1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 namespace mlir { 15 using Direction = Simplex::Direction; 16 17 const int nullIndex = std::numeric_limits<int>::max(); 18 19 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM) 20 : usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar), 21 nRedundant(0), tableau(0, nCol), empty(false) { 22 colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex); 23 for (unsigned i = 0; i < nVar; ++i) { 24 var.emplace_back(Orientation::Column, /*restricted=*/false, 25 /*pos=*/getNumFixedCols() + i); 26 colUnknown.push_back(i); 27 } 28 } 29 30 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { 31 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 32 return index >= 0 ? var[index] : con[~index]; 33 } 34 35 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { 36 assert(col < nCol && "Invalid column"); 37 return unknownFromIndex(colUnknown[col]); 38 } 39 40 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { 41 assert(row < nRow && "Invalid row"); 42 return unknownFromIndex(rowUnknown[row]); 43 } 44 45 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { 46 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 47 return index >= 0 ? var[index] : con[~index]; 48 } 49 50 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { 51 assert(col < nCol && "Invalid column"); 52 return unknownFromIndex(colUnknown[col]); 53 } 54 55 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { 56 assert(row < nRow && "Invalid row"); 57 return unknownFromIndex(rowUnknown[row]); 58 } 59 60 /// Add a new row to the tableau corresponding to the given constant term and 61 /// list of coefficients. The coefficients are specified as a vector of 62 /// (variable index, coefficient) pairs. 63 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) { 64 assert(coeffs.size() == var.size() + 1 && 65 "Incorrect number of coefficients!"); 66 67 ++nRow; 68 // If the tableau is not big enough to accomodate the extra row, we extend it. 69 if (nRow >= tableau.getNumRows()) 70 tableau.resizeVertically(nRow); 71 rowUnknown.push_back(~con.size()); 72 con.emplace_back(Orientation::Row, makeRestricted, nRow - 1); 73 74 // Zero out the new row. 75 tableau.fillRow(nRow - 1, 0); 76 77 tableau(nRow - 1, 0) = 1; 78 tableau(nRow - 1, 1) = coeffs.back(); 79 if (usingBigM) { 80 // When the lexicographic pivot rule is used, instead of the variables 81 // 82 // x, y, z ... 83 // 84 // we internally use the variables 85 // 86 // M, M + x, M + y, M + z, ... 87 // 88 // where M is the big M parameter. As such, when the user tries to add 89 // a row ax + by + cz + d, we express it in terms of our internal variables 90 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. 91 int64_t bigMCoeff = 0; 92 for (unsigned i = 0; i < coeffs.size() - 1; ++i) 93 bigMCoeff -= coeffs[i]; 94 // The coefficient to the big M parameter is stored in column 2. 95 tableau(nRow - 1, 2) = bigMCoeff; 96 } 97 98 // Process each given variable coefficient. 99 for (unsigned i = 0; i < var.size(); ++i) { 100 unsigned pos = var[i].pos; 101 if (coeffs[i] == 0) 102 continue; 103 104 if (var[i].orientation == Orientation::Column) { 105 // If a variable is in column position at column col, then we just add the 106 // coefficient for that variable (scaled by the common row denominator) to 107 // the corresponding entry in the new row. 108 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 109 continue; 110 } 111 112 // If the variable is in row position, we need to add that row to the new 113 // row, scaled by the coefficient for the variable, accounting for the two 114 // rows potentially having different denominators. The new denominator is 115 // the lcm of the two. 116 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 117 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 118 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 119 tableau(nRow - 1, 0) = lcm; 120 for (unsigned col = 1; col < nCol; ++col) 121 tableau(nRow - 1, col) = 122 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 123 } 124 125 normalizeRow(nRow - 1); 126 // Push to undo log along with the index of the new constraint. 127 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 128 return con.size() - 1; 129 } 130 131 /// Normalize the row by removing factors that are common between the 132 /// denominator and all the numerator coefficients. 133 void SimplexBase::normalizeRow(unsigned row) { 134 int64_t gcd = 0; 135 for (unsigned col = 0; col < nCol; ++col) { 136 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 137 // If the gcd becomes 1 then the row is already normalized. 138 if (gcd == 1) 139 return; 140 } 141 142 // Note that the gcd can never become zero since the first element of the row, 143 // the denominator, is non-zero. 144 assert(gcd != 0); 145 for (unsigned col = 0; col < nCol; ++col) 146 tableau(row, col) /= gcd; 147 } 148 149 namespace { 150 bool signMatchesDirection(int64_t elem, Direction direction) { 151 assert(elem != 0 && "elem should not be 0"); 152 return direction == Direction::Up ? elem > 0 : elem < 0; 153 } 154 155 Direction flippedDirection(Direction direction) { 156 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 157 } 158 } // namespace 159 160 Optional<SmallVector<Fraction, 8>> LexSimplex::getRationalLexMin() { 161 restoreRationalConsistency(); 162 return getRationalSample(); 163 } 164 165 bool LexSimplex::rowIsViolated(unsigned row) const { 166 if (tableau(row, 2) < 0) 167 return true; 168 if (tableau(row, 2) == 0 && tableau(row, 1) < 0) 169 return true; 170 return false; 171 } 172 173 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const { 174 for (unsigned row = 0; row < nRow; ++row) 175 if (rowIsViolated(row)) 176 return row; 177 return {}; 178 } 179 180 // We simply look for violated rows and keep trying to move them to column 181 // orientation, which always succeeds unless the constraints have no solution 182 // in which case we just give up and return. 183 void LexSimplex::restoreRationalConsistency() { 184 while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) { 185 LogicalResult status = moveRowUnknownToColumn(*maybeViolatedRow); 186 if (failed(status)) 187 return; 188 } 189 } 190 191 // Move the row unknown to column orientation while preserving lexicopositivity 192 // of the basis transform. 193 // 194 // We only consider pivots where the pivot element is positive. Suppose no such 195 // pivot exists, i.e., some violated row has no positive coefficient for any 196 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, 197 // where d is the denominator, s is the sample value and the c_i are the basis 198 // coefficients. Since any feasible assignment of the basis satisfies u_i >= 0 199 // for all i, and we have s < 0 as well as c_i < 0 for all i, any feasible 200 // assignment would violate this row and therefore the constraints have no 201 // solution. 202 // 203 // We can preserve lexicopositivity by picking the pivot column with positive 204 // pivot element that makes the lexicographically smallest change to the sample 205 // point. 206 // 207 // Proof. Let 208 // x = (x_1, ... x_n) be the variables, 209 // z = (z_1, ... z_m) be the constraints, 210 // y = (y_1, ... y_n) be the current basis, and 211 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. 212 // B is basically the simplex tableau of our implementation except that instead 213 // of only describing the transform to get back the non-basis unknowns, it 214 // defines the values of all the unknowns in terms of the basis unknowns. 215 // Similarly, s is the column for the sample value. 216 // 217 // Our goal is to show that each column in B, restricted to the first n 218 // rows, is lexicopositive after the pivot if it is so before. This is 219 // equivalent to saying the columns in the whole matrix are lexicopositive; 220 // there must be some non-zero element in every column in the first n rows since 221 // the n variables cannot be spanned without using all the n basis unknowns. 222 // 223 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot 224 // transform for the tableau derived for SimplexBase::pivot: 225 // 226 // pivot col other col pivot col other col 227 // pivot row a b -> pivot row 1/a -b/a 228 // other row c d other row c/a d - bc/a 229 // 230 // Similarly, a pivot results in B changing to B' and c to c'; the difference 231 // between the tableau and these matrices B and B' is that there is no special 232 // case for the pivot row, since it continues to represent the same unknown. The 233 // same formula applies for all rows: 234 // 235 // B'.col(j) = B.col(j) / B(i,j) 236 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j 237 // and similarly, s' = s - s_i * B.col(j) / B(i,j). 238 // 239 // Since the row is violated, we have s_i < 0, so the change in sample value 240 // when pivoting with column a is lexicographically smaller than that when 241 // pivoting with column b iff B.col(a) / B(i, a) is lexicographically smaller 242 // than B.col(b) / B(i, b). 243 // 244 // Since B(i, j) > 0, column j remains lexicopositive. 245 // 246 // For the other columns, suppose C.col(k) is not lexicopositive. 247 // This means that for some p, for all t < p, 248 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and 249 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), 250 // which is in contradiction to the fact that B.col(j) / B(i,j) must be 251 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically 252 // minimizes the change in sample value. 253 LogicalResult LexSimplex::moveRowUnknownToColumn(unsigned row) { 254 Optional<unsigned> maybeColumn; 255 for (unsigned col = 3; col < nCol; ++col) { 256 if (tableau(row, col) <= 0) 257 continue; 258 maybeColumn = 259 !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col); 260 } 261 262 if (!maybeColumn) { 263 markEmpty(); 264 return failure(); 265 } 266 267 pivot(row, *maybeColumn); 268 return success(); 269 } 270 271 unsigned LexSimplex::getLexMinPivotColumn(unsigned row, unsigned colA, 272 unsigned colB) const { 273 // A pivot causes the following change. (in the diagram the matrix elements 274 // are shown as rationals and there is no common denominator used) 275 // 276 // pivot col big M col const col 277 // pivot row a p b 278 // other row c q d 279 // | 280 // v 281 // 282 // pivot col big M col const col 283 // pivot row 1/a -p/a -b/a 284 // other row c/a q - pc/a d - bc/a 285 // 286 // Let the sample value of the pivot row be s = pM + b before the pivot. Since 287 // the pivot row represents a violated constraint we know that s < 0. 288 // 289 // If the variable is a non-pivot column, its sample value is zero before and 290 // after the pivot. 291 // 292 // If the variable is the pivot column, then its sample value goes from 0 to 293 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample 294 // value is -s/a. 295 // 296 // If the variable is the pivot row, it sampel value goes from s to 0, for a 297 // change of -s. 298 // 299 // If the variable is a non-pivot row, its sample value changes from 300 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value 301 // is -(pM + b)(c/a) = -sc/a. 302 // 303 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is 304 // fixed for all calls to this function since the row and tableau are fixed. 305 // The callee just wants to compare the return values with the return value of 306 // other invocations of the same function. So the -s is common for all 307 // comparisons involved and can be ignored, since -s is strictly positive. 308 // 309 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as 310 // appropriate. This allows us to run the entire algorithm without ever having 311 // to fix a value of M. 312 auto getSampleChangeCoeffForVar = [this, row](unsigned col, 313 const Unknown &u) -> Fraction { 314 int64_t a = tableau(row, col); 315 if (u.orientation == Orientation::Column) { 316 // Pivot column case. 317 if (u.pos == col) 318 return {1, a}; 319 320 // Non-pivot column case. 321 return {0, 1}; 322 } 323 324 // Pivot row case. 325 if (u.pos == row) 326 return {1, 1}; 327 328 // Non-pivot row case. 329 int64_t c = tableau(u.pos, col); 330 return {c, a}; 331 }; 332 333 for (const Unknown &u : var) { 334 Fraction changeA = getSampleChangeCoeffForVar(colA, u); 335 Fraction changeB = getSampleChangeCoeffForVar(colB, u); 336 if (changeA < changeB) 337 return colA; 338 if (changeA > changeB) 339 return colB; 340 } 341 342 // If we reached here, both result in exactly the same changes, so it 343 // doesn't matter which we return. 344 return colA; 345 } 346 347 /// Find a pivot to change the sample value of the row in the specified 348 /// direction. The returned pivot row will involve `row` if and only if the 349 /// unknown is unbounded in the specified direction. 350 /// 351 /// To increase (resp. decrease) the value of a row, we need to find a live 352 /// column with a non-zero coefficient. If the coefficient is positive, we need 353 /// to increase (decrease) the value of the column, and if the coefficient is 354 /// negative, we need to decrease (increase) the value of the column. Also, 355 /// we cannot decrease the sample value of restricted columns. 356 /// 357 /// If multiple columns are valid, we break ties by considering a lexicographic 358 /// ordering where we prefer unknowns with lower index. 359 Optional<SimplexBase::Pivot> Simplex::findPivot(int row, 360 Direction direction) const { 361 Optional<unsigned> col; 362 for (unsigned j = 2; j < nCol; ++j) { 363 int64_t elem = tableau(row, j); 364 if (elem == 0) 365 continue; 366 367 if (unknownFromColumn(j).restricted && 368 !signMatchesDirection(elem, direction)) 369 continue; 370 if (!col || colUnknown[j] < colUnknown[*col]) 371 col = j; 372 } 373 374 if (!col) 375 return {}; 376 377 Direction newDirection = 378 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 379 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 380 return Pivot{maybePivotRow.getValueOr(row), *col}; 381 } 382 383 /// Swap the associated unknowns for the row and the column. 384 /// 385 /// First we swap the index associated with the row and column. Then we update 386 /// the unknowns to reflect their new position and orientation. 387 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { 388 std::swap(rowUnknown[row], colUnknown[col]); 389 Unknown &uCol = unknownFromColumn(col); 390 Unknown &uRow = unknownFromRow(row); 391 uCol.orientation = Orientation::Column; 392 uRow.orientation = Orientation::Row; 393 uCol.pos = col; 394 uRow.pos = row; 395 } 396 397 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } 398 399 /// Pivot pivotRow and pivotCol. 400 /// 401 /// Let R be the pivot row unknown and let C be the pivot col unknown. 402 /// Since initially R = a*C + sum b_i * X_i 403 /// (where the sum is over the other column's unknowns, x_i) 404 /// C = (R - (sum b_i * X_i))/a 405 /// 406 /// Let u be some other row unknown. 407 /// u = c*C + sum d_i * X_i 408 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 409 /// 410 /// This results in the following transform: 411 /// pivot col other col pivot col other col 412 /// pivot row a b -> pivot row 1/a -b/a 413 /// other row c d other row c/a d - bc/a 414 /// 415 /// Taking into account the common denominators p and q: 416 /// 417 /// pivot col other col pivot col other col 418 /// pivot row a/p b/p -> pivot row p/a -b/a 419 /// other row c/q d/q other row cp/aq (da - bc)/aq 420 /// 421 /// The pivot row transform is accomplished be swapping a with the pivot row's 422 /// common denominator and negating the pivot row except for the pivot column 423 /// element. 424 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { 425 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column"); 426 427 swapRowWithCol(pivotRow, pivotCol); 428 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 429 // We need to negate the whole pivot row except for the pivot column. 430 if (tableau(pivotRow, 0) < 0) { 431 // If the denominator is negative, we negate the row by simply negating the 432 // denominator. 433 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 434 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 435 } else { 436 for (unsigned col = 1; col < nCol; ++col) { 437 if (col == pivotCol) 438 continue; 439 tableau(pivotRow, col) = -tableau(pivotRow, col); 440 } 441 } 442 normalizeRow(pivotRow); 443 444 for (unsigned row = 0; row < nRow; ++row) { 445 if (row == pivotRow) 446 continue; 447 if (tableau(row, pivotCol) == 0) // Nothing to do. 448 continue; 449 tableau(row, 0) *= tableau(pivotRow, 0); 450 for (unsigned j = 1; j < nCol; ++j) { 451 if (j == pivotCol) 452 continue; 453 // Add rather than subtract because the pivot row has been negated. 454 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 455 tableau(row, pivotCol) * tableau(pivotRow, j); 456 } 457 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 458 normalizeRow(row); 459 } 460 } 461 462 /// Perform pivots until the unknown has a non-negative sample value or until 463 /// no more upward pivots can be performed. Return success if we were able to 464 /// bring the row to a non-negative sample value, and failure otherwise. 465 LogicalResult Simplex::restoreRow(Unknown &u) { 466 assert(u.orientation == Orientation::Row && 467 "unknown should be in row position"); 468 469 while (tableau(u.pos, 1) < 0) { 470 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 471 if (!maybePivot) 472 break; 473 474 pivot(*maybePivot); 475 if (u.orientation == Orientation::Column) 476 return success(); // the unknown is unbounded above. 477 } 478 return success(tableau(u.pos, 1) >= 0); 479 } 480 481 /// Find a row that can be used to pivot the column in the specified direction. 482 /// This returns an empty optional if and only if the column is unbounded in the 483 /// specified direction (ignoring skipRow, if skipRow is set). 484 /// 485 /// If skipRow is set, this row is not considered, and (if it is restricted) its 486 /// restriction may be violated by the returned pivot. Usually, skipRow is set 487 /// because we don't want to move it to column position unless it is unbounded, 488 /// and we are either trying to increase the value of skipRow or explicitly 489 /// trying to make skipRow negative, so we are not concerned about this. 490 /// 491 /// If the direction is up (resp. down) and a restricted row has a negative 492 /// (positive) coefficient for the column, then this row imposes a bound on how 493 /// much the sample value of the column can change. Such a row with constant 494 /// term c and coefficient f for the column imposes a bound of c/|f| on the 495 /// change in sample value (in the specified direction). (note that c is 496 /// non-negative here since the row is restricted and the tableau is consistent) 497 /// 498 /// We iterate through the rows and pick the row which imposes the most 499 /// stringent bound, since pivoting with a row changes the row's sample value to 500 /// 0 and hence saturates the bound it imposes. We break ties between rows that 501 /// impose the same bound by considering a lexicographic ordering where we 502 /// prefer unknowns with lower index value. 503 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 504 Direction direction, 505 unsigned col) const { 506 Optional<unsigned> retRow; 507 // Initialize these to zero in order to silence a warning about retElem and 508 // retConst being used uninitialized in the initialization of `diff` below. In 509 // reality, these are always initialized when that line is reached since these 510 // are set whenever retRow is set. 511 int64_t retElem = 0, retConst = 0; 512 for (unsigned row = nRedundant; row < nRow; ++row) { 513 if (skipRow && row == *skipRow) 514 continue; 515 int64_t elem = tableau(row, col); 516 if (elem == 0) 517 continue; 518 if (!unknownFromRow(row).restricted) 519 continue; 520 if (signMatchesDirection(elem, direction)) 521 continue; 522 int64_t constTerm = tableau(row, 1); 523 524 if (!retRow) { 525 retRow = row; 526 retElem = elem; 527 retConst = constTerm; 528 continue; 529 } 530 531 int64_t diff = retConst * elem - constTerm * retElem; 532 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 533 (diff != 0 && !signMatchesDirection(diff, direction))) { 534 retRow = row; 535 retElem = elem; 536 retConst = constTerm; 537 } 538 } 539 return retRow; 540 } 541 542 bool SimplexBase::isEmpty() const { return empty; } 543 544 void SimplexBase::swapRows(unsigned i, unsigned j) { 545 if (i == j) 546 return; 547 tableau.swapRows(i, j); 548 std::swap(rowUnknown[i], rowUnknown[j]); 549 unknownFromRow(i).pos = i; 550 unknownFromRow(j).pos = j; 551 } 552 553 void SimplexBase::swapColumns(unsigned i, unsigned j) { 554 assert(i < nCol && j < nCol && "Invalid columns provided!"); 555 if (i == j) 556 return; 557 tableau.swapColumns(i, j); 558 std::swap(colUnknown[i], colUnknown[j]); 559 unknownFromColumn(i).pos = i; 560 unknownFromColumn(j).pos = j; 561 } 562 563 /// Mark this tableau empty and push an entry to the undo stack. 564 void SimplexBase::markEmpty() { 565 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 566 // entry, since in that case the Simplex will be erroneously marked as 567 // non-empty when rolling back past this point. 568 if (empty) 569 return; 570 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 571 empty = true; 572 } 573 574 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 575 /// is the current number of variables, then the corresponding inequality is 576 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 577 /// 578 /// We add the inequality and mark it as restricted. We then try to make its 579 /// sample value non-negative. If this is not possible, the tableau has become 580 /// empty and we mark it as such. 581 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 582 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); 583 LogicalResult result = restoreRow(con[conIndex]); 584 if (failed(result)) 585 markEmpty(); 586 } 587 588 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 589 /// is the current number of variables, then the corresponding equality is 590 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 591 /// 592 /// We simply add two opposing inequalities, which force the expression to 593 /// be zero. 594 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) { 595 addInequality(coeffs); 596 SmallVector<int64_t, 8> negatedCoeffs; 597 for (int64_t coeff : coeffs) 598 negatedCoeffs.emplace_back(-coeff); 599 addInequality(negatedCoeffs); 600 } 601 602 unsigned SimplexBase::getNumVariables() const { return var.size(); } 603 unsigned SimplexBase::getNumConstraints() const { return con.size(); } 604 605 /// Return a snapshot of the current state. This is just the current size of the 606 /// undo log. 607 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } 608 609 unsigned SimplexBase::getSnapshotBasis() { 610 SmallVector<int, 8> basis; 611 for (int index : colUnknown) { 612 if (index != nullIndex) 613 basis.push_back(index); 614 } 615 savedBases.push_back(std::move(basis)); 616 617 undoLog.emplace_back(UndoLogEntry::RestoreBasis); 618 return undoLog.size() - 1; 619 } 620 621 void SimplexBase::removeLastConstraintRowOrientation() { 622 assert(con.back().orientation == Orientation::Row); 623 624 // Move this unknown to the last row and remove the last row from the 625 // tableau. 626 swapRows(con.back().pos, nRow - 1); 627 // It is not strictly necessary to shrink the tableau, but for now we 628 // maintain the invariant that the tableau has exactly nRow rows. 629 tableau.resizeVertically(nRow - 1); 630 nRow--; 631 rowUnknown.pop_back(); 632 con.pop_back(); 633 } 634 635 // This doesn't find a pivot row only if the column has zero 636 // coefficients for every row. 637 // 638 // If the unknown is a constraint, this can't happen, since it was added 639 // initially as a row. Such a row could never have been pivoted to a column. So 640 // a pivot row will always be found if we have a constraint. 641 // 642 // If we have a variable, then the column has zero coefficients for every row 643 // iff no constraints have been added with a non-zero coefficient for this row. 644 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) { 645 for (unsigned row = nRedundant; row < nRow; ++row) 646 if (tableau(row, col) != 0) 647 return row; 648 return {}; 649 } 650 651 // It's not valid to remove the constraint by deleting the column since this 652 // would result in an invalid basis. 653 void Simplex::undoLastConstraint() { 654 if (con.back().orientation == Orientation::Column) { 655 // We try to find any pivot row for this column that preserves tableau 656 // consistency (except possibly the column itself, which is going to be 657 // deallocated anyway). 658 // 659 // If no pivot row is found in either direction, then the unknown is 660 // unbounded in both directions and we are free to perform any pivot at 661 // all. To do this, we just need to find any row with a non-zero 662 // coefficient for the column. findAnyPivotRow will always be able to 663 // find such a row for a constraint. 664 unsigned column = con.back().pos; 665 if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) { 666 pivot(*maybeRow, column); 667 } else if (Optional<unsigned> maybeRow = 668 findPivotRow({}, Direction::Down, column)) { 669 pivot(*maybeRow, column); 670 } else { 671 Optional<unsigned> row = findAnyPivotRow(column); 672 assert(row.hasValue() && "Pivot should always exist for a constraint!"); 673 pivot(*row, column); 674 } 675 } 676 removeLastConstraintRowOrientation(); 677 } 678 679 // It's not valid to remove the constraint by deleting the column since this 680 // would result in an invalid basis. 681 void LexSimplex::undoLastConstraint() { 682 if (con.back().orientation == Orientation::Column) { 683 // When removing the last constraint during a rollback, we just need to find 684 // any pivot at all, i.e., any row with non-zero coefficient for the 685 // column, because when rolling back a lexicographic simplex, we always 686 // end by restoring the exact basis that was present at the time of the 687 // snapshot, so what pivots we perform while undoing doesn't matter as 688 // long as we get the unknown to row orientation and remove it. 689 unsigned column = con.back().pos; 690 Optional<unsigned> row = findAnyPivotRow(column); 691 assert(row.hasValue() && "Pivot should always exist for a constraint!"); 692 pivot(*row, column); 693 } 694 removeLastConstraintRowOrientation(); 695 } 696 697 void SimplexBase::undo(UndoLogEntry entry) { 698 if (entry == UndoLogEntry::RemoveLastConstraint) { 699 // Simplex and LexSimplex handle this differently, so we call out to a 700 // virtual function to handle this. 701 undoLastConstraint(); 702 } else if (entry == UndoLogEntry::RemoveLastVariable) { 703 // Whenever we are rolling back the addition of a variable, it is guaranteed 704 // that the variable will be in column position. 705 // 706 // We can see this as follows: any constraint that depends on this variable 707 // was added after this variable was added, so the addition of such 708 // constraints should already have been rolled back by the time we get to 709 // rolling back the addition of the variable. Therefore, no constraint 710 // currently has a component along the variable, so the variable itself must 711 // be part of the basis. 712 assert(var.back().orientation == Orientation::Column && 713 "Variable to be removed must be in column orientation!"); 714 715 // Move this variable to the last column and remove the column from the 716 // tableau. 717 swapColumns(var.back().pos, nCol - 1); 718 tableau.resizeHorizontally(nCol - 1); 719 var.pop_back(); 720 colUnknown.pop_back(); 721 nCol--; 722 } else if (entry == UndoLogEntry::UnmarkEmpty) { 723 empty = false; 724 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 725 nRedundant--; 726 } else if (entry == UndoLogEntry::RestoreBasis) { 727 assert(!savedBases.empty() && "No bases saved!"); 728 729 SmallVector<int, 8> basis = std::move(savedBases.back()); 730 savedBases.pop_back(); 731 732 for (int index : basis) { 733 Unknown &u = unknownFromIndex(index); 734 if (u.orientation == Orientation::Column) 735 continue; 736 for (unsigned col = getNumFixedCols(); col < nCol; col++) { 737 assert(colUnknown[col] != nullIndex && 738 "Column should not be a fixed column!"); 739 if (std::find(basis.begin(), basis.end(), colUnknown[col]) != 740 basis.end()) 741 continue; 742 if (tableau(u.pos, col) == 0) 743 continue; 744 pivot(u.pos, col); 745 break; 746 } 747 748 assert(u.orientation == Orientation::Column && "No pivot found!"); 749 } 750 } 751 } 752 753 /// Rollback to the specified snapshot. 754 /// 755 /// We undo all the log entries until the log size when the snapshot was taken 756 /// is reached. 757 void SimplexBase::rollback(unsigned snapshot) { 758 while (undoLog.size() > snapshot) { 759 undo(undoLog.back()); 760 undoLog.pop_back(); 761 } 762 } 763 764 void SimplexBase::appendVariable(unsigned count) { 765 if (count == 0) 766 return; 767 var.reserve(var.size() + count); 768 colUnknown.reserve(colUnknown.size() + count); 769 for (unsigned i = 0; i < count; ++i) { 770 nCol++; 771 var.emplace_back(Orientation::Column, /*restricted=*/false, 772 /*pos=*/nCol - 1); 773 colUnknown.push_back(var.size() - 1); 774 } 775 tableau.resizeHorizontally(nCol); 776 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 777 } 778 779 /// Add all the constraints from the given IntegerPolyhedron. 780 void SimplexBase::intersectIntegerPolyhedron(const IntegerPolyhedron &poly) { 781 assert(poly.getNumIds() == getNumVariables() && 782 "IntegerPolyhedron must have same dimensionality as simplex"); 783 for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) 784 addInequality(poly.getInequality(i)); 785 for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) 786 addEquality(poly.getEquality(i)); 787 } 788 789 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 790 unsigned row) { 791 // Keep trying to find a pivot for the row in the specified direction. 792 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 793 // If findPivot returns a pivot involving the row itself, then the optimum 794 // is unbounded, so we return None. 795 if (maybePivot->row == row) 796 return {}; 797 pivot(*maybePivot); 798 } 799 800 // The row has reached its optimal sample value, which we return. 801 // The sample value is the entry in the constant column divided by the common 802 // denominator for this row. 803 return Fraction(tableau(row, 1), tableau(row, 0)); 804 } 805 806 /// Compute the optimum of the specified expression in the specified direction, 807 /// or None if it is unbounded. 808 Optional<Fraction> Simplex::computeOptimum(Direction direction, 809 ArrayRef<int64_t> coeffs) { 810 assert(!empty && "Simplex should not be empty"); 811 812 unsigned snapshot = getSnapshot(); 813 unsigned conIndex = addRow(coeffs); 814 unsigned row = con[conIndex].pos; 815 Optional<Fraction> optimum = computeRowOptimum(direction, row); 816 rollback(snapshot); 817 return optimum; 818 } 819 820 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) { 821 assert(!empty && "Simplex should not be empty!"); 822 if (u.orientation == Orientation::Column) { 823 unsigned column = u.pos; 824 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 825 // If no pivot is returned, the constraint is unbounded in the specified 826 // direction. 827 if (!pivotRow) 828 return {}; 829 pivot(*pivotRow, column); 830 } 831 832 unsigned row = u.pos; 833 Optional<Fraction> optimum = computeRowOptimum(direction, row); 834 if (u.restricted && direction == Direction::Down && 835 (!optimum || *optimum < Fraction(0, 1))) { 836 if (failed(restoreRow(u))) 837 llvm_unreachable("Could not restore row!"); 838 } 839 return optimum; 840 } 841 842 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 843 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 844 "in an empty set."); 845 // The constraint's perpendicular is already bounded below, since it is a 846 // constraint. If it is also bounded above, we can return true. 847 return computeOptimum(Direction::Up, con[constraintIndex]).hasValue(); 848 } 849 850 /// Redundant constraints are those that are in row orientation and lie in 851 /// rows 0 to nRedundant - 1. 852 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 853 const Unknown &u = con[constraintIndex]; 854 return u.orientation == Orientation::Row && u.pos < nRedundant; 855 } 856 857 /// Mark the specified row redundant. 858 /// 859 /// This is done by moving the unknown to the end of the block of redundant 860 /// rows (namely, to row nRedundant) and incrementing nRedundant to 861 /// accomodate the new redundant row. 862 void Simplex::markRowRedundant(Unknown &u) { 863 assert(u.orientation == Orientation::Row && 864 "Unknown should be in row position!"); 865 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 866 swapRows(u.pos, nRedundant); 867 ++nRedundant; 868 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 869 } 870 871 /// Find a subset of constraints that is redundant and mark them redundant. 872 void Simplex::detectRedundant() { 873 // It is not meaningful to talk about redundancy for empty sets. 874 if (empty) 875 return; 876 877 // Iterate through the constraints and check for each one if it can attain 878 // negative sample values. If it can, it's not redundant. Otherwise, it is. 879 // We mark redundant constraints redundant. 880 // 881 // Constraints that get marked redundant in one iteration are not respected 882 // when checking constraints in later iterations. This prevents, for example, 883 // two identical constraints both being marked redundant since each is 884 // redundant given the other one. In this example, only the first of the 885 // constraints that is processed will get marked redundant, as it should be. 886 for (Unknown &u : con) { 887 if (u.orientation == Orientation::Column) { 888 unsigned column = u.pos; 889 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 890 // If no downward pivot is returned, the constraint is unbounded below 891 // and hence not redundant. 892 if (!pivotRow) 893 continue; 894 pivot(*pivotRow, column); 895 } 896 897 unsigned row = u.pos; 898 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 899 if (!minimum || *minimum < Fraction(0, 1)) { 900 // Constraint is unbounded below or can attain negative sample values and 901 // hence is not redundant. 902 if (failed(restoreRow(u))) 903 llvm_unreachable("Could not restore non-redundant row!"); 904 continue; 905 } 906 907 markRowRedundant(u); 908 } 909 } 910 911 bool Simplex::isUnbounded() { 912 if (empty) 913 return false; 914 915 SmallVector<int64_t, 8> dir(var.size() + 1); 916 for (unsigned i = 0; i < var.size(); ++i) { 917 dir[i] = 1; 918 919 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 920 if (!maybeMax) 921 return true; 922 923 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 924 if (!maybeMin) 925 return true; 926 927 dir[i] = 0; 928 } 929 return false; 930 } 931 932 /// Make a tableau to represent a pair of points in the original tableau. 933 /// 934 /// The product constraints and variables are stored as: first A's, then B's. 935 /// 936 /// The product tableau has row layout: 937 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 938 /// 939 /// It has column layout: 940 /// denominator, constant, A's columns, B's columns. 941 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 942 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 943 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 944 Simplex result(numVar); 945 946 result.tableau.resizeVertically(numCon); 947 result.empty = a.empty || b.empty; 948 949 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 950 SmallVector<Unknown, 8> result; 951 result.reserve(v.size() + w.size()); 952 result.insert(result.end(), v.begin(), v.end()); 953 result.insert(result.end(), w.begin(), w.end()); 954 return result; 955 }; 956 result.con = concat(a.con, b.con); 957 result.var = concat(a.var, b.var); 958 959 auto indexFromBIndex = [&](int index) { 960 return index >= 0 ? a.getNumVariables() + index 961 : ~(a.getNumConstraints() + ~index); 962 }; 963 964 result.colUnknown.assign(2, nullIndex); 965 for (unsigned i = 2; i < a.nCol; ++i) { 966 result.colUnknown.push_back(a.colUnknown[i]); 967 result.unknownFromIndex(result.colUnknown.back()).pos = 968 result.colUnknown.size() - 1; 969 } 970 for (unsigned i = 2; i < b.nCol; ++i) { 971 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 972 result.unknownFromIndex(result.colUnknown.back()).pos = 973 result.colUnknown.size() - 1; 974 } 975 976 auto appendRowFromA = [&](unsigned row) { 977 for (unsigned col = 0; col < a.nCol; ++col) 978 result.tableau(result.nRow, col) = a.tableau(row, col); 979 result.rowUnknown.push_back(a.rowUnknown[row]); 980 result.unknownFromIndex(result.rowUnknown.back()).pos = 981 result.rowUnknown.size() - 1; 982 result.nRow++; 983 }; 984 985 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 986 // may be). 987 auto appendRowFromB = [&](unsigned row) { 988 result.tableau(result.nRow, 0) = b.tableau(row, 0); 989 result.tableau(result.nRow, 1) = b.tableau(row, 1); 990 991 unsigned offset = a.nCol - 2; 992 for (unsigned col = 2; col < b.nCol; ++col) 993 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 994 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 995 result.unknownFromIndex(result.rowUnknown.back()).pos = 996 result.rowUnknown.size() - 1; 997 result.nRow++; 998 }; 999 1000 result.nRedundant = a.nRedundant + b.nRedundant; 1001 for (unsigned row = 0; row < a.nRedundant; ++row) 1002 appendRowFromA(row); 1003 for (unsigned row = 0; row < b.nRedundant; ++row) 1004 appendRowFromB(row); 1005 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 1006 appendRowFromA(row); 1007 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 1008 appendRowFromB(row); 1009 1010 return result; 1011 } 1012 1013 Optional<SmallVector<Fraction, 8>> SimplexBase::getRationalSample() const { 1014 if (empty) 1015 return {}; 1016 1017 SmallVector<Fraction, 8> sample; 1018 sample.reserve(var.size()); 1019 // Push the sample value for each variable into the vector. 1020 for (const Unknown &u : var) { 1021 if (u.orientation == Orientation::Column) { 1022 // If the variable is in column position, its sample value is zero. 1023 sample.emplace_back(0, 1); 1024 } else { 1025 int64_t denom = tableau(u.pos, 0); 1026 1027 // When the big M parameter is being used, each variable x is represented 1028 // as M + x, so its sample value is finite only if it is of the form 1029 // 1*M + c. If the coefficient of M is not one then the sample value is 1030 // infinite, and we return an empty optional. 1031 if (usingBigM) 1032 if (tableau(u.pos, 2) != denom) 1033 return {}; 1034 1035 // Otherwise, If the variable is in row position, its sample value is the 1036 // entry in the constant column divided by the denominator. 1037 sample.emplace_back(tableau(u.pos, 1), denom); 1038 } 1039 } 1040 return sample; 1041 } 1042 1043 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 1044 // If the tableau is empty, no sample point exists. 1045 if (empty) 1046 return {}; 1047 1048 // The value will always exist since the Simplex is non-empty. 1049 SmallVector<Fraction, 8> rationalSample = *getRationalSample(); 1050 SmallVector<int64_t, 8> integerSample; 1051 integerSample.reserve(var.size()); 1052 for (const Fraction &coord : rationalSample) { 1053 // If the sample is non-integral, return None. 1054 if (coord.num % coord.den != 0) 1055 return {}; 1056 integerSample.push_back(coord.num / coord.den); 1057 } 1058 return integerSample; 1059 } 1060 1061 /// Given a simplex for a polytope, construct a new simplex whose variables are 1062 /// identified with a pair of points (x, y) in the original polytope. Supports 1063 /// some operations needed for generalized basis reduction. In what follows, 1064 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 1065 /// dimension of the original polytope. 1066 /// 1067 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 1068 /// also supports rolling back this addition, by maintaining a snapshot stack 1069 /// that contains a snapshot of the Simplex's state for each equality, just 1070 /// before that equality was added. 1071 class GBRSimplex { 1072 using Orientation = Simplex::Orientation; 1073 1074 public: 1075 GBRSimplex(const Simplex &originalSimplex) 1076 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 1077 simplexConstraintOffset(simplex.getNumConstraints()) {} 1078 1079 /// Add an equality dotProduct(dir, x - y) == 0. 1080 /// First pushes a snapshot for the current simplex state to the stack so 1081 /// that this can be rolled back later. 1082 void addEqualityForDirection(ArrayRef<int64_t> dir) { 1083 assert( 1084 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 1085 "Direction passed is the zero vector!"); 1086 snapshotStack.push_back(simplex.getSnapshot()); 1087 simplex.addEquality(getCoeffsForDirection(dir)); 1088 } 1089 /// Compute max(dotProduct(dir, x - y)). 1090 Fraction computeWidth(ArrayRef<int64_t> dir) { 1091 Optional<Fraction> maybeWidth = 1092 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); 1093 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 1094 return *maybeWidth; 1095 } 1096 1097 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 1098 /// the direction equalities to `dual`. 1099 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 1100 SmallVectorImpl<int64_t> &dual, 1101 int64_t &dualDenom) { 1102 // We can't just call into computeWidth or computeOptimum since we need to 1103 // access the state of the tableau after computing the optimum, and these 1104 // functions rollback the insertion of the objective function into the 1105 // tableau before returning. We instead add a row for the objective function 1106 // ourselves, call into computeOptimum, compute the duals from the tableau 1107 // state, and finally rollback the addition of the row before returning. 1108 unsigned snap = simplex.getSnapshot(); 1109 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 1110 unsigned row = simplex.con[conIndex].pos; 1111 Optional<Fraction> maybeWidth = 1112 simplex.computeRowOptimum(Simplex::Direction::Up, row); 1113 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 1114 dualDenom = simplex.tableau(row, 0); 1115 dual.clear(); 1116 1117 // The increment is i += 2 because equalities are added as two inequalities, 1118 // one positive and one negative. Each iteration processes one equality. 1119 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 1120 // The dual variable for an inequality in column orientation is the 1121 // negative of its coefficient at the objective row. If the inequality is 1122 // in row orientation, the corresponding dual variable is zero. 1123 // 1124 // We want the dual for the original equality, which corresponds to two 1125 // inequalities: a positive inequality, which has the same coefficients as 1126 // the equality, and a negative equality, which has negated coefficients. 1127 // 1128 // Note that at most one of these inequalities can be in column 1129 // orientation because the column unknowns should form a basis and hence 1130 // must be linearly independent. If the positive inequality is in column 1131 // position, its dual is the dual corresponding to the equality. If the 1132 // negative inequality is in column position, the negation of its dual is 1133 // the dual corresponding to the equality. If neither is in column 1134 // position, then that means that this equality is redundant, and its dual 1135 // is zero. 1136 // 1137 // Note that it is NOT valid to perform pivots during the computation of 1138 // the duals. This entire dual computation must be performed on the same 1139 // tableau configuration. 1140 assert(!(simplex.con[i].orientation == Orientation::Column && 1141 simplex.con[i + 1].orientation == Orientation::Column) && 1142 "Both inequalities for the equality cannot be in column " 1143 "orientation!"); 1144 if (simplex.con[i].orientation == Orientation::Column) 1145 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 1146 else if (simplex.con[i + 1].orientation == Orientation::Column) 1147 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 1148 else 1149 dual.push_back(0); 1150 } 1151 simplex.rollback(snap); 1152 return *maybeWidth; 1153 } 1154 1155 /// Remove the last equality that was added through addEqualityForDirection. 1156 /// 1157 /// We do this by rolling back to the snapshot at the top of the stack, which 1158 /// should be a snapshot taken just before the last equality was added. 1159 void removeLastEquality() { 1160 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 1161 simplex.rollback(snapshotStack.back()); 1162 snapshotStack.pop_back(); 1163 } 1164 1165 private: 1166 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 1167 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 1168 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 1169 /// where n is the dimension of the original polytope. 1170 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 1171 assert(2 * dir.size() == simplex.getNumVariables() && 1172 "Direction vector has wrong dimensionality"); 1173 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 1174 coeffs.reserve(2 * dir.size()); 1175 for (int64_t coeff : dir) 1176 coeffs.push_back(-coeff); 1177 coeffs.push_back(0); // constant term 1178 return coeffs; 1179 } 1180 1181 Simplex simplex; 1182 /// The first index of the equality constraints, the index immediately after 1183 /// the last constraint in the initial product simplex. 1184 unsigned simplexConstraintOffset; 1185 /// A stack of snapshots, used for rolling back. 1186 SmallVector<unsigned, 8> snapshotStack; 1187 }; 1188 1189 // Return a + scale*b; 1190 static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale, 1191 ArrayRef<int64_t> b) { 1192 assert(a.size() == b.size()); 1193 SmallVector<int64_t, 8> res; 1194 res.reserve(a.size()); 1195 for (unsigned i = 0, e = a.size(); i < e; ++i) 1196 res.push_back(a[i] + scale * b[i]); 1197 return res; 1198 } 1199 1200 /// Reduce the basis to try and find a direction in which the polytope is 1201 /// "thin". This only works for bounded polytopes. 1202 /// 1203 /// This is an implementation of the algorithm described in the paper 1204 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 1205 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 1206 /// 1207 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 1208 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 1209 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 1210 /// 1211 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 1212 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 1213 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 1214 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 1215 /// minimizing value of u, if it were allowed to be fractional. Due to 1216 /// convexity, the minimizing integer value is either floor(dual_i) or 1217 /// ceil(dual_i), so we just need to check which of these gives a lower 1218 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 1219 /// 1220 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 1221 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 1222 /// same i). Otherwise, we increment i. 1223 /// 1224 /// We keep f values and duals cached and invalidate them when necessary. 1225 /// Whenever possible, we use them instead of recomputing them. We implement the 1226 /// algorithm as follows. 1227 /// 1228 /// In an iteration at i we need to compute: 1229 /// a) width_i(b_{i + 1}) 1230 /// b) width_i(b_i) 1231 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 1232 /// 1233 /// If width_i(b_i) is not already cached, we compute it. 1234 /// 1235 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 1236 /// store the duals from this computation. 1237 /// 1238 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 1239 /// of u as explained before, caches the duals from this computation, sets 1240 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 1241 /// 1242 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 1243 /// decrement i, resulting in the basis 1244 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 1245 /// with corresponding f values 1246 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 1247 /// The values up to i - 1 remain unchanged. We have just gotten the middle 1248 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 1249 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 1250 /// the cache. The iteration after decrementing needs exactly the duals from the 1251 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 1252 /// 1253 /// When incrementing i, no cached f values get invalidated. However, the cached 1254 /// duals do get invalidated as the duals for the higher levels are different. 1255 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 1256 const Fraction epsilon(3, 4); 1257 1258 if (level == basis.getNumRows() - 1) 1259 return; 1260 1261 GBRSimplex gbrSimplex(*this); 1262 SmallVector<Fraction, 8> width; 1263 SmallVector<int64_t, 8> dual; 1264 int64_t dualDenom; 1265 1266 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 1267 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 1268 // the new value of width_i(b_{i+1}). 1269 // 1270 // If dual_i is not an integer, the minimizing value must be either 1271 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 1272 // choose the minimizing value. 1273 // 1274 // If dual_i is an integer, we don't need to perform these computations. We 1275 // know that in this case, 1276 // a) u = dual_i. 1277 // b) one can show that dual_j for j < i are the same duals we would have 1278 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 1279 // are the ones already in the cache. 1280 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 1281 // which 1282 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 1283 // be in the cache, so we get it from there and return it. 1284 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 1285 assert(i < level + dual.size() && "dual_i is not known!"); 1286 1287 int64_t u = floorDiv(dual[i - level], dualDenom); 1288 basis.addToRow(i, i + 1, u); 1289 if (dual[i - level] % dualDenom != 0) { 1290 SmallVector<int64_t, 8> candidateDual[2]; 1291 int64_t candidateDualDenom[2]; 1292 Fraction widthI[2]; 1293 1294 // Initially u is floor(dual) and basis reflects this. 1295 widthI[0] = gbrSimplex.computeWidthAndDuals( 1296 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 1297 1298 // Now try ceil(dual), i.e. floor(dual) + 1. 1299 ++u; 1300 basis.addToRow(i, i + 1, 1); 1301 widthI[1] = gbrSimplex.computeWidthAndDuals( 1302 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1303 1304 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1305 if (j == 0) 1306 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1307 basis.addToRow(i, i + 1, -1); 1308 1309 // width_i(b{i+1} + u*b_i) should be minimized at our value of u. 1310 // We assert that this holds by checking that the values of width_i at 1311 // u - 1 and u + 1 are greater than or equal to the value at u. If the 1312 // width is lesser at either of the adjacent values, then our computed 1313 // value of u is clearly not the minimizer. Otherwise by convexity the 1314 // computed value of u is really the minimizer. 1315 1316 // Check the value at u - 1. 1317 assert(gbrSimplex.computeWidth(scaleAndAdd( 1318 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && 1319 "Computed u value does not minimize the width!"); 1320 // Check the value at u + 1. 1321 assert(gbrSimplex.computeWidth(scaleAndAdd( 1322 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && 1323 "Computed u value does not minimize the width!"); 1324 1325 dual = std::move(candidateDual[j]); 1326 dualDenom = candidateDualDenom[j]; 1327 return widthI[j]; 1328 } 1329 1330 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1331 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the 1332 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in 1333 // the above expression is equal to basis.getRow(i+1) below.) 1334 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == 1335 width[i + 1 - level]); 1336 return width[i + 1 - level]; 1337 }; 1338 1339 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1340 // from `level` to i - 1. 1341 unsigned i = level; 1342 while (i < basis.getNumRows() - 1) { 1343 if (i >= level + width.size()) { 1344 // We don't even know the value of f_i(b_i), so let's find that first. 1345 // We have to do this first since later we assume that width already 1346 // contains values up to and including i. 1347 1348 assert((i == 0 || i - 1 < level + width.size()) && 1349 "We are at level i but we don't know the value of width_{i-1}"); 1350 1351 // We don't actually use these duals at all, but it doesn't matter 1352 // because this case should only occur when i is level, and there are no 1353 // duals in that case anyway. 1354 assert(i == level && "This case should only occur when i == level"); 1355 width.push_back( 1356 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1357 } 1358 1359 if (i >= level + dual.size()) { 1360 assert(i + 1 >= level + width.size() && 1361 "We don't know dual_i but we know width_{i+1}"); 1362 // We don't know dual for our level, so let's find it. 1363 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1364 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 1365 dualDenom)); 1366 gbrSimplex.removeLastEquality(); 1367 } 1368 1369 // This variable stores width_i(b_{i+1} + u*b_i). 1370 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1371 if (widthICandidate < epsilon * width[i - level]) { 1372 basis.swapRows(i, i + 1); 1373 width[i - level] = widthICandidate; 1374 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1375 // swap, so we remove the cached values here. 1376 width.resize(i - level + 1); 1377 if (i == level) { 1378 dual.clear(); 1379 continue; 1380 } 1381 1382 gbrSimplex.removeLastEquality(); 1383 i--; 1384 continue; 1385 } 1386 1387 // Invalidate duals since the higher level needs to recompute its own duals. 1388 dual.clear(); 1389 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1390 i++; 1391 } 1392 } 1393 1394 /// Search for an integer sample point using a branch and bound algorithm. 1395 /// 1396 /// Each row in the basis matrix is a vector, and the set of basis vectors 1397 /// should span the space. Initially this is the identity matrix, 1398 /// i.e., the basis vectors are just the variables. 1399 /// 1400 /// In every level, a value is assigned to the level-th basis vector, as 1401 /// follows. Compute the minimum and maximum rational values of this direction. 1402 /// If only one integer point lies in this range, constrain the variable to 1403 /// have this value and recurse to the next variable. 1404 /// 1405 /// If the range has multiple values, perform generalized basis reduction via 1406 /// reduceBasis and then compute the bounds again. Now we try constraining 1407 /// this direction in the first value in this range and "recurse" to the next 1408 /// level. If we fail to find a sample, we try assigning the direction the next 1409 /// value in this range, and so on. 1410 /// 1411 /// If no integer sample is found from any of the assignments, or if the range 1412 /// contains no integer value, then of course the polytope is empty for the 1413 /// current assignment of the values in previous levels, so we return to 1414 /// the previous level. 1415 /// 1416 /// If we reach the last level where all the variables have been assigned values 1417 /// already, then we simply return the current sample point if it is integral, 1418 /// and go back to the previous level otherwise. 1419 /// 1420 /// To avoid potentially arbitrarily large recursion depths leading to stack 1421 /// overflows, this algorithm is implemented iteratively. 1422 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1423 if (empty) 1424 return {}; 1425 1426 unsigned nDims = var.size(); 1427 Matrix basis = Matrix::identity(nDims); 1428 1429 unsigned level = 0; 1430 // The snapshot just before constraining a direction to a value at each level. 1431 SmallVector<unsigned, 8> snapshotStack; 1432 // The maximum value in the range of the direction for each level. 1433 SmallVector<int64_t, 8> upperBoundStack; 1434 // The next value to try constraining the basis vector to at each level. 1435 SmallVector<int64_t, 8> nextValueStack; 1436 1437 snapshotStack.reserve(basis.getNumRows()); 1438 upperBoundStack.reserve(basis.getNumRows()); 1439 nextValueStack.reserve(basis.getNumRows()); 1440 while (level != -1u) { 1441 if (level == basis.getNumRows()) { 1442 // We've assigned values to all variables. Return if we have a sample, 1443 // or go back up to the previous level otherwise. 1444 if (auto maybeSample = getSamplePointIfIntegral()) 1445 return maybeSample; 1446 level--; 1447 continue; 1448 } 1449 1450 if (level >= upperBoundStack.size()) { 1451 // We haven't populated the stack values for this level yet, so we have 1452 // just come down a level ("recursed"). Find the lower and upper bounds. 1453 // If there is more than one integer point in the range, perform 1454 // generalized basis reduction. 1455 SmallVector<int64_t, 8> basisCoeffs = 1456 llvm::to_vector<8>(basis.getRow(level)); 1457 basisCoeffs.push_back(0); 1458 1459 Optional<int64_t> minRoundedUp, maxRoundedDown; 1460 std::tie(minRoundedUp, maxRoundedDown) = 1461 computeIntegerBounds(basisCoeffs); 1462 1463 // Heuristic: if the sample point is integral at this point, just return 1464 // it. 1465 if (auto maybeSample = getSamplePointIfIntegral()) 1466 return *maybeSample; 1467 1468 if (minRoundedUp < maxRoundedDown) { 1469 reduceBasis(basis, level); 1470 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1471 basisCoeffs.push_back(0); 1472 std::tie(minRoundedUp, maxRoundedDown) = 1473 computeIntegerBounds(basisCoeffs); 1474 } 1475 1476 snapshotStack.push_back(getSnapshot()); 1477 // The smallest value in the range is the next value to try. 1478 // The values in the optionals are guaranteed to exist since we know the 1479 // polytope is bounded. 1480 nextValueStack.push_back(*minRoundedUp); 1481 upperBoundStack.push_back(*maxRoundedDown); 1482 } 1483 1484 assert((snapshotStack.size() - 1 == level && 1485 nextValueStack.size() - 1 == level && 1486 upperBoundStack.size() - 1 == level) && 1487 "Mismatched variable stack sizes!"); 1488 1489 // Whether we "recursed" or "returned" from a lower level, we rollback 1490 // to the snapshot of the starting state at this level. (in the "recursed" 1491 // case this has no effect) 1492 rollback(snapshotStack.back()); 1493 int64_t nextValue = nextValueStack.back(); 1494 nextValueStack.back()++; 1495 if (nextValue > upperBoundStack.back()) { 1496 // We have exhausted the range and found no solution. Pop the stack and 1497 // return up a level. 1498 snapshotStack.pop_back(); 1499 nextValueStack.pop_back(); 1500 upperBoundStack.pop_back(); 1501 level--; 1502 continue; 1503 } 1504 1505 // Try the next value in the range and "recurse" into the next level. 1506 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1507 basis.getRow(level).end()); 1508 basisCoeffs.push_back(-nextValue); 1509 addEquality(basisCoeffs); 1510 level++; 1511 } 1512 1513 return {}; 1514 } 1515 1516 /// Compute the minimum and maximum integer values the expression can take. We 1517 /// compute each separately. 1518 std::pair<Optional<int64_t>, Optional<int64_t>> 1519 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1520 Optional<int64_t> minRoundedUp; 1521 if (Optional<Fraction> maybeMin = 1522 computeOptimum(Simplex::Direction::Down, coeffs)) 1523 minRoundedUp = ceil(*maybeMin); 1524 1525 Optional<int64_t> maxRoundedDown; 1526 if (Optional<Fraction> maybeMax = 1527 computeOptimum(Simplex::Direction::Up, coeffs)) 1528 maxRoundedDown = floor(*maybeMax); 1529 1530 return {minRoundedUp, maxRoundedDown}; 1531 } 1532 1533 void SimplexBase::print(raw_ostream &os) const { 1534 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1535 if (empty) 1536 os << "Simplex marked empty!\n"; 1537 os << "var: "; 1538 for (unsigned i = 0; i < var.size(); ++i) { 1539 if (i > 0) 1540 os << ", "; 1541 var[i].print(os); 1542 } 1543 os << "\ncon: "; 1544 for (unsigned i = 0; i < con.size(); ++i) { 1545 if (i > 0) 1546 os << ", "; 1547 con[i].print(os); 1548 } 1549 os << '\n'; 1550 for (unsigned row = 0; row < nRow; ++row) { 1551 if (row > 0) 1552 os << ", "; 1553 os << "r" << row << ": " << rowUnknown[row]; 1554 } 1555 os << '\n'; 1556 os << "c0: denom, c1: const"; 1557 for (unsigned col = 2; col < nCol; ++col) 1558 os << ", c" << col << ": " << colUnknown[col]; 1559 os << '\n'; 1560 for (unsigned row = 0; row < nRow; ++row) { 1561 for (unsigned col = 0; col < nCol; ++col) 1562 os << tableau(row, col) << '\t'; 1563 os << '\n'; 1564 } 1565 os << '\n'; 1566 } 1567 1568 void SimplexBase::dump() const { print(llvm::errs()); } 1569 1570 bool Simplex::isRationalSubsetOf(const IntegerPolyhedron &poly) { 1571 if (isEmpty()) 1572 return true; 1573 1574 for (unsigned i = 0, e = poly.getNumInequalities(); i < e; ++i) 1575 if (!isRedundantInequality(poly.getInequality(i))) 1576 return false; 1577 1578 for (unsigned i = 0, e = poly.getNumEqualities(); i < e; ++i) 1579 if (!isRedundantEquality(poly.getEquality(i))) 1580 return false; 1581 1582 return true; 1583 } 1584 1585 /// Computes the minimum value `coeffs` can take. If the value is greater than 1586 /// or equal to zero, the polytope entirely lies in the half-space defined by 1587 /// `coeffs >= 0`. 1588 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 1589 Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1590 return minimum && *minimum >= Fraction(0, 1); 1591 } 1592 1593 /// Check whether the equality given by `coeffs == 0` is redundant given 1594 /// the existing constraints. This is redundant when `coeffs` is already 1595 /// always zero under the existing constraints. `coeffs` is always zero 1596 /// when the minimum and maximum value that `coeffs` can take are both zero. 1597 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) { 1598 Optional<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 1599 Optional<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 1600 return minimum && maximum && *maximum == Fraction(0, 1) && 1601 *minimum == Fraction(0, 1); 1602 } 1603 1604 } // namespace mlir 1605