1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 13 namespace mlir { 14 using Direction = Simplex::Direction; 15 16 const int nullIndex = std::numeric_limits<int>::max(); 17 18 /// Construct a Simplex object with `nVar` variables. 19 Simplex::Simplex(unsigned nVar) 20 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { 21 colUnknown.push_back(nullIndex); 22 colUnknown.push_back(nullIndex); 23 for (unsigned i = 0; i < nVar; ++i) { 24 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); 25 colUnknown.push_back(i); 26 nCol++; 27 } 28 } 29 30 Simplex::Simplex(const FlatAffineConstraints &constraints) 31 : Simplex(constraints.getNumIds()) { 32 for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); 33 i < numIneqs; ++i) 34 addInequality(constraints.getInequality(i)); 35 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) 36 addEquality(constraints.getEquality(i)); 37 } 38 39 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const { 40 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 41 return index >= 0 ? var[index] : con[~index]; 42 } 43 44 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const { 45 assert(col < nCol && "Invalid column"); 46 return unknownFromIndex(colUnknown[col]); 47 } 48 49 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const { 50 assert(row < nRow && "Invalid row"); 51 return unknownFromIndex(rowUnknown[row]); 52 } 53 54 Simplex::Unknown &Simplex::unknownFromIndex(int index) { 55 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 56 return index >= 0 ? var[index] : con[~index]; 57 } 58 59 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) { 60 assert(col < nCol && "Invalid column"); 61 return unknownFromIndex(colUnknown[col]); 62 } 63 64 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) { 65 assert(row < nRow && "Invalid row"); 66 return unknownFromIndex(rowUnknown[row]); 67 } 68 69 /// Add a new row to the tableau corresponding to the given constant term and 70 /// list of coefficients. The coefficients are specified as a vector of 71 /// (variable index, coefficient) pairs. 72 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) { 73 assert(coeffs.size() == 1 + var.size() && 74 "Incorrect number of coefficients!"); 75 76 ++nRow; 77 // If the tableau is not big enough to accomodate the extra row, we extend it. 78 if (nRow >= tableau.getNumRows()) 79 tableau.resizeVertically(nRow); 80 rowUnknown.push_back(~con.size()); 81 con.emplace_back(Orientation::Row, false, nRow - 1); 82 83 tableau(nRow - 1, 0) = 1; 84 tableau(nRow - 1, 1) = coeffs.back(); 85 for (unsigned col = 2; col < nCol; ++col) 86 tableau(nRow - 1, col) = 0; 87 88 // Process each given variable coefficient. 89 for (unsigned i = 0; i < var.size(); ++i) { 90 unsigned pos = var[i].pos; 91 if (coeffs[i] == 0) 92 continue; 93 94 if (var[i].orientation == Orientation::Column) { 95 // If a variable is in column position at column col, then we just add the 96 // coefficient for that variable (scaled by the common row denominator) to 97 // the corresponding entry in the new row. 98 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 99 continue; 100 } 101 102 // If the variable is in row position, we need to add that row to the new 103 // row, scaled by the coefficient for the variable, accounting for the two 104 // rows potentially having different denominators. The new denominator is 105 // the lcm of the two. 106 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 107 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 108 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 109 tableau(nRow - 1, 0) = lcm; 110 for (unsigned col = 1; col < nCol; ++col) 111 tableau(nRow - 1, col) = 112 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 113 } 114 115 normalizeRow(nRow - 1); 116 // Push to undo log along with the index of the new constraint. 117 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 118 return con.size() - 1; 119 } 120 121 /// Normalize the row by removing factors that are common between the 122 /// denominator and all the numerator coefficients. 123 void Simplex::normalizeRow(unsigned row) { 124 int64_t gcd = 0; 125 for (unsigned col = 0; col < nCol; ++col) { 126 if (gcd == 1) 127 break; 128 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 129 } 130 for (unsigned col = 0; col < nCol; ++col) 131 tableau(row, col) /= gcd; 132 } 133 134 namespace { 135 bool signMatchesDirection(int64_t elem, Direction direction) { 136 assert(elem != 0 && "elem should not be 0"); 137 return direction == Direction::Up ? elem > 0 : elem < 0; 138 } 139 140 Direction flippedDirection(Direction direction) { 141 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 142 } 143 } // anonymous namespace 144 145 /// Find a pivot to change the sample value of the row in the specified 146 /// direction. The returned pivot row will involve `row` if and only if the 147 /// unknown is unbounded in the specified direction. 148 /// 149 /// To increase (resp. decrease) the value of a row, we need to find a live 150 /// column with a non-zero coefficient. If the coefficient is positive, we need 151 /// to increase (decrease) the value of the column, and if the coefficient is 152 /// negative, we need to decrease (increase) the value of the column. Also, 153 /// we cannot decrease the sample value of restricted columns. 154 /// 155 /// If multiple columns are valid, we break ties by considering a lexicographic 156 /// ordering where we prefer unknowns with lower index. 157 Optional<Simplex::Pivot> Simplex::findPivot(int row, 158 Direction direction) const { 159 Optional<unsigned> col; 160 for (unsigned j = 2; j < nCol; ++j) { 161 int64_t elem = tableau(row, j); 162 if (elem == 0) 163 continue; 164 165 if (unknownFromColumn(j).restricted && 166 !signMatchesDirection(elem, direction)) 167 continue; 168 if (!col || colUnknown[j] < colUnknown[*col]) 169 col = j; 170 } 171 172 if (!col) 173 return {}; 174 175 Direction newDirection = 176 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 177 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 178 return Pivot{maybePivotRow.getValueOr(row), *col}; 179 } 180 181 /// Swap the associated unknowns for the row and the column. 182 /// 183 /// First we swap the index associated with the row and column. Then we update 184 /// the unknowns to reflect their new position and orientation. 185 void Simplex::swapRowWithCol(unsigned row, unsigned col) { 186 std::swap(rowUnknown[row], colUnknown[col]); 187 Unknown &uCol = unknownFromColumn(col); 188 Unknown &uRow = unknownFromRow(row); 189 uCol.orientation = Orientation::Column; 190 uRow.orientation = Orientation::Row; 191 uCol.pos = col; 192 uRow.pos = row; 193 } 194 195 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); } 196 197 /// Pivot pivotRow and pivotCol. 198 /// 199 /// Let R be the pivot row unknown and let C be the pivot col unknown. 200 /// Since initially R = a*C + sum b_i * X_i 201 /// (where the sum is over the other column's unknowns, x_i) 202 /// C = (R - (sum b_i * X_i))/a 203 /// 204 /// Let u be some other row unknown. 205 /// u = c*C + sum d_i * X_i 206 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 207 /// 208 /// This results in the following transform: 209 /// pivot col other col pivot col other col 210 /// pivot row a b -> pivot row 1/a -b/a 211 /// other row c d other row c/a d - bc/a 212 /// 213 /// Taking into account the common denominators p and q: 214 /// 215 /// pivot col other col pivot col other col 216 /// pivot row a/p b/p -> pivot row p/a -b/a 217 /// other row c/q d/q other row cp/aq (da - bc)/aq 218 /// 219 /// The pivot row transform is accomplished be swapping a with the pivot row's 220 /// common denominator and negating the pivot row except for the pivot column 221 /// element. 222 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) { 223 assert(pivotCol >= 2 && "Refusing to pivot invalid column"); 224 225 swapRowWithCol(pivotRow, pivotCol); 226 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 227 // We need to negate the whole pivot row except for the pivot column. 228 if (tableau(pivotRow, 0) < 0) { 229 // If the denominator is negative, we negate the row by simply negating the 230 // denominator. 231 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 232 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 233 } else { 234 for (unsigned col = 1; col < nCol; ++col) { 235 if (col == pivotCol) 236 continue; 237 tableau(pivotRow, col) = -tableau(pivotRow, col); 238 } 239 } 240 normalizeRow(pivotRow); 241 242 for (unsigned row = nRedundant; row < nRow; ++row) { 243 if (row == pivotRow) 244 continue; 245 if (tableau(row, pivotCol) == 0) // Nothing to do. 246 continue; 247 tableau(row, 0) *= tableau(pivotRow, 0); 248 for (unsigned j = 1; j < nCol; ++j) { 249 if (j == pivotCol) 250 continue; 251 // Add rather than subtract because the pivot row has been negated. 252 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 253 tableau(row, pivotCol) * tableau(pivotRow, j); 254 } 255 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 256 normalizeRow(row); 257 } 258 } 259 260 /// Perform pivots until the unknown has a non-negative sample value or until 261 /// no more upward pivots can be performed. Return the sign of the final sample 262 /// value. 263 LogicalResult Simplex::restoreRow(Unknown &u) { 264 assert(u.orientation == Orientation::Row && 265 "unknown should be in row position"); 266 267 while (tableau(u.pos, 1) < 0) { 268 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 269 if (!maybePivot) 270 break; 271 272 pivot(*maybePivot); 273 if (u.orientation == Orientation::Column) 274 return LogicalResult::Success; // the unknown is unbounded above. 275 } 276 return success(tableau(u.pos, 1) >= 0); 277 } 278 279 /// Find a row that can be used to pivot the column in the specified direction. 280 /// This returns an empty optional if and only if the column is unbounded in the 281 /// specified direction (ignoring skipRow, if skipRow is set). 282 /// 283 /// If skipRow is set, this row is not considered, and (if it is restricted) its 284 /// restriction may be violated by the returned pivot. Usually, skipRow is set 285 /// because we don't want to move it to column position unless it is unbounded, 286 /// and we are either trying to increase the value of skipRow or explicitly 287 /// trying to make skipRow negative, so we are not concerned about this. 288 /// 289 /// If the direction is up (resp. down) and a restricted row has a negative 290 /// (positive) coefficient for the column, then this row imposes a bound on how 291 /// much the sample value of the column can change. Such a row with constant 292 /// term c and coefficient f for the column imposes a bound of c/|f| on the 293 /// change in sample value (in the specified direction). (note that c is 294 /// non-negative here since the row is restricted and the tableau is consistent) 295 /// 296 /// We iterate through the rows and pick the row which imposes the most 297 /// stringent bound, since pivoting with a row changes the row's sample value to 298 /// 0 and hence saturates the bound it imposes. We break ties between rows that 299 /// impose the same bound by considering a lexicographic ordering where we 300 /// prefer unknowns with lower index value. 301 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 302 Direction direction, 303 unsigned col) const { 304 Optional<unsigned> retRow; 305 int64_t retElem, retConst; 306 for (unsigned row = nRedundant; row < nRow; ++row) { 307 if (skipRow && row == *skipRow) 308 continue; 309 int64_t elem = tableau(row, col); 310 if (elem == 0) 311 continue; 312 if (!unknownFromRow(row).restricted) 313 continue; 314 if (signMatchesDirection(elem, direction)) 315 continue; 316 int64_t constTerm = tableau(row, 1); 317 318 if (!retRow) { 319 retRow = row; 320 retElem = elem; 321 retConst = constTerm; 322 continue; 323 } 324 325 int64_t diff = retConst * elem - constTerm * retElem; 326 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 327 (diff != 0 && !signMatchesDirection(diff, direction))) { 328 retRow = row; 329 retElem = elem; 330 retConst = constTerm; 331 } 332 } 333 return retRow; 334 } 335 336 bool Simplex::isEmpty() const { return empty; } 337 338 void Simplex::swapRows(unsigned i, unsigned j) { 339 if (i == j) 340 return; 341 tableau.swapRows(i, j); 342 std::swap(rowUnknown[i], rowUnknown[j]); 343 unknownFromRow(i).pos = i; 344 unknownFromRow(j).pos = j; 345 } 346 347 /// Mark this tableau empty and push an entry to the undo stack. 348 void Simplex::markEmpty() { 349 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 350 empty = true; 351 } 352 353 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 354 /// is the curent number of variables, then the corresponding inequality is 355 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 356 /// 357 /// We add the inequality and mark it as restricted. We then try to make its 358 /// sample value non-negative. If this is not possible, the tableau has become 359 /// empty and we mark it as such. 360 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 361 unsigned conIndex = addRow(coeffs); 362 Unknown &u = con[conIndex]; 363 u.restricted = true; 364 LogicalResult result = restoreRow(u); 365 if (failed(result)) 366 markEmpty(); 367 } 368 369 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 370 /// is the curent number of variables, then the corresponding equality is 371 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 372 /// 373 /// We simply add two opposing inequalities, which force the expression to 374 /// be zero. 375 void Simplex::addEquality(ArrayRef<int64_t> coeffs) { 376 addInequality(coeffs); 377 SmallVector<int64_t, 8> negatedCoeffs; 378 for (int64_t coeff : coeffs) 379 negatedCoeffs.emplace_back(-coeff); 380 addInequality(negatedCoeffs); 381 } 382 383 unsigned Simplex::numVariables() const { return var.size(); } 384 unsigned Simplex::numConstraints() const { return con.size(); } 385 386 /// Return a snapshot of the curent state. This is just the current size of the 387 /// undo log. 388 unsigned Simplex::getSnapshot() const { return undoLog.size(); } 389 390 void Simplex::undo(UndoLogEntry entry) { 391 if (entry == UndoLogEntry::RemoveLastConstraint) { 392 Unknown &constraint = con.back(); 393 if (constraint.orientation == Orientation::Column) { 394 unsigned column = constraint.pos; 395 Optional<unsigned> row; 396 397 // Try to find any pivot row for this column that preserves tableau 398 // consistency (except possibly the column itself, which is going to be 399 // deallocated anyway). 400 // 401 // If no pivot row is found in either direction, then the unknown is 402 // unbounded in both directions and we are free to 403 // perform any pivot at all. To do this, we just need to find any row with 404 // a non-zero coefficient for the column. 405 if (Optional<unsigned> maybeRow = 406 findPivotRow({}, Direction::Up, column)) { 407 row = *maybeRow; 408 } else if (Optional<unsigned> maybeRow = 409 findPivotRow({}, Direction::Down, column)) { 410 row = *maybeRow; 411 } else { 412 // The loop doesn't find a pivot row only if the column has zero 413 // coefficients for every row. But the unknown is a constraint, 414 // so it was added initially as a row. Such a row could never have been 415 // pivoted to a column. So a pivot row will always be found. 416 for (unsigned i = nRedundant; i < nRow; ++i) { 417 if (tableau(i, column) != 0) { 418 row = i; 419 break; 420 } 421 } 422 } 423 assert(row.hasValue() && "No pivot row found!"); 424 pivot(*row, column); 425 } 426 427 // Move this unknown to the last row and remove the last row from the 428 // tableau. 429 swapRows(constraint.pos, nRow - 1); 430 // It is not strictly necessary to shrink the tableau, but for now we 431 // maintain the invariant that the tableau has exactly nRow rows. 432 tableau.resizeVertically(nRow - 1); 433 nRow--; 434 rowUnknown.pop_back(); 435 con.pop_back(); 436 } else if (entry == UndoLogEntry::UnmarkEmpty) { 437 empty = false; 438 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 439 nRedundant--; 440 } 441 } 442 443 /// Rollback to the specified snapshot. 444 /// 445 /// We undo all the log entries until the log size when the snapshot was taken 446 /// is reached. 447 void Simplex::rollback(unsigned snapshot) { 448 while (undoLog.size() > snapshot) { 449 undo(undoLog.back()); 450 undoLog.pop_back(); 451 } 452 } 453 454 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 455 unsigned row) { 456 // Keep trying to find a pivot for the row in the specified direction. 457 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 458 // If findPivot returns a pivot involving the row itself, then the optimum 459 // is unbounded, so we return None. 460 if (maybePivot->row == row) 461 return {}; 462 pivot(*maybePivot); 463 } 464 465 // The row has reached its optimal sample value, which we return. 466 // The sample value is the entry in the constant column divided by the common 467 // denominator for this row. 468 return Fraction(tableau(row, 1), tableau(row, 0)); 469 } 470 471 /// Compute the optimum of the specified expression in the specified direction, 472 /// or None if it is unbounded. 473 Optional<Fraction> Simplex::computeOptimum(Direction direction, 474 ArrayRef<int64_t> coeffs) { 475 assert(!empty && "Tableau should not be empty"); 476 477 unsigned snapshot = getSnapshot(); 478 unsigned conIndex = addRow(coeffs); 479 unsigned row = con[conIndex].pos; 480 Optional<Fraction> optimum = computeRowOptimum(direction, row); 481 rollback(snapshot); 482 return optimum; 483 } 484 485 /// Redundant constraints are those that are in row orientation and lie in 486 /// rows 0 to nRedundant - 1. 487 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 488 const Unknown &u = con[constraintIndex]; 489 return u.orientation == Orientation::Row && u.pos < nRedundant; 490 } 491 492 /// Mark the specified row redundant. 493 /// 494 /// This is done by moving the unknown to the end of the block of redundant 495 /// rows (namely, to row nRedundant) and incrementing nRedundant to 496 /// accomodate the new redundant row. 497 void Simplex::markRowRedundant(Unknown &u) { 498 assert(u.orientation == Orientation::Row && 499 "Unknown should be in row position!"); 500 swapRows(u.pos, nRedundant); 501 ++nRedundant; 502 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 503 } 504 505 /// Find a subset of constraints that is redundant and mark them redundant. 506 void Simplex::detectRedundant() { 507 // It is not meaningful to talk about redundancy for empty sets. 508 if (empty) 509 return; 510 511 // Iterate through the constraints and check for each one if it can attain 512 // negative sample values. If it can, it's not redundant. Otherwise, it is. 513 // We mark redundant constraints redundant. 514 // 515 // Constraints that get marked redundant in one iteration are not respected 516 // when checking constraints in later iterations. This prevents, for example, 517 // two identical constraints both being marked redundant since each is 518 // redundant given the other one. In this example, only the first of the 519 // constraints that is processed will get marked redundant, as it should be. 520 for (Unknown &u : con) { 521 if (u.orientation == Orientation::Column) { 522 unsigned column = u.pos; 523 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 524 // If no downward pivot is returned, the constraint is unbounded below 525 // and hence not redundant. 526 if (!pivotRow) 527 continue; 528 pivot(*pivotRow, column); 529 } 530 531 unsigned row = u.pos; 532 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 533 if (!minimum || *minimum < Fraction(0, 1)) { 534 // Constraint is unbounded below or can attain negative sample values and 535 // hence is not redundant. 536 restoreRow(u); 537 continue; 538 } 539 540 markRowRedundant(u); 541 } 542 } 543 544 bool Simplex::isUnbounded() { 545 if (empty) 546 return false; 547 548 SmallVector<int64_t, 8> dir(var.size() + 1); 549 for (unsigned i = 0; i < var.size(); ++i) { 550 dir[i] = 1; 551 552 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 553 if (!maybeMax) 554 return true; 555 556 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 557 if (!maybeMin) 558 return true; 559 560 dir[i] = 0; 561 } 562 return false; 563 } 564 565 /// Make a tableau to represent a pair of points in the original tableau. 566 /// 567 /// The product constraints and variables are stored as: first A's, then B's. 568 /// 569 /// The product tableau has row layout: 570 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 571 /// 572 /// It has column layout: 573 /// denominator, constant, A's columns, B's columns. 574 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 575 unsigned numVar = a.numVariables() + b.numVariables(); 576 unsigned numCon = a.numConstraints() + b.numConstraints(); 577 Simplex result(numVar); 578 579 result.tableau.resizeVertically(numCon); 580 result.empty = a.empty || b.empty; 581 582 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 583 SmallVector<Unknown, 8> result; 584 result.reserve(v.size() + w.size()); 585 result.insert(result.end(), v.begin(), v.end()); 586 result.insert(result.end(), w.begin(), w.end()); 587 return result; 588 }; 589 result.con = concat(a.con, b.con); 590 result.var = concat(a.var, b.var); 591 592 auto indexFromBIndex = [&](int index) { 593 return index >= 0 ? a.numVariables() + index 594 : ~(a.numConstraints() + ~index); 595 }; 596 597 result.colUnknown.assign(2, nullIndex); 598 for (unsigned i = 2; i < a.nCol; ++i) { 599 result.colUnknown.push_back(a.colUnknown[i]); 600 result.unknownFromIndex(result.colUnknown.back()).pos = 601 result.colUnknown.size() - 1; 602 } 603 for (unsigned i = 2; i < b.nCol; ++i) { 604 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 605 result.unknownFromIndex(result.colUnknown.back()).pos = 606 result.colUnknown.size() - 1; 607 } 608 609 auto appendRowFromA = [&](unsigned row) { 610 for (unsigned col = 0; col < a.nCol; ++col) 611 result.tableau(result.nRow, col) = a.tableau(row, col); 612 result.rowUnknown.push_back(a.rowUnknown[row]); 613 result.unknownFromIndex(result.rowUnknown.back()).pos = 614 result.rowUnknown.size() - 1; 615 result.nRow++; 616 }; 617 618 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 619 // may be). 620 auto appendRowFromB = [&](unsigned row) { 621 result.tableau(result.nRow, 0) = b.tableau(row, 0); 622 result.tableau(result.nRow, 1) = b.tableau(row, 1); 623 624 unsigned offset = a.nCol - 2; 625 for (unsigned col = 2; col < b.nCol; ++col) 626 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 627 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 628 result.unknownFromIndex(result.rowUnknown.back()).pos = 629 result.rowUnknown.size() - 1; 630 result.nRow++; 631 }; 632 633 result.nRedundant = a.nRedundant + b.nRedundant; 634 for (unsigned row = 0; row < a.nRedundant; ++row) 635 appendRowFromA(row); 636 for (unsigned row = 0; row < b.nRedundant; ++row) 637 appendRowFromB(row); 638 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 639 appendRowFromA(row); 640 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 641 appendRowFromB(row); 642 643 return result; 644 } 645 646 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 647 // The tableau is empty, so no sample point exists. 648 if (empty) 649 return {}; 650 651 SmallVector<int64_t, 8> sample; 652 // Push the sample value for each variable into the vector. 653 for (const Unknown &u : var) { 654 if (u.orientation == Orientation::Column) { 655 // If the variable is in column position, its sample value is zero. 656 sample.push_back(0); 657 } else { 658 // If the variable is in row position, its sample value is the entry in 659 // the constant column divided by the entry in the common denominator 660 // column. If this is not an integer, then the sample point is not 661 // integral so we return None. 662 if (tableau(u.pos, 1) % tableau(u.pos, 0) != 0) 663 return {}; 664 sample.push_back(tableau(u.pos, 1) / tableau(u.pos, 0)); 665 } 666 } 667 return sample; 668 } 669 670 /// Given a simplex for a polytope, construct a new simplex whose variables are 671 /// identified with a pair of points (x, y) in the original polytope. Supports 672 /// some operations needed for generalized basis reduction. In what follows, 673 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 674 /// dimension of the original polytope. 675 /// 676 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 677 /// also supports rolling back this addition, by maintaining a snapshot stack 678 /// that contains a snapshot of the Simplex's state for each equality, just 679 /// before that equality was added. 680 class GBRSimplex { 681 using Orientation = Simplex::Orientation; 682 683 public: 684 GBRSimplex(const Simplex &originalSimplex) 685 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 686 simplexConstraintOffset(simplex.numConstraints()) {} 687 688 /// Add an equality dotProduct(dir, x - y) == 0. 689 /// First pushes a snapshot for the current simplex state to the stack so 690 /// that this can be rolled back later. 691 void addEqualityForDirection(ArrayRef<int64_t> dir) { 692 assert( 693 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 694 "Direction passed is the zero vector!"); 695 snapshotStack.push_back(simplex.getSnapshot()); 696 simplex.addEquality(getCoeffsForDirection(dir)); 697 } 698 699 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 700 /// the direction equalities to `dual`. 701 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 702 SmallVectorImpl<int64_t> &dual, 703 int64_t &dualDenom) { 704 unsigned snap = simplex.getSnapshot(); 705 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 706 unsigned row = simplex.con[conIndex].pos; 707 Optional<Fraction> maybeWidth = 708 simplex.computeRowOptimum(Simplex::Direction::Up, row); 709 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 710 dualDenom = simplex.tableau(row, 0); 711 dual.clear(); 712 // The increment is i += 2 because equalities are added as two inequalities, 713 // one positive and one negative. Each iteration processes one equality. 714 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 715 // The dual variable is the negative of the coefficient of the new row 716 // in the column of the constraint, if the constraint is in a column. 717 // Note that the second inequality for the equality is negated. 718 // 719 // We want the dual for the original equality. If the positive inequality 720 // is in column position, the negative of its row coefficient is the 721 // desired dual. If the negative inequality is in column position, its row 722 // coefficient is the desired dual. (its coefficients are already the 723 // negated coefficients of the original equality, so we don't need to 724 // negate it now.) 725 // 726 // If neither are in column position, we move the negated inequality to 727 // column position. Since the inequality must have sample value zero 728 // (since it corresponds to an equality), we are free to pivot with 729 // any column. Since both the unknowns have sample value before and after 730 // pivoting, no other sample values will change and the tableau will 731 // remain consistent. To pivot, we just need to find a column that has a 732 // non-zero coefficient in this row. There must be one since otherwise the 733 // equality would be 0 == 0, which should never be passed to 734 // addEqualityForDirection. 735 // 736 // After finding a column, we pivot with the column, after which we can 737 // get the dual from the inequality in column position as explained above. 738 if (simplex.con[i].orientation == Orientation::Column) { 739 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 740 } else { 741 if (simplex.con[i + 1].orientation == Orientation::Row) { 742 unsigned ineqRow = simplex.con[i + 1].pos; 743 // Since it is an equality, the sample value must be zero. 744 assert(simplex.tableau(ineqRow, 1) == 0 && 745 "Equality's sample value must be zero."); 746 for (unsigned col = 2; col < simplex.nCol; ++col) { 747 if (simplex.tableau(ineqRow, col) != 0) { 748 simplex.pivot(ineqRow, col); 749 break; 750 } 751 } 752 assert(simplex.con[i + 1].orientation == Orientation::Column && 753 "No pivot found. Equality has all-zeros row in tableau!"); 754 } 755 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 756 } 757 } 758 simplex.rollback(snap); 759 return *maybeWidth; 760 } 761 762 /// Remove the last equality that was added through addEqualityForDirection. 763 /// 764 /// We do this by rolling back to the snapshot at the top of the stack, which 765 /// should be a snapshot taken just before the last equality was added. 766 void removeLastEquality() { 767 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 768 simplex.rollback(snapshotStack.back()); 769 snapshotStack.pop_back(); 770 } 771 772 private: 773 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 774 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 775 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 776 /// where n is the dimension of the original polytope. 777 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 778 assert(2 * dir.size() == simplex.numVariables() && 779 "Direction vector has wrong dimensionality"); 780 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 781 coeffs.reserve(2 * dir.size()); 782 for (int64_t coeff : dir) 783 coeffs.push_back(-coeff); 784 coeffs.push_back(0); // constant term 785 return coeffs; 786 } 787 788 Simplex simplex; 789 /// The first index of the equality constraints, the index immediately after 790 /// the last constraint in the initial product simplex. 791 unsigned simplexConstraintOffset; 792 /// A stack of snapshots, used for rolling back. 793 SmallVector<unsigned, 8> snapshotStack; 794 }; 795 796 /// Reduce the basis to try and find a direction in which the polytope is 797 /// "thin". This only works for bounded polytopes. 798 /// 799 /// This is an implementation of the algorithm described in the paper 800 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 801 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 802 /// 803 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 804 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 805 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 806 /// 807 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 808 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 809 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 810 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 811 /// minimizing value of u, if it were allowed to be fractional. Due to 812 /// convexity, the minimizing integer value is either floor(dual_i) or 813 /// ceil(dual_i), so we just need to check which of these gives a lower 814 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 815 /// 816 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 817 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 818 /// same i). Otherwise, we increment i. 819 /// 820 /// We keep f values and duals cached and invalidate them when necessary. 821 /// Whenever possible, we use them instead of recomputing them. We implement the 822 /// algorithm as follows. 823 /// 824 /// In an iteration at i we need to compute: 825 /// a) width_i(b_{i + 1}) 826 /// b) width_i(b_i) 827 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 828 /// 829 /// If width_i(b_i) is not already cached, we compute it. 830 /// 831 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 832 /// store the duals from this computation. 833 /// 834 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 835 /// of u as explained before, caches the duals from this computation, sets 836 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 837 /// 838 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 839 /// decrement i, resulting in the basis 840 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 841 /// with corresponding f values 842 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 843 /// The values up to i - 1 remain unchanged. We have just gotten the middle 844 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 845 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 846 /// the cache. The iteration after decrementing needs exactly the duals from the 847 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 848 /// 849 /// When incrementing i, no cached f values get invalidated. However, the cached 850 /// duals do get invalidated as the duals for the higher levels are different. 851 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 852 const Fraction epsilon(3, 4); 853 854 if (level == basis.getNumRows() - 1) 855 return; 856 857 GBRSimplex gbrSimplex(*this); 858 SmallVector<Fraction, 8> width; 859 SmallVector<int64_t, 8> dual; 860 int64_t dualDenom; 861 862 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 863 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 864 // the new value of width_i(b_{i+1}). 865 // 866 // If dual_i is not an integer, the minimizing value must be either 867 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 868 // choose the minimizing value. 869 // 870 // If dual_i is an integer, we don't need to perform these computations. We 871 // know that in this case, 872 // a) u = dual_i. 873 // b) one can show that dual_j for j < i are the same duals we would have 874 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 875 // are the ones already in the cache. 876 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 877 // which 878 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 879 // be in the cache, so we get it from there and return it. 880 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 881 assert(i < level + dual.size() && "dual_i is not known!"); 882 883 int64_t u = floorDiv(dual[i - level], dualDenom); 884 basis.addToRow(i, i + 1, u); 885 if (dual[i - level] % dualDenom != 0) { 886 SmallVector<int64_t, 8> candidateDual[2]; 887 int64_t candidateDualDenom[2]; 888 Fraction widthI[2]; 889 890 // Initially u is floor(dual) and basis reflects this. 891 widthI[0] = gbrSimplex.computeWidthAndDuals( 892 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 893 894 // Now try ceil(dual), i.e. floor(dual) + 1. 895 ++u; 896 basis.addToRow(i, i + 1, 1); 897 widthI[1] = gbrSimplex.computeWidthAndDuals( 898 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 899 900 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 901 if (j == 0) 902 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 903 basis.addToRow(i, i + 1, -1); 904 dual = std::move(candidateDual[j]); 905 dualDenom = candidateDualDenom[j]; 906 return widthI[j]; 907 } 908 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 909 // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to 910 // width_{i+1}(b_{i+1}). 911 return width[i + 1 - level]; 912 }; 913 914 // In the ith iteration of the loop, gbrSimplex has constraints for directions 915 // from `level` to i - 1. 916 unsigned i = level; 917 while (i < basis.getNumRows() - 1) { 918 if (i >= level + width.size()) { 919 // We don't even know the value of f_i(b_i), so let's find that first. 920 // We have to do this first since later we assume that width already 921 // contains values up to and including i. 922 923 assert((i == 0 || i - 1 < level + width.size()) && 924 "We are at level i but we don't know the value of width_{i-1}"); 925 926 // We don't actually use these duals at all, but it doesn't matter 927 // because this case should only occur when i is level, and there are no 928 // duals in that case anyway. 929 assert(i == level && "This case should only occur when i == level"); 930 width.push_back( 931 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 932 } 933 934 if (i >= level + dual.size()) { 935 assert(i + 1 >= level + width.size() && 936 "We don't know dual_i but we know width_{i+1}"); 937 // We don't know dual for our level, so let's find it. 938 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 939 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 940 dualDenom)); 941 gbrSimplex.removeLastEquality(); 942 } 943 944 // This variable stores width_i(b_{i+1} + u*b_i). 945 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 946 if (widthICandidate < epsilon * width[i - level]) { 947 basis.swapRows(i, i + 1); 948 width[i - level] = widthICandidate; 949 // The values of width_{i+1}(b_{i+1}) and higher may change after the 950 // swap, so we remove the cached values here. 951 width.resize(i - level + 1); 952 if (i == level) { 953 dual.clear(); 954 continue; 955 } 956 957 gbrSimplex.removeLastEquality(); 958 i--; 959 continue; 960 } 961 962 // Invalidate duals since the higher level needs to recompute its own duals. 963 dual.clear(); 964 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 965 i++; 966 } 967 } 968 969 /// Search for an integer sample point using a branch and bound algorithm. 970 /// 971 /// Each row in the basis matrix is a vector, and the set of basis vectors 972 /// should span the space. Initially this is the identity matrix, 973 /// i.e., the basis vectors are just the variables. 974 /// 975 /// In every level, a value is assigned to the level-th basis vector, as 976 /// follows. Compute the minimum and maximum rational values of this direction. 977 /// If only one integer point lies in this range, constrain the variable to 978 /// have this value and recurse to the next variable. 979 /// 980 /// If the range has multiple values, perform generalized basis reduction via 981 /// reduceBasis and then compute the bounds again. Now we try constraining 982 /// this direction in the first value in this range and "recurse" to the next 983 /// level. If we fail to find a sample, we try assigning the direction the next 984 /// value in this range, and so on. 985 /// 986 /// If no integer sample is found from any of the assignments, or if the range 987 /// contains no integer value, then of course the polytope is empty for the 988 /// current assignment of the values in previous levels, so we return to 989 /// the previous level. 990 /// 991 /// If we reach the last level where all the variables have been assigned values 992 /// already, then we simply return the current sample point if it is integral, 993 /// and go back to the previous level otherwise. 994 /// 995 /// To avoid potentially arbitrarily large recursion depths leading to stack 996 /// overflows, this algorithm is implemented iteratively. 997 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 998 if (empty) 999 return {}; 1000 1001 unsigned nDims = var.size(); 1002 Matrix basis = Matrix::identity(nDims); 1003 1004 unsigned level = 0; 1005 // The snapshot just before constraining a direction to a value at each level. 1006 SmallVector<unsigned, 8> snapshotStack; 1007 // The maximum value in the range of the direction for each level. 1008 SmallVector<int64_t, 8> upperBoundStack; 1009 // The next value to try constraining the basis vector to at each level. 1010 SmallVector<int64_t, 8> nextValueStack; 1011 1012 snapshotStack.reserve(basis.getNumRows()); 1013 upperBoundStack.reserve(basis.getNumRows()); 1014 nextValueStack.reserve(basis.getNumRows()); 1015 while (level != -1u) { 1016 if (level == basis.getNumRows()) { 1017 // We've assigned values to all variables. Return if we have a sample, 1018 // or go back up to the previous level otherwise. 1019 if (auto maybeSample = getSamplePointIfIntegral()) 1020 return maybeSample; 1021 level--; 1022 continue; 1023 } 1024 1025 if (level >= upperBoundStack.size()) { 1026 // We haven't populated the stack values for this level yet, so we have 1027 // just come down a level ("recursed"). Find the lower and upper bounds. 1028 // If there is more than one integer point in the range, perform 1029 // generalized basis reduction. 1030 SmallVector<int64_t, 8> basisCoeffs = 1031 llvm::to_vector<8>(basis.getRow(level)); 1032 basisCoeffs.push_back(0); 1033 1034 int64_t minRoundedUp, maxRoundedDown; 1035 std::tie(minRoundedUp, maxRoundedDown) = 1036 computeIntegerBounds(basisCoeffs); 1037 1038 // Heuristic: if the sample point is integral at this point, just return 1039 // it. 1040 if (auto maybeSample = getSamplePointIfIntegral()) 1041 return *maybeSample; 1042 1043 if (minRoundedUp < maxRoundedDown) { 1044 reduceBasis(basis, level); 1045 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1046 basisCoeffs.push_back(0); 1047 std::tie(minRoundedUp, maxRoundedDown) = 1048 computeIntegerBounds(basisCoeffs); 1049 } 1050 1051 snapshotStack.push_back(getSnapshot()); 1052 // The smallest value in the range is the next value to try. 1053 nextValueStack.push_back(minRoundedUp); 1054 upperBoundStack.push_back(maxRoundedDown); 1055 } 1056 1057 assert((snapshotStack.size() - 1 == level && 1058 nextValueStack.size() - 1 == level && 1059 upperBoundStack.size() - 1 == level) && 1060 "Mismatched variable stack sizes!"); 1061 1062 // Whether we "recursed" or "returned" from a lower level, we rollback 1063 // to the snapshot of the starting state at this level. (in the "recursed" 1064 // case this has no effect) 1065 rollback(snapshotStack.back()); 1066 int64_t nextValue = nextValueStack.back(); 1067 nextValueStack.back()++; 1068 if (nextValue > upperBoundStack.back()) { 1069 // We have exhausted the range and found no solution. Pop the stack and 1070 // return up a level. 1071 snapshotStack.pop_back(); 1072 nextValueStack.pop_back(); 1073 upperBoundStack.pop_back(); 1074 level--; 1075 continue; 1076 } 1077 1078 // Try the next value in the range and "recurse" into the next level. 1079 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1080 basis.getRow(level).end()); 1081 basisCoeffs.push_back(-nextValue); 1082 addEquality(basisCoeffs); 1083 level++; 1084 } 1085 1086 return {}; 1087 } 1088 1089 /// Compute the minimum and maximum integer values the expression can take. We 1090 /// compute each separately. 1091 std::pair<int64_t, int64_t> 1092 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1093 int64_t minRoundedUp; 1094 if (Optional<Fraction> maybeMin = 1095 computeOptimum(Simplex::Direction::Down, coeffs)) 1096 minRoundedUp = ceil(*maybeMin); 1097 else 1098 llvm_unreachable("Tableau should not be unbounded"); 1099 1100 int64_t maxRoundedDown; 1101 if (Optional<Fraction> maybeMax = 1102 computeOptimum(Simplex::Direction::Up, coeffs)) 1103 maxRoundedDown = floor(*maybeMax); 1104 else 1105 llvm_unreachable("Tableau should not be unbounded"); 1106 1107 return {minRoundedUp, maxRoundedDown}; 1108 } 1109 1110 void Simplex::print(raw_ostream &os) const { 1111 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1112 if (empty) 1113 os << "Simplex marked empty!\n"; 1114 os << "var: "; 1115 for (unsigned i = 0; i < var.size(); ++i) { 1116 if (i > 0) 1117 os << ", "; 1118 var[i].print(os); 1119 } 1120 os << "\ncon: "; 1121 for (unsigned i = 0; i < con.size(); ++i) { 1122 if (i > 0) 1123 os << ", "; 1124 con[i].print(os); 1125 } 1126 os << '\n'; 1127 for (unsigned row = 0; row < nRow; ++row) { 1128 if (row > 0) 1129 os << ", "; 1130 os << "r" << row << ": " << rowUnknown[row]; 1131 } 1132 os << '\n'; 1133 os << "c0: denom, c1: const"; 1134 for (unsigned col = 2; col < nCol; ++col) 1135 os << ", c" << col << ": " << colUnknown[col]; 1136 os << '\n'; 1137 for (unsigned row = 0; row < nRow; ++row) { 1138 for (unsigned col = 0; col < nCol; ++col) 1139 os << tableau(row, col) << '\t'; 1140 os << '\n'; 1141 } 1142 os << '\n'; 1143 } 1144 1145 void Simplex::dump() const { print(llvm::errs()); } 1146 1147 } // namespace mlir 1148