1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 
14 namespace mlir {
15 using Direction = Simplex::Direction;
16 
17 const int nullIndex = std::numeric_limits<int>::max();
18 
19 /// Construct a Simplex object with `nVar` variables.
20 SimplexBase::SimplexBase(unsigned nVar)
21     : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) {
22   colUnknown.push_back(nullIndex);
23   colUnknown.push_back(nullIndex);
24   for (unsigned i = 0; i < nVar; ++i) {
25     var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol);
26     colUnknown.push_back(i);
27     nCol++;
28   }
29 }
30 
31 SimplexBase::SimplexBase(const IntegerPolyhedron &constraints)
32     : SimplexBase(constraints.getNumIds()) {
33   for (unsigned i = 0, numIneqs = constraints.getNumInequalities();
34        i < numIneqs; ++i)
35     addInequality(constraints.getInequality(i));
36   for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i)
37     addEquality(constraints.getEquality(i));
38 }
39 
40 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
41   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
42   return index >= 0 ? var[index] : con[~index];
43 }
44 
45 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
46   assert(col < nCol && "Invalid column");
47   return unknownFromIndex(colUnknown[col]);
48 }
49 
50 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
51   assert(row < nRow && "Invalid row");
52   return unknownFromIndex(rowUnknown[row]);
53 }
54 
55 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
56   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
57   return index >= 0 ? var[index] : con[~index];
58 }
59 
60 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
61   assert(col < nCol && "Invalid column");
62   return unknownFromIndex(colUnknown[col]);
63 }
64 
65 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
66   assert(row < nRow && "Invalid row");
67   return unknownFromIndex(rowUnknown[row]);
68 }
69 
70 /// Add a new row to the tableau corresponding to the given constant term and
71 /// list of coefficients. The coefficients are specified as a vector of
72 /// (variable index, coefficient) pairs.
73 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs) {
74   assert(coeffs.size() == 1 + var.size() &&
75          "Incorrect number of coefficients!");
76 
77   ++nRow;
78   // If the tableau is not big enough to accomodate the extra row, we extend it.
79   if (nRow >= tableau.getNumRows())
80     tableau.resizeVertically(nRow);
81   rowUnknown.push_back(~con.size());
82   con.emplace_back(Orientation::Row, false, nRow - 1);
83 
84   tableau(nRow - 1, 0) = 1;
85   tableau(nRow - 1, 1) = coeffs.back();
86   for (unsigned col = 2; col < nCol; ++col)
87     tableau(nRow - 1, col) = 0;
88 
89   // Process each given variable coefficient.
90   for (unsigned i = 0; i < var.size(); ++i) {
91     unsigned pos = var[i].pos;
92     if (coeffs[i] == 0)
93       continue;
94 
95     if (var[i].orientation == Orientation::Column) {
96       // If a variable is in column position at column col, then we just add the
97       // coefficient for that variable (scaled by the common row denominator) to
98       // the corresponding entry in the new row.
99       tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0);
100       continue;
101     }
102 
103     // If the variable is in row position, we need to add that row to the new
104     // row, scaled by the coefficient for the variable, accounting for the two
105     // rows potentially having different denominators. The new denominator is
106     // the lcm of the two.
107     int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0));
108     int64_t nRowCoeff = lcm / tableau(nRow - 1, 0);
109     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
110     tableau(nRow - 1, 0) = lcm;
111     for (unsigned col = 1; col < nCol; ++col)
112       tableau(nRow - 1, col) =
113           nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col);
114   }
115 
116   normalizeRow(nRow - 1);
117   // Push to undo log along with the index of the new constraint.
118   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
119   return con.size() - 1;
120 }
121 
122 /// Normalize the row by removing factors that are common between the
123 /// denominator and all the numerator coefficients.
124 void SimplexBase::normalizeRow(unsigned row) {
125   int64_t gcd = 0;
126   for (unsigned col = 0; col < nCol; ++col) {
127     gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col)));
128     // If the gcd becomes 1 then the row is already normalized.
129     if (gcd == 1)
130       return;
131   }
132 
133   // Note that the gcd can never become zero since the first element of the row,
134   // the denominator, is non-zero.
135   assert(gcd != 0);
136   for (unsigned col = 0; col < nCol; ++col)
137     tableau(row, col) /= gcd;
138 }
139 
140 namespace {
141 bool signMatchesDirection(int64_t elem, Direction direction) {
142   assert(elem != 0 && "elem should not be 0");
143   return direction == Direction::Up ? elem > 0 : elem < 0;
144 }
145 
146 Direction flippedDirection(Direction direction) {
147   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
148 }
149 } // namespace
150 
151 /// Find a pivot to change the sample value of the row in the specified
152 /// direction. The returned pivot row will involve `row` if and only if the
153 /// unknown is unbounded in the specified direction.
154 ///
155 /// To increase (resp. decrease) the value of a row, we need to find a live
156 /// column with a non-zero coefficient. If the coefficient is positive, we need
157 /// to increase (decrease) the value of the column, and if the coefficient is
158 /// negative, we need to decrease (increase) the value of the column. Also,
159 /// we cannot decrease the sample value of restricted columns.
160 ///
161 /// If multiple columns are valid, we break ties by considering a lexicographic
162 /// ordering where we prefer unknowns with lower index.
163 Optional<SimplexBase::Pivot> SimplexBase::findPivot(int row,
164                                                     Direction direction) const {
165   Optional<unsigned> col;
166   for (unsigned j = 2; j < nCol; ++j) {
167     int64_t elem = tableau(row, j);
168     if (elem == 0)
169       continue;
170 
171     if (unknownFromColumn(j).restricted &&
172         !signMatchesDirection(elem, direction))
173       continue;
174     if (!col || colUnknown[j] < colUnknown[*col])
175       col = j;
176   }
177 
178   if (!col)
179     return {};
180 
181   Direction newDirection =
182       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
183   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
184   return Pivot{maybePivotRow.getValueOr(row), *col};
185 }
186 
187 /// Swap the associated unknowns for the row and the column.
188 ///
189 /// First we swap the index associated with the row and column. Then we update
190 /// the unknowns to reflect their new position and orientation.
191 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
192   std::swap(rowUnknown[row], colUnknown[col]);
193   Unknown &uCol = unknownFromColumn(col);
194   Unknown &uRow = unknownFromRow(row);
195   uCol.orientation = Orientation::Column;
196   uRow.orientation = Orientation::Row;
197   uCol.pos = col;
198   uRow.pos = row;
199 }
200 
201 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
202 
203 /// Pivot pivotRow and pivotCol.
204 ///
205 /// Let R be the pivot row unknown and let C be the pivot col unknown.
206 /// Since initially R = a*C + sum b_i * X_i
207 /// (where the sum is over the other column's unknowns, x_i)
208 /// C = (R - (sum b_i * X_i))/a
209 ///
210 /// Let u be some other row unknown.
211 /// u = c*C + sum d_i * X_i
212 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
213 ///
214 /// This results in the following transform:
215 ///            pivot col    other col                   pivot col    other col
216 /// pivot row     a             b       ->   pivot row     1/a         -b/a
217 /// other row     c             d            other row     c/a        d - bc/a
218 ///
219 /// Taking into account the common denominators p and q:
220 ///
221 ///            pivot col    other col                    pivot col   other col
222 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
223 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
224 ///
225 /// The pivot row transform is accomplished be swapping a with the pivot row's
226 /// common denominator and negating the pivot row except for the pivot column
227 /// element.
228 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
229   assert(pivotCol >= 2 && "Refusing to pivot invalid column");
230 
231   swapRowWithCol(pivotRow, pivotCol);
232   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
233   // We need to negate the whole pivot row except for the pivot column.
234   if (tableau(pivotRow, 0) < 0) {
235     // If the denominator is negative, we negate the row by simply negating the
236     // denominator.
237     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
238     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
239   } else {
240     for (unsigned col = 1; col < nCol; ++col) {
241       if (col == pivotCol)
242         continue;
243       tableau(pivotRow, col) = -tableau(pivotRow, col);
244     }
245   }
246   normalizeRow(pivotRow);
247 
248   for (unsigned row = 0; row < nRow; ++row) {
249     if (row == pivotRow)
250       continue;
251     if (tableau(row, pivotCol) == 0) // Nothing to do.
252       continue;
253     tableau(row, 0) *= tableau(pivotRow, 0);
254     for (unsigned j = 1; j < nCol; ++j) {
255       if (j == pivotCol)
256         continue;
257       // Add rather than subtract because the pivot row has been negated.
258       tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) +
259                         tableau(row, pivotCol) * tableau(pivotRow, j);
260     }
261     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
262     normalizeRow(row);
263   }
264 }
265 
266 /// Perform pivots until the unknown has a non-negative sample value or until
267 /// no more upward pivots can be performed. Return success if we were able to
268 /// bring the row to a non-negative sample value, and failure otherwise.
269 LogicalResult SimplexBase::restoreRow(Unknown &u) {
270   assert(u.orientation == Orientation::Row &&
271          "unknown should be in row position");
272 
273   while (tableau(u.pos, 1) < 0) {
274     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
275     if (!maybePivot)
276       break;
277 
278     pivot(*maybePivot);
279     if (u.orientation == Orientation::Column)
280       return success(); // the unknown is unbounded above.
281   }
282   return success(tableau(u.pos, 1) >= 0);
283 }
284 
285 /// Find a row that can be used to pivot the column in the specified direction.
286 /// This returns an empty optional if and only if the column is unbounded in the
287 /// specified direction (ignoring skipRow, if skipRow is set).
288 ///
289 /// If skipRow is set, this row is not considered, and (if it is restricted) its
290 /// restriction may be violated by the returned pivot. Usually, skipRow is set
291 /// because we don't want to move it to column position unless it is unbounded,
292 /// and we are either trying to increase the value of skipRow or explicitly
293 /// trying to make skipRow negative, so we are not concerned about this.
294 ///
295 /// If the direction is up (resp. down) and a restricted row has a negative
296 /// (positive) coefficient for the column, then this row imposes a bound on how
297 /// much the sample value of the column can change. Such a row with constant
298 /// term c and coefficient f for the column imposes a bound of c/|f| on the
299 /// change in sample value (in the specified direction). (note that c is
300 /// non-negative here since the row is restricted and the tableau is consistent)
301 ///
302 /// We iterate through the rows and pick the row which imposes the most
303 /// stringent bound, since pivoting with a row changes the row's sample value to
304 /// 0 and hence saturates the bound it imposes. We break ties between rows that
305 /// impose the same bound by considering a lexicographic ordering where we
306 /// prefer unknowns with lower index value.
307 Optional<unsigned> SimplexBase::findPivotRow(Optional<unsigned> skipRow,
308                                              Direction direction,
309                                              unsigned col) const {
310   Optional<unsigned> retRow;
311   // Initialize these to zero in order to silence a warning about retElem and
312   // retConst being used uninitialized in the initialization of `diff` below. In
313   // reality, these are always initialized when that line is reached since these
314   // are set whenever retRow is set.
315   int64_t retElem = 0, retConst = 0;
316   for (unsigned row = nRedundant; row < nRow; ++row) {
317     if (skipRow && row == *skipRow)
318       continue;
319     int64_t elem = tableau(row, col);
320     if (elem == 0)
321       continue;
322     if (!unknownFromRow(row).restricted)
323       continue;
324     if (signMatchesDirection(elem, direction))
325       continue;
326     int64_t constTerm = tableau(row, 1);
327 
328     if (!retRow) {
329       retRow = row;
330       retElem = elem;
331       retConst = constTerm;
332       continue;
333     }
334 
335     int64_t diff = retConst * elem - constTerm * retElem;
336     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
337         (diff != 0 && !signMatchesDirection(diff, direction))) {
338       retRow = row;
339       retElem = elem;
340       retConst = constTerm;
341     }
342   }
343   return retRow;
344 }
345 
346 bool SimplexBase::isEmpty() const { return empty; }
347 
348 void SimplexBase::swapRows(unsigned i, unsigned j) {
349   if (i == j)
350     return;
351   tableau.swapRows(i, j);
352   std::swap(rowUnknown[i], rowUnknown[j]);
353   unknownFromRow(i).pos = i;
354   unknownFromRow(j).pos = j;
355 }
356 
357 void SimplexBase::swapColumns(unsigned i, unsigned j) {
358   assert(i < nCol && j < nCol && "Invalid columns provided!");
359   if (i == j)
360     return;
361   tableau.swapColumns(i, j);
362   std::swap(colUnknown[i], colUnknown[j]);
363   unknownFromColumn(i).pos = i;
364   unknownFromColumn(j).pos = j;
365 }
366 
367 /// Mark this tableau empty and push an entry to the undo stack.
368 void SimplexBase::markEmpty() {
369   // If the set is already empty, then we shouldn't add another UnmarkEmpty log
370   // entry, since in that case the Simplex will be erroneously marked as
371   // non-empty when rolling back past this point.
372   if (empty)
373     return;
374   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
375   empty = true;
376 }
377 
378 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
379 /// is the current number of variables, then the corresponding inequality is
380 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
381 ///
382 /// We add the inequality and mark it as restricted. We then try to make its
383 /// sample value non-negative. If this is not possible, the tableau has become
384 /// empty and we mark it as such.
385 void SimplexBase::addInequality(ArrayRef<int64_t> coeffs) {
386   unsigned conIndex = addRow(coeffs);
387   Unknown &u = con[conIndex];
388   u.restricted = true;
389   LogicalResult result = restoreRow(u);
390   if (failed(result))
391     markEmpty();
392 }
393 
394 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
395 /// is the current number of variables, then the corresponding equality is
396 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
397 ///
398 /// We simply add two opposing inequalities, which force the expression to
399 /// be zero.
400 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
401   addInequality(coeffs);
402   SmallVector<int64_t, 8> negatedCoeffs;
403   for (int64_t coeff : coeffs)
404     negatedCoeffs.emplace_back(-coeff);
405   addInequality(negatedCoeffs);
406 }
407 
408 unsigned SimplexBase::getNumVariables() const { return var.size(); }
409 unsigned SimplexBase::getNumConstraints() const { return con.size(); }
410 
411 /// Return a snapshot of the current state. This is just the current size of the
412 /// undo log.
413 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
414 
415 void SimplexBase::undo(UndoLogEntry entry) {
416   if (entry == UndoLogEntry::RemoveLastConstraint) {
417     Unknown &constraint = con.back();
418     if (constraint.orientation == Orientation::Column) {
419       unsigned column = constraint.pos;
420       Optional<unsigned> row;
421 
422       // Try to find any pivot row for this column that preserves tableau
423       // consistency (except possibly the column itself, which is going to be
424       // deallocated anyway).
425       //
426       // If no pivot row is found in either direction, then the unknown is
427       // unbounded in both directions and we are free to
428       // perform any pivot at all. To do this, we just need to find any row with
429       // a non-zero coefficient for the column.
430       if (Optional<unsigned> maybeRow =
431               findPivotRow({}, Direction::Up, column)) {
432         row = *maybeRow;
433       } else if (Optional<unsigned> maybeRow =
434                      findPivotRow({}, Direction::Down, column)) {
435         row = *maybeRow;
436       } else {
437         // The loop doesn't find a pivot row only if the column has zero
438         // coefficients for every row. But the unknown is a constraint,
439         // so it was added initially as a row. Such a row could never have been
440         // pivoted to a column. So a pivot row will always be found.
441         for (unsigned i = nRedundant; i < nRow; ++i) {
442           if (tableau(i, column) != 0) {
443             row = i;
444             break;
445           }
446         }
447       }
448       assert(row.hasValue() && "No pivot row found!");
449       pivot(*row, column);
450     }
451 
452     // Move this unknown to the last row and remove the last row from the
453     // tableau.
454     swapRows(constraint.pos, nRow - 1);
455     // It is not strictly necessary to shrink the tableau, but for now we
456     // maintain the invariant that the tableau has exactly nRow rows.
457     tableau.resizeVertically(nRow - 1);
458     nRow--;
459     rowUnknown.pop_back();
460     con.pop_back();
461   } else if (entry == UndoLogEntry::RemoveLastVariable) {
462     // Whenever we are rolling back the addition of a variable, it is guaranteed
463     // that the variable will be in column position.
464     //
465     // We can see this as follows: any constraint that depends on this variable
466     // was added after this variable was added, so the addition of such
467     // constraints should already have been rolled back by the time we get to
468     // rolling back the addition of the variable. Therefore, no constraint
469     // currently has a component along the variable, so the variable itself must
470     // be part of the basis.
471     assert(var.back().orientation == Orientation::Column &&
472            "Variable to be removed must be in column orientation!");
473 
474     // Move this variable to the last column and remove the column from the
475     // tableau.
476     swapColumns(var.back().pos, nCol - 1);
477     tableau.resizeHorizontally(nCol - 1);
478     var.pop_back();
479     colUnknown.pop_back();
480     nCol--;
481   } else if (entry == UndoLogEntry::UnmarkEmpty) {
482     empty = false;
483   } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
484     nRedundant--;
485   }
486 }
487 
488 /// Rollback to the specified snapshot.
489 ///
490 /// We undo all the log entries until the log size when the snapshot was taken
491 /// is reached.
492 void SimplexBase::rollback(unsigned snapshot) {
493   while (undoLog.size() > snapshot) {
494     undo(undoLog.back());
495     undoLog.pop_back();
496   }
497 }
498 
499 void SimplexBase::appendVariable(unsigned count) {
500   if (count == 0)
501     return;
502   var.reserve(var.size() + count);
503   colUnknown.reserve(colUnknown.size() + count);
504   for (unsigned i = 0; i < count; ++i) {
505     nCol++;
506     var.emplace_back(Orientation::Column, /*restricted=*/false,
507                      /*pos=*/nCol - 1);
508     colUnknown.push_back(var.size() - 1);
509   }
510   tableau.resizeHorizontally(nCol);
511   undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
512 }
513 
514 /// Add all the constraints from the given IntegerPolyhedron.
515 void SimplexBase::intersectIntegerPolyhedron(const IntegerPolyhedron &poly) {
516   assert(poly.getNumIds() == getNumVariables() &&
517          "IntegerPolyhedron must have same dimensionality as simplex");
518   for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i)
519     addInequality(poly.getInequality(i));
520   for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i)
521     addEquality(poly.getEquality(i));
522 }
523 
524 Optional<Fraction> Simplex::computeRowOptimum(Direction direction,
525                                               unsigned row) {
526   // Keep trying to find a pivot for the row in the specified direction.
527   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
528     // If findPivot returns a pivot involving the row itself, then the optimum
529     // is unbounded, so we return None.
530     if (maybePivot->row == row)
531       return {};
532     pivot(*maybePivot);
533   }
534 
535   // The row has reached its optimal sample value, which we return.
536   // The sample value is the entry in the constant column divided by the common
537   // denominator for this row.
538   return Fraction(tableau(row, 1), tableau(row, 0));
539 }
540 
541 /// Compute the optimum of the specified expression in the specified direction,
542 /// or None if it is unbounded.
543 Optional<Fraction> Simplex::computeOptimum(Direction direction,
544                                            ArrayRef<int64_t> coeffs) {
545   assert(!empty && "Simplex should not be empty");
546 
547   unsigned snapshot = getSnapshot();
548   unsigned conIndex = addRow(coeffs);
549   unsigned row = con[conIndex].pos;
550   Optional<Fraction> optimum = computeRowOptimum(direction, row);
551   rollback(snapshot);
552   return optimum;
553 }
554 
555 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) {
556   assert(!empty && "Simplex should not be empty!");
557   if (u.orientation == Orientation::Column) {
558     unsigned column = u.pos;
559     Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
560     // If no pivot is returned, the constraint is unbounded in the specified
561     // direction.
562     if (!pivotRow)
563       return {};
564     pivot(*pivotRow, column);
565   }
566 
567   unsigned row = u.pos;
568   Optional<Fraction> optimum = computeRowOptimum(direction, row);
569   if (u.restricted && direction == Direction::Down &&
570       (!optimum || *optimum < Fraction(0, 1))) {
571     if (failed(restoreRow(u)))
572       llvm_unreachable("Could not restore row!");
573   }
574   return optimum;
575 }
576 
577 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
578   assert(!empty && "It is not meaningful to ask whether a direction is bounded "
579                    "in an empty set.");
580   // The constraint's perpendicular is already bounded below, since it is a
581   // constraint. If it is also bounded above, we can return true.
582   return computeOptimum(Direction::Up, con[constraintIndex]).hasValue();
583 }
584 
585 /// Redundant constraints are those that are in row orientation and lie in
586 /// rows 0 to nRedundant - 1.
587 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
588   const Unknown &u = con[constraintIndex];
589   return u.orientation == Orientation::Row && u.pos < nRedundant;
590 }
591 
592 /// Mark the specified row redundant.
593 ///
594 /// This is done by moving the unknown to the end of the block of redundant
595 /// rows (namely, to row nRedundant) and incrementing nRedundant to
596 /// accomodate the new redundant row.
597 void Simplex::markRowRedundant(Unknown &u) {
598   assert(u.orientation == Orientation::Row &&
599          "Unknown should be in row position!");
600   assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
601   swapRows(u.pos, nRedundant);
602   ++nRedundant;
603   undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
604 }
605 
606 /// Find a subset of constraints that is redundant and mark them redundant.
607 void Simplex::detectRedundant() {
608   // It is not meaningful to talk about redundancy for empty sets.
609   if (empty)
610     return;
611 
612   // Iterate through the constraints and check for each one if it can attain
613   // negative sample values. If it can, it's not redundant. Otherwise, it is.
614   // We mark redundant constraints redundant.
615   //
616   // Constraints that get marked redundant in one iteration are not respected
617   // when checking constraints in later iterations. This prevents, for example,
618   // two identical constraints both being marked redundant since each is
619   // redundant given the other one. In this example, only the first of the
620   // constraints that is processed will get marked redundant, as it should be.
621   for (Unknown &u : con) {
622     if (u.orientation == Orientation::Column) {
623       unsigned column = u.pos;
624       Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
625       // If no downward pivot is returned, the constraint is unbounded below
626       // and hence not redundant.
627       if (!pivotRow)
628         continue;
629       pivot(*pivotRow, column);
630     }
631 
632     unsigned row = u.pos;
633     Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row);
634     if (!minimum || *minimum < Fraction(0, 1)) {
635       // Constraint is unbounded below or can attain negative sample values and
636       // hence is not redundant.
637       if (failed(restoreRow(u)))
638         llvm_unreachable("Could not restore non-redundant row!");
639       continue;
640     }
641 
642     markRowRedundant(u);
643   }
644 }
645 
646 bool Simplex::isUnbounded() {
647   if (empty)
648     return false;
649 
650   SmallVector<int64_t, 8> dir(var.size() + 1);
651   for (unsigned i = 0; i < var.size(); ++i) {
652     dir[i] = 1;
653 
654     Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir);
655     if (!maybeMax)
656       return true;
657 
658     Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir);
659     if (!maybeMin)
660       return true;
661 
662     dir[i] = 0;
663   }
664   return false;
665 }
666 
667 /// Make a tableau to represent a pair of points in the original tableau.
668 ///
669 /// The product constraints and variables are stored as: first A's, then B's.
670 ///
671 /// The product tableau has row layout:
672 ///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
673 ///
674 /// It has column layout:
675 ///   denominator, constant, A's columns, B's columns.
676 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
677   unsigned numVar = a.getNumVariables() + b.getNumVariables();
678   unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
679   Simplex result(numVar);
680 
681   result.tableau.resizeVertically(numCon);
682   result.empty = a.empty || b.empty;
683 
684   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
685     SmallVector<Unknown, 8> result;
686     result.reserve(v.size() + w.size());
687     result.insert(result.end(), v.begin(), v.end());
688     result.insert(result.end(), w.begin(), w.end());
689     return result;
690   };
691   result.con = concat(a.con, b.con);
692   result.var = concat(a.var, b.var);
693 
694   auto indexFromBIndex = [&](int index) {
695     return index >= 0 ? a.getNumVariables() + index
696                       : ~(a.getNumConstraints() + ~index);
697   };
698 
699   result.colUnknown.assign(2, nullIndex);
700   for (unsigned i = 2; i < a.nCol; ++i) {
701     result.colUnknown.push_back(a.colUnknown[i]);
702     result.unknownFromIndex(result.colUnknown.back()).pos =
703         result.colUnknown.size() - 1;
704   }
705   for (unsigned i = 2; i < b.nCol; ++i) {
706     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
707     result.unknownFromIndex(result.colUnknown.back()).pos =
708         result.colUnknown.size() - 1;
709   }
710 
711   auto appendRowFromA = [&](unsigned row) {
712     for (unsigned col = 0; col < a.nCol; ++col)
713       result.tableau(result.nRow, col) = a.tableau(row, col);
714     result.rowUnknown.push_back(a.rowUnknown[row]);
715     result.unknownFromIndex(result.rowUnknown.back()).pos =
716         result.rowUnknown.size() - 1;
717     result.nRow++;
718   };
719 
720   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
721   // may be).
722   auto appendRowFromB = [&](unsigned row) {
723     result.tableau(result.nRow, 0) = b.tableau(row, 0);
724     result.tableau(result.nRow, 1) = b.tableau(row, 1);
725 
726     unsigned offset = a.nCol - 2;
727     for (unsigned col = 2; col < b.nCol; ++col)
728       result.tableau(result.nRow, offset + col) = b.tableau(row, col);
729     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
730     result.unknownFromIndex(result.rowUnknown.back()).pos =
731         result.rowUnknown.size() - 1;
732     result.nRow++;
733   };
734 
735   result.nRedundant = a.nRedundant + b.nRedundant;
736   for (unsigned row = 0; row < a.nRedundant; ++row)
737     appendRowFromA(row);
738   for (unsigned row = 0; row < b.nRedundant; ++row)
739     appendRowFromB(row);
740   for (unsigned row = a.nRedundant; row < a.nRow; ++row)
741     appendRowFromA(row);
742   for (unsigned row = b.nRedundant; row < b.nRow; ++row)
743     appendRowFromB(row);
744 
745   return result;
746 }
747 
748 Optional<SmallVector<Fraction, 8>> SimplexBase::getRationalSample() const {
749   if (empty)
750     return {};
751 
752   SmallVector<Fraction, 8> sample;
753   sample.reserve(var.size());
754   // Push the sample value for each variable into the vector.
755   for (const Unknown &u : var) {
756     if (u.orientation == Orientation::Column) {
757       // If the variable is in column position, its sample value is zero.
758       sample.emplace_back(0, 1);
759     } else {
760       // If the variable is in row position, its sample value is the entry in
761       // the constant column divided by the entry in the common denominator
762       // column.
763       sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0));
764     }
765   }
766   return sample;
767 }
768 
769 Optional<SmallVector<int64_t, 8>>
770 SimplexBase::getSamplePointIfIntegral() const {
771   // If the tableau is empty, no sample point exists.
772   if (empty)
773     return {};
774 
775   // The value will always exist since the Simplex is non-empty.
776   SmallVector<Fraction, 8> rationalSample = *getRationalSample();
777   SmallVector<int64_t, 8> integerSample;
778   integerSample.reserve(var.size());
779   for (const Fraction &coord : rationalSample) {
780     // If the sample is non-integral, return None.
781     if (coord.num % coord.den != 0)
782       return {};
783     integerSample.push_back(coord.num / coord.den);
784   }
785   return integerSample;
786 }
787 
788 /// Given a simplex for a polytope, construct a new simplex whose variables are
789 /// identified with a pair of points (x, y) in the original polytope. Supports
790 /// some operations needed for generalized basis reduction. In what follows,
791 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
792 /// dimension of the original polytope.
793 ///
794 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
795 /// also supports rolling back this addition, by maintaining a snapshot stack
796 /// that contains a snapshot of the Simplex's state for each equality, just
797 /// before that equality was added.
798 class GBRSimplex {
799   using Orientation = Simplex::Orientation;
800 
801 public:
802   GBRSimplex(const Simplex &originalSimplex)
803       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
804         simplexConstraintOffset(simplex.getNumConstraints()) {}
805 
806   /// Add an equality dotProduct(dir, x - y) == 0.
807   /// First pushes a snapshot for the current simplex state to the stack so
808   /// that this can be rolled back later.
809   void addEqualityForDirection(ArrayRef<int64_t> dir) {
810     assert(
811         std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) &&
812         "Direction passed is the zero vector!");
813     snapshotStack.push_back(simplex.getSnapshot());
814     simplex.addEquality(getCoeffsForDirection(dir));
815   }
816   /// Compute max(dotProduct(dir, x - y)).
817   Fraction computeWidth(ArrayRef<int64_t> dir) {
818     Optional<Fraction> maybeWidth =
819         simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
820     assert(maybeWidth.hasValue() && "Width should not be unbounded!");
821     return *maybeWidth;
822   }
823 
824   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
825   /// the direction equalities to `dual`.
826   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
827                                 SmallVectorImpl<int64_t> &dual,
828                                 int64_t &dualDenom) {
829     // We can't just call into computeWidth or computeOptimum since we need to
830     // access the state of the tableau after computing the optimum, and these
831     // functions rollback the insertion of the objective function into the
832     // tableau before returning. We instead add a row for the objective function
833     // ourselves, call into computeOptimum, compute the duals from the tableau
834     // state, and finally rollback the addition of the row before returning.
835     unsigned snap = simplex.getSnapshot();
836     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
837     unsigned row = simplex.con[conIndex].pos;
838     Optional<Fraction> maybeWidth =
839         simplex.computeRowOptimum(Simplex::Direction::Up, row);
840     assert(maybeWidth.hasValue() && "Width should not be unbounded!");
841     dualDenom = simplex.tableau(row, 0);
842     dual.clear();
843 
844     // The increment is i += 2 because equalities are added as two inequalities,
845     // one positive and one negative. Each iteration processes one equality.
846     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
847       // The dual variable for an inequality in column orientation is the
848       // negative of its coefficient at the objective row. If the inequality is
849       // in row orientation, the corresponding dual variable is zero.
850       //
851       // We want the dual for the original equality, which corresponds to two
852       // inequalities: a positive inequality, which has the same coefficients as
853       // the equality, and a negative equality, which has negated coefficients.
854       //
855       // Note that at most one of these inequalities can be in column
856       // orientation because the column unknowns should form a basis and hence
857       // must be linearly independent. If the positive inequality is in column
858       // position, its dual is the dual corresponding to the equality. If the
859       // negative inequality is in column position, the negation of its dual is
860       // the dual corresponding to the equality. If neither is in column
861       // position, then that means that this equality is redundant, and its dual
862       // is zero.
863       //
864       // Note that it is NOT valid to perform pivots during the computation of
865       // the duals. This entire dual computation must be performed on the same
866       // tableau configuration.
867       assert(!(simplex.con[i].orientation == Orientation::Column &&
868                simplex.con[i + 1].orientation == Orientation::Column) &&
869              "Both inequalities for the equality cannot be in column "
870              "orientation!");
871       if (simplex.con[i].orientation == Orientation::Column)
872         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
873       else if (simplex.con[i + 1].orientation == Orientation::Column)
874         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
875       else
876         dual.push_back(0);
877     }
878     simplex.rollback(snap);
879     return *maybeWidth;
880   }
881 
882   /// Remove the last equality that was added through addEqualityForDirection.
883   ///
884   /// We do this by rolling back to the snapshot at the top of the stack, which
885   /// should be a snapshot taken just before the last equality was added.
886   void removeLastEquality() {
887     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
888     simplex.rollback(snapshotStack.back());
889     snapshotStack.pop_back();
890   }
891 
892 private:
893   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
894   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
895   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
896   /// where n is the dimension of the original polytope.
897   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
898     assert(2 * dir.size() == simplex.getNumVariables() &&
899            "Direction vector has wrong dimensionality");
900     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
901     coeffs.reserve(2 * dir.size());
902     for (int64_t coeff : dir)
903       coeffs.push_back(-coeff);
904     coeffs.push_back(0); // constant term
905     return coeffs;
906   }
907 
908   Simplex simplex;
909   /// The first index of the equality constraints, the index immediately after
910   /// the last constraint in the initial product simplex.
911   unsigned simplexConstraintOffset;
912   /// A stack of snapshots, used for rolling back.
913   SmallVector<unsigned, 8> snapshotStack;
914 };
915 
916 // Return a + scale*b;
917 static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale,
918                                            ArrayRef<int64_t> b) {
919   assert(a.size() == b.size());
920   SmallVector<int64_t, 8> res;
921   res.reserve(a.size());
922   for (unsigned i = 0, e = a.size(); i < e; ++i)
923     res.push_back(a[i] + scale * b[i]);
924   return res;
925 }
926 
927 /// Reduce the basis to try and find a direction in which the polytope is
928 /// "thin". This only works for bounded polytopes.
929 ///
930 /// This is an implementation of the algorithm described in the paper
931 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
932 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
933 ///
934 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
935 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
936 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
937 ///
938 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
939 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
940 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
941 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
942 /// minimizing value of u, if it were allowed to be fractional. Due to
943 /// convexity, the minimizing integer value is either floor(dual_i) or
944 /// ceil(dual_i), so we just need to check which of these gives a lower
945 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
946 ///
947 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
948 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
949 /// same i). Otherwise, we increment i.
950 ///
951 /// We keep f values and duals cached and invalidate them when necessary.
952 /// Whenever possible, we use them instead of recomputing them. We implement the
953 /// algorithm as follows.
954 ///
955 /// In an iteration at i we need to compute:
956 ///   a) width_i(b_{i + 1})
957 ///   b) width_i(b_i)
958 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
959 ///
960 /// If width_i(b_i) is not already cached, we compute it.
961 ///
962 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
963 /// store the duals from this computation.
964 ///
965 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
966 /// of u as explained before, caches the duals from this computation, sets
967 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
968 ///
969 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
970 /// decrement i, resulting in the basis
971 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
972 /// with corresponding f values
973 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
974 /// The values up to i - 1 remain unchanged. We have just gotten the middle
975 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
976 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
977 /// the cache. The iteration after decrementing needs exactly the duals from the
978 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
979 ///
980 /// When incrementing i, no cached f values get invalidated. However, the cached
981 /// duals do get invalidated as the duals for the higher levels are different.
982 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
983   const Fraction epsilon(3, 4);
984 
985   if (level == basis.getNumRows() - 1)
986     return;
987 
988   GBRSimplex gbrSimplex(*this);
989   SmallVector<Fraction, 8> width;
990   SmallVector<int64_t, 8> dual;
991   int64_t dualDenom;
992 
993   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
994   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
995   // the new value of width_i(b_{i+1}).
996   //
997   // If dual_i is not an integer, the minimizing value must be either
998   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
999   // choose the minimizing value.
1000   //
1001   // If dual_i is an integer, we don't need to perform these computations. We
1002   // know that in this case,
1003   //   a) u = dual_i.
1004   //   b) one can show that dual_j for j < i are the same duals we would have
1005   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1006   //      are the ones already in the cache.
1007   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1008   //   which
1009   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1010   //      be in the cache, so we get it from there and return it.
1011   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1012     assert(i < level + dual.size() && "dual_i is not known!");
1013 
1014     int64_t u = floorDiv(dual[i - level], dualDenom);
1015     basis.addToRow(i, i + 1, u);
1016     if (dual[i - level] % dualDenom != 0) {
1017       SmallVector<int64_t, 8> candidateDual[2];
1018       int64_t candidateDualDenom[2];
1019       Fraction widthI[2];
1020 
1021       // Initially u is floor(dual) and basis reflects this.
1022       widthI[0] = gbrSimplex.computeWidthAndDuals(
1023           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
1024 
1025       // Now try ceil(dual), i.e. floor(dual) + 1.
1026       ++u;
1027       basis.addToRow(i, i + 1, 1);
1028       widthI[1] = gbrSimplex.computeWidthAndDuals(
1029           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
1030 
1031       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1032       if (j == 0)
1033         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1034         basis.addToRow(i, i + 1, -1);
1035 
1036       // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1037       // We assert that this holds by checking that the values of width_i at
1038       // u - 1 and u + 1 are greater than or equal to the value at u. If the
1039       // width is lesser at either of the adjacent values, then our computed
1040       // value of u is clearly not the minimizer. Otherwise by convexity the
1041       // computed value of u is really the minimizer.
1042 
1043       // Check the value at u - 1.
1044       assert(gbrSimplex.computeWidth(scaleAndAdd(
1045                  basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
1046              "Computed u value does not minimize the width!");
1047       // Check the value at u + 1.
1048       assert(gbrSimplex.computeWidth(scaleAndAdd(
1049                  basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
1050              "Computed u value does not minimize the width!");
1051 
1052       dual = std::move(candidateDual[j]);
1053       dualDenom = candidateDualDenom[j];
1054       return widthI[j];
1055     }
1056 
1057     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1058     // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1059     // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1060     // the above expression is equal to basis.getRow(i+1) below.)
1061     assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1062            width[i + 1 - level]);
1063     return width[i + 1 - level];
1064   };
1065 
1066   // In the ith iteration of the loop, gbrSimplex has constraints for directions
1067   // from `level` to i - 1.
1068   unsigned i = level;
1069   while (i < basis.getNumRows() - 1) {
1070     if (i >= level + width.size()) {
1071       // We don't even know the value of f_i(b_i), so let's find that first.
1072       // We have to do this first since later we assume that width already
1073       // contains values up to and including i.
1074 
1075       assert((i == 0 || i - 1 < level + width.size()) &&
1076              "We are at level i but we don't know the value of width_{i-1}");
1077 
1078       // We don't actually use these duals at all, but it doesn't matter
1079       // because this case should only occur when i is level, and there are no
1080       // duals in that case anyway.
1081       assert(i == level && "This case should only occur when i == level");
1082       width.push_back(
1083           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1084     }
1085 
1086     if (i >= level + dual.size()) {
1087       assert(i + 1 >= level + width.size() &&
1088              "We don't know dual_i but we know width_{i+1}");
1089       // We don't know dual for our level, so let's find it.
1090       gbrSimplex.addEqualityForDirection(basis.getRow(i));
1091       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1092                                                       dualDenom));
1093       gbrSimplex.removeLastEquality();
1094     }
1095 
1096     // This variable stores width_i(b_{i+1} + u*b_i).
1097     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1098     if (widthICandidate < epsilon * width[i - level]) {
1099       basis.swapRows(i, i + 1);
1100       width[i - level] = widthICandidate;
1101       // The values of width_{i+1}(b_{i+1}) and higher may change after the
1102       // swap, so we remove the cached values here.
1103       width.resize(i - level + 1);
1104       if (i == level) {
1105         dual.clear();
1106         continue;
1107       }
1108 
1109       gbrSimplex.removeLastEquality();
1110       i--;
1111       continue;
1112     }
1113 
1114     // Invalidate duals since the higher level needs to recompute its own duals.
1115     dual.clear();
1116     gbrSimplex.addEqualityForDirection(basis.getRow(i));
1117     i++;
1118   }
1119 }
1120 
1121 /// Search for an integer sample point using a branch and bound algorithm.
1122 ///
1123 /// Each row in the basis matrix is a vector, and the set of basis vectors
1124 /// should span the space. Initially this is the identity matrix,
1125 /// i.e., the basis vectors are just the variables.
1126 ///
1127 /// In every level, a value is assigned to the level-th basis vector, as
1128 /// follows. Compute the minimum and maximum rational values of this direction.
1129 /// If only one integer point lies in this range, constrain the variable to
1130 /// have this value and recurse to the next variable.
1131 ///
1132 /// If the range has multiple values, perform generalized basis reduction via
1133 /// reduceBasis and then compute the bounds again. Now we try constraining
1134 /// this direction in the first value in this range and "recurse" to the next
1135 /// level. If we fail to find a sample, we try assigning the direction the next
1136 /// value in this range, and so on.
1137 ///
1138 /// If no integer sample is found from any of the assignments, or if the range
1139 /// contains no integer value, then of course the polytope is empty for the
1140 /// current assignment of the values in previous levels, so we return to
1141 /// the previous level.
1142 ///
1143 /// If we reach the last level where all the variables have been assigned values
1144 /// already, then we simply return the current sample point if it is integral,
1145 /// and go back to the previous level otherwise.
1146 ///
1147 /// To avoid potentially arbitrarily large recursion depths leading to stack
1148 /// overflows, this algorithm is implemented iteratively.
1149 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1150   if (empty)
1151     return {};
1152 
1153   unsigned nDims = var.size();
1154   Matrix basis = Matrix::identity(nDims);
1155 
1156   unsigned level = 0;
1157   // The snapshot just before constraining a direction to a value at each level.
1158   SmallVector<unsigned, 8> snapshotStack;
1159   // The maximum value in the range of the direction for each level.
1160   SmallVector<int64_t, 8> upperBoundStack;
1161   // The next value to try constraining the basis vector to at each level.
1162   SmallVector<int64_t, 8> nextValueStack;
1163 
1164   snapshotStack.reserve(basis.getNumRows());
1165   upperBoundStack.reserve(basis.getNumRows());
1166   nextValueStack.reserve(basis.getNumRows());
1167   while (level != -1u) {
1168     if (level == basis.getNumRows()) {
1169       // We've assigned values to all variables. Return if we have a sample,
1170       // or go back up to the previous level otherwise.
1171       if (auto maybeSample = getSamplePointIfIntegral())
1172         return maybeSample;
1173       level--;
1174       continue;
1175     }
1176 
1177     if (level >= upperBoundStack.size()) {
1178       // We haven't populated the stack values for this level yet, so we have
1179       // just come down a level ("recursed"). Find the lower and upper bounds.
1180       // If there is more than one integer point in the range, perform
1181       // generalized basis reduction.
1182       SmallVector<int64_t, 8> basisCoeffs =
1183           llvm::to_vector<8>(basis.getRow(level));
1184       basisCoeffs.push_back(0);
1185 
1186       int64_t minRoundedUp, maxRoundedDown;
1187       std::tie(minRoundedUp, maxRoundedDown) =
1188           computeIntegerBounds(basisCoeffs);
1189 
1190       // Heuristic: if the sample point is integral at this point, just return
1191       // it.
1192       if (auto maybeSample = getSamplePointIfIntegral())
1193         return *maybeSample;
1194 
1195       if (minRoundedUp < maxRoundedDown) {
1196         reduceBasis(basis, level);
1197         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
1198         basisCoeffs.push_back(0);
1199         std::tie(minRoundedUp, maxRoundedDown) =
1200             computeIntegerBounds(basisCoeffs);
1201       }
1202 
1203       snapshotStack.push_back(getSnapshot());
1204       // The smallest value in the range is the next value to try.
1205       nextValueStack.push_back(minRoundedUp);
1206       upperBoundStack.push_back(maxRoundedDown);
1207     }
1208 
1209     assert((snapshotStack.size() - 1 == level &&
1210             nextValueStack.size() - 1 == level &&
1211             upperBoundStack.size() - 1 == level) &&
1212            "Mismatched variable stack sizes!");
1213 
1214     // Whether we "recursed" or "returned" from a lower level, we rollback
1215     // to the snapshot of the starting state at this level. (in the "recursed"
1216     // case this has no effect)
1217     rollback(snapshotStack.back());
1218     int64_t nextValue = nextValueStack.back();
1219     nextValueStack.back()++;
1220     if (nextValue > upperBoundStack.back()) {
1221       // We have exhausted the range and found no solution. Pop the stack and
1222       // return up a level.
1223       snapshotStack.pop_back();
1224       nextValueStack.pop_back();
1225       upperBoundStack.pop_back();
1226       level--;
1227       continue;
1228     }
1229 
1230     // Try the next value in the range and "recurse" into the next level.
1231     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
1232                                         basis.getRow(level).end());
1233     basisCoeffs.push_back(-nextValue);
1234     addEquality(basisCoeffs);
1235     level++;
1236   }
1237 
1238   return {};
1239 }
1240 
1241 /// Compute the minimum and maximum integer values the expression can take. We
1242 /// compute each separately.
1243 std::pair<int64_t, int64_t>
1244 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
1245   int64_t minRoundedUp;
1246   if (Optional<Fraction> maybeMin =
1247           computeOptimum(Simplex::Direction::Down, coeffs))
1248     minRoundedUp = ceil(*maybeMin);
1249   else
1250     llvm_unreachable("Tableau should not be unbounded");
1251 
1252   int64_t maxRoundedDown;
1253   if (Optional<Fraction> maybeMax =
1254           computeOptimum(Simplex::Direction::Up, coeffs))
1255     maxRoundedDown = floor(*maybeMax);
1256   else
1257     llvm_unreachable("Tableau should not be unbounded");
1258 
1259   return {minRoundedUp, maxRoundedDown};
1260 }
1261 
1262 void SimplexBase::print(raw_ostream &os) const {
1263   os << "rows = " << nRow << ", columns = " << nCol << "\n";
1264   if (empty)
1265     os << "Simplex marked empty!\n";
1266   os << "var: ";
1267   for (unsigned i = 0; i < var.size(); ++i) {
1268     if (i > 0)
1269       os << ", ";
1270     var[i].print(os);
1271   }
1272   os << "\ncon: ";
1273   for (unsigned i = 0; i < con.size(); ++i) {
1274     if (i > 0)
1275       os << ", ";
1276     con[i].print(os);
1277   }
1278   os << '\n';
1279   for (unsigned row = 0; row < nRow; ++row) {
1280     if (row > 0)
1281       os << ", ";
1282     os << "r" << row << ": " << rowUnknown[row];
1283   }
1284   os << '\n';
1285   os << "c0: denom, c1: const";
1286   for (unsigned col = 2; col < nCol; ++col)
1287     os << ", c" << col << ": " << colUnknown[col];
1288   os << '\n';
1289   for (unsigned row = 0; row < nRow; ++row) {
1290     for (unsigned col = 0; col < nCol; ++col)
1291       os << tableau(row, col) << '\t';
1292     os << '\n';
1293   }
1294   os << '\n';
1295 }
1296 
1297 void SimplexBase::dump() const { print(llvm::errs()); }
1298 
1299 bool Simplex::isRationalSubsetOf(const IntegerPolyhedron &poly) {
1300   if (isEmpty())
1301     return true;
1302 
1303   for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i)
1304     if (!isRedundantInequality(poly.getInequality(i)))
1305       return false;
1306 
1307   for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i)
1308     if (!isRedundantEquality(poly.getEquality(i)))
1309       return false;
1310 
1311   return true;
1312 }
1313 
1314 /// Computes the minimum value `coeffs` can take. If the value is greater than
1315 /// or equal to zero, the polytope entirely lies in the half-space defined by
1316 /// `coeffs >= 0`.
1317 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
1318   Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
1319   return minimum && *minimum >= Fraction(0, 1);
1320 }
1321 
1322 /// Check whether the equality given by `coeffs == 0` is redundant given
1323 /// the existing constraints. This is redundant when `coeffs` is already
1324 /// always zero under the existing constraints. `coeffs` is always zero
1325 /// when the minimum and maximum value that `coeffs` can take are both zero.
1326 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
1327   Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
1328   Optional<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
1329   return minimum && maximum && *maximum == Fraction(0, 1) &&
1330          *minimum == Fraction(0, 1);
1331 }
1332 
1333 } // namespace mlir
1334