1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 namespace mlir { 15 using Direction = Simplex::Direction; 16 17 const int nullIndex = std::numeric_limits<int>::max(); 18 19 /// Construct a Simplex object with `nVar` variables. 20 SimplexBase::SimplexBase(unsigned nVar) 21 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { 22 colUnknown.push_back(nullIndex); 23 colUnknown.push_back(nullIndex); 24 for (unsigned i = 0; i < nVar; ++i) { 25 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); 26 colUnknown.push_back(i); 27 nCol++; 28 } 29 } 30 31 SimplexBase::SimplexBase(const IntegerPolyhedron &constraints) 32 : SimplexBase(constraints.getNumIds()) { 33 for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); 34 i < numIneqs; ++i) 35 addInequality(constraints.getInequality(i)); 36 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) 37 addEquality(constraints.getEquality(i)); 38 } 39 40 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { 41 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 42 return index >= 0 ? var[index] : con[~index]; 43 } 44 45 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { 46 assert(col < nCol && "Invalid column"); 47 return unknownFromIndex(colUnknown[col]); 48 } 49 50 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { 51 assert(row < nRow && "Invalid row"); 52 return unknownFromIndex(rowUnknown[row]); 53 } 54 55 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { 56 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 57 return index >= 0 ? var[index] : con[~index]; 58 } 59 60 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { 61 assert(col < nCol && "Invalid column"); 62 return unknownFromIndex(colUnknown[col]); 63 } 64 65 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { 66 assert(row < nRow && "Invalid row"); 67 return unknownFromIndex(rowUnknown[row]); 68 } 69 70 /// Add a new row to the tableau corresponding to the given constant term and 71 /// list of coefficients. The coefficients are specified as a vector of 72 /// (variable index, coefficient) pairs. 73 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs) { 74 assert(coeffs.size() == 1 + var.size() && 75 "Incorrect number of coefficients!"); 76 77 ++nRow; 78 // If the tableau is not big enough to accomodate the extra row, we extend it. 79 if (nRow >= tableau.getNumRows()) 80 tableau.resizeVertically(nRow); 81 rowUnknown.push_back(~con.size()); 82 con.emplace_back(Orientation::Row, false, nRow - 1); 83 84 tableau(nRow - 1, 0) = 1; 85 tableau(nRow - 1, 1) = coeffs.back(); 86 for (unsigned col = 2; col < nCol; ++col) 87 tableau(nRow - 1, col) = 0; 88 89 // Process each given variable coefficient. 90 for (unsigned i = 0; i < var.size(); ++i) { 91 unsigned pos = var[i].pos; 92 if (coeffs[i] == 0) 93 continue; 94 95 if (var[i].orientation == Orientation::Column) { 96 // If a variable is in column position at column col, then we just add the 97 // coefficient for that variable (scaled by the common row denominator) to 98 // the corresponding entry in the new row. 99 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 100 continue; 101 } 102 103 // If the variable is in row position, we need to add that row to the new 104 // row, scaled by the coefficient for the variable, accounting for the two 105 // rows potentially having different denominators. The new denominator is 106 // the lcm of the two. 107 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 108 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 109 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 110 tableau(nRow - 1, 0) = lcm; 111 for (unsigned col = 1; col < nCol; ++col) 112 tableau(nRow - 1, col) = 113 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 114 } 115 116 normalizeRow(nRow - 1); 117 // Push to undo log along with the index of the new constraint. 118 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 119 return con.size() - 1; 120 } 121 122 /// Normalize the row by removing factors that are common between the 123 /// denominator and all the numerator coefficients. 124 void SimplexBase::normalizeRow(unsigned row) { 125 int64_t gcd = 0; 126 for (unsigned col = 0; col < nCol; ++col) { 127 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 128 // If the gcd becomes 1 then the row is already normalized. 129 if (gcd == 1) 130 return; 131 } 132 133 // Note that the gcd can never become zero since the first element of the row, 134 // the denominator, is non-zero. 135 assert(gcd != 0); 136 for (unsigned col = 0; col < nCol; ++col) 137 tableau(row, col) /= gcd; 138 } 139 140 namespace { 141 bool signMatchesDirection(int64_t elem, Direction direction) { 142 assert(elem != 0 && "elem should not be 0"); 143 return direction == Direction::Up ? elem > 0 : elem < 0; 144 } 145 146 Direction flippedDirection(Direction direction) { 147 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 148 } 149 } // namespace 150 151 /// Find a pivot to change the sample value of the row in the specified 152 /// direction. The returned pivot row will involve `row` if and only if the 153 /// unknown is unbounded in the specified direction. 154 /// 155 /// To increase (resp. decrease) the value of a row, we need to find a live 156 /// column with a non-zero coefficient. If the coefficient is positive, we need 157 /// to increase (decrease) the value of the column, and if the coefficient is 158 /// negative, we need to decrease (increase) the value of the column. Also, 159 /// we cannot decrease the sample value of restricted columns. 160 /// 161 /// If multiple columns are valid, we break ties by considering a lexicographic 162 /// ordering where we prefer unknowns with lower index. 163 Optional<SimplexBase::Pivot> SimplexBase::findPivot(int row, 164 Direction direction) const { 165 Optional<unsigned> col; 166 for (unsigned j = 2; j < nCol; ++j) { 167 int64_t elem = tableau(row, j); 168 if (elem == 0) 169 continue; 170 171 if (unknownFromColumn(j).restricted && 172 !signMatchesDirection(elem, direction)) 173 continue; 174 if (!col || colUnknown[j] < colUnknown[*col]) 175 col = j; 176 } 177 178 if (!col) 179 return {}; 180 181 Direction newDirection = 182 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 183 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 184 return Pivot{maybePivotRow.getValueOr(row), *col}; 185 } 186 187 /// Swap the associated unknowns for the row and the column. 188 /// 189 /// First we swap the index associated with the row and column. Then we update 190 /// the unknowns to reflect their new position and orientation. 191 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { 192 std::swap(rowUnknown[row], colUnknown[col]); 193 Unknown &uCol = unknownFromColumn(col); 194 Unknown &uRow = unknownFromRow(row); 195 uCol.orientation = Orientation::Column; 196 uRow.orientation = Orientation::Row; 197 uCol.pos = col; 198 uRow.pos = row; 199 } 200 201 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } 202 203 /// Pivot pivotRow and pivotCol. 204 /// 205 /// Let R be the pivot row unknown and let C be the pivot col unknown. 206 /// Since initially R = a*C + sum b_i * X_i 207 /// (where the sum is over the other column's unknowns, x_i) 208 /// C = (R - (sum b_i * X_i))/a 209 /// 210 /// Let u be some other row unknown. 211 /// u = c*C + sum d_i * X_i 212 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 213 /// 214 /// This results in the following transform: 215 /// pivot col other col pivot col other col 216 /// pivot row a b -> pivot row 1/a -b/a 217 /// other row c d other row c/a d - bc/a 218 /// 219 /// Taking into account the common denominators p and q: 220 /// 221 /// pivot col other col pivot col other col 222 /// pivot row a/p b/p -> pivot row p/a -b/a 223 /// other row c/q d/q other row cp/aq (da - bc)/aq 224 /// 225 /// The pivot row transform is accomplished be swapping a with the pivot row's 226 /// common denominator and negating the pivot row except for the pivot column 227 /// element. 228 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { 229 assert(pivotCol >= 2 && "Refusing to pivot invalid column"); 230 231 swapRowWithCol(pivotRow, pivotCol); 232 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 233 // We need to negate the whole pivot row except for the pivot column. 234 if (tableau(pivotRow, 0) < 0) { 235 // If the denominator is negative, we negate the row by simply negating the 236 // denominator. 237 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 238 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 239 } else { 240 for (unsigned col = 1; col < nCol; ++col) { 241 if (col == pivotCol) 242 continue; 243 tableau(pivotRow, col) = -tableau(pivotRow, col); 244 } 245 } 246 normalizeRow(pivotRow); 247 248 for (unsigned row = 0; row < nRow; ++row) { 249 if (row == pivotRow) 250 continue; 251 if (tableau(row, pivotCol) == 0) // Nothing to do. 252 continue; 253 tableau(row, 0) *= tableau(pivotRow, 0); 254 for (unsigned j = 1; j < nCol; ++j) { 255 if (j == pivotCol) 256 continue; 257 // Add rather than subtract because the pivot row has been negated. 258 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 259 tableau(row, pivotCol) * tableau(pivotRow, j); 260 } 261 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 262 normalizeRow(row); 263 } 264 } 265 266 /// Perform pivots until the unknown has a non-negative sample value or until 267 /// no more upward pivots can be performed. Return success if we were able to 268 /// bring the row to a non-negative sample value, and failure otherwise. 269 LogicalResult SimplexBase::restoreRow(Unknown &u) { 270 assert(u.orientation == Orientation::Row && 271 "unknown should be in row position"); 272 273 while (tableau(u.pos, 1) < 0) { 274 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 275 if (!maybePivot) 276 break; 277 278 pivot(*maybePivot); 279 if (u.orientation == Orientation::Column) 280 return success(); // the unknown is unbounded above. 281 } 282 return success(tableau(u.pos, 1) >= 0); 283 } 284 285 /// Find a row that can be used to pivot the column in the specified direction. 286 /// This returns an empty optional if and only if the column is unbounded in the 287 /// specified direction (ignoring skipRow, if skipRow is set). 288 /// 289 /// If skipRow is set, this row is not considered, and (if it is restricted) its 290 /// restriction may be violated by the returned pivot. Usually, skipRow is set 291 /// because we don't want to move it to column position unless it is unbounded, 292 /// and we are either trying to increase the value of skipRow or explicitly 293 /// trying to make skipRow negative, so we are not concerned about this. 294 /// 295 /// If the direction is up (resp. down) and a restricted row has a negative 296 /// (positive) coefficient for the column, then this row imposes a bound on how 297 /// much the sample value of the column can change. Such a row with constant 298 /// term c and coefficient f for the column imposes a bound of c/|f| on the 299 /// change in sample value (in the specified direction). (note that c is 300 /// non-negative here since the row is restricted and the tableau is consistent) 301 /// 302 /// We iterate through the rows and pick the row which imposes the most 303 /// stringent bound, since pivoting with a row changes the row's sample value to 304 /// 0 and hence saturates the bound it imposes. We break ties between rows that 305 /// impose the same bound by considering a lexicographic ordering where we 306 /// prefer unknowns with lower index value. 307 Optional<unsigned> SimplexBase::findPivotRow(Optional<unsigned> skipRow, 308 Direction direction, 309 unsigned col) const { 310 Optional<unsigned> retRow; 311 // Initialize these to zero in order to silence a warning about retElem and 312 // retConst being used uninitialized in the initialization of `diff` below. In 313 // reality, these are always initialized when that line is reached since these 314 // are set whenever retRow is set. 315 int64_t retElem = 0, retConst = 0; 316 for (unsigned row = nRedundant; row < nRow; ++row) { 317 if (skipRow && row == *skipRow) 318 continue; 319 int64_t elem = tableau(row, col); 320 if (elem == 0) 321 continue; 322 if (!unknownFromRow(row).restricted) 323 continue; 324 if (signMatchesDirection(elem, direction)) 325 continue; 326 int64_t constTerm = tableau(row, 1); 327 328 if (!retRow) { 329 retRow = row; 330 retElem = elem; 331 retConst = constTerm; 332 continue; 333 } 334 335 int64_t diff = retConst * elem - constTerm * retElem; 336 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 337 (diff != 0 && !signMatchesDirection(diff, direction))) { 338 retRow = row; 339 retElem = elem; 340 retConst = constTerm; 341 } 342 } 343 return retRow; 344 } 345 346 bool SimplexBase::isEmpty() const { return empty; } 347 348 void SimplexBase::swapRows(unsigned i, unsigned j) { 349 if (i == j) 350 return; 351 tableau.swapRows(i, j); 352 std::swap(rowUnknown[i], rowUnknown[j]); 353 unknownFromRow(i).pos = i; 354 unknownFromRow(j).pos = j; 355 } 356 357 void SimplexBase::swapColumns(unsigned i, unsigned j) { 358 assert(i < nCol && j < nCol && "Invalid columns provided!"); 359 if (i == j) 360 return; 361 tableau.swapColumns(i, j); 362 std::swap(colUnknown[i], colUnknown[j]); 363 unknownFromColumn(i).pos = i; 364 unknownFromColumn(j).pos = j; 365 } 366 367 /// Mark this tableau empty and push an entry to the undo stack. 368 void SimplexBase::markEmpty() { 369 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 370 // entry, since in that case the Simplex will be erroneously marked as 371 // non-empty when rolling back past this point. 372 if (empty) 373 return; 374 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 375 empty = true; 376 } 377 378 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 379 /// is the current number of variables, then the corresponding inequality is 380 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 381 /// 382 /// We add the inequality and mark it as restricted. We then try to make its 383 /// sample value non-negative. If this is not possible, the tableau has become 384 /// empty and we mark it as such. 385 void SimplexBase::addInequality(ArrayRef<int64_t> coeffs) { 386 unsigned conIndex = addRow(coeffs); 387 Unknown &u = con[conIndex]; 388 u.restricted = true; 389 LogicalResult result = restoreRow(u); 390 if (failed(result)) 391 markEmpty(); 392 } 393 394 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 395 /// is the current number of variables, then the corresponding equality is 396 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 397 /// 398 /// We simply add two opposing inequalities, which force the expression to 399 /// be zero. 400 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) { 401 addInequality(coeffs); 402 SmallVector<int64_t, 8> negatedCoeffs; 403 for (int64_t coeff : coeffs) 404 negatedCoeffs.emplace_back(-coeff); 405 addInequality(negatedCoeffs); 406 } 407 408 unsigned SimplexBase::getNumVariables() const { return var.size(); } 409 unsigned SimplexBase::getNumConstraints() const { return con.size(); } 410 411 /// Return a snapshot of the current state. This is just the current size of the 412 /// undo log. 413 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } 414 415 void SimplexBase::undo(UndoLogEntry entry) { 416 if (entry == UndoLogEntry::RemoveLastConstraint) { 417 Unknown &constraint = con.back(); 418 if (constraint.orientation == Orientation::Column) { 419 unsigned column = constraint.pos; 420 Optional<unsigned> row; 421 422 // Try to find any pivot row for this column that preserves tableau 423 // consistency (except possibly the column itself, which is going to be 424 // deallocated anyway). 425 // 426 // If no pivot row is found in either direction, then the unknown is 427 // unbounded in both directions and we are free to 428 // perform any pivot at all. To do this, we just need to find any row with 429 // a non-zero coefficient for the column. 430 if (Optional<unsigned> maybeRow = 431 findPivotRow({}, Direction::Up, column)) { 432 row = *maybeRow; 433 } else if (Optional<unsigned> maybeRow = 434 findPivotRow({}, Direction::Down, column)) { 435 row = *maybeRow; 436 } else { 437 // The loop doesn't find a pivot row only if the column has zero 438 // coefficients for every row. But the unknown is a constraint, 439 // so it was added initially as a row. Such a row could never have been 440 // pivoted to a column. So a pivot row will always be found. 441 for (unsigned i = nRedundant; i < nRow; ++i) { 442 if (tableau(i, column) != 0) { 443 row = i; 444 break; 445 } 446 } 447 } 448 assert(row.hasValue() && "No pivot row found!"); 449 pivot(*row, column); 450 } 451 452 // Move this unknown to the last row and remove the last row from the 453 // tableau. 454 swapRows(constraint.pos, nRow - 1); 455 // It is not strictly necessary to shrink the tableau, but for now we 456 // maintain the invariant that the tableau has exactly nRow rows. 457 tableau.resizeVertically(nRow - 1); 458 nRow--; 459 rowUnknown.pop_back(); 460 con.pop_back(); 461 } else if (entry == UndoLogEntry::RemoveLastVariable) { 462 // Whenever we are rolling back the addition of a variable, it is guaranteed 463 // that the variable will be in column position. 464 // 465 // We can see this as follows: any constraint that depends on this variable 466 // was added after this variable was added, so the addition of such 467 // constraints should already have been rolled back by the time we get to 468 // rolling back the addition of the variable. Therefore, no constraint 469 // currently has a component along the variable, so the variable itself must 470 // be part of the basis. 471 assert(var.back().orientation == Orientation::Column && 472 "Variable to be removed must be in column orientation!"); 473 474 // Move this variable to the last column and remove the column from the 475 // tableau. 476 swapColumns(var.back().pos, nCol - 1); 477 tableau.resizeHorizontally(nCol - 1); 478 var.pop_back(); 479 colUnknown.pop_back(); 480 nCol--; 481 } else if (entry == UndoLogEntry::UnmarkEmpty) { 482 empty = false; 483 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 484 nRedundant--; 485 } 486 } 487 488 /// Rollback to the specified snapshot. 489 /// 490 /// We undo all the log entries until the log size when the snapshot was taken 491 /// is reached. 492 void SimplexBase::rollback(unsigned snapshot) { 493 while (undoLog.size() > snapshot) { 494 undo(undoLog.back()); 495 undoLog.pop_back(); 496 } 497 } 498 499 void SimplexBase::appendVariable(unsigned count) { 500 if (count == 0) 501 return; 502 var.reserve(var.size() + count); 503 colUnknown.reserve(colUnknown.size() + count); 504 for (unsigned i = 0; i < count; ++i) { 505 nCol++; 506 var.emplace_back(Orientation::Column, /*restricted=*/false, 507 /*pos=*/nCol - 1); 508 colUnknown.push_back(var.size() - 1); 509 } 510 tableau.resizeHorizontally(nCol); 511 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 512 } 513 514 /// Add all the constraints from the given IntegerPolyhedron. 515 void SimplexBase::intersectIntegerPolyhedron(const IntegerPolyhedron &poly) { 516 assert(poly.getNumIds() == getNumVariables() && 517 "IntegerPolyhedron must have same dimensionality as simplex"); 518 for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) 519 addInequality(poly.getInequality(i)); 520 for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) 521 addEquality(poly.getEquality(i)); 522 } 523 524 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 525 unsigned row) { 526 // Keep trying to find a pivot for the row in the specified direction. 527 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 528 // If findPivot returns a pivot involving the row itself, then the optimum 529 // is unbounded, so we return None. 530 if (maybePivot->row == row) 531 return {}; 532 pivot(*maybePivot); 533 } 534 535 // The row has reached its optimal sample value, which we return. 536 // The sample value is the entry in the constant column divided by the common 537 // denominator for this row. 538 return Fraction(tableau(row, 1), tableau(row, 0)); 539 } 540 541 /// Compute the optimum of the specified expression in the specified direction, 542 /// or None if it is unbounded. 543 Optional<Fraction> Simplex::computeOptimum(Direction direction, 544 ArrayRef<int64_t> coeffs) { 545 assert(!empty && "Simplex should not be empty"); 546 547 unsigned snapshot = getSnapshot(); 548 unsigned conIndex = addRow(coeffs); 549 unsigned row = con[conIndex].pos; 550 Optional<Fraction> optimum = computeRowOptimum(direction, row); 551 rollback(snapshot); 552 return optimum; 553 } 554 555 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) { 556 assert(!empty && "Simplex should not be empty!"); 557 if (u.orientation == Orientation::Column) { 558 unsigned column = u.pos; 559 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 560 // If no pivot is returned, the constraint is unbounded in the specified 561 // direction. 562 if (!pivotRow) 563 return {}; 564 pivot(*pivotRow, column); 565 } 566 567 unsigned row = u.pos; 568 Optional<Fraction> optimum = computeRowOptimum(direction, row); 569 if (u.restricted && direction == Direction::Down && 570 (!optimum || *optimum < Fraction(0, 1))) { 571 if (failed(restoreRow(u))) 572 llvm_unreachable("Could not restore row!"); 573 } 574 return optimum; 575 } 576 577 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 578 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 579 "in an empty set."); 580 // The constraint's perpendicular is already bounded below, since it is a 581 // constraint. If it is also bounded above, we can return true. 582 return computeOptimum(Direction::Up, con[constraintIndex]).hasValue(); 583 } 584 585 /// Redundant constraints are those that are in row orientation and lie in 586 /// rows 0 to nRedundant - 1. 587 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 588 const Unknown &u = con[constraintIndex]; 589 return u.orientation == Orientation::Row && u.pos < nRedundant; 590 } 591 592 /// Mark the specified row redundant. 593 /// 594 /// This is done by moving the unknown to the end of the block of redundant 595 /// rows (namely, to row nRedundant) and incrementing nRedundant to 596 /// accomodate the new redundant row. 597 void Simplex::markRowRedundant(Unknown &u) { 598 assert(u.orientation == Orientation::Row && 599 "Unknown should be in row position!"); 600 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 601 swapRows(u.pos, nRedundant); 602 ++nRedundant; 603 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 604 } 605 606 /// Find a subset of constraints that is redundant and mark them redundant. 607 void Simplex::detectRedundant() { 608 // It is not meaningful to talk about redundancy for empty sets. 609 if (empty) 610 return; 611 612 // Iterate through the constraints and check for each one if it can attain 613 // negative sample values. If it can, it's not redundant. Otherwise, it is. 614 // We mark redundant constraints redundant. 615 // 616 // Constraints that get marked redundant in one iteration are not respected 617 // when checking constraints in later iterations. This prevents, for example, 618 // two identical constraints both being marked redundant since each is 619 // redundant given the other one. In this example, only the first of the 620 // constraints that is processed will get marked redundant, as it should be. 621 for (Unknown &u : con) { 622 if (u.orientation == Orientation::Column) { 623 unsigned column = u.pos; 624 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 625 // If no downward pivot is returned, the constraint is unbounded below 626 // and hence not redundant. 627 if (!pivotRow) 628 continue; 629 pivot(*pivotRow, column); 630 } 631 632 unsigned row = u.pos; 633 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 634 if (!minimum || *minimum < Fraction(0, 1)) { 635 // Constraint is unbounded below or can attain negative sample values and 636 // hence is not redundant. 637 if (failed(restoreRow(u))) 638 llvm_unreachable("Could not restore non-redundant row!"); 639 continue; 640 } 641 642 markRowRedundant(u); 643 } 644 } 645 646 bool Simplex::isUnbounded() { 647 if (empty) 648 return false; 649 650 SmallVector<int64_t, 8> dir(var.size() + 1); 651 for (unsigned i = 0; i < var.size(); ++i) { 652 dir[i] = 1; 653 654 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 655 if (!maybeMax) 656 return true; 657 658 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 659 if (!maybeMin) 660 return true; 661 662 dir[i] = 0; 663 } 664 return false; 665 } 666 667 /// Make a tableau to represent a pair of points in the original tableau. 668 /// 669 /// The product constraints and variables are stored as: first A's, then B's. 670 /// 671 /// The product tableau has row layout: 672 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 673 /// 674 /// It has column layout: 675 /// denominator, constant, A's columns, B's columns. 676 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 677 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 678 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 679 Simplex result(numVar); 680 681 result.tableau.resizeVertically(numCon); 682 result.empty = a.empty || b.empty; 683 684 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 685 SmallVector<Unknown, 8> result; 686 result.reserve(v.size() + w.size()); 687 result.insert(result.end(), v.begin(), v.end()); 688 result.insert(result.end(), w.begin(), w.end()); 689 return result; 690 }; 691 result.con = concat(a.con, b.con); 692 result.var = concat(a.var, b.var); 693 694 auto indexFromBIndex = [&](int index) { 695 return index >= 0 ? a.getNumVariables() + index 696 : ~(a.getNumConstraints() + ~index); 697 }; 698 699 result.colUnknown.assign(2, nullIndex); 700 for (unsigned i = 2; i < a.nCol; ++i) { 701 result.colUnknown.push_back(a.colUnknown[i]); 702 result.unknownFromIndex(result.colUnknown.back()).pos = 703 result.colUnknown.size() - 1; 704 } 705 for (unsigned i = 2; i < b.nCol; ++i) { 706 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 707 result.unknownFromIndex(result.colUnknown.back()).pos = 708 result.colUnknown.size() - 1; 709 } 710 711 auto appendRowFromA = [&](unsigned row) { 712 for (unsigned col = 0; col < a.nCol; ++col) 713 result.tableau(result.nRow, col) = a.tableau(row, col); 714 result.rowUnknown.push_back(a.rowUnknown[row]); 715 result.unknownFromIndex(result.rowUnknown.back()).pos = 716 result.rowUnknown.size() - 1; 717 result.nRow++; 718 }; 719 720 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 721 // may be). 722 auto appendRowFromB = [&](unsigned row) { 723 result.tableau(result.nRow, 0) = b.tableau(row, 0); 724 result.tableau(result.nRow, 1) = b.tableau(row, 1); 725 726 unsigned offset = a.nCol - 2; 727 for (unsigned col = 2; col < b.nCol; ++col) 728 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 729 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 730 result.unknownFromIndex(result.rowUnknown.back()).pos = 731 result.rowUnknown.size() - 1; 732 result.nRow++; 733 }; 734 735 result.nRedundant = a.nRedundant + b.nRedundant; 736 for (unsigned row = 0; row < a.nRedundant; ++row) 737 appendRowFromA(row); 738 for (unsigned row = 0; row < b.nRedundant; ++row) 739 appendRowFromB(row); 740 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 741 appendRowFromA(row); 742 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 743 appendRowFromB(row); 744 745 return result; 746 } 747 748 Optional<SmallVector<Fraction, 8>> SimplexBase::getRationalSample() const { 749 if (empty) 750 return {}; 751 752 SmallVector<Fraction, 8> sample; 753 sample.reserve(var.size()); 754 // Push the sample value for each variable into the vector. 755 for (const Unknown &u : var) { 756 if (u.orientation == Orientation::Column) { 757 // If the variable is in column position, its sample value is zero. 758 sample.emplace_back(0, 1); 759 } else { 760 // If the variable is in row position, its sample value is the entry in 761 // the constant column divided by the entry in the common denominator 762 // column. 763 sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0)); 764 } 765 } 766 return sample; 767 } 768 769 Optional<SmallVector<int64_t, 8>> 770 SimplexBase::getSamplePointIfIntegral() const { 771 // If the tableau is empty, no sample point exists. 772 if (empty) 773 return {}; 774 775 // The value will always exist since the Simplex is non-empty. 776 SmallVector<Fraction, 8> rationalSample = *getRationalSample(); 777 SmallVector<int64_t, 8> integerSample; 778 integerSample.reserve(var.size()); 779 for (const Fraction &coord : rationalSample) { 780 // If the sample is non-integral, return None. 781 if (coord.num % coord.den != 0) 782 return {}; 783 integerSample.push_back(coord.num / coord.den); 784 } 785 return integerSample; 786 } 787 788 /// Given a simplex for a polytope, construct a new simplex whose variables are 789 /// identified with a pair of points (x, y) in the original polytope. Supports 790 /// some operations needed for generalized basis reduction. In what follows, 791 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 792 /// dimension of the original polytope. 793 /// 794 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 795 /// also supports rolling back this addition, by maintaining a snapshot stack 796 /// that contains a snapshot of the Simplex's state for each equality, just 797 /// before that equality was added. 798 class GBRSimplex { 799 using Orientation = Simplex::Orientation; 800 801 public: 802 GBRSimplex(const Simplex &originalSimplex) 803 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 804 simplexConstraintOffset(simplex.getNumConstraints()) {} 805 806 /// Add an equality dotProduct(dir, x - y) == 0. 807 /// First pushes a snapshot for the current simplex state to the stack so 808 /// that this can be rolled back later. 809 void addEqualityForDirection(ArrayRef<int64_t> dir) { 810 assert( 811 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 812 "Direction passed is the zero vector!"); 813 snapshotStack.push_back(simplex.getSnapshot()); 814 simplex.addEquality(getCoeffsForDirection(dir)); 815 } 816 /// Compute max(dotProduct(dir, x - y)). 817 Fraction computeWidth(ArrayRef<int64_t> dir) { 818 Optional<Fraction> maybeWidth = 819 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); 820 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 821 return *maybeWidth; 822 } 823 824 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 825 /// the direction equalities to `dual`. 826 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 827 SmallVectorImpl<int64_t> &dual, 828 int64_t &dualDenom) { 829 // We can't just call into computeWidth or computeOptimum since we need to 830 // access the state of the tableau after computing the optimum, and these 831 // functions rollback the insertion of the objective function into the 832 // tableau before returning. We instead add a row for the objective function 833 // ourselves, call into computeOptimum, compute the duals from the tableau 834 // state, and finally rollback the addition of the row before returning. 835 unsigned snap = simplex.getSnapshot(); 836 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 837 unsigned row = simplex.con[conIndex].pos; 838 Optional<Fraction> maybeWidth = 839 simplex.computeRowOptimum(Simplex::Direction::Up, row); 840 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 841 dualDenom = simplex.tableau(row, 0); 842 dual.clear(); 843 844 // The increment is i += 2 because equalities are added as two inequalities, 845 // one positive and one negative. Each iteration processes one equality. 846 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 847 // The dual variable for an inequality in column orientation is the 848 // negative of its coefficient at the objective row. If the inequality is 849 // in row orientation, the corresponding dual variable is zero. 850 // 851 // We want the dual for the original equality, which corresponds to two 852 // inequalities: a positive inequality, which has the same coefficients as 853 // the equality, and a negative equality, which has negated coefficients. 854 // 855 // Note that at most one of these inequalities can be in column 856 // orientation because the column unknowns should form a basis and hence 857 // must be linearly independent. If the positive inequality is in column 858 // position, its dual is the dual corresponding to the equality. If the 859 // negative inequality is in column position, the negation of its dual is 860 // the dual corresponding to the equality. If neither is in column 861 // position, then that means that this equality is redundant, and its dual 862 // is zero. 863 // 864 // Note that it is NOT valid to perform pivots during the computation of 865 // the duals. This entire dual computation must be performed on the same 866 // tableau configuration. 867 assert(!(simplex.con[i].orientation == Orientation::Column && 868 simplex.con[i + 1].orientation == Orientation::Column) && 869 "Both inequalities for the equality cannot be in column " 870 "orientation!"); 871 if (simplex.con[i].orientation == Orientation::Column) 872 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 873 else if (simplex.con[i + 1].orientation == Orientation::Column) 874 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 875 else 876 dual.push_back(0); 877 } 878 simplex.rollback(snap); 879 return *maybeWidth; 880 } 881 882 /// Remove the last equality that was added through addEqualityForDirection. 883 /// 884 /// We do this by rolling back to the snapshot at the top of the stack, which 885 /// should be a snapshot taken just before the last equality was added. 886 void removeLastEquality() { 887 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 888 simplex.rollback(snapshotStack.back()); 889 snapshotStack.pop_back(); 890 } 891 892 private: 893 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 894 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 895 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 896 /// where n is the dimension of the original polytope. 897 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 898 assert(2 * dir.size() == simplex.getNumVariables() && 899 "Direction vector has wrong dimensionality"); 900 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 901 coeffs.reserve(2 * dir.size()); 902 for (int64_t coeff : dir) 903 coeffs.push_back(-coeff); 904 coeffs.push_back(0); // constant term 905 return coeffs; 906 } 907 908 Simplex simplex; 909 /// The first index of the equality constraints, the index immediately after 910 /// the last constraint in the initial product simplex. 911 unsigned simplexConstraintOffset; 912 /// A stack of snapshots, used for rolling back. 913 SmallVector<unsigned, 8> snapshotStack; 914 }; 915 916 // Return a + scale*b; 917 static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale, 918 ArrayRef<int64_t> b) { 919 assert(a.size() == b.size()); 920 SmallVector<int64_t, 8> res; 921 res.reserve(a.size()); 922 for (unsigned i = 0, e = a.size(); i < e; ++i) 923 res.push_back(a[i] + scale * b[i]); 924 return res; 925 } 926 927 /// Reduce the basis to try and find a direction in which the polytope is 928 /// "thin". This only works for bounded polytopes. 929 /// 930 /// This is an implementation of the algorithm described in the paper 931 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 932 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 933 /// 934 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 935 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 936 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 937 /// 938 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 939 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 940 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 941 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 942 /// minimizing value of u, if it were allowed to be fractional. Due to 943 /// convexity, the minimizing integer value is either floor(dual_i) or 944 /// ceil(dual_i), so we just need to check which of these gives a lower 945 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 946 /// 947 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 948 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 949 /// same i). Otherwise, we increment i. 950 /// 951 /// We keep f values and duals cached and invalidate them when necessary. 952 /// Whenever possible, we use them instead of recomputing them. We implement the 953 /// algorithm as follows. 954 /// 955 /// In an iteration at i we need to compute: 956 /// a) width_i(b_{i + 1}) 957 /// b) width_i(b_i) 958 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 959 /// 960 /// If width_i(b_i) is not already cached, we compute it. 961 /// 962 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 963 /// store the duals from this computation. 964 /// 965 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 966 /// of u as explained before, caches the duals from this computation, sets 967 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 968 /// 969 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 970 /// decrement i, resulting in the basis 971 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 972 /// with corresponding f values 973 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 974 /// The values up to i - 1 remain unchanged. We have just gotten the middle 975 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 976 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 977 /// the cache. The iteration after decrementing needs exactly the duals from the 978 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 979 /// 980 /// When incrementing i, no cached f values get invalidated. However, the cached 981 /// duals do get invalidated as the duals for the higher levels are different. 982 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 983 const Fraction epsilon(3, 4); 984 985 if (level == basis.getNumRows() - 1) 986 return; 987 988 GBRSimplex gbrSimplex(*this); 989 SmallVector<Fraction, 8> width; 990 SmallVector<int64_t, 8> dual; 991 int64_t dualDenom; 992 993 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 994 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 995 // the new value of width_i(b_{i+1}). 996 // 997 // If dual_i is not an integer, the minimizing value must be either 998 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 999 // choose the minimizing value. 1000 // 1001 // If dual_i is an integer, we don't need to perform these computations. We 1002 // know that in this case, 1003 // a) u = dual_i. 1004 // b) one can show that dual_j for j < i are the same duals we would have 1005 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 1006 // are the ones already in the cache. 1007 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 1008 // which 1009 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 1010 // be in the cache, so we get it from there and return it. 1011 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 1012 assert(i < level + dual.size() && "dual_i is not known!"); 1013 1014 int64_t u = floorDiv(dual[i - level], dualDenom); 1015 basis.addToRow(i, i + 1, u); 1016 if (dual[i - level] % dualDenom != 0) { 1017 SmallVector<int64_t, 8> candidateDual[2]; 1018 int64_t candidateDualDenom[2]; 1019 Fraction widthI[2]; 1020 1021 // Initially u is floor(dual) and basis reflects this. 1022 widthI[0] = gbrSimplex.computeWidthAndDuals( 1023 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 1024 1025 // Now try ceil(dual), i.e. floor(dual) + 1. 1026 ++u; 1027 basis.addToRow(i, i + 1, 1); 1028 widthI[1] = gbrSimplex.computeWidthAndDuals( 1029 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1030 1031 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1032 if (j == 0) 1033 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1034 basis.addToRow(i, i + 1, -1); 1035 1036 // width_i(b{i+1} + u*b_i) should be minimized at our value of u. 1037 // We assert that this holds by checking that the values of width_i at 1038 // u - 1 and u + 1 are greater than or equal to the value at u. If the 1039 // width is lesser at either of the adjacent values, then our computed 1040 // value of u is clearly not the minimizer. Otherwise by convexity the 1041 // computed value of u is really the minimizer. 1042 1043 // Check the value at u - 1. 1044 assert(gbrSimplex.computeWidth(scaleAndAdd( 1045 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && 1046 "Computed u value does not minimize the width!"); 1047 // Check the value at u + 1. 1048 assert(gbrSimplex.computeWidth(scaleAndAdd( 1049 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && 1050 "Computed u value does not minimize the width!"); 1051 1052 dual = std::move(candidateDual[j]); 1053 dualDenom = candidateDualDenom[j]; 1054 return widthI[j]; 1055 } 1056 1057 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1058 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the 1059 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in 1060 // the above expression is equal to basis.getRow(i+1) below.) 1061 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == 1062 width[i + 1 - level]); 1063 return width[i + 1 - level]; 1064 }; 1065 1066 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1067 // from `level` to i - 1. 1068 unsigned i = level; 1069 while (i < basis.getNumRows() - 1) { 1070 if (i >= level + width.size()) { 1071 // We don't even know the value of f_i(b_i), so let's find that first. 1072 // We have to do this first since later we assume that width already 1073 // contains values up to and including i. 1074 1075 assert((i == 0 || i - 1 < level + width.size()) && 1076 "We are at level i but we don't know the value of width_{i-1}"); 1077 1078 // We don't actually use these duals at all, but it doesn't matter 1079 // because this case should only occur when i is level, and there are no 1080 // duals in that case anyway. 1081 assert(i == level && "This case should only occur when i == level"); 1082 width.push_back( 1083 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1084 } 1085 1086 if (i >= level + dual.size()) { 1087 assert(i + 1 >= level + width.size() && 1088 "We don't know dual_i but we know width_{i+1}"); 1089 // We don't know dual for our level, so let's find it. 1090 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1091 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 1092 dualDenom)); 1093 gbrSimplex.removeLastEquality(); 1094 } 1095 1096 // This variable stores width_i(b_{i+1} + u*b_i). 1097 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1098 if (widthICandidate < epsilon * width[i - level]) { 1099 basis.swapRows(i, i + 1); 1100 width[i - level] = widthICandidate; 1101 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1102 // swap, so we remove the cached values here. 1103 width.resize(i - level + 1); 1104 if (i == level) { 1105 dual.clear(); 1106 continue; 1107 } 1108 1109 gbrSimplex.removeLastEquality(); 1110 i--; 1111 continue; 1112 } 1113 1114 // Invalidate duals since the higher level needs to recompute its own duals. 1115 dual.clear(); 1116 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1117 i++; 1118 } 1119 } 1120 1121 /// Search for an integer sample point using a branch and bound algorithm. 1122 /// 1123 /// Each row in the basis matrix is a vector, and the set of basis vectors 1124 /// should span the space. Initially this is the identity matrix, 1125 /// i.e., the basis vectors are just the variables. 1126 /// 1127 /// In every level, a value is assigned to the level-th basis vector, as 1128 /// follows. Compute the minimum and maximum rational values of this direction. 1129 /// If only one integer point lies in this range, constrain the variable to 1130 /// have this value and recurse to the next variable. 1131 /// 1132 /// If the range has multiple values, perform generalized basis reduction via 1133 /// reduceBasis and then compute the bounds again. Now we try constraining 1134 /// this direction in the first value in this range and "recurse" to the next 1135 /// level. If we fail to find a sample, we try assigning the direction the next 1136 /// value in this range, and so on. 1137 /// 1138 /// If no integer sample is found from any of the assignments, or if the range 1139 /// contains no integer value, then of course the polytope is empty for the 1140 /// current assignment of the values in previous levels, so we return to 1141 /// the previous level. 1142 /// 1143 /// If we reach the last level where all the variables have been assigned values 1144 /// already, then we simply return the current sample point if it is integral, 1145 /// and go back to the previous level otherwise. 1146 /// 1147 /// To avoid potentially arbitrarily large recursion depths leading to stack 1148 /// overflows, this algorithm is implemented iteratively. 1149 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1150 if (empty) 1151 return {}; 1152 1153 unsigned nDims = var.size(); 1154 Matrix basis = Matrix::identity(nDims); 1155 1156 unsigned level = 0; 1157 // The snapshot just before constraining a direction to a value at each level. 1158 SmallVector<unsigned, 8> snapshotStack; 1159 // The maximum value in the range of the direction for each level. 1160 SmallVector<int64_t, 8> upperBoundStack; 1161 // The next value to try constraining the basis vector to at each level. 1162 SmallVector<int64_t, 8> nextValueStack; 1163 1164 snapshotStack.reserve(basis.getNumRows()); 1165 upperBoundStack.reserve(basis.getNumRows()); 1166 nextValueStack.reserve(basis.getNumRows()); 1167 while (level != -1u) { 1168 if (level == basis.getNumRows()) { 1169 // We've assigned values to all variables. Return if we have a sample, 1170 // or go back up to the previous level otherwise. 1171 if (auto maybeSample = getSamplePointIfIntegral()) 1172 return maybeSample; 1173 level--; 1174 continue; 1175 } 1176 1177 if (level >= upperBoundStack.size()) { 1178 // We haven't populated the stack values for this level yet, so we have 1179 // just come down a level ("recursed"). Find the lower and upper bounds. 1180 // If there is more than one integer point in the range, perform 1181 // generalized basis reduction. 1182 SmallVector<int64_t, 8> basisCoeffs = 1183 llvm::to_vector<8>(basis.getRow(level)); 1184 basisCoeffs.push_back(0); 1185 1186 int64_t minRoundedUp, maxRoundedDown; 1187 std::tie(minRoundedUp, maxRoundedDown) = 1188 computeIntegerBounds(basisCoeffs); 1189 1190 // Heuristic: if the sample point is integral at this point, just return 1191 // it. 1192 if (auto maybeSample = getSamplePointIfIntegral()) 1193 return *maybeSample; 1194 1195 if (minRoundedUp < maxRoundedDown) { 1196 reduceBasis(basis, level); 1197 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1198 basisCoeffs.push_back(0); 1199 std::tie(minRoundedUp, maxRoundedDown) = 1200 computeIntegerBounds(basisCoeffs); 1201 } 1202 1203 snapshotStack.push_back(getSnapshot()); 1204 // The smallest value in the range is the next value to try. 1205 nextValueStack.push_back(minRoundedUp); 1206 upperBoundStack.push_back(maxRoundedDown); 1207 } 1208 1209 assert((snapshotStack.size() - 1 == level && 1210 nextValueStack.size() - 1 == level && 1211 upperBoundStack.size() - 1 == level) && 1212 "Mismatched variable stack sizes!"); 1213 1214 // Whether we "recursed" or "returned" from a lower level, we rollback 1215 // to the snapshot of the starting state at this level. (in the "recursed" 1216 // case this has no effect) 1217 rollback(snapshotStack.back()); 1218 int64_t nextValue = nextValueStack.back(); 1219 nextValueStack.back()++; 1220 if (nextValue > upperBoundStack.back()) { 1221 // We have exhausted the range and found no solution. Pop the stack and 1222 // return up a level. 1223 snapshotStack.pop_back(); 1224 nextValueStack.pop_back(); 1225 upperBoundStack.pop_back(); 1226 level--; 1227 continue; 1228 } 1229 1230 // Try the next value in the range and "recurse" into the next level. 1231 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1232 basis.getRow(level).end()); 1233 basisCoeffs.push_back(-nextValue); 1234 addEquality(basisCoeffs); 1235 level++; 1236 } 1237 1238 return {}; 1239 } 1240 1241 /// Compute the minimum and maximum integer values the expression can take. We 1242 /// compute each separately. 1243 std::pair<int64_t, int64_t> 1244 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1245 int64_t minRoundedUp; 1246 if (Optional<Fraction> maybeMin = 1247 computeOptimum(Simplex::Direction::Down, coeffs)) 1248 minRoundedUp = ceil(*maybeMin); 1249 else 1250 llvm_unreachable("Tableau should not be unbounded"); 1251 1252 int64_t maxRoundedDown; 1253 if (Optional<Fraction> maybeMax = 1254 computeOptimum(Simplex::Direction::Up, coeffs)) 1255 maxRoundedDown = floor(*maybeMax); 1256 else 1257 llvm_unreachable("Tableau should not be unbounded"); 1258 1259 return {minRoundedUp, maxRoundedDown}; 1260 } 1261 1262 void SimplexBase::print(raw_ostream &os) const { 1263 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1264 if (empty) 1265 os << "Simplex marked empty!\n"; 1266 os << "var: "; 1267 for (unsigned i = 0; i < var.size(); ++i) { 1268 if (i > 0) 1269 os << ", "; 1270 var[i].print(os); 1271 } 1272 os << "\ncon: "; 1273 for (unsigned i = 0; i < con.size(); ++i) { 1274 if (i > 0) 1275 os << ", "; 1276 con[i].print(os); 1277 } 1278 os << '\n'; 1279 for (unsigned row = 0; row < nRow; ++row) { 1280 if (row > 0) 1281 os << ", "; 1282 os << "r" << row << ": " << rowUnknown[row]; 1283 } 1284 os << '\n'; 1285 os << "c0: denom, c1: const"; 1286 for (unsigned col = 2; col < nCol; ++col) 1287 os << ", c" << col << ": " << colUnknown[col]; 1288 os << '\n'; 1289 for (unsigned row = 0; row < nRow; ++row) { 1290 for (unsigned col = 0; col < nCol; ++col) 1291 os << tableau(row, col) << '\t'; 1292 os << '\n'; 1293 } 1294 os << '\n'; 1295 } 1296 1297 void SimplexBase::dump() const { print(llvm::errs()); } 1298 1299 bool Simplex::isRationalSubsetOf(const IntegerPolyhedron &poly) { 1300 if (isEmpty()) 1301 return true; 1302 1303 for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) 1304 if (!isRedundantInequality(poly.getInequality(i))) 1305 return false; 1306 1307 for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) 1308 if (!isRedundantEquality(poly.getEquality(i))) 1309 return false; 1310 1311 return true; 1312 } 1313 1314 /// Computes the minimum value `coeffs` can take. If the value is greater than 1315 /// or equal to zero, the polytope entirely lies in the half-space defined by 1316 /// `coeffs >= 0`. 1317 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 1318 Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1319 return minimum && *minimum >= Fraction(0, 1); 1320 } 1321 1322 /// Check whether the equality given by `coeffs == 0` is redundant given 1323 /// the existing constraints. This is redundant when `coeffs` is already 1324 /// always zero under the existing constraints. `coeffs` is always zero 1325 /// when the minimum and maximum value that `coeffs` can take are both zero. 1326 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) { 1327 Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1328 Optional<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 1329 return minimum && maximum && *maximum == Fraction(0, 1) && 1330 *minimum == Fraction(0, 1); 1331 } 1332 1333 } // namespace mlir 1334