1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 13 namespace mlir { 14 using Direction = Simplex::Direction; 15 16 const int nullIndex = std::numeric_limits<int>::max(); 17 18 /// Construct a Simplex object with `nVar` variables. 19 Simplex::Simplex(unsigned nVar) 20 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { 21 colUnknown.push_back(nullIndex); 22 colUnknown.push_back(nullIndex); 23 for (unsigned i = 0; i < nVar; ++i) { 24 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); 25 colUnknown.push_back(i); 26 nCol++; 27 } 28 } 29 30 Simplex::Simplex(const FlatAffineConstraints &constraints) 31 : Simplex(constraints.getNumIds()) { 32 for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); 33 i < numIneqs; ++i) 34 addInequality(constraints.getInequality(i)); 35 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) 36 addEquality(constraints.getEquality(i)); 37 } 38 39 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const { 40 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 41 return index >= 0 ? var[index] : con[~index]; 42 } 43 44 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const { 45 assert(col < nCol && "Invalid column"); 46 return unknownFromIndex(colUnknown[col]); 47 } 48 49 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const { 50 assert(row < nRow && "Invalid row"); 51 return unknownFromIndex(rowUnknown[row]); 52 } 53 54 Simplex::Unknown &Simplex::unknownFromIndex(int index) { 55 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 56 return index >= 0 ? var[index] : con[~index]; 57 } 58 59 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) { 60 assert(col < nCol && "Invalid column"); 61 return unknownFromIndex(colUnknown[col]); 62 } 63 64 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) { 65 assert(row < nRow && "Invalid row"); 66 return unknownFromIndex(rowUnknown[row]); 67 } 68 69 /// Add a new row to the tableau corresponding to the given constant term and 70 /// list of coefficients. The coefficients are specified as a vector of 71 /// (variable index, coefficient) pairs. 72 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) { 73 assert(coeffs.size() == 1 + var.size() && 74 "Incorrect number of coefficients!"); 75 76 ++nRow; 77 // If the tableau is not big enough to accomodate the extra row, we extend it. 78 if (nRow >= tableau.getNumRows()) 79 tableau.resizeVertically(nRow); 80 rowUnknown.push_back(~con.size()); 81 con.emplace_back(Orientation::Row, false, nRow - 1); 82 83 tableau(nRow - 1, 0) = 1; 84 tableau(nRow - 1, 1) = coeffs.back(); 85 for (unsigned col = 2; col < nCol; ++col) 86 tableau(nRow - 1, col) = 0; 87 88 // Process each given variable coefficient. 89 for (unsigned i = 0; i < var.size(); ++i) { 90 unsigned pos = var[i].pos; 91 if (coeffs[i] == 0) 92 continue; 93 94 if (var[i].orientation == Orientation::Column) { 95 // If a variable is in column position at column col, then we just add the 96 // coefficient for that variable (scaled by the common row denominator) to 97 // the corresponding entry in the new row. 98 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 99 continue; 100 } 101 102 // If the variable is in row position, we need to add that row to the new 103 // row, scaled by the coefficient for the variable, accounting for the two 104 // rows potentially having different denominators. The new denominator is 105 // the lcm of the two. 106 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 107 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 108 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 109 tableau(nRow - 1, 0) = lcm; 110 for (unsigned col = 1; col < nCol; ++col) 111 tableau(nRow - 1, col) = 112 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 113 } 114 115 normalizeRow(nRow - 1); 116 // Push to undo log along with the index of the new constraint. 117 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 118 return con.size() - 1; 119 } 120 121 /// Normalize the row by removing factors that are common between the 122 /// denominator and all the numerator coefficients. 123 void Simplex::normalizeRow(unsigned row) { 124 int64_t gcd = 0; 125 for (unsigned col = 0; col < nCol; ++col) { 126 if (gcd == 1) 127 break; 128 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 129 } 130 for (unsigned col = 0; col < nCol; ++col) 131 tableau(row, col) /= gcd; 132 } 133 134 namespace { 135 bool signMatchesDirection(int64_t elem, Direction direction) { 136 assert(elem != 0 && "elem should not be 0"); 137 return direction == Direction::Up ? elem > 0 : elem < 0; 138 } 139 140 Direction flippedDirection(Direction direction) { 141 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 142 } 143 } // anonymous namespace 144 145 /// Find a pivot to change the sample value of the row in the specified 146 /// direction. The returned pivot row will involve `row` if and only if the 147 /// unknown is unbounded in the specified direction. 148 /// 149 /// To increase (resp. decrease) the value of a row, we need to find a live 150 /// column with a non-zero coefficient. If the coefficient is positive, we need 151 /// to increase (decrease) the value of the column, and if the coefficient is 152 /// negative, we need to decrease (increase) the value of the column. Also, 153 /// we cannot decrease the sample value of restricted columns. 154 /// 155 /// If multiple columns are valid, we break ties by considering a lexicographic 156 /// ordering where we prefer unknowns with lower index. 157 Optional<Simplex::Pivot> Simplex::findPivot(int row, 158 Direction direction) const { 159 Optional<unsigned> col; 160 for (unsigned j = 2; j < nCol; ++j) { 161 int64_t elem = tableau(row, j); 162 if (elem == 0) 163 continue; 164 165 if (unknownFromColumn(j).restricted && 166 !signMatchesDirection(elem, direction)) 167 continue; 168 if (!col || colUnknown[j] < colUnknown[*col]) 169 col = j; 170 } 171 172 if (!col) 173 return {}; 174 175 Direction newDirection = 176 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 177 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 178 return Pivot{maybePivotRow.getValueOr(row), *col}; 179 } 180 181 /// Swap the associated unknowns for the row and the column. 182 /// 183 /// First we swap the index associated with the row and column. Then we update 184 /// the unknowns to reflect their new position and orientation. 185 void Simplex::swapRowWithCol(unsigned row, unsigned col) { 186 std::swap(rowUnknown[row], colUnknown[col]); 187 Unknown &uCol = unknownFromColumn(col); 188 Unknown &uRow = unknownFromRow(row); 189 uCol.orientation = Orientation::Column; 190 uRow.orientation = Orientation::Row; 191 uCol.pos = col; 192 uRow.pos = row; 193 } 194 195 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); } 196 197 /// Pivot pivotRow and pivotCol. 198 /// 199 /// Let R be the pivot row unknown and let C be the pivot col unknown. 200 /// Since initially R = a*C + sum b_i * X_i 201 /// (where the sum is over the other column's unknowns, x_i) 202 /// C = (R - (sum b_i * X_i))/a 203 /// 204 /// Let u be some other row unknown. 205 /// u = c*C + sum d_i * X_i 206 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 207 /// 208 /// This results in the following transform: 209 /// pivot col other col pivot col other col 210 /// pivot row a b -> pivot row 1/a -b/a 211 /// other row c d other row c/a d - bc/a 212 /// 213 /// Taking into account the common denominators p and q: 214 /// 215 /// pivot col other col pivot col other col 216 /// pivot row a/p b/p -> pivot row p/a -b/a 217 /// other row c/q d/q other row cp/aq (da - bc)/aq 218 /// 219 /// The pivot row transform is accomplished be swapping a with the pivot row's 220 /// common denominator and negating the pivot row except for the pivot column 221 /// element. 222 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) { 223 assert(pivotCol >= 2 && "Refusing to pivot invalid column"); 224 225 swapRowWithCol(pivotRow, pivotCol); 226 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 227 // We need to negate the whole pivot row except for the pivot column. 228 if (tableau(pivotRow, 0) < 0) { 229 // If the denominator is negative, we negate the row by simply negating the 230 // denominator. 231 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 232 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 233 } else { 234 for (unsigned col = 1; col < nCol; ++col) { 235 if (col == pivotCol) 236 continue; 237 tableau(pivotRow, col) = -tableau(pivotRow, col); 238 } 239 } 240 normalizeRow(pivotRow); 241 242 for (unsigned row = nRedundant; row < nRow; ++row) { 243 if (row == pivotRow) 244 continue; 245 if (tableau(row, pivotCol) == 0) // Nothing to do. 246 continue; 247 tableau(row, 0) *= tableau(pivotRow, 0); 248 for (unsigned j = 1; j < nCol; ++j) { 249 if (j == pivotCol) 250 continue; 251 // Add rather than subtract because the pivot row has been negated. 252 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 253 tableau(row, pivotCol) * tableau(pivotRow, j); 254 } 255 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 256 normalizeRow(row); 257 } 258 } 259 260 /// Perform pivots until the unknown has a non-negative sample value or until 261 /// no more upward pivots can be performed. Return the sign of the final sample 262 /// value. 263 LogicalResult Simplex::restoreRow(Unknown &u) { 264 assert(u.orientation == Orientation::Row && 265 "unknown should be in row position"); 266 267 while (tableau(u.pos, 1) < 0) { 268 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 269 if (!maybePivot) 270 break; 271 272 pivot(*maybePivot); 273 if (u.orientation == Orientation::Column) 274 return LogicalResult::Success; // the unknown is unbounded above. 275 } 276 return success(tableau(u.pos, 1) >= 0); 277 } 278 279 /// Find a row that can be used to pivot the column in the specified direction. 280 /// This returns an empty optional if and only if the column is unbounded in the 281 /// specified direction (ignoring skipRow, if skipRow is set). 282 /// 283 /// If skipRow is set, this row is not considered, and (if it is restricted) its 284 /// restriction may be violated by the returned pivot. Usually, skipRow is set 285 /// because we don't want to move it to column position unless it is unbounded, 286 /// and we are either trying to increase the value of skipRow or explicitly 287 /// trying to make skipRow negative, so we are not concerned about this. 288 /// 289 /// If the direction is up (resp. down) and a restricted row has a negative 290 /// (positive) coefficient for the column, then this row imposes a bound on how 291 /// much the sample value of the column can change. Such a row with constant 292 /// term c and coefficient f for the column imposes a bound of c/|f| on the 293 /// change in sample value (in the specified direction). (note that c is 294 /// non-negative here since the row is restricted and the tableau is consistent) 295 /// 296 /// We iterate through the rows and pick the row which imposes the most 297 /// stringent bound, since pivoting with a row changes the row's sample value to 298 /// 0 and hence saturates the bound it imposes. We break ties between rows that 299 /// impose the same bound by considering a lexicographic ordering where we 300 /// prefer unknowns with lower index value. 301 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 302 Direction direction, 303 unsigned col) const { 304 Optional<unsigned> retRow; 305 int64_t retElem, retConst; 306 for (unsigned row = nRedundant; row < nRow; ++row) { 307 if (skipRow && row == *skipRow) 308 continue; 309 int64_t elem = tableau(row, col); 310 if (elem == 0) 311 continue; 312 if (!unknownFromRow(row).restricted) 313 continue; 314 if (signMatchesDirection(elem, direction)) 315 continue; 316 int64_t constTerm = tableau(row, 1); 317 318 if (!retRow) { 319 retRow = row; 320 retElem = elem; 321 retConst = constTerm; 322 continue; 323 } 324 325 int64_t diff = retConst * elem - constTerm * retElem; 326 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 327 (diff != 0 && !signMatchesDirection(diff, direction))) { 328 retRow = row; 329 retElem = elem; 330 retConst = constTerm; 331 } 332 } 333 return retRow; 334 } 335 336 bool Simplex::isEmpty() const { return empty; } 337 338 void Simplex::swapRows(unsigned i, unsigned j) { 339 if (i == j) 340 return; 341 tableau.swapRows(i, j); 342 std::swap(rowUnknown[i], rowUnknown[j]); 343 unknownFromRow(i).pos = i; 344 unknownFromRow(j).pos = j; 345 } 346 347 /// Mark this tableau empty and push an entry to the undo stack. 348 void Simplex::markEmpty() { 349 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 350 empty = true; 351 } 352 353 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 354 /// is the curent number of variables, then the corresponding inequality is 355 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 356 /// 357 /// We add the inequality and mark it as restricted. We then try to make its 358 /// sample value non-negative. If this is not possible, the tableau has become 359 /// empty and we mark it as such. 360 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 361 unsigned conIndex = addRow(coeffs); 362 Unknown &u = con[conIndex]; 363 u.restricted = true; 364 LogicalResult result = restoreRow(u); 365 if (failed(result)) 366 markEmpty(); 367 } 368 369 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 370 /// is the curent number of variables, then the corresponding equality is 371 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 372 /// 373 /// We simply add two opposing inequalities, which force the expression to 374 /// be zero. 375 void Simplex::addEquality(ArrayRef<int64_t> coeffs) { 376 addInequality(coeffs); 377 SmallVector<int64_t, 8> negatedCoeffs; 378 for (int64_t coeff : coeffs) 379 negatedCoeffs.emplace_back(-coeff); 380 addInequality(negatedCoeffs); 381 } 382 383 unsigned Simplex::numVariables() const { return var.size(); } 384 unsigned Simplex::numConstraints() const { return con.size(); } 385 386 /// Return a snapshot of the curent state. This is just the current size of the 387 /// undo log. 388 unsigned Simplex::getSnapshot() const { return undoLog.size(); } 389 390 void Simplex::undo(UndoLogEntry entry) { 391 if (entry == UndoLogEntry::RemoveLastConstraint) { 392 Unknown &constraint = con.back(); 393 if (constraint.orientation == Orientation::Column) { 394 unsigned column = constraint.pos; 395 Optional<unsigned> row; 396 397 // Try to find any pivot row for this column that preserves tableau 398 // consistency (except possibly the column itself, which is going to be 399 // deallocated anyway). 400 // 401 // If no pivot row is found in either direction, then the unknown is 402 // unbounded in both directions and we are free to 403 // perform any pivot at all. To do this, we just need to find any row with 404 // a non-zero coefficient for the column. 405 if (Optional<unsigned> maybeRow = 406 findPivotRow({}, Direction::Up, column)) { 407 row = *maybeRow; 408 } else if (Optional<unsigned> maybeRow = 409 findPivotRow({}, Direction::Down, column)) { 410 row = *maybeRow; 411 } else { 412 // The loop doesn't find a pivot row only if the column has zero 413 // coefficients for every row. But the unknown is a constraint, 414 // so it was added initially as a row. Such a row could never have been 415 // pivoted to a column. So a pivot row will always be found. 416 for (unsigned i = nRedundant; i < nRow; ++i) { 417 if (tableau(i, column) != 0) { 418 row = i; 419 break; 420 } 421 } 422 } 423 assert(row.hasValue() && "No pivot row found!"); 424 pivot(*row, column); 425 } 426 427 // Move this unknown to the last row and remove the last row from the 428 // tableau. 429 swapRows(constraint.pos, nRow - 1); 430 // It is not strictly necessary to shrink the tableau, but for now we 431 // maintain the invariant that the tableau has exactly nRow rows. 432 tableau.resizeVertically(nRow - 1); 433 nRow--; 434 rowUnknown.pop_back(); 435 con.pop_back(); 436 } else if (entry == UndoLogEntry::UnmarkEmpty) { 437 empty = false; 438 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 439 nRedundant--; 440 } 441 } 442 443 /// Rollback to the specified snapshot. 444 /// 445 /// We undo all the log entries until the log size when the snapshot was taken 446 /// is reached. 447 void Simplex::rollback(unsigned snapshot) { 448 while (undoLog.size() > snapshot) { 449 undo(undoLog.back()); 450 undoLog.pop_back(); 451 } 452 } 453 454 /// Add all the constraints from the given FlatAffineConstraints. 455 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) { 456 assert(fac.getNumIds() == numVariables() && 457 "FlatAffineConstraints must have same dimensionality as simplex"); 458 for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) 459 addInequality(fac.getInequality(i)); 460 for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) 461 addEquality(fac.getEquality(i)); 462 } 463 464 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 465 unsigned row) { 466 // Keep trying to find a pivot for the row in the specified direction. 467 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 468 // If findPivot returns a pivot involving the row itself, then the optimum 469 // is unbounded, so we return None. 470 if (maybePivot->row == row) 471 return {}; 472 pivot(*maybePivot); 473 } 474 475 // The row has reached its optimal sample value, which we return. 476 // The sample value is the entry in the constant column divided by the common 477 // denominator for this row. 478 return Fraction(tableau(row, 1), tableau(row, 0)); 479 } 480 481 /// Compute the optimum of the specified expression in the specified direction, 482 /// or None if it is unbounded. 483 Optional<Fraction> Simplex::computeOptimum(Direction direction, 484 ArrayRef<int64_t> coeffs) { 485 assert(!empty && "Tableau should not be empty"); 486 487 unsigned snapshot = getSnapshot(); 488 unsigned conIndex = addRow(coeffs); 489 unsigned row = con[conIndex].pos; 490 Optional<Fraction> optimum = computeRowOptimum(direction, row); 491 rollback(snapshot); 492 return optimum; 493 } 494 495 /// Redundant constraints are those that are in row orientation and lie in 496 /// rows 0 to nRedundant - 1. 497 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 498 const Unknown &u = con[constraintIndex]; 499 return u.orientation == Orientation::Row && u.pos < nRedundant; 500 } 501 502 /// Mark the specified row redundant. 503 /// 504 /// This is done by moving the unknown to the end of the block of redundant 505 /// rows (namely, to row nRedundant) and incrementing nRedundant to 506 /// accomodate the new redundant row. 507 void Simplex::markRowRedundant(Unknown &u) { 508 assert(u.orientation == Orientation::Row && 509 "Unknown should be in row position!"); 510 swapRows(u.pos, nRedundant); 511 ++nRedundant; 512 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 513 } 514 515 /// Find a subset of constraints that is redundant and mark them redundant. 516 void Simplex::detectRedundant() { 517 // It is not meaningful to talk about redundancy for empty sets. 518 if (empty) 519 return; 520 521 // Iterate through the constraints and check for each one if it can attain 522 // negative sample values. If it can, it's not redundant. Otherwise, it is. 523 // We mark redundant constraints redundant. 524 // 525 // Constraints that get marked redundant in one iteration are not respected 526 // when checking constraints in later iterations. This prevents, for example, 527 // two identical constraints both being marked redundant since each is 528 // redundant given the other one. In this example, only the first of the 529 // constraints that is processed will get marked redundant, as it should be. 530 for (Unknown &u : con) { 531 if (u.orientation == Orientation::Column) { 532 unsigned column = u.pos; 533 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 534 // If no downward pivot is returned, the constraint is unbounded below 535 // and hence not redundant. 536 if (!pivotRow) 537 continue; 538 pivot(*pivotRow, column); 539 } 540 541 unsigned row = u.pos; 542 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 543 if (!minimum || *minimum < Fraction(0, 1)) { 544 // Constraint is unbounded below or can attain negative sample values and 545 // hence is not redundant. 546 restoreRow(u); 547 continue; 548 } 549 550 markRowRedundant(u); 551 } 552 } 553 554 bool Simplex::isUnbounded() { 555 if (empty) 556 return false; 557 558 SmallVector<int64_t, 8> dir(var.size() + 1); 559 for (unsigned i = 0; i < var.size(); ++i) { 560 dir[i] = 1; 561 562 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 563 if (!maybeMax) 564 return true; 565 566 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 567 if (!maybeMin) 568 return true; 569 570 dir[i] = 0; 571 } 572 return false; 573 } 574 575 /// Make a tableau to represent a pair of points in the original tableau. 576 /// 577 /// The product constraints and variables are stored as: first A's, then B's. 578 /// 579 /// The product tableau has row layout: 580 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 581 /// 582 /// It has column layout: 583 /// denominator, constant, A's columns, B's columns. 584 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 585 unsigned numVar = a.numVariables() + b.numVariables(); 586 unsigned numCon = a.numConstraints() + b.numConstraints(); 587 Simplex result(numVar); 588 589 result.tableau.resizeVertically(numCon); 590 result.empty = a.empty || b.empty; 591 592 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 593 SmallVector<Unknown, 8> result; 594 result.reserve(v.size() + w.size()); 595 result.insert(result.end(), v.begin(), v.end()); 596 result.insert(result.end(), w.begin(), w.end()); 597 return result; 598 }; 599 result.con = concat(a.con, b.con); 600 result.var = concat(a.var, b.var); 601 602 auto indexFromBIndex = [&](int index) { 603 return index >= 0 ? a.numVariables() + index 604 : ~(a.numConstraints() + ~index); 605 }; 606 607 result.colUnknown.assign(2, nullIndex); 608 for (unsigned i = 2; i < a.nCol; ++i) { 609 result.colUnknown.push_back(a.colUnknown[i]); 610 result.unknownFromIndex(result.colUnknown.back()).pos = 611 result.colUnknown.size() - 1; 612 } 613 for (unsigned i = 2; i < b.nCol; ++i) { 614 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 615 result.unknownFromIndex(result.colUnknown.back()).pos = 616 result.colUnknown.size() - 1; 617 } 618 619 auto appendRowFromA = [&](unsigned row) { 620 for (unsigned col = 0; col < a.nCol; ++col) 621 result.tableau(result.nRow, col) = a.tableau(row, col); 622 result.rowUnknown.push_back(a.rowUnknown[row]); 623 result.unknownFromIndex(result.rowUnknown.back()).pos = 624 result.rowUnknown.size() - 1; 625 result.nRow++; 626 }; 627 628 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 629 // may be). 630 auto appendRowFromB = [&](unsigned row) { 631 result.tableau(result.nRow, 0) = b.tableau(row, 0); 632 result.tableau(result.nRow, 1) = b.tableau(row, 1); 633 634 unsigned offset = a.nCol - 2; 635 for (unsigned col = 2; col < b.nCol; ++col) 636 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 637 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 638 result.unknownFromIndex(result.rowUnknown.back()).pos = 639 result.rowUnknown.size() - 1; 640 result.nRow++; 641 }; 642 643 result.nRedundant = a.nRedundant + b.nRedundant; 644 for (unsigned row = 0; row < a.nRedundant; ++row) 645 appendRowFromA(row); 646 for (unsigned row = 0; row < b.nRedundant; ++row) 647 appendRowFromB(row); 648 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 649 appendRowFromA(row); 650 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 651 appendRowFromB(row); 652 653 return result; 654 } 655 656 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 657 // The tableau is empty, so no sample point exists. 658 if (empty) 659 return {}; 660 661 SmallVector<int64_t, 8> sample; 662 // Push the sample value for each variable into the vector. 663 for (const Unknown &u : var) { 664 if (u.orientation == Orientation::Column) { 665 // If the variable is in column position, its sample value is zero. 666 sample.push_back(0); 667 } else { 668 // If the variable is in row position, its sample value is the entry in 669 // the constant column divided by the entry in the common denominator 670 // column. If this is not an integer, then the sample point is not 671 // integral so we return None. 672 if (tableau(u.pos, 1) % tableau(u.pos, 0) != 0) 673 return {}; 674 sample.push_back(tableau(u.pos, 1) / tableau(u.pos, 0)); 675 } 676 } 677 return sample; 678 } 679 680 /// Given a simplex for a polytope, construct a new simplex whose variables are 681 /// identified with a pair of points (x, y) in the original polytope. Supports 682 /// some operations needed for generalized basis reduction. In what follows, 683 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 684 /// dimension of the original polytope. 685 /// 686 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 687 /// also supports rolling back this addition, by maintaining a snapshot stack 688 /// that contains a snapshot of the Simplex's state for each equality, just 689 /// before that equality was added. 690 class GBRSimplex { 691 using Orientation = Simplex::Orientation; 692 693 public: 694 GBRSimplex(const Simplex &originalSimplex) 695 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 696 simplexConstraintOffset(simplex.numConstraints()) {} 697 698 /// Add an equality dotProduct(dir, x - y) == 0. 699 /// First pushes a snapshot for the current simplex state to the stack so 700 /// that this can be rolled back later. 701 void addEqualityForDirection(ArrayRef<int64_t> dir) { 702 assert( 703 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 704 "Direction passed is the zero vector!"); 705 snapshotStack.push_back(simplex.getSnapshot()); 706 simplex.addEquality(getCoeffsForDirection(dir)); 707 } 708 709 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 710 /// the direction equalities to `dual`. 711 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 712 SmallVectorImpl<int64_t> &dual, 713 int64_t &dualDenom) { 714 unsigned snap = simplex.getSnapshot(); 715 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 716 unsigned row = simplex.con[conIndex].pos; 717 Optional<Fraction> maybeWidth = 718 simplex.computeRowOptimum(Simplex::Direction::Up, row); 719 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 720 dualDenom = simplex.tableau(row, 0); 721 dual.clear(); 722 // The increment is i += 2 because equalities are added as two inequalities, 723 // one positive and one negative. Each iteration processes one equality. 724 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 725 // The dual variable is the negative of the coefficient of the new row 726 // in the column of the constraint, if the constraint is in a column. 727 // Note that the second inequality for the equality is negated. 728 // 729 // We want the dual for the original equality. If the positive inequality 730 // is in column position, the negative of its row coefficient is the 731 // desired dual. If the negative inequality is in column position, its row 732 // coefficient is the desired dual. (its coefficients are already the 733 // negated coefficients of the original equality, so we don't need to 734 // negate it now.) 735 // 736 // If neither are in column position, we move the negated inequality to 737 // column position. Since the inequality must have sample value zero 738 // (since it corresponds to an equality), we are free to pivot with 739 // any column. Since both the unknowns have sample value before and after 740 // pivoting, no other sample values will change and the tableau will 741 // remain consistent. To pivot, we just need to find a column that has a 742 // non-zero coefficient in this row. There must be one since otherwise the 743 // equality would be 0 == 0, which should never be passed to 744 // addEqualityForDirection. 745 // 746 // After finding a column, we pivot with the column, after which we can 747 // get the dual from the inequality in column position as explained above. 748 if (simplex.con[i].orientation == Orientation::Column) { 749 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 750 } else { 751 if (simplex.con[i + 1].orientation == Orientation::Row) { 752 unsigned ineqRow = simplex.con[i + 1].pos; 753 // Since it is an equality, the sample value must be zero. 754 assert(simplex.tableau(ineqRow, 1) == 0 && 755 "Equality's sample value must be zero."); 756 for (unsigned col = 2; col < simplex.nCol; ++col) { 757 if (simplex.tableau(ineqRow, col) != 0) { 758 simplex.pivot(ineqRow, col); 759 break; 760 } 761 } 762 assert(simplex.con[i + 1].orientation == Orientation::Column && 763 "No pivot found. Equality has all-zeros row in tableau!"); 764 } 765 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 766 } 767 } 768 simplex.rollback(snap); 769 return *maybeWidth; 770 } 771 772 /// Remove the last equality that was added through addEqualityForDirection. 773 /// 774 /// We do this by rolling back to the snapshot at the top of the stack, which 775 /// should be a snapshot taken just before the last equality was added. 776 void removeLastEquality() { 777 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 778 simplex.rollback(snapshotStack.back()); 779 snapshotStack.pop_back(); 780 } 781 782 private: 783 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 784 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 785 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 786 /// where n is the dimension of the original polytope. 787 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 788 assert(2 * dir.size() == simplex.numVariables() && 789 "Direction vector has wrong dimensionality"); 790 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 791 coeffs.reserve(2 * dir.size()); 792 for (int64_t coeff : dir) 793 coeffs.push_back(-coeff); 794 coeffs.push_back(0); // constant term 795 return coeffs; 796 } 797 798 Simplex simplex; 799 /// The first index of the equality constraints, the index immediately after 800 /// the last constraint in the initial product simplex. 801 unsigned simplexConstraintOffset; 802 /// A stack of snapshots, used for rolling back. 803 SmallVector<unsigned, 8> snapshotStack; 804 }; 805 806 /// Reduce the basis to try and find a direction in which the polytope is 807 /// "thin". This only works for bounded polytopes. 808 /// 809 /// This is an implementation of the algorithm described in the paper 810 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 811 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 812 /// 813 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 814 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 815 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 816 /// 817 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 818 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 819 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 820 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 821 /// minimizing value of u, if it were allowed to be fractional. Due to 822 /// convexity, the minimizing integer value is either floor(dual_i) or 823 /// ceil(dual_i), so we just need to check which of these gives a lower 824 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 825 /// 826 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 827 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 828 /// same i). Otherwise, we increment i. 829 /// 830 /// We keep f values and duals cached and invalidate them when necessary. 831 /// Whenever possible, we use them instead of recomputing them. We implement the 832 /// algorithm as follows. 833 /// 834 /// In an iteration at i we need to compute: 835 /// a) width_i(b_{i + 1}) 836 /// b) width_i(b_i) 837 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 838 /// 839 /// If width_i(b_i) is not already cached, we compute it. 840 /// 841 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 842 /// store the duals from this computation. 843 /// 844 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 845 /// of u as explained before, caches the duals from this computation, sets 846 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 847 /// 848 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 849 /// decrement i, resulting in the basis 850 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 851 /// with corresponding f values 852 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 853 /// The values up to i - 1 remain unchanged. We have just gotten the middle 854 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 855 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 856 /// the cache. The iteration after decrementing needs exactly the duals from the 857 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 858 /// 859 /// When incrementing i, no cached f values get invalidated. However, the cached 860 /// duals do get invalidated as the duals for the higher levels are different. 861 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 862 const Fraction epsilon(3, 4); 863 864 if (level == basis.getNumRows() - 1) 865 return; 866 867 GBRSimplex gbrSimplex(*this); 868 SmallVector<Fraction, 8> width; 869 SmallVector<int64_t, 8> dual; 870 int64_t dualDenom; 871 872 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 873 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 874 // the new value of width_i(b_{i+1}). 875 // 876 // If dual_i is not an integer, the minimizing value must be either 877 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 878 // choose the minimizing value. 879 // 880 // If dual_i is an integer, we don't need to perform these computations. We 881 // know that in this case, 882 // a) u = dual_i. 883 // b) one can show that dual_j for j < i are the same duals we would have 884 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 885 // are the ones already in the cache. 886 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 887 // which 888 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 889 // be in the cache, so we get it from there and return it. 890 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 891 assert(i < level + dual.size() && "dual_i is not known!"); 892 893 int64_t u = floorDiv(dual[i - level], dualDenom); 894 basis.addToRow(i, i + 1, u); 895 if (dual[i - level] % dualDenom != 0) { 896 SmallVector<int64_t, 8> candidateDual[2]; 897 int64_t candidateDualDenom[2]; 898 Fraction widthI[2]; 899 900 // Initially u is floor(dual) and basis reflects this. 901 widthI[0] = gbrSimplex.computeWidthAndDuals( 902 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 903 904 // Now try ceil(dual), i.e. floor(dual) + 1. 905 ++u; 906 basis.addToRow(i, i + 1, 1); 907 widthI[1] = gbrSimplex.computeWidthAndDuals( 908 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 909 910 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 911 if (j == 0) 912 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 913 basis.addToRow(i, i + 1, -1); 914 dual = std::move(candidateDual[j]); 915 dualDenom = candidateDualDenom[j]; 916 return widthI[j]; 917 } 918 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 919 // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to 920 // width_{i+1}(b_{i+1}). 921 return width[i + 1 - level]; 922 }; 923 924 // In the ith iteration of the loop, gbrSimplex has constraints for directions 925 // from `level` to i - 1. 926 unsigned i = level; 927 while (i < basis.getNumRows() - 1) { 928 if (i >= level + width.size()) { 929 // We don't even know the value of f_i(b_i), so let's find that first. 930 // We have to do this first since later we assume that width already 931 // contains values up to and including i. 932 933 assert((i == 0 || i - 1 < level + width.size()) && 934 "We are at level i but we don't know the value of width_{i-1}"); 935 936 // We don't actually use these duals at all, but it doesn't matter 937 // because this case should only occur when i is level, and there are no 938 // duals in that case anyway. 939 assert(i == level && "This case should only occur when i == level"); 940 width.push_back( 941 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 942 } 943 944 if (i >= level + dual.size()) { 945 assert(i + 1 >= level + width.size() && 946 "We don't know dual_i but we know width_{i+1}"); 947 // We don't know dual for our level, so let's find it. 948 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 949 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 950 dualDenom)); 951 gbrSimplex.removeLastEquality(); 952 } 953 954 // This variable stores width_i(b_{i+1} + u*b_i). 955 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 956 if (widthICandidate < epsilon * width[i - level]) { 957 basis.swapRows(i, i + 1); 958 width[i - level] = widthICandidate; 959 // The values of width_{i+1}(b_{i+1}) and higher may change after the 960 // swap, so we remove the cached values here. 961 width.resize(i - level + 1); 962 if (i == level) { 963 dual.clear(); 964 continue; 965 } 966 967 gbrSimplex.removeLastEquality(); 968 i--; 969 continue; 970 } 971 972 // Invalidate duals since the higher level needs to recompute its own duals. 973 dual.clear(); 974 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 975 i++; 976 } 977 } 978 979 /// Search for an integer sample point using a branch and bound algorithm. 980 /// 981 /// Each row in the basis matrix is a vector, and the set of basis vectors 982 /// should span the space. Initially this is the identity matrix, 983 /// i.e., the basis vectors are just the variables. 984 /// 985 /// In every level, a value is assigned to the level-th basis vector, as 986 /// follows. Compute the minimum and maximum rational values of this direction. 987 /// If only one integer point lies in this range, constrain the variable to 988 /// have this value and recurse to the next variable. 989 /// 990 /// If the range has multiple values, perform generalized basis reduction via 991 /// reduceBasis and then compute the bounds again. Now we try constraining 992 /// this direction in the first value in this range and "recurse" to the next 993 /// level. If we fail to find a sample, we try assigning the direction the next 994 /// value in this range, and so on. 995 /// 996 /// If no integer sample is found from any of the assignments, or if the range 997 /// contains no integer value, then of course the polytope is empty for the 998 /// current assignment of the values in previous levels, so we return to 999 /// the previous level. 1000 /// 1001 /// If we reach the last level where all the variables have been assigned values 1002 /// already, then we simply return the current sample point if it is integral, 1003 /// and go back to the previous level otherwise. 1004 /// 1005 /// To avoid potentially arbitrarily large recursion depths leading to stack 1006 /// overflows, this algorithm is implemented iteratively. 1007 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1008 if (empty) 1009 return {}; 1010 1011 unsigned nDims = var.size(); 1012 Matrix basis = Matrix::identity(nDims); 1013 1014 unsigned level = 0; 1015 // The snapshot just before constraining a direction to a value at each level. 1016 SmallVector<unsigned, 8> snapshotStack; 1017 // The maximum value in the range of the direction for each level. 1018 SmallVector<int64_t, 8> upperBoundStack; 1019 // The next value to try constraining the basis vector to at each level. 1020 SmallVector<int64_t, 8> nextValueStack; 1021 1022 snapshotStack.reserve(basis.getNumRows()); 1023 upperBoundStack.reserve(basis.getNumRows()); 1024 nextValueStack.reserve(basis.getNumRows()); 1025 while (level != -1u) { 1026 if (level == basis.getNumRows()) { 1027 // We've assigned values to all variables. Return if we have a sample, 1028 // or go back up to the previous level otherwise. 1029 if (auto maybeSample = getSamplePointIfIntegral()) 1030 return maybeSample; 1031 level--; 1032 continue; 1033 } 1034 1035 if (level >= upperBoundStack.size()) { 1036 // We haven't populated the stack values for this level yet, so we have 1037 // just come down a level ("recursed"). Find the lower and upper bounds. 1038 // If there is more than one integer point in the range, perform 1039 // generalized basis reduction. 1040 SmallVector<int64_t, 8> basisCoeffs = 1041 llvm::to_vector<8>(basis.getRow(level)); 1042 basisCoeffs.push_back(0); 1043 1044 int64_t minRoundedUp, maxRoundedDown; 1045 std::tie(minRoundedUp, maxRoundedDown) = 1046 computeIntegerBounds(basisCoeffs); 1047 1048 // Heuristic: if the sample point is integral at this point, just return 1049 // it. 1050 if (auto maybeSample = getSamplePointIfIntegral()) 1051 return *maybeSample; 1052 1053 if (minRoundedUp < maxRoundedDown) { 1054 reduceBasis(basis, level); 1055 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1056 basisCoeffs.push_back(0); 1057 std::tie(minRoundedUp, maxRoundedDown) = 1058 computeIntegerBounds(basisCoeffs); 1059 } 1060 1061 snapshotStack.push_back(getSnapshot()); 1062 // The smallest value in the range is the next value to try. 1063 nextValueStack.push_back(minRoundedUp); 1064 upperBoundStack.push_back(maxRoundedDown); 1065 } 1066 1067 assert((snapshotStack.size() - 1 == level && 1068 nextValueStack.size() - 1 == level && 1069 upperBoundStack.size() - 1 == level) && 1070 "Mismatched variable stack sizes!"); 1071 1072 // Whether we "recursed" or "returned" from a lower level, we rollback 1073 // to the snapshot of the starting state at this level. (in the "recursed" 1074 // case this has no effect) 1075 rollback(snapshotStack.back()); 1076 int64_t nextValue = nextValueStack.back(); 1077 nextValueStack.back()++; 1078 if (nextValue > upperBoundStack.back()) { 1079 // We have exhausted the range and found no solution. Pop the stack and 1080 // return up a level. 1081 snapshotStack.pop_back(); 1082 nextValueStack.pop_back(); 1083 upperBoundStack.pop_back(); 1084 level--; 1085 continue; 1086 } 1087 1088 // Try the next value in the range and "recurse" into the next level. 1089 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1090 basis.getRow(level).end()); 1091 basisCoeffs.push_back(-nextValue); 1092 addEquality(basisCoeffs); 1093 level++; 1094 } 1095 1096 return {}; 1097 } 1098 1099 /// Compute the minimum and maximum integer values the expression can take. We 1100 /// compute each separately. 1101 std::pair<int64_t, int64_t> 1102 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1103 int64_t minRoundedUp; 1104 if (Optional<Fraction> maybeMin = 1105 computeOptimum(Simplex::Direction::Down, coeffs)) 1106 minRoundedUp = ceil(*maybeMin); 1107 else 1108 llvm_unreachable("Tableau should not be unbounded"); 1109 1110 int64_t maxRoundedDown; 1111 if (Optional<Fraction> maybeMax = 1112 computeOptimum(Simplex::Direction::Up, coeffs)) 1113 maxRoundedDown = floor(*maybeMax); 1114 else 1115 llvm_unreachable("Tableau should not be unbounded"); 1116 1117 return {minRoundedUp, maxRoundedDown}; 1118 } 1119 1120 void Simplex::print(raw_ostream &os) const { 1121 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1122 if (empty) 1123 os << "Simplex marked empty!\n"; 1124 os << "var: "; 1125 for (unsigned i = 0; i < var.size(); ++i) { 1126 if (i > 0) 1127 os << ", "; 1128 var[i].print(os); 1129 } 1130 os << "\ncon: "; 1131 for (unsigned i = 0; i < con.size(); ++i) { 1132 if (i > 0) 1133 os << ", "; 1134 con[i].print(os); 1135 } 1136 os << '\n'; 1137 for (unsigned row = 0; row < nRow; ++row) { 1138 if (row > 0) 1139 os << ", "; 1140 os << "r" << row << ": " << rowUnknown[row]; 1141 } 1142 os << '\n'; 1143 os << "c0: denom, c1: const"; 1144 for (unsigned col = 2; col < nCol; ++col) 1145 os << ", c" << col << ": " << colUnknown[col]; 1146 os << '\n'; 1147 for (unsigned row = 0; row < nRow; ++row) { 1148 for (unsigned col = 0; col < nCol; ++col) 1149 os << tableau(row, col) << '\t'; 1150 os << '\n'; 1151 } 1152 os << '\n'; 1153 } 1154 1155 void Simplex::dump() const { print(llvm::errs()); } 1156 1157 } // namespace mlir 1158