// As in LexSimplex::addCut, for this to be an integer, we want
379 ///
380 /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
381 ///
382 /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
383 ///
384 /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
385 ///
386 /// where we take a modulo of the whole symbolic expression on the right to
387 /// bring it into the range [0, d - 1]. Therefore, as in LexSimplex::addCut,
388 /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
389 /// k >= 0 as well. We realize the modulo of the symbolic expression by adding a
390 /// division variable
391 ///
392 /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
393 ///
394 /// to the symbol domain, so the equality becomes
395 ///
396 /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
397 ///
398 /// So the cut is
399 /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
400 /// This constraint is violated when added so we immediately try to move it to a
401 /// column.
402 LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
403   int64_t d = tableau(row, 0);
404 
405   // Add the division variable `q` described above to the symbol domain.
406   // q = ((-c%d) + sum_i (-a_i%d)s_i)/d.
407   SmallVector<int64_t, 8> domainDivCoeffs;
408   domainDivCoeffs.reserve(nSymbol + 1);
409   for (unsigned col = 3; col < 3 + nSymbol; ++col)
410     domainDivCoeffs.push_back(mod(-tableau(row, col), d)); // (-a_i%d)s_i
411   domainDivCoeffs.push_back(mod(-tableau(row, 1), d));     // -c%d.
412 
413   domainSimplex.addDivisionVariable(domainDivCoeffs, d);
414   domainPoly.addLocalFloorDiv(domainDivCoeffs, d);
415 
416   // Update `this` to account for the additional symbol we just added.
417   appendSymbol();
418 
419   // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
420   addZeroRow(/*makeRestricted=*/true);
421   tableau(nRow - 1, 0) = d;
422   tableau(nRow - 1, 2) = 0;
423 
424   tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
425   for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
426     tableau(nRow - 1, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
427   tableau(nRow - 1, 3 + nSymbol - 1) = d;                 // q*d.
428 
429   for (unsigned col = 3 + nSymbol; col < nCol; ++col)
430     tableau(nRow - 1, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
431   return moveRowUnknownToColumn(nRow - 1);
432 }
433 
434 void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
435   Matrix output(0, domainPoly.getNumIds() + 1);
436   output.reserveRows(result.lexmin.getNumOutputs());
437   for (const Unknown &u : var) {
438     if (u.isSymbol)
439       continue;
440 
441     if (u.orientation == Orientation::Column) {
442       // M + u has a sample value of zero so u has a sample value of -M, i.e,
443       // unbounded.
444       result.unboundedDomain.unionInPlace(domainPoly);
445       return;
446     }
447 
448     int64_t denom = tableau(u.pos, 0);
449     if (tableau(u.pos, 2) < denom) {
450       // M + u has a sample value of fM + something, where f < 1, so
451       // u = (f - 1)M + something, which has a negative coefficient for M,
452       // and so is unbounded.
453       result.unboundedDomain.unionInPlace(domainPoly);
454       return;
455     }
456     assert(tableau(u.pos, 2) == denom &&
457            "Coefficient of M should not be greater than 1!");
458 
459     SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos);
460     for (int64_t &elem : sample) {
461       assert(elem % denom == 0 && "coefficients must be integral!");
462       elem /= denom;
463     }
464     output.appendExtraRow(sample);
465   }
466   result.lexmin.addPiece(domainPoly, output);
467 }
468 
469 Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
470   // First look for rows that are clearly violated just from the big M
471   // coefficient, without needing to perform any simplex queries on the domain.
472   for (unsigned row = 0; row < nRow; ++row)
473     if (tableau(row, 2) < 0)
474       return row;
475 
476   for (unsigned row = 0; row < nRow; ++row) {
477     if (tableau(row, 2) > 0)
478       continue;
479     if (domainSimplex.isSeparateInequality(getSymbolicSampleNumerator(row))) {
480       // Sample numerator always takes negative values in the symbol domain.
481       return row;
482     }
483   }
484   return {};
485 }
486 
487 Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
488   for (const Unknown &u : var) {
489     if (u.orientation == Orientation::Column)
490       continue;
491     assert(!u.isSymbol && "Symbol should not be in row orientation!");
492     if (!isSymbolicSampleIntegral(u.pos))
493       return u.pos;
494   }
495   return {};
496 }
497 
498 /// The non-branching pivots are just the ones moving the rows
499 /// that are always violated in the symbol domain.
500 LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
501   while (Optional<unsigned> row = maybeGetAlwaysViolatedRow())
502     if (moveRowUnknownToColumn(*row).failed())
503       return failure();
504   return success();
505 }
506 
507 SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
508   SymbolicLexMin result(nSymbol, var.size() - nSymbol);
509 
510   /// The algorithm is more naturally expressed recursively, but we implement
511   /// it iteratively here to avoid potential issues with stack overflows in the
512   /// compiler. We explicitly maintain the stack frames in a vector.
513   ///
514   /// To "recurse", we store the current "stack frame", i.e., state variables
515   /// that we will need when we "return", into `stack`, increment `level`, and
516   /// `continue`. To "tail recurse", we just `continue`.
517   /// To "return", we decrement `level` and `continue`.
518   ///
519   /// When there is no stack frame for the current `level`, this indicates that
520   /// we have just "recursed" or "tail recursed". When there does exist one,
521   /// this indicates that we have just "returned" from recursing. There is only
522   /// one point at which non-tail calls occur so we always "return" there.
523   unsigned level = 1;
524   struct StackFrame {
525     int splitIndex;
526     unsigned snapshot;
527     unsigned domainSnapshot;
528     IntegerRelation::CountsSnapshot domainPolyCounts;
529   };
530   SmallVector<StackFrame, 8> stack;
531 
532   while (level > 0) {
533     assert(level >= stack.size());
534     if (level > stack.size()) {
535       if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
536         // No integer points; return.
537         --level;
538         continue;
539       }
540 
541       if (doNonBranchingPivots().failed()) {
542         // Could not find pivots for violated constraints; return.
543         --level;
544         continue;
545       }
546 
547       unsigned splitRow;
548       SmallVector<int64_t, 8> symbolicSample;
549       for (splitRow = 0; splitRow < nRow; ++splitRow) {
550         if (tableau(splitRow, 2) > 0)
551           continue;
552         assert(tableau(splitRow, 2) == 0 &&
553                "Non-branching pivots should have been handled already!");
554 
555         symbolicSample = getSymbolicSampleNumerator(splitRow);
556         if (domainSimplex.isRedundantInequality(symbolicSample))
557           continue;
558 
559         // It's neither redundant nor separate, so it takes both positive and
560         // negative values, and hence constitutes a row for which we need to
561         // split the domain and separately run each case.
562         assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
563                "Non-branching pivots should have been handled already!");
564         break;
565       }
566 
567       if (splitRow < nRow) {
568         unsigned domainSnapshot = domainSimplex.getSnapshot();
569         IntegerRelation::CountsSnapshot domainPolyCounts =
570             domainPoly.getCounts();
571 
572         // First, we consider the part of the domain where the row is not
573         // violated. We don't have to do any pivots for the row in this case,
574         // but we record the additional constraint that defines this part of
575         // the domain.
576         domainSimplex.addInequality(symbolicSample);
577         domainPoly.addInequality(symbolicSample);
578 
579         // Recurse.
580         //
581         // On return, the basis as a set is preserved but not the internal
582         // ordering within rows or columns. Thus, we take note of the index of
583         // the Unknown that caused the split, which may be in a different
584         // row when we come back from recursing. We will need this to recurse
585         // on the other part of the split domain, where the row is violated.
586         //
587         // Note that we have to capture the index above and not a reference to
588         // the Unknown itself, since the array it lives in might get
589         // reallocated.
590         int splitIndex = rowUnknown[splitRow];
591         unsigned snapshot = getSnapshot();
592         stack.push_back(
593             {splitIndex, snapshot, domainSnapshot, domainPolyCounts});
594         ++level;
595         continue;
596       }
597 
598       // The tableau is rationally consistent for the current domain.
599       // Now we look for non-integral sample values and add cuts for them.
600       if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) {
601         if (addSymbolicCut(*row).failed()) {
602           // No integral points; return.
603           --level;
604           continue;
605         }
606 
607         // Rerun this level with the added cut constraint (tail recurse).
608         continue;
609       }
610 
611       // Record output and return.
612       recordOutput(result);
613       --level;
614       continue;
615     }
616 
617     if (level == stack.size()) {
618       // We have "returned" from "recursing".
619       const StackFrame &frame = stack.back();
620       domainPoly.truncate(frame.domainPolyCounts);
621       domainSimplex.rollback(frame.domainSnapshot);
622       rollback(frame.snapshot);
623       const Unknown &u = unknownFromIndex(frame.splitIndex);
624 
625       // Drop the frame. We don't need it anymore.
626       stack.pop_back();
627 
628       // Now we consider the part of the domain where the unknown `splitIndex`
629       // was negative.
630       assert(u.orientation == Orientation::Row &&
631              "The split row should have been returned to row orientation!");
632       SmallVector<int64_t, 8> splitIneq =
633           getComplementIneq(getSymbolicSampleNumerator(u.pos));
634       if (moveRowUnknownToColumn(u.pos).failed()) {
635         // The unknown can't be made non-negative; return.
636         --level;
637         continue;
638       }
639 
640       // The unknown can be made negative; recurse with the corresponding domain
641       // constraints.
642       domainSimplex.addInequality(splitIneq);
643       domainPoly.addInequality(splitIneq);
644 
645       // We are now taking care of the second half of the domain and we don't
646       // need to do anything else here after returning, so it's a tail recurse.
647       continue;
648     }
649   }
650 
651   return result;
652 }
653 
654 bool LexSimplex::rowIsViolated(unsigned row) const {
655   if (tableau(row, 2) < 0)
656     return true;
657   if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
658     return true;
659   return false;
660 }
661 
662 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
663   for (unsigned row = 0; row < nRow; ++row)
664     if (rowIsViolated(row))
665       return row;
666   return {};
667 }
668 
669 /// We simply look for violated rows and keep trying to move them to column
670 /// orientation, which always succeeds unless the constraints have no solution
671 /// in which case we just give up and return.
672 LogicalResult LexSimplex::restoreRationalConsistency() {
673   if (empty)
674     return failure();
675   while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
676     if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
677       return failure();
678   return success();
679 }
680 
681 // Move the row unknown to column orientation while preserving lexicopositivity
682 // of the basis transform. The sample value of the row must be negative.
683 //
684 // We only consider pivots where the pivot element is positive. Suppose no such
685 // pivot exists, i.e., some violated row has no positive coefficient for any
686 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
687 // where d is the denominator, s is the sample value and the c_i are the basis
688 // coefficients. Since any feasible assignment of the basis satisfies u_i >= 0
689 // for all i, and we have s < 0 as well as c_i < 0 for all i, any feasible
690 // assignment would violate this row and therefore the constraints have no
691 // solution.
692 //
693 // We can preserve lexicopositivity by picking the pivot column with positive
694 // pivot element that makes the lexicographically smallest change to the sample
695 // point.
696 //
697 // Proof. Let
698 // x = (x_1, ... x_n) be the variables,
699 // z = (z_1, ... z_m) be the constraints,
700 // y = (y_1, ... y_n) be the current basis, and
701 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
702 // B is basically the simplex tableau of our implementation except that instead
703 // of only describing the transform to get back the non-basis unknowns, it
704 // defines the values of all the unknowns in terms of the basis unknowns.
705 // Similarly, s is the column for the sample value.
706 //
707 // Our goal is to show that each column in B, restricted to the first n
708 // rows, is lexicopositive after the pivot if it is so before. This is
709 // equivalent to saying the columns in the whole matrix are lexicopositive;
710 // there must be some non-zero element in every column in the first n rows since
711 // the n variables cannot be spanned without using all the n basis unknowns.
712 //
713 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
714 // transform for the tableau derived for SimplexBase::pivot:
715 //
716 //            pivot col    other col                   pivot col    other col
717 // pivot row     a             b       ->   pivot row     1/a         -b/a
718 // other row     c             d            other row     c/a        d - bc/a
719 //
720 // Similarly, a pivot results in B changing to B' and c to c'; the difference
721 // between the tableau and these matrices B and B' is that there is no special
722 // case for the pivot row, since it continues to represent the same unknown. The
723 // same formula applies for all rows:
724 //
725 // B'.col(j) = B.col(j) / B(i,j)
726 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
727 // and similarly, s' = s - s_i * B.col(j) / B(i,j).
728 //
729 // Since the row is violated, we have s_i < 0, so the change in sample value
730 // when pivoting with column a is lexicographically smaller than that when
731 // pivoting with column b iff B.col(a) / B(i, a) is lexicographically smaller
732 // than B.col(b) / B(i, b).
733 //
734 // Since B(i, j) > 0, column j remains lexicopositive.
735 //
736 // For the other columns, suppose C.col(k) is not lexicopositive.
737 // This means that for some p, for all t < p,
738 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
739 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
740 // which is in contradiction to the fact that B.col(j) / B(i,j) must be
741 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
742 // minimizes the change in sample value.
743 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
744   Optional<unsigned> maybeColumn;
745   for (unsigned col = 3 + nSymbol; col < nCol; ++col) {
746     if (tableau(row, col) <= 0)
747       continue;
748     maybeColumn =
749         !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
750   }
751 
752   if (!maybeColumn) {
753     markEmpty();
754     return failure();
755   }
756 
757   pivot(row, *maybeColumn);
758   return success();
759 }
760 
761 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
762                                               unsigned colB) const {
763   // First, let's consider the non-symbolic case.
764   // A pivot causes the following change. (in the diagram the matrix elements
765   // are shown as rationals and there is no common denominator used)
766   //
767   //            pivot col    big M col      const col
768   // pivot row     a            p               b
769   // other row     c            q               d
770   //                        |
771   //                        v
772   //
773   //            pivot col    big M col      const col
774   // pivot row     1/a         -p/a           -b/a
775   // other row     c/a        q - pc/a       d - bc/a
776   //
777   // Let the sample value of the pivot row be s = pM + b before the pivot. Since
778   // the pivot row represents a violated constraint we know that s < 0.
779   //
780   // If the variable is a non-pivot column, its sample value is zero before and
781   // after the pivot.
782   //
783   // If the variable is the pivot column, then its sample value goes from 0 to
784   // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
785   // value is -s/a.
786   //
787   // If the variable is the pivot row, its sample value goes from s to 0, for a
788   // change of -s.
789   //
790   // If the variable is a non-pivot row, its sample value changes from
791   // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
792   // is -(pM + b)(c/a) = -sc/a.
793   //
794   // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
795   // fixed for all calls to this function since the row and tableau are fixed.
796   // The callee just wants to compare the return values with the return value of
797   // other invocations of the same function. So the -s is common for all
798   // comparisons involved and can be ignored, since -s is strictly positive.
799   //
800   // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
801   // appropriate. This allows us to run the entire algorithm treating M
802   // symbolically, as the pivot to be performed does not depend on the value
803   // of M, so long as the sample value s is negative. Note that this is not
804   // because of any special feature of M; by the same argument, we ignore the
805   // symbols too. The caller ensure that the sample value s is negative for
806   // all possible values of the symbols.
807   auto getSampleChangeCoeffForVar = [this, row](unsigned col,
808                                                 const Unknown &u) -> Fraction {
809     int64_t a = tableau(row, col);
810     if (u.orientation == Orientation::Column) {
811       // Pivot column case.
812       if (u.pos == col)
813         return {1, a};
814 
815       // Non-pivot column case.
816       return {0, 1};
817     }
818 
819     // Pivot row case.
820     if (u.pos == row)
821       return {1, 1};
822 
823     // Non-pivot row case.
824     int64_t c = tableau(u.pos, col);
825     return {c, a};
826   };
827 
828   for (const Unknown &u : var) {
829     Fraction changeA = getSampleChangeCoeffForVar(colA, u);
830     Fraction changeB = getSampleChangeCoeffForVar(colB, u);
831     if (changeA < changeB)
832       return colA;
833     if (changeA > changeB)
834       return colB;
835   }
836 
837   // If we reached here, both result in exactly the same changes, so it
838   // doesn't matter which we return.
839   return colA;
840 }
841 
842 /// Find a pivot to change the sample value of the row in the specified
843 /// direction. The returned pivot row will involve `row` if and only if the
844 /// unknown is unbounded in the specified direction.
845 ///
846 /// To increase (resp. decrease) the value of a row, we need to find a live
847 /// column with a non-zero coefficient. If the coefficient is positive, we need
848 /// to increase (decrease) the value of the column, and if the coefficient is
849 /// negative, we need to decrease (increase) the value of the column. Also,
850 /// we cannot decrease the sample value of restricted columns.
851 ///
852 /// If multiple columns are valid, we break ties by considering a lexicographic
853 /// ordering where we prefer unknowns with lower index.
854 Optional<SimplexBase::Pivot> Simplex::findPivot(int row,
855                                                 Direction direction) const {
856   Optional<unsigned> col;
857   for (unsigned j = 2; j < nCol; ++j) {
858     int64_t elem = tableau(row, j);
859     if (elem == 0)
860       continue;
861 
862     if (unknownFromColumn(j).restricted &&
863         !signMatchesDirection(elem, direction))
864       continue;
865     if (!col || colUnknown[j] < colUnknown[*col])
866       col = j;
867   }
868 
869   if (!col)
870     return {};
871 
872   Direction newDirection =
873       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
874   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
875   return Pivot{maybePivotRow.getValueOr(row), *col};
876 }
877 
878 /// Swap the associated unknowns for the row and the column.
879 ///
880 /// First we swap the index associated with the row and column. Then we update
881 /// the unknowns to reflect their new position and orientation.
882 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
883   std::swap(rowUnknown[row], colUnknown[col]);
884   Unknown &uCol = unknownFromColumn(col);
885   Unknown &uRow = unknownFromRow(row);
886   uCol.orientation = Orientation::Column;
887   uRow.orientation = Orientation::Row;
888   uCol.pos = col;
889   uRow.pos = row;
890 }
891 
892 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
893 
894 /// Pivot pivotRow and pivotCol.
895 ///
896 /// Let R be the pivot row unknown and let C be the pivot col unknown.
897 /// Since initially R = a*C + sum b_i * X_i
898 /// (where the sum is over the other column's unknowns, x_i)
899 /// C = (R - (sum b_i * X_i))/a
900 ///
901 /// Let u be some other row unknown.
902 /// u = c*C + sum d_i * X_i
903 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
904 ///
905 /// This results in the following transform:
906 ///            pivot col    other col                   pivot col    other col
907 /// pivot row     a             b       ->   pivot row     1/a         -b/a
908 /// other row     c             d            other row     c/a        d - bc/a
909 ///
910 /// Taking into account the common denominators p and q:
911 ///
912 ///            pivot col    other col                    pivot col   other col
913 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
914 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
915 ///
916 /// The pivot row transform is accomplished be swapping a with the pivot row's
917 /// common denominator and negating the pivot row except for the pivot column
918 /// element.
919 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
920   assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
921   assert(!unknownFromColumn(pivotCol).isSymbol);
922 
923   swapRowWithCol(pivotRow, pivotCol);
924   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
925   // We need to negate the whole pivot row except for the pivot column.
926   if (tableau(pivotRow, 0) < 0) {
927     // If the denominator is negative, we negate the row by simply negating the
928     // denominator.
929     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
930     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
931   } else {
932     for (unsigned col = 1; col < nCol; ++col) {
933       if (col == pivotCol)
934         continue;
935       tableau(pivotRow, col) = -tableau(pivotRow, col);
936     }
937   }
938   normalizeRow(pivotRow);
939 
940   for (unsigned row = 0; row < nRow; ++row) {
941     if (row == pivotRow)
942       continue;
943     if (tableau(row, pivotCol) == 0) // Nothing to do.
944       continue;
945     tableau(row, 0) *= tableau(pivotRow, 0);
946     for (unsigned j = 1; j < nCol; ++j) {
947       if (j == pivotCol)
948         continue;
949       // Add rather than subtract because the pivot row has been negated.
950       tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
951                         tableau(row, pivotCol) * tableau(pivotRow, j);
952     }
953     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
954     normalizeRow(row);
955   }
956 }
957 
958 /// Perform pivots until the unknown has a non-negative sample value or until
959 /// no more upward pivots can be performed. Return success if we were able to
960 /// bring the row to a non-negative sample value, and failure otherwise.
961 LogicalResult Simplex::restoreRow(Unknown &u) {
962   assert(u.orientation == Orientation::Row &&
963          "unknown should be in row position");
964 
965   while (tableau(u.pos, 1) < 0) {
966     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
967     if (!maybePivot)
968       break;
969 
970     pivot(*maybePivot);
971     if (u.orientation == Orientation::Column)
972       return success(); // the unknown is unbounded above.
973   }
974   return success(tableau(u.pos, 1) >= 0);
975 }
976 
977 /// Find a row that can be used to pivot the column in the specified direction.
978 /// This returns an empty optional if and only if the column is unbounded in the
979 /// specified direction (ignoring skipRow, if skipRow is set).
980 ///
981 /// If skipRow is set, this row is not considered, and (if it is restricted) its
982 /// restriction may be violated by the returned pivot. Usually, skipRow is set
983 /// because we don't want to move it to column position unless it is unbounded,
984 /// and we are either trying to increase the value of skipRow or explicitly
985 /// trying to make skipRow negative, so we are not concerned about this.
986 ///
987 /// If the direction is up (resp. down) and a restricted row has a negative
988 /// (positive) coefficient for the column, then this row imposes a bound on how
989 /// much the sample value of the column can change. Such a row with constant
990 /// term c and coefficient f for the column imposes a bound of c/|f| on the
991 /// change in sample value (in the specified direction). (note that c is
992 /// non-negative here since the row is restricted and the tableau is consistent)
993 ///
994 /// We iterate through the rows and pick the row which imposes the most
995 /// stringent bound, since pivoting with a row changes the row's sample value to
996 /// 0 and hence saturates the bound it imposes. We break ties between rows that
997 /// impose the same bound by considering a lexicographic ordering where we
998 /// prefer unknowns with lower index value.
999 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
1000                                          Direction direction,
1001                                          unsigned col) const {
1002   Optional<unsigned> retRow;
1003   // Initialize these to zero in order to silence a warning about retElem and
1004   // retConst being used uninitialized in the initialization of `diff` below. In
1005   // reality, these are always initialized when that line is reached since these
1006   // are set whenever retRow is set.
1007   int64_t retElem = 0, retConst = 0;
1008   for (unsigned row = nRedundant; row < nRow; ++row) {
1009     if (skipRow && row == *skipRow)
1010       continue;
1011     int64_t elem = tableau(row, col);
1012     if (elem == 0)
1013       continue;
1014     if (!unknownFromRow(row).restricted)
1015       continue;
1016     if (signMatchesDirection(elem, direction))
1017       continue;
1018     int64_t constTerm = tableau(row, 1);
1019 
1020     if (!retRow) {
1021       retRow = row;
1022       retElem = elem;
1023       retConst = constTerm;
1024       continue;
1025     }
1026 
1027     int64_t diff = retConst * elem - constTerm * retElem;
1028     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1029         (diff != 0 && !signMatchesDirection(diff, direction))) {
1030       retRow = row;
1031       retElem = elem;
1032       retConst = constTerm;
1033     }
1034   }
1035   return retRow;
1036 }
1037 
1038 bool SimplexBase::isEmpty() const { return empty; }
1039 
1040 void SimplexBase::swapRows(unsigned i, unsigned j) {
1041   if (i == j)
1042     return;
1043   tableau.swapRows(i, j);
1044   std::swap(rowUnknown[i], rowUnknown[j]);
1045   unknownFromRow(i).pos = i;
1046   unknownFromRow(j).pos = j;
1047 }
1048 
1049 void SimplexBase::swapColumns(unsigned i, unsigned j) {
1050   assert(i < nCol && j < nCol && "Invalid columns provided!");
1051   if (i == j)
1052     return;
1053   tableau.swapColumns(i, j);
1054   std::swap(colUnknown[i], colUnknown[j]);
1055   unknownFromColumn(i).pos = i;
1056   unknownFromColumn(j).pos = j;
1057 }
1058 
1059 /// Mark this tableau empty and push an entry to the undo stack.
1060 void SimplexBase::markEmpty() {
1061   // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1062   // entry, since in that case the Simplex will be erroneously marked as
1063   // non-empty when rolling back past this point.
1064   if (empty)
1065     return;
1066   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
1067   empty = true;
1068 }
1069 
1070 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1071 /// is the current number of variables, then the corresponding inequality is
1072 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1073 ///
1074 /// We add the inequality and mark it as restricted. We then try to make its
1075 /// sample value non-negative. If this is not possible, the tableau has become
1076 /// empty and we mark it as such.
1077 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
1078   unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1079   LogicalResult result = restoreRow(con[conIndex]);
1080   if (failed(result))
1081     markEmpty();
1082 }
1083 
1084 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1085 /// is the current number of variables, then the corresponding equality is
1086 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1087 ///
1088 /// We simply add two opposing inequalities, which force the expression to
1089 /// be zero.
1090 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
1091   addInequality(coeffs);
1092   SmallVector<int64_t, 8> negatedCoeffs;
1093   for (int64_t coeff : coeffs)
1094     negatedCoeffs.emplace_back(-coeff);
1095   addInequality(negatedCoeffs);
1096 }
1097 
1098 unsigned SimplexBase::getNumVariables() const { return var.size(); }
1099 unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1100 
1101 /// Return a snapshot of the current state. This is just the current size of the
1102 /// undo log.
1103 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1104 
1105 unsigned SimplexBase::getSnapshotBasis() {
1106   SmallVector<int, 8> basis;
1107   for (int index : colUnknown) {
1108     if (index != nullIndex)
1109       basis.push_back(index);
1110   }
1111   savedBases.push_back(std::move(basis));
1112 
1113   undoLog.emplace_back(UndoLogEntry::RestoreBasis);
1114   return undoLog.size() - 1;
1115 }
1116 
1117 void SimplexBase::removeLastConstraintRowOrientation() {
1118   assert(con.back().orientation == Orientation::Row);
1119 
1120   // Move this unknown to the last row and remove the last row from the
1121   // tableau.
1122   swapRows(con.back().pos, nRow - 1);
1123   // It is not strictly necessary to shrink the tableau, but for now we
1124   // maintain the invariant that the tableau has exactly nRow rows.
1125   tableau.resizeVertically(nRow - 1);
1126   nRow--;
1127   rowUnknown.pop_back();
1128   con.pop_back();
1129 }
1130 
1131 // This doesn't find a pivot row only if the column has zero
1132 // coefficients for every row.
1133 //
1134 // If the unknown is a constraint, this can't happen, since it was added
1135 // initially as a row. Such a row could never have been pivoted to a column. So
1136 // a pivot row will always be found if we have a constraint.
1137 //
1138 // If we have a variable, then the column has zero coefficients for every row
1139 // iff no constraints have been added with a non-zero coefficient for this row.
1140 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1141   for (unsigned row = nRedundant; row < nRow; ++row)
1142     if (tableau(row, col) != 0)
1143       return row;
1144   return {};
1145 }
1146 
1147 // It's not valid to remove the constraint by deleting the column since this
1148 // would result in an invalid basis.
1149 void Simplex::undoLastConstraint() {
1150   if (con.back().orientation == Orientation::Column) {
1151     // We try to find any pivot row for this column that preserves tableau
1152     // consistency (except possibly the column itself, which is going to be
1153     // deallocated anyway).
1154     //
1155     // If no pivot row is found in either direction, then the unknown is
1156     // unbounded in both directions and we are free to perform any pivot at
1157     // all. To do this, we just need to find any row with a non-zero
1158     // coefficient for the column. findAnyPivotRow will always be able to
1159     // find such a row for a constraint.
1160     unsigned column = con.back().pos;
1161     if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) {
1162       pivot(*maybeRow, column);
1163     } else if (Optional<unsigned> maybeRow =
1164                    findPivotRow({}, Direction::Down, column)) {
1165       pivot(*maybeRow, column);
1166     } else {
1167       Optional<unsigned> row = findAnyPivotRow(column);
1168       assert(row.hasValue() && "Pivot should always exist for a constraint!");
1169       pivot(*row, column);
1170     }
1171   }
1172   removeLastConstraintRowOrientation();
1173 }
1174 
1175 // It's not valid to remove the constraint by deleting the column since this
1176 // would result in an invalid basis.
1177 void LexSimplexBase::undoLastConstraint() {
1178   if (con.back().orientation == Orientation::Column) {
1179     // When removing the last constraint during a rollback, we just need to find
1180     // any pivot at all, i.e., any row with non-zero coefficient for the
1181     // column, because when rolling back a lexicographic simplex, we always
1182     // end by restoring the exact basis that was present at the time of the
1183     // snapshot, so what pivots we perform while undoing doesn't matter as
1184     // long as we get the unknown to row orientation and remove it.
1185     unsigned column = con.back().pos;
1186     Optional<unsigned> row = findAnyPivotRow(column);
1187     assert(row.hasValue() && "Pivot should always exist for a constraint!");
1188     pivot(*row, column);
1189   }
1190   removeLastConstraintRowOrientation();
1191 }
1192 
1193 void SimplexBase::undo(UndoLogEntry entry) {
1194   if (entry == UndoLogEntry::RemoveLastConstraint) {
1195     // Simplex and LexSimplex handle this differently, so we call out to a
1196     // virtual function to handle this.
1197     undoLastConstraint();
1198   } else if (entry == UndoLogEntry::RemoveLastVariable) {
1199     // Whenever we are rolling back the addition of a variable, it is guaranteed
1200     // that the variable will be in column position.
1201     //
1202     // We can see this as follows: any constraint that depends on this variable
1203     // was added after this variable was added, so the addition of such
1204     // constraints should already have been rolled back by the time we get to
1205     // rolling back the addition of the variable. Therefore, no constraint
1206     // currently has a component along the variable, so the variable itself must
1207     // be part of the basis.
1208     assert(var.back().orientation == Orientation::Column &&
1209            "Variable to be removed must be in column orientation!");
1210 
1211     if (var.back().isSymbol)
1212       nSymbol--;
1213 
1214     // Move this variable to the last column and remove the column from the
1215     // tableau.
1216     swapColumns(var.back().pos, nCol - 1);
1217     tableau.resizeHorizontally(nCol - 1);
1218     var.pop_back();
1219     colUnknown.pop_back();
1220     nCol--;
1221   } else if (entry == UndoLogEntry::UnmarkEmpty) {
1222     empty = false;
1223   } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1224     nRedundant--;
1225   } else if (entry == UndoLogEntry::RestoreBasis) {
1226     assert(!savedBases.empty() && "No bases saved!");
1227 
1228     SmallVector<int, 8> basis = std::move(savedBases.back());
1229     savedBases.pop_back();
1230 
1231     for (int index : basis) {
1232       Unknown &u = unknownFromIndex(index);
1233       if (u.orientation == Orientation::Column)
1234         continue;
1235       for (unsigned col = getNumFixedCols(); col < nCol; col++) {
1236         assert(colUnknown[col] != nullIndex &&
1237                "Column should not be a fixed column!");
1238         if (std::find(basis.begin(), basis.end(), colUnknown[col]) !=
1239             basis.end())
1240           continue;
1241         if (tableau(u.pos, col) == 0)
1242           continue;
1243         pivot(u.pos, col);
1244         break;
1245       }
1246 
1247       assert(u.orientation == Orientation::Column && "No pivot found!");
1248     }
1249   }
1250 }
1251 
1252 /// Rollback to the specified snapshot.
1253 ///
1254 /// We undo all the log entries until the log size when the snapshot was taken
1255 /// is reached.
1256 void SimplexBase::rollback(unsigned snapshot) {
1257   while (undoLog.size() > snapshot) {
1258     undo(undoLog.back());
1259     undoLog.pop_back();
1260   }
1261 }
1262 
1263 /// We add the usual floor division constraints:
1264 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1265 /// variable.
1266 ///
1267 /// This constrains the remainder `coeffs - denom*q` to be in the
1268 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
1269 void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) {
1270   assert(denom != 0 && "Cannot divide by zero!\n");
1271   appendVariable();
1272 
1273   SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end());
1274   int64_t constTerm = ineq.back();
1275   ineq.back() = -denom;
1276   ineq.push_back(constTerm);
1277   addInequality(ineq);
1278 
1279   for (int64_t &coeff : ineq)
1280     coeff = -coeff;
1281   ineq.back() += denom - 1;
1282   addInequality(ineq);
1283 }
1284 
1285 void SimplexBase::appendVariable(unsigned count) {
1286   if (count == 0)
1287     return;
1288   var.reserve(var.size() + count);
1289   colUnknown.reserve(colUnknown.size() + count);
1290   for (unsigned i = 0; i < count; ++i) {
1291     nCol++;
1292     var.emplace_back(Orientation::Column, /*restricted=*/false,
1293                      /*pos=*/nCol - 1);
1294     colUnknown.push_back(var.size() - 1);
1295   }
1296   tableau.resizeHorizontally(nCol);
1297   undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
1298 }
1299 
1300 /// Add all the constraints from the given IntegerRelation.
1301 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1302   assert(rel.getNumIds() == getNumVariables() &&
1303          "IntegerRelation must have same dimensionality as simplex");
1304   for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1305     addInequality(rel.getInequality(i));
1306   for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1307     addEquality(rel.getEquality(i));
1308 }
1309 
1310 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1311                                                   unsigned row) {
1312   // Keep trying to find a pivot for the row in the specified direction.
1313   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
1314     // If findPivot returns a pivot involving the row itself, then the optimum
1315     // is unbounded, so we return None.
1316     if (maybePivot->row == row)
1317       return OptimumKind::Unbounded;
1318     pivot(*maybePivot);
1319   }
1320 
1321   // The row has reached its optimal sample value, which we return.
1322   // The sample value is the entry in the constant column divided by the common
1323   // denominator for this row.
1324   return Fraction(tableau(row, 1), tableau(row, 0));
1325 }
1326 
1327 /// Compute the optimum of the specified expression in the specified direction,
1328 /// or None if it is unbounded.
1329 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1330                                                ArrayRef<int64_t> coeffs) {
1331   if (empty)
1332     return OptimumKind::Empty;
1333 
1334   SimplexRollbackScopeExit scopeExit(*this);
1335   unsigned conIndex = addRow(coeffs);
1336   unsigned row = con[conIndex].pos;
1337   MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1338   return optimum;
1339 }
1340 
1341 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1342                                                Unknown &u) {
1343   if (empty)
1344     return OptimumKind::Empty;
1345   if (u.orientation == Orientation::Column) {
1346     unsigned column = u.pos;
1347     Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
1348     // If no pivot is returned, the constraint is unbounded in the specified
1349     // direction.
1350     if (!pivotRow)
1351       return OptimumKind::Unbounded;
1352     pivot(*pivotRow, column);
1353   }
1354 
1355   unsigned row = u.pos;
1356   MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1357   if (u.restricted && direction == Direction::Down &&
1358       (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1359     if (failed(restoreRow(u)))
1360       llvm_unreachable("Could not restore row!");
1361   }
1362   return optimum;
1363 }
1364 
1365 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1366   assert(!empty && "It is not meaningful to ask whether a direction is bounded "
1367                    "in an empty set.");
1368   // The constraint's perpendicular is already bounded below, since it is a
1369   // constraint. If it is also bounded above, we can return true.
1370   return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
1371 }
1372 
1373 /// Redundant constraints are those that are in row orientation and lie in
1374 /// rows 0 to nRedundant - 1.
1375 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1376   const Unknown &u = con[constraintIndex];
1377   return u.orientation == Orientation::Row && u.pos < nRedundant;
1378 }
1379 
1380 /// Mark the specified row redundant.
1381 ///
1382 /// This is done by moving the unknown to the end of the block of redundant
1383 /// rows (namely, to row nRedundant) and incrementing nRedundant to
1384 /// accomodate the new redundant row.
1385 void Simplex::markRowRedundant(Unknown &u) {
1386   assert(u.orientation == Orientation::Row &&
1387          "Unknown should be in row position!");
1388   assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
1389   swapRows(u.pos, nRedundant);
1390   ++nRedundant;
1391   undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
1392 }
1393 
1394 /// Find a subset of constraints that is redundant and mark them redundant.
1395 void Simplex::detectRedundant() {
1396   // It is not meaningful to talk about redundancy for empty sets.
1397   if (empty)
1398     return;
1399 
1400   // Iterate through the constraints and check for each one if it can attain
1401   // negative sample values. If it can, it's not redundant. Otherwise, it is.
1402   // We mark redundant constraints redundant.
1403   //
1404   // Constraints that get marked redundant in one iteration are not respected
1405   // when checking constraints in later iterations. This prevents, for example,
1406   // two identical constraints both being marked redundant since each is
1407   // redundant given the other one. In this example, only the first of the
1408   // constraints that is processed will get marked redundant, as it should be.
1409   for (Unknown &u : con) {
1410     if (u.orientation == Orientation::Column) {
1411       unsigned column = u.pos;
1412       Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
1413       // If no downward pivot is returned, the constraint is unbounded below
1414       // and hence not redundant.
1415       if (!pivotRow)
1416         continue;
1417       pivot(*pivotRow, column);
1418     }
1419 
1420     unsigned row = u.pos;
1421     MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
1422     if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1423       // Constraint is unbounded below or can attain negative sample values and
1424       // hence is not redundant.
1425       if (failed(restoreRow(u)))
1426         llvm_unreachable("Could not restore non-redundant row!");
1427       continue;
1428     }
1429 
1430     markRowRedundant(u);
1431   }
1432 }
1433 
1434 bool Simplex::isUnbounded() {
1435   if (empty)
1436     return false;
1437 
1438   SmallVector<int64_t, 8> dir(var.size() + 1);
1439   for (unsigned i = 0; i < var.size(); ++i) {
1440     dir[i] = 1;
1441 
1442     if (computeOptimum(Direction::Up, dir).isUnbounded())
1443       return true;
1444 
1445     if (computeOptimum(Direction::Down, dir).isUnbounded())
1446       return true;
1447 
1448     dir[i] = 0;
1449   }
1450   return false;
1451 }
1452 
1453 /// Make a tableau to represent a pair of points in the original tableau.
1454 ///
1455 /// The product constraints and variables are stored as: first A's, then B's.
1456 ///
1457 /// The product tableau has row layout:
1458 ///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1459 ///
1460 /// It has column layout:
1461 ///   denominator, constant, A's columns, B's columns.
1462 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1463   unsigned numVar = a.getNumVariables() + b.getNumVariables();
1464   unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1465   Simplex result(numVar);
1466 
1467   result.tableau.resizeVertically(numCon);
1468   result.empty = a.empty || b.empty;
1469 
1470   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1471     SmallVector<Unknown, 8> result;
1472     result.reserve(v.size() + w.size());
1473     result.insert(result.end(), v.begin(), v.end());
1474     result.insert(result.end(), w.begin(), w.end());
1475     return result;
1476   };
1477   result.con = concat(a.con, b.con);
1478   result.var = concat(a.var, b.var);
1479 
1480   auto indexFromBIndex = [&](int index) {
1481     return index >= 0 ? a.getNumVariables() + index
1482                       : ~(a.getNumConstraints() + ~index);
1483   };
1484 
1485   result.colUnknown.assign(2, nullIndex);
1486   for (unsigned i = 2; i < a.nCol; ++i) {
1487     result.colUnknown.push_back(a.colUnknown[i]);
1488     result.unknownFromIndex(result.colUnknown.back()).pos =
1489         result.colUnknown.size() - 1;
1490   }
1491   for (unsigned i = 2; i < b.nCol; ++i) {
1492     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
1493     result.unknownFromIndex(result.colUnknown.back()).pos =
1494         result.colUnknown.size() - 1;
1495   }
1496 
1497   auto appendRowFromA = [&](unsigned row) {
1498     for (unsigned col = 0; col < a.nCol; ++col)
1499       result.tableau(result.nRow, col) = a.tableau(row, col);
1500     result.rowUnknown.push_back(a.rowUnknown[row]);
1501     result.unknownFromIndex(result.rowUnknown.back()).pos =
1502         result.rowUnknown.size() - 1;
1503     result.nRow++;
1504   };
1505 
1506   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1507   // may be).
1508   auto appendRowFromB = [&](unsigned row) {
1509     result.tableau(result.nRow, 0) = b.tableau(row, 0);
1510     result.tableau(result.nRow, 1) = b.tableau(row, 1);
1511 
1512     unsigned offset = a.nCol - 2;
1513     for (unsigned col = 2; col < b.nCol; ++col)
1514       result.tableau(result.nRow, offset + col) = b.tableau(row, col);
1515     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
1516     result.unknownFromIndex(result.rowUnknown.back()).pos =
1517         result.rowUnknown.size() - 1;
1518     result.nRow++;
1519   };
1520 
1521   result.nRedundant = a.nRedundant + b.nRedundant;
1522   for (unsigned row = 0; row < a.nRedundant; ++row)
1523     appendRowFromA(row);
1524   for (unsigned row = 0; row < b.nRedundant; ++row)
1525     appendRowFromB(row);
1526   for (unsigned row = a.nRedundant; row < a.nRow; ++row)
1527     appendRowFromA(row);
1528   for (unsigned row = b.nRedundant; row < b.nRow; ++row)
1529     appendRowFromB(row);
1530 
1531   return result;
1532 }
1533 
1534 Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1535   if (empty)
1536     return {};
1537 
1538   SmallVector<Fraction, 8> sample;
1539   sample.reserve(var.size());
1540   // Push the sample value for each variable into the vector.
1541   for (const Unknown &u : var) {
1542     if (u.orientation == Orientation::Column) {
1543       // If the variable is in column position, its sample value is zero.
1544       sample.emplace_back(0, 1);
1545     } else {
1546       // If the variable is in row position, its sample value is the
1547       // entry in the constant column divided by the denominator.
1548       int64_t denom = tableau(u.pos, 0);
1549       sample.emplace_back(tableau(u.pos, 1), denom);
1550     }
1551   }
1552   return sample;
1553 }
1554 
1555 void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) {
1556   addRow(coeffs, /*makeRestricted=*/true);
1557 }
1558 
1559 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1560   if (empty)
1561     return OptimumKind::Empty;
1562 
1563   SmallVector<Fraction, 8> sample;
1564   sample.reserve(var.size());
1565   // Push the sample value for each variable into the vector.
1566   for (const Unknown &u : var) {
1567     // When the big M parameter is being used, each variable x is represented
1568     // as M + x, so its sample value is finite if and only if it is of the
1569     // form 1*M + c. If the coefficient of M is not one then the sample value
1570     // is infinite, and we return an empty optional.
1571 
1572     if (u.orientation == Orientation::Column) {
1573       // If the variable is in column position, the sample value of M + x is
1574       // zero, so x = -M which is unbounded.
1575       return OptimumKind::Unbounded;
1576     }
1577 
1578     // If the variable is in row position, its sample value is the
1579     // entry in the constant column divided by the denominator.
1580     int64_t denom = tableau(u.pos, 0);
1581     if (usingBigM)
1582       if (tableau(u.pos, 2) != denom)
1583         return OptimumKind::Unbounded;
1584     sample.emplace_back(tableau(u.pos, 1), denom);
1585   }
1586   return sample;
1587 }
1588 
1589 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
1590   // If the tableau is empty, no sample point exists.
1591   if (empty)
1592     return {};
1593 
1594   // The value will always exist since the Simplex is non-empty.
1595   SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1596   SmallVector<int64_t, 8> integerSample;
1597   integerSample.reserve(var.size());
1598   for (const Fraction &coord : rationalSample) {
1599     // If the sample is non-integral, return None.
1600     if (coord.num % coord.den != 0)
1601       return {};
1602     integerSample.push_back(coord.num / coord.den);
1603   }
1604   return integerSample;
1605 }
1606 
1607 /// Given a simplex for a polytope, construct a new simplex whose variables are
1608 /// identified with a pair of points (x, y) in the original polytope. Supports
1609 /// some operations needed for generalized basis reduction. In what follows,
1610 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1611 /// dimension of the original polytope.
1612 ///
1613 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1614 /// also supports rolling back this addition, by maintaining a snapshot stack
1615 /// that contains a snapshot of the Simplex's state for each equality, just
1616 /// before that equality was added.
1617 class presburger::GBRSimplex {
1618   using Orientation = Simplex::Orientation;
1619 
1620 public:
1621   GBRSimplex(const Simplex &originalSimplex)
1622       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
1623         simplexConstraintOffset(simplex.getNumConstraints()) {}
1624 
1625   /// Add an equality dotProduct(dir, x - y) == 0.
1626   /// First pushes a snapshot for the current simplex state to the stack so
1627   /// that this can be rolled back later.
1628   void addEqualityForDirection(ArrayRef<int64_t> dir) {
1629     assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) &&
1630            "Direction passed is the zero vector!");
1631     snapshotStack.push_back(simplex.getSnapshot());
1632     simplex.addEquality(getCoeffsForDirection(dir));
1633   }
1634   /// Compute max(dotProduct(dir, x - y)).
1635   Fraction computeWidth(ArrayRef<int64_t> dir) {
1636     MaybeOptimum<Fraction> maybeWidth =
1637         simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
1638     assert(maybeWidth.isBounded() && "Width should be bounded!");
1639     return *maybeWidth;
1640   }
1641 
1642   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1643   /// the direction equalities to `dual`.
1644   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
1645                                 SmallVectorImpl<int64_t> &dual,
1646                                 int64_t &dualDenom) {
1647     // We can't just call into computeWidth or computeOptimum since we need to
1648     // access the state of the tableau after computing the optimum, and these
1649     // functions rollback the insertion of the objective function into the
1650     // tableau before returning. We instead add a row for the objective function
1651     // ourselves, call into computeOptimum, compute the duals from the tableau
1652     // state, and finally rollback the addition of the row before returning.
1653     SimplexRollbackScopeExit scopeExit(simplex);
1654     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
1655     unsigned row = simplex.con[conIndex].pos;
1656     MaybeOptimum<Fraction> maybeWidth =
1657         simplex.computeRowOptimum(Simplex::Direction::Up, row);
1658     assert(maybeWidth.isBounded() && "Width should be bounded!");
1659     dualDenom = simplex.tableau(row, 0);
1660     dual.clear();
1661 
1662     // The increment is i += 2 because equalities are added as two inequalities,
1663     // one positive and one negative. Each iteration processes one equality.
1664     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1665       // The dual variable for an inequality in column orientation is the
1666       // negative of its coefficient at the objective row. If the inequality is
1667       // in row orientation, the corresponding dual variable is zero.
1668       //
1669       // We want the dual for the original equality, which corresponds to two
1670       // inequalities: a positive inequality, which has the same coefficients as
1671       // the equality, and a negative equality, which has negated coefficients.
1672       //
1673       // Note that at most one of these inequalities can be in column
1674       // orientation because the column unknowns should form a basis and hence
1675       // must be linearly independent. If the positive inequality is in column
1676       // position, its dual is the dual corresponding to the equality. If the
1677       // negative inequality is in column position, the negation of its dual is
1678       // the dual corresponding to the equality. If neither is in column
1679       // position, then that means that this equality is redundant, and its dual
1680       // is zero.
1681       //
1682       // Note that it is NOT valid to perform pivots during the computation of
1683       // the duals. This entire dual computation must be performed on the same
1684       // tableau configuration.
1685       assert(!(simplex.con[i].orientation == Orientation::Column &&
1686                simplex.con[i + 1].orientation == Orientation::Column) &&
1687              "Both inequalities for the equality cannot be in column "
1688              "orientation!");
1689       if (simplex.con[i].orientation == Orientation::Column)
1690         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
1691       else if (simplex.con[i + 1].orientation == Orientation::Column)
1692         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
1693       else
1694         dual.push_back(0);
1695     }
1696     return *maybeWidth;
1697   }
1698 
1699   /// Remove the last equality that was added through addEqualityForDirection.
1700   ///
1701   /// We do this by rolling back to the snapshot at the top of the stack, which
1702   /// should be a snapshot taken just before the last equality was added.
1703   void removeLastEquality() {
1704     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
1705     simplex.rollback(snapshotStack.back());
1706     snapshotStack.pop_back();
1707   }
1708 
1709 private:
1710   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1711   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1712   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1713   /// where n is the dimension of the original polytope.
1714   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
1715     assert(2 * dir.size() == simplex.getNumVariables() &&
1716            "Direction vector has wrong dimensionality");
1717     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
1718     coeffs.reserve(2 * dir.size());
1719     for (int64_t coeff : dir)
1720       coeffs.push_back(-coeff);
1721     coeffs.push_back(0); // constant term
1722     return coeffs;
1723   }
1724 
1725   Simplex simplex;
1726   /// The first index of the equality constraints, the index immediately after
1727   /// the last constraint in the initial product simplex.
1728   unsigned simplexConstraintOffset;
1729   /// A stack of snapshots, used for rolling back.
1730   SmallVector<unsigned, 8> snapshotStack;
1731 };
1732 
1733 /// Reduce the basis to try and find a direction in which the polytope is
1734 /// "thin". This only works for bounded polytopes.
1735 ///
1736 /// This is an implementation of the algorithm described in the paper
1737 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
1738 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1739 ///
1740 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1741 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
1742 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1743 ///
1744 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1745 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1746 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1747 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1748 /// minimizing value of u, if it were allowed to be fractional. Due to
1749 /// convexity, the minimizing integer value is either floor(dual_i) or
1750 /// ceil(dual_i), so we just need to check which of these gives a lower
1751 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1752 ///
1753 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1754 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1755 /// same i). Otherwise, we increment i.
1756 ///
1757 /// We keep f values and duals cached and invalidate them when necessary.
1758 /// Whenever possible, we use them instead of recomputing them. We implement the
1759 /// algorithm as follows.
1760 ///
1761 /// In an iteration at i we need to compute:
1762 ///   a) width_i(b_{i + 1})
1763 ///   b) width_i(b_i)
1764 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1765 ///
1766 /// If width_i(b_i) is not already cached, we compute it.
1767 ///
1768 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1769 /// store the duals from this computation.
1770 ///
1771 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1772 /// of u as explained before, caches the duals from this computation, sets
1773 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1774 ///
1775 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1776 /// decrement i, resulting in the basis
1777 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1778 /// with corresponding f values
1779 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1780 /// The values up to i - 1 remain unchanged. We have just gotten the middle
1781 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1782 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1783 /// the cache. The iteration after decrementing needs exactly the duals from the
1784 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1785 ///
1786 /// When incrementing i, no cached f values get invalidated. However, the cached
1787 /// duals do get invalidated as the duals for the higher levels are different.
1788 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
1789   const Fraction epsilon(3, 4);
1790 
1791   if (level == basis.getNumRows() - 1)
1792     return;
1793 
1794   GBRSimplex gbrSimplex(*this);
1795   SmallVector<Fraction, 8> width;
1796   SmallVector<int64_t, 8> dual;
1797   int64_t dualDenom;
1798 
1799   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1800   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1801   // the new value of width_i(b_{i+1}).
1802   //
1803   // If dual_i is not an integer, the minimizing value must be either
1804   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1805   // choose the minimizing value.
1806   //
1807   // If dual_i is an integer, we don't need to perform these computations. We
1808   // know that in this case,
1809   //   a) u = dual_i.
1810   //   b) one can show that dual_j for j < i are the same duals we would have
1811   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1812   //      are the ones already in the cache.
1813   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1814   //   which
1815   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1816   //      be in the cache, so we get it from there and return it.
1817   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1818     assert(i < level + dual.size() && "dual_i is not known!");
1819 
1820     int64_t u = floorDiv(dual[i - level], dualDenom);
1821     basis.addToRow(i, i + 1, u);
1822     if (dual[i - level] % dualDenom != 0) {
1823       SmallVector<int64_t, 8> candidateDual[2];
1824       int64_t candidateDualDenom[2];
1825       Fraction widthI[2];
1826 
1827       // Initially u is floor(dual) and basis reflects this.
1828       widthI[0] = gbrSimplex.computeWidthAndDuals(
1829           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
1830 
1831       // Now try ceil(dual), i.e. floor(dual) + 1.
1832       ++u;
1833       basis.addToRow(i, i + 1, 1);
1834       widthI[1] = gbrSimplex.computeWidthAndDuals(
1835           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
1836 
1837       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1838       if (j == 0)
1839         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1840         basis.addToRow(i, i + 1, -1);
1841 
1842       // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1843       // We assert that this holds by checking that the values of width_i at
1844       // u - 1 and u + 1 are greater than or equal to the value at u. If the
1845       // width is lesser at either of the adjacent values, then our computed
1846       // value of u is clearly not the minimizer. Otherwise by convexity the
1847       // computed value of u is really the minimizer.
1848 
1849       // Check the value at u - 1.
1850       assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1851                  basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
1852              "Computed u value does not minimize the width!");
1853       // Check the value at u + 1.
1854       assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1855                  basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
1856              "Computed u value does not minimize the width!");
1857 
1858       dual = std::move(candidateDual[j]);
1859       dualDenom = candidateDualDenom[j];
1860       return widthI[j];
1861     }
1862 
1863     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1864     // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1865     // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1866     // the above expression is equal to basis.getRow(i+1) below.)
1867     assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1868            width[i + 1 - level]);
1869     return width[i + 1 - level];
1870   };
1871 
1872   // In the ith iteration of the loop, gbrSimplex has constraints for directions
1873   // from `level` to i - 1.
1874   unsigned i = level;
1875   while (i < basis.getNumRows() - 1) {
1876     if (i >= level + width.size()) {
1877       // We don't even know the value of f_i(b_i), so let's find that first.
1878       // We have to do this first since later we assume that width already
1879       // contains values up to and including i.
1880 
1881       assert((i == 0 || i - 1 < level + width.size()) &&
1882              "We are at level i but we don't know the value of width_{i-1}");
1883 
1884       // We don't actually use these duals at all, but it doesn't matter
1885       // because this case should only occur when i is level, and there are no
1886       // duals in that case anyway.
1887       assert(i == level && "This case should only occur when i == level");
1888       width.push_back(
1889           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1890     }
1891 
1892     if (i >= level + dual.size()) {
1893       assert(i + 1 >= level + width.size() &&
1894              "We don't know dual_i but we know width_{i+1}");
1895       // We don't know dual for our level, so let's find it.
1896       gbrSimplex.addEqualityForDirection(basis.getRow(i));
1897       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1898                                                       dualDenom));
1899       gbrSimplex.removeLastEquality();
1900     }
1901 
1902     // This variable stores width_i(b_{i+1} + u*b_i).
1903     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1904     if (widthICandidate < epsilon * width[i - level]) {
1905       basis.swapRows(i, i + 1);
1906       width[i - level] = widthICandidate;
1907       // The values of width_{i+1}(b_{i+1}) and higher may change after the
1908       // swap, so we remove the cached values here.
1909       width.resize(i - level + 1);
1910       if (i == level) {
1911         dual.clear();
1912         continue;
1913       }
1914 
1915       gbrSimplex.removeLastEquality();
1916       i--;
1917       continue;
1918     }
1919 
1920     // Invalidate duals since the higher level needs to recompute its own duals.
1921     dual.clear();
1922     gbrSimplex.addEqualityForDirection(basis.getRow(i));
1923     i++;
1924   }
1925 }
1926 
1927 /// Search for an integer sample point using a branch and bound algorithm.
1928 ///
1929 /// Each row in the basis matrix is a vector, and the set of basis vectors
1930 /// should span the space. Initially this is the identity matrix,
1931 /// i.e., the basis vectors are just the variables.
1932 ///
1933 /// In every level, a value is assigned to the level-th basis vector, as
1934 /// follows. Compute the minimum and maximum rational values of this direction.
1935 /// If only one integer point lies in this range, constrain the variable to
1936 /// have this value and recurse to the next variable.
1937 ///
1938 /// If the range has multiple values, perform generalized basis reduction via
1939 /// reduceBasis and then compute the bounds again. Now we try constraining
1940 /// this direction in the first value in this range and "recurse" to the next
1941 /// level. If we fail to find a sample, we try assigning the direction the next
1942 /// value in this range, and so on.
1943 ///
1944 /// If no integer sample is found from any of the assignments, or if the range
1945 /// contains no integer value, then of course the polytope is empty for the
1946 /// current assignment of the values in previous levels, so we return to
1947 /// the previous level.
1948 ///
1949 /// If we reach the last level where all the variables have been assigned values
1950 /// already, then we simply return the current sample point if it is integral,
1951 /// and go back to the previous level otherwise.
1952 ///
1953 /// To avoid potentially arbitrarily large recursion depths leading to stack
1954 /// overflows, this algorithm is implemented iteratively.
1955 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1956   if (empty)
1957     return {};
1958 
1959   unsigned nDims = var.size();
1960   Matrix basis = Matrix::identity(nDims);
1961 
1962   unsigned level = 0;
1963   // The snapshot just before constraining a direction to a value at each level.
1964   SmallVector<unsigned, 8> snapshotStack;
1965   // The maximum value in the range of the direction for each level.
1966   SmallVector<int64_t, 8> upperBoundStack;
1967   // The next value to try constraining the basis vector to at each level.
1968   SmallVector<int64_t, 8> nextValueStack;
1969 
1970   snapshotStack.reserve(basis.getNumRows());
1971   upperBoundStack.reserve(basis.getNumRows());
1972   nextValueStack.reserve(basis.getNumRows());
1973   while (level != -1u) {
1974     if (level == basis.getNumRows()) {
1975       // We've assigned values to all variables. Return if we have a sample,
1976       // or go back up to the previous level otherwise.
1977       if (auto maybeSample = getSamplePointIfIntegral())
1978         return maybeSample;
1979       level--;
1980       continue;
1981     }
1982 
1983     if (level >= upperBoundStack.size()) {
1984       // We haven't populated the stack values for this level yet, so we have
1985       // just come down a level ("recursed"). Find the lower and upper bounds.
1986       // If there is more than one integer point in the range, perform
1987       // generalized basis reduction.
1988       SmallVector<int64_t, 8> basisCoeffs =
1989           llvm::to_vector<8>(basis.getRow(level));
1990       basisCoeffs.push_back(0);
1991 
1992       MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown;
1993       std::tie(minRoundedUp, maxRoundedDown) =
1994           computeIntegerBounds(basisCoeffs);
1995 
1996       // We don't have any integer values in the range.
1997       // Pop the stack and return up a level.
1998       if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
1999         assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
2000                "If one bound is empty, both should be.");
2001         snapshotStack.pop_back();
2002         nextValueStack.pop_back();
2003         upperBoundStack.pop_back();
2004         level--;
2005         continue;
2006       }
2007 
2008       // We already checked the empty case above.
2009       assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
2010              "Polyhedron should be bounded!");
2011 
2012       // Heuristic: if the sample point is integral at this point, just return
2013       // it.
2014       if (auto maybeSample = getSamplePointIfIntegral())
2015         return *maybeSample;
2016 
2017       if (*minRoundedUp < *maxRoundedDown) {
2018         reduceBasis(basis, level);
2019         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
2020         basisCoeffs.push_back(0);
2021         std::tie(minRoundedUp, maxRoundedDown) =
2022             computeIntegerBounds(basisCoeffs);
2023       }
2024 
2025       snapshotStack.push_back(getSnapshot());
2026       // The smallest value in the range is the next value to try.
2027       // The values in the optionals are guaranteed to exist since we know the
2028       // polytope is bounded.
2029       nextValueStack.push_back(*minRoundedUp);
2030       upperBoundStack.push_back(*maxRoundedDown);
2031     }
2032 
2033     assert((snapshotStack.size() - 1 == level &&
2034             nextValueStack.size() - 1 == level &&
2035             upperBoundStack.size() - 1 == level) &&
2036            "Mismatched variable stack sizes!");
2037 
2038     // Whether we "recursed" or "returned" from a lower level, we rollback
2039     // to the snapshot of the starting state at this level. (in the "recursed"
2040     // case this has no effect)
2041     rollback(snapshotStack.back());
2042     int64_t nextValue = nextValueStack.back();
2043     nextValueStack.back()++;
2044     if (nextValue > upperBoundStack.back()) {
2045       // We have exhausted the range and found no solution. Pop the stack and
2046       // return up a level.
2047       snapshotStack.pop_back();
2048       nextValueStack.pop_back();
2049       upperBoundStack.pop_back();
2050       level--;
2051       continue;
2052     }
2053 
2054     // Try the next value in the range and "recurse" into the next level.
2055     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
2056                                         basis.getRow(level).end());
2057     basisCoeffs.push_back(-nextValue);
2058     addEquality(basisCoeffs);
2059     level++;
2060   }
2061 
2062   return {};
2063 }
2064 
2065 /// Compute the minimum and maximum integer values the expression can take. We
2066 /// compute each separately.
2067 std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>>
2068 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
2069   MaybeOptimum<int64_t> minRoundedUp(
2070       computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
2071   MaybeOptimum<int64_t> maxRoundedDown(
2072       computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
2073   return {minRoundedUp, maxRoundedDown};
2074 }
2075 
2076 void SimplexBase::print(raw_ostream &os) const {
2077   os << "rows = " << nRow << ", columns = " << nCol << "\n";
2078   if (empty)
2079     os << "Simplex marked empty!\n";
2080   os << "var: ";
2081   for (unsigned i = 0; i < var.size(); ++i) {
2082     if (i > 0)
2083       os << ", ";
2084     var[i].print(os);
2085   }
2086   os << "\ncon: ";
2087   for (unsigned i = 0; i < con.size(); ++i) {
2088     if (i > 0)
2089       os << ", ";
2090     con[i].print(os);
2091   }
2092   os << '\n';
2093   for (unsigned row = 0; row < nRow; ++row) {
2094     if (row > 0)
2095       os << ", ";
2096     os << "r" << row << ": " << rowUnknown[row];
2097   }
2098   os << '\n';
2099   os << "c0: denom, c1: const";
2100   for (unsigned col = 2; col < nCol; ++col)
2101     os << ", c" << col << ": " << colUnknown[col];
2102   os << '\n';
2103   for (unsigned row = 0; row < nRow; ++row) {
2104     for (unsigned col = 0; col < nCol; ++col)
2105       os << tableau(row, col) << '\t';
2106     os << '\n';
2107   }
2108   os << '\n';
2109 }
2110 
2111 void SimplexBase::dump() const { print(llvm::errs()); }
2112 
2113 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2114   if (isEmpty())
2115     return true;
2116 
2117   for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2118     if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
2119       return false;
2120 
2121   for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2122     if (!isRedundantEquality(rel.getEquality(i)))
2123       return false;
2124 
2125   return true;
2126 }
2127 
2128 /// Returns the type of the inequality with coefficients `coeffs`.
2129 /// Possible types are:
2130 /// Redundant   The inequality is satisfied by all points in the polytope
2131 /// Cut         The inequality is satisfied by some points, but not by others
2132 /// Separate    The inequality is not satisfied by any point
2133 ///
2134 /// Internally, this computes the minimum and the maximum the inequality with
2135 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2136 /// for all points in the polytope, so it is redundant.  If the minimum is <= 0
2137 /// and the maximum is >= 0, the points in between the minimum and the
2138 /// inequality do not satisfy it, the points in between the inequality and the
2139 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2140 /// points of the polytope satisfy the inequality, which means it is a separate
2141 /// inequality.
2142 Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) {
2143   MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2144   if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2145     return IneqType::Redundant;
2146   }
2147   MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2148   if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2149       (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2150     return IneqType::Cut;
2151   }
2152   return IneqType::Separate;
2153 }
2154 
2155 /// Checks whether the type of the inequality with coefficients `coeffs`
2156 /// is Redundant.
2157 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
2158   assert(!empty &&
2159          "It is not meaningful to ask about redundancy in an empty set!");
2160   return findIneqType(coeffs) == IneqType::Redundant;
2161 }
2162 
2163 /// Check whether the equality given by `coeffs == 0` is redundant given
2164 /// the existing constraints. This is redundant when `coeffs` is already
2165 /// always zero under the existing constraints. `coeffs` is always zero
2166 /// when the minimum and maximum value that `coeffs` can take are both zero.
2167 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
2168   assert(!empty &&
2169          "It is not meaningful to ask about redundancy in an empty set!");
2170   MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2171   MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2172   assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
2173          "Optima should be non-empty for a non-empty set");
2174   return minimum.isBounded() && maximum.isBounded() &&
2175          *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2176 }
2177