1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 
13 namespace mlir {
14 using Direction = Simplex::Direction;
15 
16 const int nullIndex = std::numeric_limits<int>::max();
17 
18 /// Construct a Simplex object with `nVar` variables.
19 Simplex::Simplex(unsigned nVar)
20     : nRow(0), nCol(2), tableau(0, 2 + nVar), empty(false) {
21   colUnknown.push_back(nullIndex);
22   colUnknown.push_back(nullIndex);
23   for (unsigned i = 0; i < nVar; ++i) {
24     var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
25     colUnknown.push_back(i);
26     nCol++;
27   }
28 }
29 
30 Simplex::Simplex(const FlatAffineConstraints &constraints)
31     : Simplex(constraints.getNumIds()) {
32   for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
33        i < numIneqs; ++i)
34     addInequality(constraints.getInequality(i));
35   for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
36     addEquality(constraints.getEquality(i));
37 }
38 
39 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const {
40   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
41   return index >= 0 ? var[index] : con[~index];
42 }
43 
44 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const {
45   assert(col < nCol && "Invalid column");
46   return unknownFromIndex(colUnknown[col]);
47 }
48 
49 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const {
50   assert(row < nRow && "Invalid row");
51   return unknownFromIndex(rowUnknown[row]);
52 }
53 
54 Simplex::Unknown &Simplex::unknownFromIndex(int index) {
55   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
56   return index >= 0 ? var[index] : con[~index];
57 }
58 
59 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) {
60   assert(col < nCol && "Invalid column");
61   return unknownFromIndex(colUnknown[col]);
62 }
63 
64 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) {
65   assert(row < nRow && "Invalid row");
66   return unknownFromIndex(rowUnknown[row]);
67 }
68 
69 /// Add a new row to the tableau corresponding to the given constant term and
70 /// list of coefficients. The coefficients are specified as a vector of
71 /// (variable index, coefficient) pairs.
72 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) {
73   assert(coeffs.size() == 1 + var.size() &&
74          "Incorrect number of coefficients!");
75 
76   ++nRow;
77   // If the tableau is not big enough to accomodate the extra row, we extend it.
78   if (nRow >= tableau.getNumRows())
79     tableau.resizeVertically(nRow);
80   rowUnknown.push_back(~con.size());
81   con.emplace_back(Orientation::Row, false, nRow - 1);
82 
83   tableau(nRow - 1, 0) = 1;
84   tableau(nRow - 1, 1) = coeffs.back();
85   for (unsigned col = 2; col < nCol; ++col)
86     tableau(nRow - 1, col) = 0;
87 
88   // Process each given variable coefficient.
89   for (unsigned i = 0; i < var.size(); ++i) {
90     unsigned pos = var[i].pos;
91     if (coeffs[i] == 0)
92       continue;
93 
94     if (var[i].orientation == Orientation::Column) {
95       // If a variable is in column position at column col, then we just add the
96       // coefficient for that variable (scaled by the common row denominator) to
97       // the corresponding entry in the new row.
98       tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
99       continue;
100     }
101 
102     // If the variable is in row position, we need to add that row to the new
103     // row, scaled by the coefficient for the variable, accounting for the two
104     // rows potentially having different denominators. The new denominator is
105     // the lcm of the two.
106     int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
107     int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
108     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
109     tableau(nRow - 1, 0) = lcm;
110     for (unsigned col = 1; col < nCol; ++col)
111       tableau(nRow - 1, col) =
112           nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
113   }
114 
115   normalizeRow(nRow - 1);
116   // Push to undo log along with the index of the new constraint.
117   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
118   return con.size() - 1;
119 }
120 
121 /// Normalize the row by removing factors that are common between the
122 /// denominator and all the numerator coefficients.
123 void Simplex::normalizeRow(unsigned row) {
124   int64_t gcd = 0;
125   for (unsigned col = 0; col < nCol; ++col) {
126     if (gcd == 1)
127       break;
128     gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
129   }
130   for (unsigned col = 0; col < nCol; ++col)
131     tableau(row, col) /= gcd;
132 }
133 
134 namespace {
135 bool signMatchesDirection(int64_t elem, Direction direction) {
136   assert(elem != 0 && "elem should not be 0");
137   return direction == Direction::Up ? elem > 0 : elem < 0;
138 }
139 
140 Direction flippedDirection(Direction direction) {
141   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
142 }
143 } // anonymous namespace
144 
145 /// Find a pivot to change the sample value of the row in the specified
146 /// direction. The returned pivot row will involve `row` if and only if the
147 /// unknown is unbounded in the specified direction.
148 ///
149 /// To increase (resp. decrease) the value of a row, we need to find a live
150 /// column with a non-zero coefficient. If the coefficient is positive, we need
151 /// to increase (decrease) the value of the column, and if the coefficient is
152 /// negative, we need to decrease (increase) the value of the column. Also,
153 /// we cannot decrease the sample value of restricted columns.
154 ///
155 /// If multiple columns are valid, we break ties by considering a lexicographic
156 /// ordering where we prefer unknowns with lower index.
157 Optional<Simplex::Pivot> Simplex::findPivot(int row,
158                                             Direction direction) const {
159   Optional<unsigned> col;
160   for (unsigned j = 2; j < nCol; ++j) {
161     int64_t elem = tableau(row, j);
162     if (elem == 0)
163       continue;
164 
165     if (unknownFromColumn(j).restricted &&
166         !signMatchesDirection(elem, direction))
167       continue;
168     if (!col || colUnknown[j] < colUnknown[*col])
169       col = j;
170   }
171 
172   if (!col)
173     return {};
174 
175   Direction newDirection =
176       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
177   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
178   return Pivot{maybePivotRow.getValueOr(row), *col};
179 }
180 
181 /// Swap the associated unknowns for the row and the column.
182 ///
183 /// First we swap the index associated with the row and column. Then we update
184 /// the unknowns to reflect their new position and orientation.
185 void Simplex::swapRowWithCol(unsigned row, unsigned col) {
186   std::swap(rowUnknown[row], colUnknown[col]);
187   Unknown &uCol = unknownFromColumn(col);
188   Unknown &uRow = unknownFromRow(row);
189   uCol.orientation = Orientation::Column;
190   uRow.orientation = Orientation::Row;
191   uCol.pos = col;
192   uRow.pos = row;
193 }
194 
195 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); }
196 
197 /// Pivot pivotRow and pivotCol.
198 ///
199 /// Let R be the pivot row unknown and let C be the pivot col unknown.
200 /// Since initially R = a*C + sum b_i * X_i
201 /// (where the sum is over the other column's unknowns, x_i)
202 /// C = (R - (sum b_i * X_i))/a
203 ///
204 /// Let u be some other row unknown.
205 /// u = c*C + sum d_i * X_i
206 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
207 ///
208 /// This results in the following transform:
209 ///            pivot col    other col                   pivot col    other col
210 /// pivot row     a             b       ->   pivot row     1/a         -b/a
211 /// other row     c             d            other row     c/a        d - bc/a
212 ///
213 /// Taking into account the common denominators p and q:
214 ///
215 ///            pivot col    other col                    pivot col   other col
216 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
217 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
218 ///
219 /// The pivot row transform is accomplished be swapping a with the pivot row's
220 /// common denominator and negating the pivot row except for the pivot column
221 /// element.
222 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) {
223   assert(pivotCol >= 2 && "Refusing to pivot invalid column");
224 
225   swapRowWithCol(pivotRow, pivotCol);
226   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
227   // We need to negate the whole pivot row except for the pivot column.
228   if (tableau(pivotRow, 0) < 0) {
229     // If the denominator is negative, we negate the row by simply negating the
230     // denominator.
231     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
232     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
233   } else {
234     for (unsigned col = 1; col < nCol; ++col) {
235       if (col == pivotCol)
236         continue;
237       tableau(pivotRow, col) = -tableau(pivotRow, col);
238     }
239   }
240   normalizeRow(pivotRow);
241 
242   for (unsigned row = 0; row < nRow; ++row) {
243     if (row == pivotRow)
244       continue;
245     if (tableau(row, pivotCol) == 0) // Nothing to do.
246       continue;
247     tableau(row, 0) *= tableau(pivotRow, 0);
248     for (unsigned j = 1; j < nCol; ++j) {
249       if (j == pivotCol)
250         continue;
251       // Add rather than subtract because the pivot row has been negated.
252       tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
253                         tableau(row, pivotCol) * tableau(pivotRow, j);
254     }
255     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
256     normalizeRow(row);
257   }
258 }
259 
260 /// Perform pivots until the unknown has a non-negative sample value or until
261 /// no more upward pivots can be performed. Return the sign of the final sample
262 /// value.
263 LogicalResult Simplex::restoreRow(Unknown &u) {
264   assert(u.orientation == Orientation::Row &&
265          "unknown should be in row position");
266 
267   while (tableau(u.pos, 1) < 0) {
268     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
269     if (!maybePivot)
270       break;
271 
272     pivot(*maybePivot);
273     if (u.orientation == Orientation::Column)
274       return LogicalResult::Success; // the unknown is unbounded above.
275   }
276   return success(tableau(u.pos, 1) >= 0);
277 }
278 
279 /// Find a row that can be used to pivot the column in the specified direction.
280 /// This returns an empty optional if and only if the column is unbounded in the
281 /// specified direction (ignoring skipRow, if skipRow is set).
282 ///
283 /// If skipRow is set, this row is not considered, and (if it is restricted) its
284 /// restriction may be violated by the returned pivot. Usually, skipRow is set
285 /// because we don't want to move it to column position unless it is unbounded,
286 /// and we are either trying to increase the value of skipRow or explicitly
287 /// trying to make skipRow negative, so we are not concerned about this.
288 ///
289 /// If the direction is up (resp. down) and a restricted row has a negative
290 /// (positive) coefficient for the column, then this row imposes a bound on how
291 /// much the sample value of the column can change. Such a row with constant
292 /// term c and coefficient f for the column imposes a bound of c/|f| on the
293 /// change in sample value (in the specified direction). (note that c is
294 /// non-negative here since the row is restricted and the tableau is consistent)
295 ///
296 /// We iterate through the rows and pick the row which imposes the most
297 /// stringent bound, since pivoting with a row changes the row's sample value to
298 /// 0 and hence saturates the bound it imposes. We break ties between rows that
299 /// impose the same bound by considering a lexicographic ordering where we
300 /// prefer unknowns with lower index value.
301 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
302                                          Direction direction,
303                                          unsigned col) const {
304   Optional<unsigned> retRow;
305   int64_t retElem, retConst;
306   for (unsigned row = 0; row < nRow; ++row) {
307     if (skipRow && row == *skipRow)
308       continue;
309     int64_t elem = tableau(row, col);
310     if (elem == 0)
311       continue;
312     if (!unknownFromRow(row).restricted)
313       continue;
314     if (signMatchesDirection(elem, direction))
315       continue;
316     int64_t constTerm = tableau(row, 1);
317 
318     if (!retRow) {
319       retRow = row;
320       retElem = elem;
321       retConst = constTerm;
322       continue;
323     }
324 
325     int64_t diff = retConst * elem - constTerm * retElem;
326     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
327         (diff != 0 && !signMatchesDirection(diff, direction))) {
328       retRow = row;
329       retElem = elem;
330       retConst = constTerm;
331     }
332   }
333   return retRow;
334 }
335 
336 bool Simplex::isEmpty() const { return empty; }
337 
338 void Simplex::swapRows(unsigned i, unsigned j) {
339   if (i == j)
340     return;
341   tableau.swapRows(i, j);
342   std::swap(rowUnknown[i], rowUnknown[j]);
343   unknownFromRow(i).pos = i;
344   unknownFromRow(j).pos = j;
345 }
346 
347 /// Mark this tableau empty and push an entry to the undo stack.
348 void Simplex::markEmpty() {
349   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
350   empty = true;
351 }
352 
353 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
354 /// is the curent number of variables, then the corresponding inequality is
355 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
356 ///
357 /// We add the inequality and mark it as restricted. We then try to make its
358 /// sample value non-negative. If this is not possible, the tableau has become
359 /// empty and we mark it as such.
360 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
361   unsigned conIndex = addRow(coeffs);
362   Unknown &u = con[conIndex];
363   u.restricted = true;
364   LogicalResult result = restoreRow(u);
365   if (failed(result))
366     markEmpty();
367 }
368 
369 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
370 /// is the curent number of variables, then the corresponding equality is
371 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
372 ///
373 /// We simply add two opposing inequalities, which force the expression to
374 /// be zero.
375 void Simplex::addEquality(ArrayRef<int64_t> coeffs) {
376   addInequality(coeffs);
377   SmallVector<int64_t, 8> negatedCoeffs;
378   for (int64_t coeff : coeffs)
379     negatedCoeffs.emplace_back(-coeff);
380   addInequality(negatedCoeffs);
381 }
382 
383 unsigned Simplex::numVariables() const { return var.size(); }
384 unsigned Simplex::numConstraints() const { return con.size(); }
385 
386 /// Return a snapshot of the curent state. This is just the current size of the
387 /// undo log.
388 unsigned Simplex::getSnapshot() const { return undoLog.size(); }
389 
390 void Simplex::undo(UndoLogEntry entry) {
391   if (entry == UndoLogEntry::RemoveLastConstraint) {
392     Unknown &constraint = con.back();
393     if (constraint.orientation == Orientation::Column) {
394       unsigned column = constraint.pos;
395       Optional<unsigned> row;
396 
397       // Try to find any pivot row for this column that preserves tableau
398       // consistency (except possibly the column itself, which is going to be
399       // deallocated anyway).
400       //
401       // If no pivot row is found in either direction, then the unknown is
402       // unbounded in both directions and we are free to
403       // perform any pivot at all. To do this, we just need to find any row with
404       // a non-zero coefficient for the column.
405       if (Optional<unsigned> maybeRow =
406               findPivotRow({}, Direction::Up, column)) {
407         row = *maybeRow;
408       } else if (Optional<unsigned> maybeRow =
409                      findPivotRow({}, Direction::Down, column)) {
410         row = *maybeRow;
411       } else {
412         // The loop doesn't find a pivot row only if the column has zero
413         // coefficients for every row. But the unknown is a constraint,
414         // so it was added initially as a row. Such a row could never have been
415         // pivoted to a column. So a pivot row will always be found.
416         for (unsigned i = 0; i < nRow; ++i) {
417           if (tableau(i, column) != 0) {
418             row = i;
419             break;
420           }
421         }
422       }
423       assert(row.hasValue() && "No pivot row found!");
424       pivot(*row, column);
425     }
426 
427     // Move this unknown to the last row and remove the last row from the
428     // tableau.
429     swapRows(constraint.pos, nRow - 1);
430     // It is not strictly necessary to shrink the tableau, but for now we
431     // maintain the invariant that the tableau has exactly nRow rows.
432     tableau.resizeVertically(nRow - 1);
433     nRow--;
434     rowUnknown.pop_back();
435     con.pop_back();
436   } else if (entry == UndoLogEntry::UnmarkEmpty) {
437     empty = false;
438   }
439 }
440 
441 /// Rollback to the specified snapshot.
442 ///
443 /// We undo all the log entries until the log size when the snapshot was taken
444 /// is reached.
445 void Simplex::rollback(unsigned snapshot) {
446   while (undoLog.size() > snapshot) {
447     undo(undoLog.back());
448     undoLog.pop_back();
449   }
450 }
451 
452 Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
453                                               unsigned row) {
454   // Keep trying to find a pivot for the row in the specified direction.
455   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
456     // If findPivot returns a pivot involving the row itself, then the optimum
457     // is unbounded, so we return None.
458     if (maybePivot->row == row)
459       return {};
460     pivot(*maybePivot);
461   }
462 
463   // The row has reached its optimal sample value, which we return.
464   // The sample value is the entry in the constant column divided by the common
465   // denominator for this row.
466   return Fraction(tableau(row, 1), tableau(row, 0));
467 }
468 
469 /// Compute the optimum of the specified expression in the specified direction,
470 /// or None if it is unbounded.
471 Optional<Fraction> Simplex::computeOptimum(Direction direction,
472                                            ArrayRef<int64_t> coeffs) {
473   assert(!empty && "Tableau should not be empty");
474 
475   unsigned snapshot = getSnapshot();
476   unsigned conIndex = addRow(coeffs);
477   unsigned row = con[conIndex].pos;
478   Optional<Fraction> optimum = computeRowOptimum(direction, row);
479   rollback(snapshot);
480   return optimum;
481 }
482 
483 bool Simplex::isUnbounded() {
484   if (empty)
485     return false;
486 
487   SmallVector<int64_t, 8> dir(var.size() + 1);
488   for (unsigned i = 0; i < var.size(); ++i) {
489     dir[i] = 1;
490 
491     Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
492     if (!maybeMax)
493       return true;
494 
495     Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
496     if (!maybeMin)
497       return true;
498 
499     dir[i] = 0;
500   }
501   return false;
502 }
503 
504 /// Make a tableau to represent a pair of points in the original tableau.
505 ///
506 /// The product constraints and variables are stored as: first A's, then B's.
507 ///
508 /// The product tableau has row layout:
509 ///   A's rows, B's rows.
510 ///
511 /// It has column layout:
512 ///   denominator, constant, A's columns, B's columns.
513 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
514   unsigned numVar = a.numVariables() + b.numVariables();
515   unsigned numCon = a.numConstraints() + b.numConstraints();
516   Simplex result(numVar);
517 
518   result.tableau.resizeVertically(numCon);
519   result.empty = a.empty || b.empty;
520 
521   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
522     SmallVector<Unknown, 8> result;
523     result.reserve(v.size() + w.size());
524     result.insert(result.end(), v.begin(), v.end());
525     result.insert(result.end(), w.begin(), w.end());
526     return result;
527   };
528   result.con = concat(a.con, b.con);
529   result.var = concat(a.var, b.var);
530 
531   auto indexFromBIndex = [&](int index) {
532     return index >= 0 ? a.numVariables() + index
533                       : ~(a.numConstraints() + ~index);
534   };
535 
536   result.colUnknown.assign(2, nullIndex);
537   for (unsigned i = 2; i < a.nCol; ++i) {
538     result.colUnknown.push_back(a.colUnknown[i]);
539     result.unknownFromIndex(result.colUnknown.back()).pos =
540         result.colUnknown.size() - 1;
541   }
542   for (unsigned i = 2; i < b.nCol; ++i) {
543     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
544     result.unknownFromIndex(result.colUnknown.back()).pos =
545         result.colUnknown.size() - 1;
546   }
547 
548   auto appendRowFromA = [&](unsigned row) {
549     for (unsigned col = 0; col < a.nCol; ++col)
550       result.tableau(result.nRow, col) = a.tableau(row, col);
551     result.rowUnknown.push_back(a.rowUnknown[row]);
552     result.unknownFromIndex(result.rowUnknown.back()).pos =
553         result.rowUnknown.size() - 1;
554     result.nRow++;
555   };
556 
557   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
558   // may be).
559   auto appendRowFromB = [&](unsigned row) {
560     result.tableau(result.nRow, 0) = b.tableau(row, 0);
561     result.tableau(result.nRow, 1) = b.tableau(row, 1);
562 
563     unsigned offset = a.nCol - 2;
564     for (unsigned col = 2; col < b.nCol; ++col)
565       result.tableau(result.nRow, offset + col) = b.tableau(row, col);
566     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
567     result.unknownFromIndex(result.rowUnknown.back()).pos =
568         result.rowUnknown.size() - 1;
569     result.nRow++;
570   };
571 
572   for (unsigned row = 0; row < a.nRow; ++row)
573     appendRowFromA(row);
574   for (unsigned row = 0; row < b.nRow; ++row)
575     appendRowFromB(row);
576 
577   return result;
578 }
579 
580 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
581   // The tableau is empty, so no sample point exists.
582   if (empty)
583     return {};
584 
585   SmallVector<int64_t, 8> sample;
586   // Push the sample value for each variable into the vector.
587   for (const Unknown &u : var) {
588     if (u.orientation == Orientation::Column) {
589       // If the variable is in column position, its sample value is zero.
590       sample.push_back(0);
591     } else {
592       // If the variable is in row position, its sample value is the entry in
593       // the constant column divided by the entry in the common denominator
594       // column. If this is not an integer, then the sample point is not
595       // integral so we return None.
596       if (tableau(u.pos, 1) % tableau(u.pos, 0) != 0)
597         return {};
598       sample.push_back(tableau(u.pos, 1) / tableau(u.pos, 0));
599     }
600   }
601   return sample;
602 }
603 
604 /// Given a simplex for a polytope, construct a new simplex whose variables are
605 /// identified with a pair of points (x, y) in the original polytope. Supports
606 /// some operations needed for generalized basis reduction. In what follows,
607 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
608 /// dimension of the original polytope.
609 ///
610 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
611 /// also supports rolling back this addition, by maintaining a snapshot stack
612 /// that contains a snapshot of the Simplex's state for each equality, just
613 /// before that equality was added.
614 class GBRSimplex {
615   using Orientation = Simplex::Orientation;
616 
617 public:
618   GBRSimplex(const Simplex &originalSimplex)
619       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
620         simplexConstraintOffset(simplex.numConstraints()) {}
621 
622   /// Add an equality dotProduct(dir, x - y) == 0.
623   /// First pushes a snapshot for the current simplex state to the stack so
624   /// that this can be rolled back later.
625   void addEqualityForDirection(ArrayRef<int64_t> dir) {
626     assert(
627         std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
628         "Direction passed is the zero vector!");
629     snapshotStack.push_back(simplex.getSnapshot());
630     simplex.addEquality(getCoeffsForDirection(dir));
631   }
632 
633   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
634   /// the direction equalities to `dual`.
635   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
636                                 SmallVectorImpl<int64_t> &dual,
637                                 int64_t &dualDenom) {
638     unsigned snap = simplex.getSnapshot();
639     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
640     unsigned row = simplex.con[conIndex].pos;
641     Optional<Fraction> maybeWidth =
642         simplex.computeRowOptimum(Simplex::Direction::Up, row);
643     assert(maybeWidth.hasValue() && "Width should not be unbounded!");
644     dualDenom = simplex.tableau(row, 0);
645     dual.clear();
646     // The increment is i += 2 because equalities are added as two inequalities,
647     // one positive and one negative. Each iteration processes one equality.
648     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
649       // The dual variable is the negative of the coefficient of the new row
650       // in the column of the constraint, if the constraint is in a column.
651       // Note that the second inequality for the equality is negated.
652       //
653       // We want the dual for the original equality. If the positive inequality
654       // is in column position, the negative of its row coefficient is the
655       // desired dual. If the negative inequality is in column position, its row
656       // coefficient is the desired dual. (its coefficients are already the
657       // negated coefficients of the original equality, so we don't need to
658       // negate it now.)
659       //
660       // If neither are in column position, we move the negated inequality to
661       // column position. Since the inequality must have sample value zero
662       // (since it corresponds to an equality), we are free to pivot with
663       // any column. Since both the unknowns have sample value before and after
664       // pivoting, no other sample values will change and the tableau will
665       // remain consistent. To pivot, we just need to find a column that has a
666       // non-zero coefficient in this row. There must be one since otherwise the
667       // equality would be 0 == 0, which should never be passed to
668       // addEqualityForDirection.
669       //
670       // After finding a column, we pivot with the column, after which we can
671       // get the dual from the inequality in column position as explained above.
672       if (simplex.con[i].orientation == Orientation::Column) {
673         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
674       } else {
675         if (simplex.con[i + 1].orientation == Orientation::Row) {
676           unsigned ineqRow = simplex.con[i + 1].pos;
677           // Since it is an equality, the sample value must be zero.
678           assert(simplex.tableau(ineqRow, 1) == 0 &&
679                  "Equality's sample value must be zero.");
680           for (unsigned col = 2; col < simplex.nCol; ++col) {
681             if (simplex.tableau(ineqRow, col) != 0) {
682               simplex.pivot(ineqRow, col);
683               break;
684             }
685           }
686           assert(simplex.con[i + 1].orientation == Orientation::Column &&
687                  "No pivot found. Equality has all-zeros row in tableau!");
688         }
689         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
690       }
691     }
692     simplex.rollback(snap);
693     return *maybeWidth;
694   }
695 
696   /// Remove the last equality that was added through addEqualityForDirection.
697   ///
698   /// We do this by rolling back to the snapshot at the top of the stack, which
699   /// should be a snapshot taken just before the last equality was added.
700   void removeLastEquality() {
701     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
702     simplex.rollback(snapshotStack.back());
703     snapshotStack.pop_back();
704   }
705 
706 private:
707   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
708   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
709   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
710   /// where n is the dimension of the original polytope.
711   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
712     assert(2 * dir.size() == simplex.numVariables() &&
713            "Direction vector has wrong dimensionality");
714     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
715     coeffs.reserve(2 * dir.size());
716     for (int64_t coeff : dir)
717       coeffs.push_back(-coeff);
718     coeffs.push_back(0); // constant term
719     return coeffs;
720   }
721 
722   Simplex simplex;
723   /// The first index of the equality constraints, the index immediately after
724   /// the last constraint in the initial product simplex.
725   unsigned simplexConstraintOffset;
726   /// A stack of snapshots, used for rolling back.
727   SmallVector<unsigned, 8> snapshotStack;
728 };
729 
730 /// Reduce the basis to try and find a direction in which the polytope is
731 /// "thin". This only works for bounded polytopes.
732 ///
733 /// This is an implementation of the algorithm described in the paper
734 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
735 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
736 ///
737 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
738 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
739 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
740 ///
741 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
742 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
743 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
744 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
745 /// minimizing value of u, if it were allowed to be fractional. Due to
746 /// convexity, the minimizing integer value is either floor(dual_i) or
747 /// ceil(dual_i), so we just need to check which of these gives a lower
748 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
749 ///
750 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
751 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
752 /// same i). Otherwise, we increment i.
753 ///
754 /// We keep f values and duals cached and invalidate them when necessary.
755 /// Whenever possible, we use them instead of recomputing them. We implement the
756 /// algorithm as follows.
757 ///
758 /// In an iteration at i we need to compute:
759 ///   a) width_i(b_{i + 1})
760 ///   b) width_i(b_i)
761 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
762 ///
763 /// If width_i(b_i) is not already cached, we compute it.
764 ///
765 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
766 /// store the duals from this computation.
767 ///
768 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
769 /// of u as explained before, caches the duals from this computation, sets
770 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
771 ///
772 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
773 /// decrement i, resulting in the basis
774 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
775 /// with corresponding f values
776 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
777 /// The values up to i - 1 remain unchanged. We have just gotten the middle
778 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
779 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
780 /// the cache. The iteration after decrementing needs exactly the duals from the
781 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
782 ///
783 /// When incrementing i, no cached f values get invalidated. However, the cached
784 /// duals do get invalidated as the duals for the higher levels are different.
785 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
786   const Fraction epsilon(3, 4);
787 
788   if (level == basis.getNumRows() - 1)
789     return;
790 
791   GBRSimplex gbrSimplex(*this);
792   SmallVector<Fraction, 8> width;
793   SmallVector<int64_t, 8> dual;
794   int64_t dualDenom;
795 
796   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
797   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
798   // the new value of width_i(b_{i+1}).
799   //
800   // If dual_i is not an integer, the minimizing value must be either
801   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
802   // choose the minimizing value.
803   //
804   // If dual_i is an integer, we don't need to perform these computations. We
805   // know that in this case,
806   //   a) u = dual_i.
807   //   b) one can show that dual_j for j < i are the same duals we would have
808   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
809   //      are the ones already in the cache.
810   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
811   //   which
812   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
813   //      be in the cache, so we get it from there and return it.
814   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
815     assert(i < level + dual.size() && "dual_i is not known!");
816 
817     int64_t u = floorDiv(dual[i - level], dualDenom);
818     basis.addToRow(i, i + 1, u);
819     if (dual[i - level] % dualDenom != 0) {
820       SmallVector<int64_t, 8> candidateDual[2];
821       int64_t candidateDualDenom[2];
822       Fraction widthI[2];
823 
824       // Initially u is floor(dual) and basis reflects this.
825       widthI[0] = gbrSimplex.computeWidthAndDuals(
826           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
827 
828       // Now try ceil(dual), i.e. floor(dual) + 1.
829       ++u;
830       basis.addToRow(i, i + 1, 1);
831       widthI[1] = gbrSimplex.computeWidthAndDuals(
832           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
833 
834       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
835       if (j == 0)
836         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
837         basis.addToRow(i, i + 1, -1);
838       dual = std::move(candidateDual[j]);
839       dualDenom = candidateDualDenom[j];
840       return widthI[j];
841     }
842     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
843     // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to
844     // width_{i+1}(b_{i+1}).
845     return width[i + 1 - level];
846   };
847 
848   // In the ith iteration of the loop, gbrSimplex has constraints for directions
849   // from `level` to i - 1.
850   unsigned i = level;
851   while (i < basis.getNumRows() - 1) {
852     if (i >= level + width.size()) {
853       // We don't even know the value of f_i(b_i), so let's find that first.
854       // We have to do this first since later we assume that width already
855       // contains values up to and including i.
856 
857       assert((i == 0 || i - 1 < level + width.size()) &&
858              "We are at level i but we don't know the value of width_{i-1}");
859 
860       // We don't actually use these duals at all, but it doesn't matter
861       // because this case should only occur when i is level, and there are no
862       // duals in that case anyway.
863       assert(i == level && "This case should only occur when i == level");
864       width.push_back(
865           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
866     }
867 
868     if (i >= level + dual.size()) {
869       assert(i + 1 >= level + width.size() &&
870              "We don't know dual_i but we know width_{i+1}");
871       // We don't know dual for our level, so let's find it.
872       gbrSimplex.addEqualityForDirection(basis.getRow(i));
873       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
874                                                       dualDenom));
875       gbrSimplex.removeLastEquality();
876     }
877 
878     // This variable stores width_i(b_{i+1} + u*b_i).
879     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
880     if (widthICandidate < epsilon * width[i - level]) {
881       basis.swapRows(i, i + 1);
882       width[i - level] = widthICandidate;
883       // The values of width_{i+1}(b_{i+1}) and higher may change after the
884       // swap, so we remove the cached values here.
885       width.resize(i - level + 1);
886       if (i == level) {
887         dual.clear();
888         continue;
889       }
890 
891       gbrSimplex.removeLastEquality();
892       i--;
893       continue;
894     }
895 
896     // Invalidate duals since the higher level needs to recompute its own duals.
897     dual.clear();
898     gbrSimplex.addEqualityForDirection(basis.getRow(i));
899     i++;
900   }
901 }
902 
903 /// Search for an integer sample point using a branch and bound algorithm.
904 ///
905 /// Each row in the basis matrix is a vector, and the set of basis vectors
906 /// should span the space. Initially this is the identity matrix,
907 /// i.e., the basis vectors are just the variables.
908 ///
909 /// In every level, a value is assigned to the level-th basis vector, as
910 /// follows. Compute the minimum and maximum rational values of this direction.
911 /// If only one integer point lies in this range, constrain the variable to
912 /// have this value and recurse to the next variable.
913 ///
914 /// If the range has multiple values, perform generalized basis reduction via
915 /// reduceBasis and then compute the bounds again. Now we try constraining
916 /// this direction in the first value in this range and "recurse" to the next
917 /// level. If we fail to find a sample, we try assigning the direction the next
918 /// value in this range, and so on.
919 ///
920 /// If no integer sample is found from any of the assignments, or if the range
921 /// contains no integer value, then of course the polytope is empty for the
922 /// current assignment of the values in previous levels, so we return to
923 /// the previous level.
924 ///
925 /// If we reach the last level where all the variables have been assigned values
926 /// already, then we simply return the current sample point if it is integral,
927 /// and go back to the previous level otherwise.
928 ///
929 /// To avoid potentially arbitrarily large recursion depths leading to stack
930 /// overflows, this algorithm is implemented iteratively.
931 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
932   if (empty)
933     return {};
934 
935   unsigned nDims = var.size();
936   Matrix basis = Matrix::identity(nDims);
937 
938   unsigned level = 0;
939   // The snapshot just before constraining a direction to a value at each level.
940   SmallVector<unsigned, 8> snapshotStack;
941   // The maximum value in the range of the direction for each level.
942   SmallVector<int64_t, 8> upperBoundStack;
943   // The next value to try constraining the basis vector to at each level.
944   SmallVector<int64_t, 8> nextValueStack;
945 
946   snapshotStack.reserve(basis.getNumRows());
947   upperBoundStack.reserve(basis.getNumRows());
948   nextValueStack.reserve(basis.getNumRows());
949   while (level != -1u) {
950     if (level == basis.getNumRows()) {
951       // We've assigned values to all variables. Return if we have a sample,
952       // or go back up to the previous level otherwise.
953       if (auto maybeSample = getSamplePointIfIntegral())
954         return maybeSample;
955       level--;
956       continue;
957     }
958 
959     if (level >= upperBoundStack.size()) {
960       // We haven't populated the stack values for this level yet, so we have
961       // just come down a level ("recursed"). Find the lower and upper bounds.
962       // If there is more than one integer point in the range, perform
963       // generalized basis reduction.
964       SmallVector<int64_t, 8> basisCoeffs =
965           llvm::to_vector<8>(basis.getRow(level));
966       basisCoeffs.push_back(0);
967 
968       int64_t minRoundedUp, maxRoundedDown;
969       std::tie(minRoundedUp, maxRoundedDown) =
970           computeIntegerBounds(basisCoeffs);
971 
972       // Heuristic: if the sample point is integral at this point, just return
973       // it.
974       if (auto maybeSample = getSamplePointIfIntegral())
975         return *maybeSample;
976 
977       if (minRoundedUp < maxRoundedDown) {
978         reduceBasis(basis, level);
979         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
980         basisCoeffs.push_back(0);
981         std::tie(minRoundedUp, maxRoundedDown) =
982             computeIntegerBounds(basisCoeffs);
983       }
984 
985       snapshotStack.push_back(getSnapshot());
986       // The smallest value in the range is the next value to try.
987       nextValueStack.push_back(minRoundedUp);
988       upperBoundStack.push_back(maxRoundedDown);
989     }
990 
991     assert((snapshotStack.size() - 1 == level &&
992             nextValueStack.size() - 1 == level &&
993             upperBoundStack.size() - 1 == level) &&
994            "Mismatched variable stack sizes!");
995 
996     // Whether we "recursed" or "returned" from a lower level, we rollback
997     // to the snapshot of the starting state at this level. (in the "recursed"
998     // case this has no effect)
999     rollback(snapshotStack.back());
1000     int64_t nextValue = nextValueStack.back();
1001     nextValueStack.back()++;
1002     if (nextValue > upperBoundStack.back()) {
1003       // We have exhausted the range and found no solution. Pop the stack and
1004       // return up a level.
1005       snapshotStack.pop_back();
1006       nextValueStack.pop_back();
1007       upperBoundStack.pop_back();
1008       level--;
1009       continue;
1010     }
1011 
1012     // Try the next value in the range and "recurse" into the next level.
1013     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
1014                                         basis.getRow(level).end());
1015     basisCoeffs.push_back(-nextValue);
1016     addEquality(basisCoeffs);
1017     level++;
1018   }
1019 
1020   return {};
1021 }
1022 
1023 /// Compute the minimum and maximum integer values the expression can take. We
1024 /// compute each separately.
1025 std::pair<int64_t, int64_t>
1026 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
1027   int64_t minRoundedUp;
1028   if (Optional<Fraction> maybeMin =
1029           computeOptimum(Simplex::Direction::Down, coeffs))
1030     minRoundedUp = ceil(*maybeMin);
1031   else
1032     llvm_unreachable("Tableau should not be unbounded");
1033 
1034   int64_t maxRoundedDown;
1035   if (Optional<Fraction> maybeMax =
1036           computeOptimum(Simplex::Direction::Up, coeffs))
1037     maxRoundedDown = floor(*maybeMax);
1038   else
1039     llvm_unreachable("Tableau should not be unbounded");
1040 
1041   return {minRoundedUp, maxRoundedDown};
1042 }
1043 
1044 void Simplex::print(raw_ostream &os) const {
1045   os << "rows = " << nRow << ", columns = " << nCol << "\n";
1046   if (empty)
1047     os << "Simplex marked empty!\n";
1048   os << "var: ";
1049   for (unsigned i = 0; i < var.size(); ++i) {
1050     if (i > 0)
1051       os << ", ";
1052     var[i].print(os);
1053   }
1054   os << "\ncon: ";
1055   for (unsigned i = 0; i < con.size(); ++i) {
1056     if (i > 0)
1057       os << ", ";
1058     con[i].print(os);
1059   }
1060   os << '\n';
1061   for (unsigned row = 0; row < nRow; ++row) {
1062     if (row > 0)
1063       os << ", ";
1064     os << "r" << row << ": " << rowUnknown[row];
1065   }
1066   os << '\n';
1067   os << "c0: denom, c1: const";
1068   for (unsigned col = 2; col < nCol; ++col)
1069     os << ", c" << col << ": " << colUnknown[col];
1070   os << '\n';
1071   for (unsigned row = 0; row < nRow; ++row) {
1072     for (unsigned col = 0; col < nCol; ++col)
1073       os << tableau(row, col) << '\t';
1074     os << '\n';
1075   }
1076   os << '\n';
1077 }
1078 
1079 void Simplex::dump() const { print(llvm::errs()); }
1080 
1081 } // namespace mlir
1082