1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 namespace mlir { 15 using Direction = Simplex::Direction; 16 17 const int nullIndex = std::numeric_limits<int>::max(); 18 19 /// Construct a Simplex object with `nVar` variables. 20 SimplexBase::SimplexBase(unsigned nVar) 21 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { 22 colUnknown.push_back(nullIndex); 23 colUnknown.push_back(nullIndex); 24 for (unsigned i = 0; i < nVar; ++i) { 25 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); 26 colUnknown.push_back(i); 27 nCol++; 28 } 29 } 30 31 SimplexBase::SimplexBase(const IntegerPolyhedron &constraints) 32 : SimplexBase(constraints.getNumIds()) { 33 for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); 34 i < numIneqs; ++i) 35 addInequality(constraints.getInequality(i)); 36 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) 37 addEquality(constraints.getEquality(i)); 38 } 39 40 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { 41 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 42 return index >= 0 ? var[index] : con[~index]; 43 } 44 45 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { 46 assert(col < nCol && "Invalid column"); 47 return unknownFromIndex(colUnknown[col]); 48 } 49 50 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { 51 assert(row < nRow && "Invalid row"); 52 return unknownFromIndex(rowUnknown[row]); 53 } 54 55 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { 56 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 57 return index >= 0 ? var[index] : con[~index]; 58 } 59 60 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { 61 assert(col < nCol && "Invalid column"); 62 return unknownFromIndex(colUnknown[col]); 63 } 64 65 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { 66 assert(row < nRow && "Invalid row"); 67 return unknownFromIndex(rowUnknown[row]); 68 } 69 70 /// Add a new row to the tableau corresponding to the given constant term and 71 /// list of coefficients. The coefficients are specified as a vector of 72 /// (variable index, coefficient) pairs. 73 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs) { 74 assert(coeffs.size() == 1 + var.size() && 75 "Incorrect number of coefficients!"); 76 77 ++nRow; 78 // If the tableau is not big enough to accomodate the extra row, we extend it. 79 if (nRow >= tableau.getNumRows()) 80 tableau.resizeVertically(nRow); 81 rowUnknown.push_back(~con.size()); 82 con.emplace_back(Orientation::Row, false, nRow - 1); 83 84 tableau(nRow - 1, 0) = 1; 85 tableau(nRow - 1, 1) = coeffs.back(); 86 for (unsigned col = 2; col < nCol; ++col) 87 tableau(nRow - 1, col) = 0; 88 89 // Process each given variable coefficient. 90 for (unsigned i = 0; i < var.size(); ++i) { 91 unsigned pos = var[i].pos; 92 if (coeffs[i] == 0) 93 continue; 94 95 if (var[i].orientation == Orientation::Column) { 96 // If a variable is in column position at column col, then we just add the 97 // coefficient for that variable (scaled by the common row denominator) to 98 // the corresponding entry in the new row. 99 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 100 continue; 101 } 102 103 // If the variable is in row position, we need to add that row to the new 104 // row, scaled by the coefficient for the variable, accounting for the two 105 // rows potentially having different denominators. The new denominator is 106 // the lcm of the two. 107 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 108 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 109 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 110 tableau(nRow - 1, 0) = lcm; 111 for (unsigned col = 1; col < nCol; ++col) 112 tableau(nRow - 1, col) = 113 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 114 } 115 116 normalizeRow(nRow - 1); 117 // Push to undo log along with the index of the new constraint. 118 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 119 return con.size() - 1; 120 } 121 122 /// Normalize the row by removing factors that are common between the 123 /// denominator and all the numerator coefficients. 124 void SimplexBase::normalizeRow(unsigned row) { 125 int64_t gcd = 0; 126 for (unsigned col = 0; col < nCol; ++col) { 127 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 128 // If the gcd becomes 1 then the row is already normalized. 129 if (gcd == 1) 130 return; 131 } 132 133 // Note that the gcd can never become zero since the first element of the row, 134 // the denominator, is non-zero. 135 for (unsigned col = 0; col < nCol; ++col) 136 tableau(row, col) /= gcd; 137 } 138 139 namespace { 140 bool signMatchesDirection(int64_t elem, Direction direction) { 141 assert(elem != 0 && "elem should not be 0"); 142 return direction == Direction::Up ? elem > 0 : elem < 0; 143 } 144 145 Direction flippedDirection(Direction direction) { 146 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 147 } 148 } // namespace 149 150 /// Find a pivot to change the sample value of the row in the specified 151 /// direction. The returned pivot row will involve `row` if and only if the 152 /// unknown is unbounded in the specified direction. 153 /// 154 /// To increase (resp. decrease) the value of a row, we need to find a live 155 /// column with a non-zero coefficient. If the coefficient is positive, we need 156 /// to increase (decrease) the value of the column, and if the coefficient is 157 /// negative, we need to decrease (increase) the value of the column. Also, 158 /// we cannot decrease the sample value of restricted columns. 159 /// 160 /// If multiple columns are valid, we break ties by considering a lexicographic 161 /// ordering where we prefer unknowns with lower index. 162 Optional<SimplexBase::Pivot> SimplexBase::findPivot(int row, 163 Direction direction) const { 164 Optional<unsigned> col; 165 for (unsigned j = 2; j < nCol; ++j) { 166 int64_t elem = tableau(row, j); 167 if (elem == 0) 168 continue; 169 170 if (unknownFromColumn(j).restricted && 171 !signMatchesDirection(elem, direction)) 172 continue; 173 if (!col || colUnknown[j] < colUnknown[*col]) 174 col = j; 175 } 176 177 if (!col) 178 return {}; 179 180 Direction newDirection = 181 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 182 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 183 return Pivot{maybePivotRow.getValueOr(row), *col}; 184 } 185 186 /// Swap the associated unknowns for the row and the column. 187 /// 188 /// First we swap the index associated with the row and column. Then we update 189 /// the unknowns to reflect their new position and orientation. 190 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { 191 std::swap(rowUnknown[row], colUnknown[col]); 192 Unknown &uCol = unknownFromColumn(col); 193 Unknown &uRow = unknownFromRow(row); 194 uCol.orientation = Orientation::Column; 195 uRow.orientation = Orientation::Row; 196 uCol.pos = col; 197 uRow.pos = row; 198 } 199 200 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } 201 202 /// Pivot pivotRow and pivotCol. 203 /// 204 /// Let R be the pivot row unknown and let C be the pivot col unknown. 205 /// Since initially R = a*C + sum b_i * X_i 206 /// (where the sum is over the other column's unknowns, x_i) 207 /// C = (R - (sum b_i * X_i))/a 208 /// 209 /// Let u be some other row unknown. 210 /// u = c*C + sum d_i * X_i 211 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 212 /// 213 /// This results in the following transform: 214 /// pivot col other col pivot col other col 215 /// pivot row a b -> pivot row 1/a -b/a 216 /// other row c d other row c/a d - bc/a 217 /// 218 /// Taking into account the common denominators p and q: 219 /// 220 /// pivot col other col pivot col other col 221 /// pivot row a/p b/p -> pivot row p/a -b/a 222 /// other row c/q d/q other row cp/aq (da - bc)/aq 223 /// 224 /// The pivot row transform is accomplished be swapping a with the pivot row's 225 /// common denominator and negating the pivot row except for the pivot column 226 /// element. 227 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { 228 assert(pivotCol >= 2 && "Refusing to pivot invalid column"); 229 230 swapRowWithCol(pivotRow, pivotCol); 231 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 232 // We need to negate the whole pivot row except for the pivot column. 233 if (tableau(pivotRow, 0) < 0) { 234 // If the denominator is negative, we negate the row by simply negating the 235 // denominator. 236 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 237 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 238 } else { 239 for (unsigned col = 1; col < nCol; ++col) { 240 if (col == pivotCol) 241 continue; 242 tableau(pivotRow, col) = -tableau(pivotRow, col); 243 } 244 } 245 normalizeRow(pivotRow); 246 247 for (unsigned row = 0; row < nRow; ++row) { 248 if (row == pivotRow) 249 continue; 250 if (tableau(row, pivotCol) == 0) // Nothing to do. 251 continue; 252 tableau(row, 0) *= tableau(pivotRow, 0); 253 for (unsigned j = 1; j < nCol; ++j) { 254 if (j == pivotCol) 255 continue; 256 // Add rather than subtract because the pivot row has been negated. 257 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 258 tableau(row, pivotCol) * tableau(pivotRow, j); 259 } 260 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 261 normalizeRow(row); 262 } 263 } 264 265 /// Perform pivots until the unknown has a non-negative sample value or until 266 /// no more upward pivots can be performed. Return success if we were able to 267 /// bring the row to a non-negative sample value, and failure otherwise. 268 LogicalResult SimplexBase::restoreRow(Unknown &u) { 269 assert(u.orientation == Orientation::Row && 270 "unknown should be in row position"); 271 272 while (tableau(u.pos, 1) < 0) { 273 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 274 if (!maybePivot) 275 break; 276 277 pivot(*maybePivot); 278 if (u.orientation == Orientation::Column) 279 return success(); // the unknown is unbounded above. 280 } 281 return success(tableau(u.pos, 1) >= 0); 282 } 283 284 /// Find a row that can be used to pivot the column in the specified direction. 285 /// This returns an empty optional if and only if the column is unbounded in the 286 /// specified direction (ignoring skipRow, if skipRow is set). 287 /// 288 /// If skipRow is set, this row is not considered, and (if it is restricted) its 289 /// restriction may be violated by the returned pivot. Usually, skipRow is set 290 /// because we don't want to move it to column position unless it is unbounded, 291 /// and we are either trying to increase the value of skipRow or explicitly 292 /// trying to make skipRow negative, so we are not concerned about this. 293 /// 294 /// If the direction is up (resp. down) and a restricted row has a negative 295 /// (positive) coefficient for the column, then this row imposes a bound on how 296 /// much the sample value of the column can change. Such a row with constant 297 /// term c and coefficient f for the column imposes a bound of c/|f| on the 298 /// change in sample value (in the specified direction). (note that c is 299 /// non-negative here since the row is restricted and the tableau is consistent) 300 /// 301 /// We iterate through the rows and pick the row which imposes the most 302 /// stringent bound, since pivoting with a row changes the row's sample value to 303 /// 0 and hence saturates the bound it imposes. We break ties between rows that 304 /// impose the same bound by considering a lexicographic ordering where we 305 /// prefer unknowns with lower index value. 306 Optional<unsigned> SimplexBase::findPivotRow(Optional<unsigned> skipRow, 307 Direction direction, 308 unsigned col) const { 309 Optional<unsigned> retRow; 310 int64_t retElem, retConst; 311 for (unsigned row = nRedundant; row < nRow; ++row) { 312 if (skipRow && row == *skipRow) 313 continue; 314 int64_t elem = tableau(row, col); 315 if (elem == 0) 316 continue; 317 if (!unknownFromRow(row).restricted) 318 continue; 319 if (signMatchesDirection(elem, direction)) 320 continue; 321 int64_t constTerm = tableau(row, 1); 322 323 if (!retRow) { 324 retRow = row; 325 retElem = elem; 326 retConst = constTerm; 327 continue; 328 } 329 330 int64_t diff = retConst * elem - constTerm * retElem; 331 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 332 (diff != 0 && !signMatchesDirection(diff, direction))) { 333 retRow = row; 334 retElem = elem; 335 retConst = constTerm; 336 } 337 } 338 return retRow; 339 } 340 341 bool SimplexBase::isEmpty() const { return empty; } 342 343 void SimplexBase::swapRows(unsigned i, unsigned j) { 344 if (i == j) 345 return; 346 tableau.swapRows(i, j); 347 std::swap(rowUnknown[i], rowUnknown[j]); 348 unknownFromRow(i).pos = i; 349 unknownFromRow(j).pos = j; 350 } 351 352 void SimplexBase::swapColumns(unsigned i, unsigned j) { 353 assert(i < nCol && j < nCol && "Invalid columns provided!"); 354 if (i == j) 355 return; 356 tableau.swapColumns(i, j); 357 std::swap(colUnknown[i], colUnknown[j]); 358 unknownFromColumn(i).pos = i; 359 unknownFromColumn(j).pos = j; 360 } 361 362 /// Mark this tableau empty and push an entry to the undo stack. 363 void SimplexBase::markEmpty() { 364 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 365 // entry, since in that case the Simplex will be erroneously marked as 366 // non-empty when rolling back past this point. 367 if (empty) 368 return; 369 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 370 empty = true; 371 } 372 373 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 374 /// is the current number of variables, then the corresponding inequality is 375 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 376 /// 377 /// We add the inequality and mark it as restricted. We then try to make its 378 /// sample value non-negative. If this is not possible, the tableau has become 379 /// empty and we mark it as such. 380 void SimplexBase::addInequality(ArrayRef<int64_t> coeffs) { 381 unsigned conIndex = addRow(coeffs); 382 Unknown &u = con[conIndex]; 383 u.restricted = true; 384 LogicalResult result = restoreRow(u); 385 if (failed(result)) 386 markEmpty(); 387 } 388 389 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 390 /// is the current number of variables, then the corresponding equality is 391 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 392 /// 393 /// We simply add two opposing inequalities, which force the expression to 394 /// be zero. 395 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) { 396 addInequality(coeffs); 397 SmallVector<int64_t, 8> negatedCoeffs; 398 for (int64_t coeff : coeffs) 399 negatedCoeffs.emplace_back(-coeff); 400 addInequality(negatedCoeffs); 401 } 402 403 unsigned SimplexBase::getNumVariables() const { return var.size(); } 404 unsigned SimplexBase::getNumConstraints() const { return con.size(); } 405 406 /// Return a snapshot of the current state. This is just the current size of the 407 /// undo log. 408 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } 409 410 void SimplexBase::undo(UndoLogEntry entry) { 411 if (entry == UndoLogEntry::RemoveLastConstraint) { 412 Unknown &constraint = con.back(); 413 if (constraint.orientation == Orientation::Column) { 414 unsigned column = constraint.pos; 415 Optional<unsigned> row; 416 417 // Try to find any pivot row for this column that preserves tableau 418 // consistency (except possibly the column itself, which is going to be 419 // deallocated anyway). 420 // 421 // If no pivot row is found in either direction, then the unknown is 422 // unbounded in both directions and we are free to 423 // perform any pivot at all. To do this, we just need to find any row with 424 // a non-zero coefficient for the column. 425 if (Optional<unsigned> maybeRow = 426 findPivotRow({}, Direction::Up, column)) { 427 row = *maybeRow; 428 } else if (Optional<unsigned> maybeRow = 429 findPivotRow({}, Direction::Down, column)) { 430 row = *maybeRow; 431 } else { 432 // The loop doesn't find a pivot row only if the column has zero 433 // coefficients for every row. But the unknown is a constraint, 434 // so it was added initially as a row. Such a row could never have been 435 // pivoted to a column. So a pivot row will always be found. 436 for (unsigned i = nRedundant; i < nRow; ++i) { 437 if (tableau(i, column) != 0) { 438 row = i; 439 break; 440 } 441 } 442 } 443 assert(row.hasValue() && "No pivot row found!"); 444 pivot(*row, column); 445 } 446 447 // Move this unknown to the last row and remove the last row from the 448 // tableau. 449 swapRows(constraint.pos, nRow - 1); 450 // It is not strictly necessary to shrink the tableau, but for now we 451 // maintain the invariant that the tableau has exactly nRow rows. 452 tableau.resizeVertically(nRow - 1); 453 nRow--; 454 rowUnknown.pop_back(); 455 con.pop_back(); 456 } else if (entry == UndoLogEntry::RemoveLastVariable) { 457 // Whenever we are rolling back the addition of a variable, it is guaranteed 458 // that the variable will be in column position. 459 // 460 // We can see this as follows: any constraint that depends on this variable 461 // was added after this variable was added, so the addition of such 462 // constraints should already have been rolled back by the time we get to 463 // rolling back the addition of the variable. Therefore, no constraint 464 // currently has a component along the variable, so the variable itself must 465 // be part of the basis. 466 assert(var.back().orientation == Orientation::Column && 467 "Variable to be removed must be in column orientation!"); 468 469 // Move this variable to the last column and remove the column from the 470 // tableau. 471 swapColumns(var.back().pos, nCol - 1); 472 tableau.resizeHorizontally(nCol - 1); 473 var.pop_back(); 474 colUnknown.pop_back(); 475 nCol--; 476 } else if (entry == UndoLogEntry::UnmarkEmpty) { 477 empty = false; 478 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 479 nRedundant--; 480 } 481 } 482 483 /// Rollback to the specified snapshot. 484 /// 485 /// We undo all the log entries until the log size when the snapshot was taken 486 /// is reached. 487 void SimplexBase::rollback(unsigned snapshot) { 488 while (undoLog.size() > snapshot) { 489 undo(undoLog.back()); 490 undoLog.pop_back(); 491 } 492 } 493 494 void SimplexBase::appendVariable(unsigned count) { 495 if (count == 0) 496 return; 497 var.reserve(var.size() + count); 498 colUnknown.reserve(colUnknown.size() + count); 499 for (unsigned i = 0; i < count; ++i) { 500 nCol++; 501 var.emplace_back(Orientation::Column, /*restricted=*/false, 502 /*pos=*/nCol - 1); 503 colUnknown.push_back(var.size() - 1); 504 } 505 tableau.resizeHorizontally(nCol); 506 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 507 } 508 509 /// Add all the constraints from the given IntegerPolyhedron. 510 void SimplexBase::intersectIntegerPolyhedron(const IntegerPolyhedron &poly) { 511 assert(poly.getNumIds() == getNumVariables() && 512 "IntegerPolyhedron must have same dimensionality as simplex"); 513 for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) 514 addInequality(poly.getInequality(i)); 515 for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) 516 addEquality(poly.getEquality(i)); 517 } 518 519 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 520 unsigned row) { 521 // Keep trying to find a pivot for the row in the specified direction. 522 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 523 // If findPivot returns a pivot involving the row itself, then the optimum 524 // is unbounded, so we return None. 525 if (maybePivot->row == row) 526 return {}; 527 pivot(*maybePivot); 528 } 529 530 // The row has reached its optimal sample value, which we return. 531 // The sample value is the entry in the constant column divided by the common 532 // denominator for this row. 533 return Fraction(tableau(row, 1), tableau(row, 0)); 534 } 535 536 /// Compute the optimum of the specified expression in the specified direction, 537 /// or None if it is unbounded. 538 Optional<Fraction> Simplex::computeOptimum(Direction direction, 539 ArrayRef<int64_t> coeffs) { 540 assert(!empty && "Simplex should not be empty"); 541 542 unsigned snapshot = getSnapshot(); 543 unsigned conIndex = addRow(coeffs); 544 unsigned row = con[conIndex].pos; 545 Optional<Fraction> optimum = computeRowOptimum(direction, row); 546 rollback(snapshot); 547 return optimum; 548 } 549 550 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) { 551 assert(!empty && "Simplex should not be empty!"); 552 if (u.orientation == Orientation::Column) { 553 unsigned column = u.pos; 554 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 555 // If no pivot is returned, the constraint is unbounded in the specified 556 // direction. 557 if (!pivotRow) 558 return {}; 559 pivot(*pivotRow, column); 560 } 561 562 unsigned row = u.pos; 563 Optional<Fraction> optimum = computeRowOptimum(direction, row); 564 if (u.restricted && direction == Direction::Down && 565 (!optimum || *optimum < Fraction(0, 1))) { 566 if (failed(restoreRow(u))) 567 llvm_unreachable("Could not restore row!"); 568 } 569 return optimum; 570 } 571 572 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 573 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 574 "in an empty set."); 575 // The constraint's perpendicular is already bounded below, since it is a 576 // constraint. If it is also bounded above, we can return true. 577 return computeOptimum(Direction::Up, con[constraintIndex]).hasValue(); 578 } 579 580 /// Redundant constraints are those that are in row orientation and lie in 581 /// rows 0 to nRedundant - 1. 582 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 583 const Unknown &u = con[constraintIndex]; 584 return u.orientation == Orientation::Row && u.pos < nRedundant; 585 } 586 587 /// Mark the specified row redundant. 588 /// 589 /// This is done by moving the unknown to the end of the block of redundant 590 /// rows (namely, to row nRedundant) and incrementing nRedundant to 591 /// accomodate the new redundant row. 592 void Simplex::markRowRedundant(Unknown &u) { 593 assert(u.orientation == Orientation::Row && 594 "Unknown should be in row position!"); 595 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 596 swapRows(u.pos, nRedundant); 597 ++nRedundant; 598 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 599 } 600 601 /// Find a subset of constraints that is redundant and mark them redundant. 602 void Simplex::detectRedundant() { 603 // It is not meaningful to talk about redundancy for empty sets. 604 if (empty) 605 return; 606 607 // Iterate through the constraints and check for each one if it can attain 608 // negative sample values. If it can, it's not redundant. Otherwise, it is. 609 // We mark redundant constraints redundant. 610 // 611 // Constraints that get marked redundant in one iteration are not respected 612 // when checking constraints in later iterations. This prevents, for example, 613 // two identical constraints both being marked redundant since each is 614 // redundant given the other one. In this example, only the first of the 615 // constraints that is processed will get marked redundant, as it should be. 616 for (Unknown &u : con) { 617 if (u.orientation == Orientation::Column) { 618 unsigned column = u.pos; 619 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 620 // If no downward pivot is returned, the constraint is unbounded below 621 // and hence not redundant. 622 if (!pivotRow) 623 continue; 624 pivot(*pivotRow, column); 625 } 626 627 unsigned row = u.pos; 628 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 629 if (!minimum || *minimum < Fraction(0, 1)) { 630 // Constraint is unbounded below or can attain negative sample values and 631 // hence is not redundant. 632 if (failed(restoreRow(u))) 633 llvm_unreachable("Could not restore non-redundant row!"); 634 continue; 635 } 636 637 markRowRedundant(u); 638 } 639 } 640 641 bool Simplex::isUnbounded() { 642 if (empty) 643 return false; 644 645 SmallVector<int64_t, 8> dir(var.size() + 1); 646 for (unsigned i = 0; i < var.size(); ++i) { 647 dir[i] = 1; 648 649 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 650 if (!maybeMax) 651 return true; 652 653 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 654 if (!maybeMin) 655 return true; 656 657 dir[i] = 0; 658 } 659 return false; 660 } 661 662 /// Make a tableau to represent a pair of points in the original tableau. 663 /// 664 /// The product constraints and variables are stored as: first A's, then B's. 665 /// 666 /// The product tableau has row layout: 667 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 668 /// 669 /// It has column layout: 670 /// denominator, constant, A's columns, B's columns. 671 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 672 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 673 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 674 Simplex result(numVar); 675 676 result.tableau.resizeVertically(numCon); 677 result.empty = a.empty || b.empty; 678 679 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 680 SmallVector<Unknown, 8> result; 681 result.reserve(v.size() + w.size()); 682 result.insert(result.end(), v.begin(), v.end()); 683 result.insert(result.end(), w.begin(), w.end()); 684 return result; 685 }; 686 result.con = concat(a.con, b.con); 687 result.var = concat(a.var, b.var); 688 689 auto indexFromBIndex = [&](int index) { 690 return index >= 0 ? a.getNumVariables() + index 691 : ~(a.getNumConstraints() + ~index); 692 }; 693 694 result.colUnknown.assign(2, nullIndex); 695 for (unsigned i = 2; i < a.nCol; ++i) { 696 result.colUnknown.push_back(a.colUnknown[i]); 697 result.unknownFromIndex(result.colUnknown.back()).pos = 698 result.colUnknown.size() - 1; 699 } 700 for (unsigned i = 2; i < b.nCol; ++i) { 701 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 702 result.unknownFromIndex(result.colUnknown.back()).pos = 703 result.colUnknown.size() - 1; 704 } 705 706 auto appendRowFromA = [&](unsigned row) { 707 for (unsigned col = 0; col < a.nCol; ++col) 708 result.tableau(result.nRow, col) = a.tableau(row, col); 709 result.rowUnknown.push_back(a.rowUnknown[row]); 710 result.unknownFromIndex(result.rowUnknown.back()).pos = 711 result.rowUnknown.size() - 1; 712 result.nRow++; 713 }; 714 715 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 716 // may be). 717 auto appendRowFromB = [&](unsigned row) { 718 result.tableau(result.nRow, 0) = b.tableau(row, 0); 719 result.tableau(result.nRow, 1) = b.tableau(row, 1); 720 721 unsigned offset = a.nCol - 2; 722 for (unsigned col = 2; col < b.nCol; ++col) 723 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 724 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 725 result.unknownFromIndex(result.rowUnknown.back()).pos = 726 result.rowUnknown.size() - 1; 727 result.nRow++; 728 }; 729 730 result.nRedundant = a.nRedundant + b.nRedundant; 731 for (unsigned row = 0; row < a.nRedundant; ++row) 732 appendRowFromA(row); 733 for (unsigned row = 0; row < b.nRedundant; ++row) 734 appendRowFromB(row); 735 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 736 appendRowFromA(row); 737 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 738 appendRowFromB(row); 739 740 return result; 741 } 742 743 SmallVector<Fraction, 8> SimplexBase::getRationalSample() const { 744 assert(!empty && "This should not be called when Simplex is empty."); 745 746 SmallVector<Fraction, 8> sample; 747 sample.reserve(var.size()); 748 // Push the sample value for each variable into the vector. 749 for (const Unknown &u : var) { 750 if (u.orientation == Orientation::Column) { 751 // If the variable is in column position, its sample value is zero. 752 sample.emplace_back(0, 1); 753 } else { 754 // If the variable is in row position, its sample value is the entry in 755 // the constant column divided by the entry in the common denominator 756 // column. 757 sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0)); 758 } 759 } 760 return sample; 761 } 762 763 Optional<SmallVector<int64_t, 8>> 764 SimplexBase::getSamplePointIfIntegral() const { 765 // If the tableau is empty, no sample point exists. 766 if (empty) 767 return {}; 768 SmallVector<Fraction, 8> rationalSample = getRationalSample(); 769 SmallVector<int64_t, 8> integerSample; 770 integerSample.reserve(var.size()); 771 for (const Fraction &coord : rationalSample) { 772 // If the sample is non-integral, return None. 773 if (coord.num % coord.den != 0) 774 return {}; 775 integerSample.push_back(coord.num / coord.den); 776 } 777 return integerSample; 778 } 779 780 /// Given a simplex for a polytope, construct a new simplex whose variables are 781 /// identified with a pair of points (x, y) in the original polytope. Supports 782 /// some operations needed for generalized basis reduction. In what follows, 783 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 784 /// dimension of the original polytope. 785 /// 786 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 787 /// also supports rolling back this addition, by maintaining a snapshot stack 788 /// that contains a snapshot of the Simplex's state for each equality, just 789 /// before that equality was added. 790 class GBRSimplex { 791 using Orientation = Simplex::Orientation; 792 793 public: 794 GBRSimplex(const Simplex &originalSimplex) 795 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 796 simplexConstraintOffset(simplex.getNumConstraints()) {} 797 798 /// Add an equality dotProduct(dir, x - y) == 0. 799 /// First pushes a snapshot for the current simplex state to the stack so 800 /// that this can be rolled back later. 801 void addEqualityForDirection(ArrayRef<int64_t> dir) { 802 assert( 803 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 804 "Direction passed is the zero vector!"); 805 snapshotStack.push_back(simplex.getSnapshot()); 806 simplex.addEquality(getCoeffsForDirection(dir)); 807 } 808 /// Compute max(dotProduct(dir, x - y)). 809 Fraction computeWidth(ArrayRef<int64_t> dir) { 810 Optional<Fraction> maybeWidth = 811 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); 812 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 813 return *maybeWidth; 814 } 815 816 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 817 /// the direction equalities to `dual`. 818 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 819 SmallVectorImpl<int64_t> &dual, 820 int64_t &dualDenom) { 821 // We can't just call into computeWidth or computeOptimum since we need to 822 // access the state of the tableau after computing the optimum, and these 823 // functions rollback the insertion of the objective function into the 824 // tableau before returning. We instead add a row for the objective function 825 // ourselves, call into computeOptimum, compute the duals from the tableau 826 // state, and finally rollback the addition of the row before returning. 827 unsigned snap = simplex.getSnapshot(); 828 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 829 unsigned row = simplex.con[conIndex].pos; 830 Optional<Fraction> maybeWidth = 831 simplex.computeRowOptimum(Simplex::Direction::Up, row); 832 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 833 dualDenom = simplex.tableau(row, 0); 834 dual.clear(); 835 836 // The increment is i += 2 because equalities are added as two inequalities, 837 // one positive and one negative. Each iteration processes one equality. 838 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 839 // The dual variable for an inequality in column orientation is the 840 // negative of its coefficient at the objective row. If the inequality is 841 // in row orientation, the corresponding dual variable is zero. 842 // 843 // We want the dual for the original equality, which corresponds to two 844 // inequalities: a positive inequality, which has the same coefficients as 845 // the equality, and a negative equality, which has negated coefficients. 846 // 847 // Note that at most one of these inequalities can be in column 848 // orientation because the column unknowns should form a basis and hence 849 // must be linearly independent. If the positive inequality is in column 850 // position, its dual is the dual corresponding to the equality. If the 851 // negative inequality is in column position, the negation of its dual is 852 // the dual corresponding to the equality. If neither is in column 853 // position, then that means that this equality is redundant, and its dual 854 // is zero. 855 // 856 // Note that it is NOT valid to perform pivots during the computation of 857 // the duals. This entire dual computation must be performed on the same 858 // tableau configuration. 859 assert(!(simplex.con[i].orientation == Orientation::Column && 860 simplex.con[i + 1].orientation == Orientation::Column) && 861 "Both inequalities for the equality cannot be in column " 862 "orientation!"); 863 if (simplex.con[i].orientation == Orientation::Column) 864 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 865 else if (simplex.con[i + 1].orientation == Orientation::Column) 866 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 867 else 868 dual.push_back(0); 869 } 870 simplex.rollback(snap); 871 return *maybeWidth; 872 } 873 874 /// Remove the last equality that was added through addEqualityForDirection. 875 /// 876 /// We do this by rolling back to the snapshot at the top of the stack, which 877 /// should be a snapshot taken just before the last equality was added. 878 void removeLastEquality() { 879 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 880 simplex.rollback(snapshotStack.back()); 881 snapshotStack.pop_back(); 882 } 883 884 private: 885 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 886 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 887 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 888 /// where n is the dimension of the original polytope. 889 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 890 assert(2 * dir.size() == simplex.getNumVariables() && 891 "Direction vector has wrong dimensionality"); 892 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 893 coeffs.reserve(2 * dir.size()); 894 for (int64_t coeff : dir) 895 coeffs.push_back(-coeff); 896 coeffs.push_back(0); // constant term 897 return coeffs; 898 } 899 900 Simplex simplex; 901 /// The first index of the equality constraints, the index immediately after 902 /// the last constraint in the initial product simplex. 903 unsigned simplexConstraintOffset; 904 /// A stack of snapshots, used for rolling back. 905 SmallVector<unsigned, 8> snapshotStack; 906 }; 907 908 // Return a + scale*b; 909 static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale, 910 ArrayRef<int64_t> b) { 911 assert(a.size() == b.size()); 912 SmallVector<int64_t, 8> res; 913 res.reserve(a.size()); 914 for (unsigned i = 0, e = a.size(); i < e; ++i) 915 res.push_back(a[i] + scale * b[i]); 916 return res; 917 } 918 919 /// Reduce the basis to try and find a direction in which the polytope is 920 /// "thin". This only works for bounded polytopes. 921 /// 922 /// This is an implementation of the algorithm described in the paper 923 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 924 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 925 /// 926 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 927 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 928 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 929 /// 930 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 931 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 932 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 933 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 934 /// minimizing value of u, if it were allowed to be fractional. Due to 935 /// convexity, the minimizing integer value is either floor(dual_i) or 936 /// ceil(dual_i), so we just need to check which of these gives a lower 937 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 938 /// 939 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 940 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 941 /// same i). Otherwise, we increment i. 942 /// 943 /// We keep f values and duals cached and invalidate them when necessary. 944 /// Whenever possible, we use them instead of recomputing them. We implement the 945 /// algorithm as follows. 946 /// 947 /// In an iteration at i we need to compute: 948 /// a) width_i(b_{i + 1}) 949 /// b) width_i(b_i) 950 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 951 /// 952 /// If width_i(b_i) is not already cached, we compute it. 953 /// 954 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 955 /// store the duals from this computation. 956 /// 957 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 958 /// of u as explained before, caches the duals from this computation, sets 959 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 960 /// 961 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 962 /// decrement i, resulting in the basis 963 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 964 /// with corresponding f values 965 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 966 /// The values up to i - 1 remain unchanged. We have just gotten the middle 967 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 968 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 969 /// the cache. The iteration after decrementing needs exactly the duals from the 970 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 971 /// 972 /// When incrementing i, no cached f values get invalidated. However, the cached 973 /// duals do get invalidated as the duals for the higher levels are different. 974 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 975 const Fraction epsilon(3, 4); 976 977 if (level == basis.getNumRows() - 1) 978 return; 979 980 GBRSimplex gbrSimplex(*this); 981 SmallVector<Fraction, 8> width; 982 SmallVector<int64_t, 8> dual; 983 int64_t dualDenom; 984 985 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 986 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 987 // the new value of width_i(b_{i+1}). 988 // 989 // If dual_i is not an integer, the minimizing value must be either 990 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 991 // choose the minimizing value. 992 // 993 // If dual_i is an integer, we don't need to perform these computations. We 994 // know that in this case, 995 // a) u = dual_i. 996 // b) one can show that dual_j for j < i are the same duals we would have 997 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 998 // are the ones already in the cache. 999 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 1000 // which 1001 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 1002 // be in the cache, so we get it from there and return it. 1003 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 1004 assert(i < level + dual.size() && "dual_i is not known!"); 1005 1006 int64_t u = floorDiv(dual[i - level], dualDenom); 1007 basis.addToRow(i, i + 1, u); 1008 if (dual[i - level] % dualDenom != 0) { 1009 SmallVector<int64_t, 8> candidateDual[2]; 1010 int64_t candidateDualDenom[2]; 1011 Fraction widthI[2]; 1012 1013 // Initially u is floor(dual) and basis reflects this. 1014 widthI[0] = gbrSimplex.computeWidthAndDuals( 1015 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 1016 1017 // Now try ceil(dual), i.e. floor(dual) + 1. 1018 ++u; 1019 basis.addToRow(i, i + 1, 1); 1020 widthI[1] = gbrSimplex.computeWidthAndDuals( 1021 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1022 1023 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1024 if (j == 0) 1025 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1026 basis.addToRow(i, i + 1, -1); 1027 1028 // width_i(b{i+1} + u*b_i) should be minimized at our value of u. 1029 // We assert that this holds by checking that the values of width_i at 1030 // u - 1 and u + 1 are greater than or equal to the value at u. If the 1031 // width is lesser at either of the adjacent values, then our computed 1032 // value of u is clearly not the minimizer. Otherwise by convexity the 1033 // computed value of u is really the minimizer. 1034 1035 // Check the value at u - 1. 1036 assert(gbrSimplex.computeWidth(scaleAndAdd( 1037 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && 1038 "Computed u value does not minimize the width!"); 1039 // Check the value at u + 1. 1040 assert(gbrSimplex.computeWidth(scaleAndAdd( 1041 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && 1042 "Computed u value does not minimize the width!"); 1043 1044 dual = std::move(candidateDual[j]); 1045 dualDenom = candidateDualDenom[j]; 1046 return widthI[j]; 1047 } 1048 1049 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1050 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the 1051 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in 1052 // the above expression is equal to basis.getRow(i+1) below.) 1053 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == 1054 width[i + 1 - level]); 1055 return width[i + 1 - level]; 1056 }; 1057 1058 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1059 // from `level` to i - 1. 1060 unsigned i = level; 1061 while (i < basis.getNumRows() - 1) { 1062 if (i >= level + width.size()) { 1063 // We don't even know the value of f_i(b_i), so let's find that first. 1064 // We have to do this first since later we assume that width already 1065 // contains values up to and including i. 1066 1067 assert((i == 0 || i - 1 < level + width.size()) && 1068 "We are at level i but we don't know the value of width_{i-1}"); 1069 1070 // We don't actually use these duals at all, but it doesn't matter 1071 // because this case should only occur when i is level, and there are no 1072 // duals in that case anyway. 1073 assert(i == level && "This case should only occur when i == level"); 1074 width.push_back( 1075 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1076 } 1077 1078 if (i >= level + dual.size()) { 1079 assert(i + 1 >= level + width.size() && 1080 "We don't know dual_i but we know width_{i+1}"); 1081 // We don't know dual for our level, so let's find it. 1082 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1083 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 1084 dualDenom)); 1085 gbrSimplex.removeLastEquality(); 1086 } 1087 1088 // This variable stores width_i(b_{i+1} + u*b_i). 1089 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1090 if (widthICandidate < epsilon * width[i - level]) { 1091 basis.swapRows(i, i + 1); 1092 width[i - level] = widthICandidate; 1093 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1094 // swap, so we remove the cached values here. 1095 width.resize(i - level + 1); 1096 if (i == level) { 1097 dual.clear(); 1098 continue; 1099 } 1100 1101 gbrSimplex.removeLastEquality(); 1102 i--; 1103 continue; 1104 } 1105 1106 // Invalidate duals since the higher level needs to recompute its own duals. 1107 dual.clear(); 1108 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1109 i++; 1110 } 1111 } 1112 1113 /// Search for an integer sample point using a branch and bound algorithm. 1114 /// 1115 /// Each row in the basis matrix is a vector, and the set of basis vectors 1116 /// should span the space. Initially this is the identity matrix, 1117 /// i.e., the basis vectors are just the variables. 1118 /// 1119 /// In every level, a value is assigned to the level-th basis vector, as 1120 /// follows. Compute the minimum and maximum rational values of this direction. 1121 /// If only one integer point lies in this range, constrain the variable to 1122 /// have this value and recurse to the next variable. 1123 /// 1124 /// If the range has multiple values, perform generalized basis reduction via 1125 /// reduceBasis and then compute the bounds again. Now we try constraining 1126 /// this direction in the first value in this range and "recurse" to the next 1127 /// level. If we fail to find a sample, we try assigning the direction the next 1128 /// value in this range, and so on. 1129 /// 1130 /// If no integer sample is found from any of the assignments, or if the range 1131 /// contains no integer value, then of course the polytope is empty for the 1132 /// current assignment of the values in previous levels, so we return to 1133 /// the previous level. 1134 /// 1135 /// If we reach the last level where all the variables have been assigned values 1136 /// already, then we simply return the current sample point if it is integral, 1137 /// and go back to the previous level otherwise. 1138 /// 1139 /// To avoid potentially arbitrarily large recursion depths leading to stack 1140 /// overflows, this algorithm is implemented iteratively. 1141 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1142 if (empty) 1143 return {}; 1144 1145 unsigned nDims = var.size(); 1146 Matrix basis = Matrix::identity(nDims); 1147 1148 unsigned level = 0; 1149 // The snapshot just before constraining a direction to a value at each level. 1150 SmallVector<unsigned, 8> snapshotStack; 1151 // The maximum value in the range of the direction for each level. 1152 SmallVector<int64_t, 8> upperBoundStack; 1153 // The next value to try constraining the basis vector to at each level. 1154 SmallVector<int64_t, 8> nextValueStack; 1155 1156 snapshotStack.reserve(basis.getNumRows()); 1157 upperBoundStack.reserve(basis.getNumRows()); 1158 nextValueStack.reserve(basis.getNumRows()); 1159 while (level != -1u) { 1160 if (level == basis.getNumRows()) { 1161 // We've assigned values to all variables. Return if we have a sample, 1162 // or go back up to the previous level otherwise. 1163 if (auto maybeSample = getSamplePointIfIntegral()) 1164 return maybeSample; 1165 level--; 1166 continue; 1167 } 1168 1169 if (level >= upperBoundStack.size()) { 1170 // We haven't populated the stack values for this level yet, so we have 1171 // just come down a level ("recursed"). Find the lower and upper bounds. 1172 // If there is more than one integer point in the range, perform 1173 // generalized basis reduction. 1174 SmallVector<int64_t, 8> basisCoeffs = 1175 llvm::to_vector<8>(basis.getRow(level)); 1176 basisCoeffs.push_back(0); 1177 1178 int64_t minRoundedUp, maxRoundedDown; 1179 std::tie(minRoundedUp, maxRoundedDown) = 1180 computeIntegerBounds(basisCoeffs); 1181 1182 // Heuristic: if the sample point is integral at this point, just return 1183 // it. 1184 if (auto maybeSample = getSamplePointIfIntegral()) 1185 return *maybeSample; 1186 1187 if (minRoundedUp < maxRoundedDown) { 1188 reduceBasis(basis, level); 1189 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1190 basisCoeffs.push_back(0); 1191 std::tie(minRoundedUp, maxRoundedDown) = 1192 computeIntegerBounds(basisCoeffs); 1193 } 1194 1195 snapshotStack.push_back(getSnapshot()); 1196 // The smallest value in the range is the next value to try. 1197 nextValueStack.push_back(minRoundedUp); 1198 upperBoundStack.push_back(maxRoundedDown); 1199 } 1200 1201 assert((snapshotStack.size() - 1 == level && 1202 nextValueStack.size() - 1 == level && 1203 upperBoundStack.size() - 1 == level) && 1204 "Mismatched variable stack sizes!"); 1205 1206 // Whether we "recursed" or "returned" from a lower level, we rollback 1207 // to the snapshot of the starting state at this level. (in the "recursed" 1208 // case this has no effect) 1209 rollback(snapshotStack.back()); 1210 int64_t nextValue = nextValueStack.back(); 1211 nextValueStack.back()++; 1212 if (nextValue > upperBoundStack.back()) { 1213 // We have exhausted the range and found no solution. Pop the stack and 1214 // return up a level. 1215 snapshotStack.pop_back(); 1216 nextValueStack.pop_back(); 1217 upperBoundStack.pop_back(); 1218 level--; 1219 continue; 1220 } 1221 1222 // Try the next value in the range and "recurse" into the next level. 1223 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1224 basis.getRow(level).end()); 1225 basisCoeffs.push_back(-nextValue); 1226 addEquality(basisCoeffs); 1227 level++; 1228 } 1229 1230 return {}; 1231 } 1232 1233 /// Compute the minimum and maximum integer values the expression can take. We 1234 /// compute each separately. 1235 std::pair<int64_t, int64_t> 1236 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1237 int64_t minRoundedUp; 1238 if (Optional<Fraction> maybeMin = 1239 computeOptimum(Simplex::Direction::Down, coeffs)) 1240 minRoundedUp = ceil(*maybeMin); 1241 else 1242 llvm_unreachable("Tableau should not be unbounded"); 1243 1244 int64_t maxRoundedDown; 1245 if (Optional<Fraction> maybeMax = 1246 computeOptimum(Simplex::Direction::Up, coeffs)) 1247 maxRoundedDown = floor(*maybeMax); 1248 else 1249 llvm_unreachable("Tableau should not be unbounded"); 1250 1251 return {minRoundedUp, maxRoundedDown}; 1252 } 1253 1254 void SimplexBase::print(raw_ostream &os) const { 1255 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1256 if (empty) 1257 os << "Simplex marked empty!\n"; 1258 os << "var: "; 1259 for (unsigned i = 0; i < var.size(); ++i) { 1260 if (i > 0) 1261 os << ", "; 1262 var[i].print(os); 1263 } 1264 os << "\ncon: "; 1265 for (unsigned i = 0; i < con.size(); ++i) { 1266 if (i > 0) 1267 os << ", "; 1268 con[i].print(os); 1269 } 1270 os << '\n'; 1271 for (unsigned row = 0; row < nRow; ++row) { 1272 if (row > 0) 1273 os << ", "; 1274 os << "r" << row << ": " << rowUnknown[row]; 1275 } 1276 os << '\n'; 1277 os << "c0: denom, c1: const"; 1278 for (unsigned col = 2; col < nCol; ++col) 1279 os << ", c" << col << ": " << colUnknown[col]; 1280 os << '\n'; 1281 for (unsigned row = 0; row < nRow; ++row) { 1282 for (unsigned col = 0; col < nCol; ++col) 1283 os << tableau(row, col) << '\t'; 1284 os << '\n'; 1285 } 1286 os << '\n'; 1287 } 1288 1289 void SimplexBase::dump() const { print(llvm::errs()); } 1290 1291 bool Simplex::isRationalSubsetOf(const IntegerPolyhedron &poly) { 1292 if (isEmpty()) 1293 return true; 1294 1295 for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) 1296 if (!isRedundantInequality(poly.getInequality(i))) 1297 return false; 1298 1299 for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) 1300 if (!isRedundantEquality(poly.getEquality(i))) 1301 return false; 1302 1303 return true; 1304 } 1305 1306 /// Computes the minimum value `coeffs` can take. If the value is greater than 1307 /// or equal to zero, the polytope entirely lies in the half-space defined by 1308 /// `coeffs >= 0`. 1309 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 1310 Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1311 return minimum && *minimum >= Fraction(0, 1); 1312 } 1313 1314 /// Check whether the equality given by `coeffs == 0` is redundant given 1315 /// the existing constraints. This is redundant when `coeffs` is already 1316 /// always zero under the existing constraints. `coeffs` is always zero 1317 /// when the minimum and maximum value that `coeffs` can take are both zero. 1318 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) { 1319 Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1320 Optional<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 1321 return minimum && maximum && *maximum == Fraction(0, 1) && 1322 *minimum == Fraction(0, 1); 1323 } 1324 1325 } // namespace mlir 1326