1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 namespace mlir { 15 using Direction = Simplex::Direction; 16 17 const int nullIndex = std::numeric_limits<int>::max(); 18 19 /// Construct a Simplex object with `nVar` variables. 20 Simplex::Simplex(unsigned nVar) 21 : nRow(0), nCol(2), nRedundant(0), tableau(0, 2 + nVar), empty(false) { 22 colUnknown.push_back(nullIndex); 23 colUnknown.push_back(nullIndex); 24 for (unsigned i = 0; i < nVar; ++i) { 25 var.emplace_back(Orientation::Column, /*restricted=*/false, /*pos=*/nCol); 26 colUnknown.push_back(i); 27 nCol++; 28 } 29 } 30 31 Simplex::Simplex(const FlatAffineConstraints &constraints) 32 : Simplex(constraints.getNumIds()) { 33 for (unsigned i = 0, numIneqs = constraints.getNumInequalities(); 34 i < numIneqs; ++i) 35 addInequality(constraints.getInequality(i)); 36 for (unsigned i = 0, numEqs = constraints.getNumEqualities(); i < numEqs; ++i) 37 addEquality(constraints.getEquality(i)); 38 } 39 40 const Simplex::Unknown &Simplex::unknownFromIndex(int index) const { 41 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 42 return index >= 0 ? var[index] : con[~index]; 43 } 44 45 const Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) const { 46 assert(col < nCol && "Invalid column"); 47 return unknownFromIndex(colUnknown[col]); 48 } 49 50 const Simplex::Unknown &Simplex::unknownFromRow(unsigned row) const { 51 assert(row < nRow && "Invalid row"); 52 return unknownFromIndex(rowUnknown[row]); 53 } 54 55 Simplex::Unknown &Simplex::unknownFromIndex(int index) { 56 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 57 return index >= 0 ? var[index] : con[~index]; 58 } 59 60 Simplex::Unknown &Simplex::unknownFromColumn(unsigned col) { 61 assert(col < nCol && "Invalid column"); 62 return unknownFromIndex(colUnknown[col]); 63 } 64 65 Simplex::Unknown &Simplex::unknownFromRow(unsigned row) { 66 assert(row < nRow && "Invalid row"); 67 return unknownFromIndex(rowUnknown[row]); 68 } 69 70 /// Add a new row to the tableau corresponding to the given constant term and 71 /// list of coefficients. The coefficients are specified as a vector of 72 /// (variable index, coefficient) pairs. 73 unsigned Simplex::addRow(ArrayRef<int64_t> coeffs) { 74 assert(coeffs.size() == 1 + var.size() && 75 "Incorrect number of coefficients!"); 76 77 ++nRow; 78 // If the tableau is not big enough to accomodate the extra row, we extend it. 79 if (nRow >= tableau.getNumRows()) 80 tableau.resizeVertically(nRow); 81 rowUnknown.push_back(~con.size()); 82 con.emplace_back(Orientation::Row, false, nRow - 1); 83 84 tableau(nRow - 1, 0) = 1; 85 tableau(nRow - 1, 1) = coeffs.back(); 86 for (unsigned col = 2; col < nCol; ++col) 87 tableau(nRow - 1, col) = 0; 88 89 // Process each given variable coefficient. 90 for (unsigned i = 0; i < var.size(); ++i) { 91 unsigned pos = var[i].pos; 92 if (coeffs[i] == 0) 93 continue; 94 95 if (var[i].orientation == Orientation::Column) { 96 // If a variable is in column position at column col, then we just add the 97 // coefficient for that variable (scaled by the common row denominator) to 98 // the corresponding entry in the new row. 99 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 100 continue; 101 } 102 103 // If the variable is in row position, we need to add that row to the new 104 // row, scaled by the coefficient for the variable, accounting for the two 105 // rows potentially having different denominators. The new denominator is 106 // the lcm of the two. 107 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 108 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 109 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 110 tableau(nRow - 1, 0) = lcm; 111 for (unsigned col = 1; col < nCol; ++col) 112 tableau(nRow - 1, col) = 113 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 114 } 115 116 normalizeRow(nRow - 1); 117 // Push to undo log along with the index of the new constraint. 118 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 119 return con.size() - 1; 120 } 121 122 /// Normalize the row by removing factors that are common between the 123 /// denominator and all the numerator coefficients. 124 void Simplex::normalizeRow(unsigned row) { 125 int64_t gcd = 0; 126 for (unsigned col = 0; col < nCol; ++col) { 127 if (gcd == 1) 128 break; 129 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 130 } 131 for (unsigned col = 0; col < nCol; ++col) 132 tableau(row, col) /= gcd; 133 } 134 135 namespace { 136 bool signMatchesDirection(int64_t elem, Direction direction) { 137 assert(elem != 0 && "elem should not be 0"); 138 return direction == Direction::Up ? elem > 0 : elem < 0; 139 } 140 141 Direction flippedDirection(Direction direction) { 142 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 143 } 144 } // anonymous namespace 145 146 /// Find a pivot to change the sample value of the row in the specified 147 /// direction. The returned pivot row will involve `row` if and only if the 148 /// unknown is unbounded in the specified direction. 149 /// 150 /// To increase (resp. decrease) the value of a row, we need to find a live 151 /// column with a non-zero coefficient. If the coefficient is positive, we need 152 /// to increase (decrease) the value of the column, and if the coefficient is 153 /// negative, we need to decrease (increase) the value of the column. Also, 154 /// we cannot decrease the sample value of restricted columns. 155 /// 156 /// If multiple columns are valid, we break ties by considering a lexicographic 157 /// ordering where we prefer unknowns with lower index. 158 Optional<Simplex::Pivot> Simplex::findPivot(int row, 159 Direction direction) const { 160 Optional<unsigned> col; 161 for (unsigned j = 2; j < nCol; ++j) { 162 int64_t elem = tableau(row, j); 163 if (elem == 0) 164 continue; 165 166 if (unknownFromColumn(j).restricted && 167 !signMatchesDirection(elem, direction)) 168 continue; 169 if (!col || colUnknown[j] < colUnknown[*col]) 170 col = j; 171 } 172 173 if (!col) 174 return {}; 175 176 Direction newDirection = 177 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 178 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 179 return Pivot{maybePivotRow.getValueOr(row), *col}; 180 } 181 182 /// Swap the associated unknowns for the row and the column. 183 /// 184 /// First we swap the index associated with the row and column. Then we update 185 /// the unknowns to reflect their new position and orientation. 186 void Simplex::swapRowWithCol(unsigned row, unsigned col) { 187 std::swap(rowUnknown[row], colUnknown[col]); 188 Unknown &uCol = unknownFromColumn(col); 189 Unknown &uRow = unknownFromRow(row); 190 uCol.orientation = Orientation::Column; 191 uRow.orientation = Orientation::Row; 192 uCol.pos = col; 193 uRow.pos = row; 194 } 195 196 void Simplex::pivot(Pivot pair) { pivot(pair.row, pair.column); } 197 198 /// Pivot pivotRow and pivotCol. 199 /// 200 /// Let R be the pivot row unknown and let C be the pivot col unknown. 201 /// Since initially R = a*C + sum b_i * X_i 202 /// (where the sum is over the other column's unknowns, x_i) 203 /// C = (R - (sum b_i * X_i))/a 204 /// 205 /// Let u be some other row unknown. 206 /// u = c*C + sum d_i * X_i 207 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 208 /// 209 /// This results in the following transform: 210 /// pivot col other col pivot col other col 211 /// pivot row a b -> pivot row 1/a -b/a 212 /// other row c d other row c/a d - bc/a 213 /// 214 /// Taking into account the common denominators p and q: 215 /// 216 /// pivot col other col pivot col other col 217 /// pivot row a/p b/p -> pivot row p/a -b/a 218 /// other row c/q d/q other row cp/aq (da - bc)/aq 219 /// 220 /// The pivot row transform is accomplished be swapping a with the pivot row's 221 /// common denominator and negating the pivot row except for the pivot column 222 /// element. 223 void Simplex::pivot(unsigned pivotRow, unsigned pivotCol) { 224 assert(pivotCol >= 2 && "Refusing to pivot invalid column"); 225 226 swapRowWithCol(pivotRow, pivotCol); 227 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 228 // We need to negate the whole pivot row except for the pivot column. 229 if (tableau(pivotRow, 0) < 0) { 230 // If the denominator is negative, we negate the row by simply negating the 231 // denominator. 232 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 233 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 234 } else { 235 for (unsigned col = 1; col < nCol; ++col) { 236 if (col == pivotCol) 237 continue; 238 tableau(pivotRow, col) = -tableau(pivotRow, col); 239 } 240 } 241 normalizeRow(pivotRow); 242 243 for (unsigned row = 0; row < nRow; ++row) { 244 if (row == pivotRow) 245 continue; 246 if (tableau(row, pivotCol) == 0) // Nothing to do. 247 continue; 248 tableau(row, 0) *= tableau(pivotRow, 0); 249 for (unsigned j = 1; j < nCol; ++j) { 250 if (j == pivotCol) 251 continue; 252 // Add rather than subtract because the pivot row has been negated. 253 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 254 tableau(row, pivotCol) * tableau(pivotRow, j); 255 } 256 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 257 normalizeRow(row); 258 } 259 } 260 261 /// Perform pivots until the unknown has a non-negative sample value or until 262 /// no more upward pivots can be performed. Return success if we were able to 263 /// bring the row to a non-negative sample value, and failure otherwise. 264 LogicalResult Simplex::restoreRow(Unknown &u) { 265 assert(u.orientation == Orientation::Row && 266 "unknown should be in row position"); 267 268 while (tableau(u.pos, 1) < 0) { 269 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 270 if (!maybePivot) 271 break; 272 273 pivot(*maybePivot); 274 if (u.orientation == Orientation::Column) 275 return success(); // the unknown is unbounded above. 276 } 277 return success(tableau(u.pos, 1) >= 0); 278 } 279 280 /// Find a row that can be used to pivot the column in the specified direction. 281 /// This returns an empty optional if and only if the column is unbounded in the 282 /// specified direction (ignoring skipRow, if skipRow is set). 283 /// 284 /// If skipRow is set, this row is not considered, and (if it is restricted) its 285 /// restriction may be violated by the returned pivot. Usually, skipRow is set 286 /// because we don't want to move it to column position unless it is unbounded, 287 /// and we are either trying to increase the value of skipRow or explicitly 288 /// trying to make skipRow negative, so we are not concerned about this. 289 /// 290 /// If the direction is up (resp. down) and a restricted row has a negative 291 /// (positive) coefficient for the column, then this row imposes a bound on how 292 /// much the sample value of the column can change. Such a row with constant 293 /// term c and coefficient f for the column imposes a bound of c/|f| on the 294 /// change in sample value (in the specified direction). (note that c is 295 /// non-negative here since the row is restricted and the tableau is consistent) 296 /// 297 /// We iterate through the rows and pick the row which imposes the most 298 /// stringent bound, since pivoting with a row changes the row's sample value to 299 /// 0 and hence saturates the bound it imposes. We break ties between rows that 300 /// impose the same bound by considering a lexicographic ordering where we 301 /// prefer unknowns with lower index value. 302 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 303 Direction direction, 304 unsigned col) const { 305 Optional<unsigned> retRow; 306 int64_t retElem, retConst; 307 for (unsigned row = nRedundant; row < nRow; ++row) { 308 if (skipRow && row == *skipRow) 309 continue; 310 int64_t elem = tableau(row, col); 311 if (elem == 0) 312 continue; 313 if (!unknownFromRow(row).restricted) 314 continue; 315 if (signMatchesDirection(elem, direction)) 316 continue; 317 int64_t constTerm = tableau(row, 1); 318 319 if (!retRow) { 320 retRow = row; 321 retElem = elem; 322 retConst = constTerm; 323 continue; 324 } 325 326 int64_t diff = retConst * elem - constTerm * retElem; 327 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 328 (diff != 0 && !signMatchesDirection(diff, direction))) { 329 retRow = row; 330 retElem = elem; 331 retConst = constTerm; 332 } 333 } 334 return retRow; 335 } 336 337 bool Simplex::isEmpty() const { return empty; } 338 339 void Simplex::swapRows(unsigned i, unsigned j) { 340 if (i == j) 341 return; 342 tableau.swapRows(i, j); 343 std::swap(rowUnknown[i], rowUnknown[j]); 344 unknownFromRow(i).pos = i; 345 unknownFromRow(j).pos = j; 346 } 347 348 void Simplex::swapColumns(unsigned i, unsigned j) { 349 assert(i < nCol && j < nCol && "Invalid columns provided!"); 350 if (i == j) 351 return; 352 tableau.swapColumns(i, j); 353 std::swap(colUnknown[i], colUnknown[j]); 354 unknownFromColumn(i).pos = i; 355 unknownFromColumn(j).pos = j; 356 } 357 358 /// Mark this tableau empty and push an entry to the undo stack. 359 void Simplex::markEmpty() { 360 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 361 // entry, since in that case the Simplex will be erroneously marked as 362 // non-empty when rolling back past this point. 363 if (empty) 364 return; 365 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 366 empty = true; 367 } 368 369 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 370 /// is the current number of variables, then the corresponding inequality is 371 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 372 /// 373 /// We add the inequality and mark it as restricted. We then try to make its 374 /// sample value non-negative. If this is not possible, the tableau has become 375 /// empty and we mark it as such. 376 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 377 unsigned conIndex = addRow(coeffs); 378 Unknown &u = con[conIndex]; 379 u.restricted = true; 380 LogicalResult result = restoreRow(u); 381 if (failed(result)) 382 markEmpty(); 383 } 384 385 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 386 /// is the current number of variables, then the corresponding equality is 387 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 388 /// 389 /// We simply add two opposing inequalities, which force the expression to 390 /// be zero. 391 void Simplex::addEquality(ArrayRef<int64_t> coeffs) { 392 addInequality(coeffs); 393 SmallVector<int64_t, 8> negatedCoeffs; 394 for (int64_t coeff : coeffs) 395 negatedCoeffs.emplace_back(-coeff); 396 addInequality(negatedCoeffs); 397 } 398 399 unsigned Simplex::getNumVariables() const { return var.size(); } 400 unsigned Simplex::getNumConstraints() const { return con.size(); } 401 402 /// Return a snapshot of the current state. This is just the current size of the 403 /// undo log. 404 unsigned Simplex::getSnapshot() const { return undoLog.size(); } 405 406 void Simplex::undo(UndoLogEntry entry) { 407 if (entry == UndoLogEntry::RemoveLastConstraint) { 408 Unknown &constraint = con.back(); 409 if (constraint.orientation == Orientation::Column) { 410 unsigned column = constraint.pos; 411 Optional<unsigned> row; 412 413 // Try to find any pivot row for this column that preserves tableau 414 // consistency (except possibly the column itself, which is going to be 415 // deallocated anyway). 416 // 417 // If no pivot row is found in either direction, then the unknown is 418 // unbounded in both directions and we are free to 419 // perform any pivot at all. To do this, we just need to find any row with 420 // a non-zero coefficient for the column. 421 if (Optional<unsigned> maybeRow = 422 findPivotRow({}, Direction::Up, column)) { 423 row = *maybeRow; 424 } else if (Optional<unsigned> maybeRow = 425 findPivotRow({}, Direction::Down, column)) { 426 row = *maybeRow; 427 } else { 428 // The loop doesn't find a pivot row only if the column has zero 429 // coefficients for every row. But the unknown is a constraint, 430 // so it was added initially as a row. Such a row could never have been 431 // pivoted to a column. So a pivot row will always be found. 432 for (unsigned i = nRedundant; i < nRow; ++i) { 433 if (tableau(i, column) != 0) { 434 row = i; 435 break; 436 } 437 } 438 } 439 assert(row.hasValue() && "No pivot row found!"); 440 pivot(*row, column); 441 } 442 443 // Move this unknown to the last row and remove the last row from the 444 // tableau. 445 swapRows(constraint.pos, nRow - 1); 446 // It is not strictly necessary to shrink the tableau, but for now we 447 // maintain the invariant that the tableau has exactly nRow rows. 448 tableau.resizeVertically(nRow - 1); 449 nRow--; 450 rowUnknown.pop_back(); 451 con.pop_back(); 452 } else if (entry == UndoLogEntry::RemoveLastVariable) { 453 // Whenever we are rolling back the addition of a variable, it is guaranteed 454 // that the variable will be in column position. 455 // 456 // We can see this as follows: any constraint that depends on this variable 457 // was added after this variable was added, so the addition of such 458 // constraints should already have been rolled back by the time we get to 459 // rolling back the addition of the variable. Therefore, no constraint 460 // currently has a component along the variable, so the variable itself must 461 // be part of the basis. 462 assert(var.back().orientation == Orientation::Column && 463 "Variable to be removed must be in column orientation!"); 464 465 // Move this variable to the last column and remove the column from the 466 // tableau. 467 swapColumns(var.back().pos, nCol - 1); 468 tableau.resizeHorizontally(nCol - 1); 469 var.pop_back(); 470 colUnknown.pop_back(); 471 nCol--; 472 } else if (entry == UndoLogEntry::UnmarkEmpty) { 473 empty = false; 474 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 475 nRedundant--; 476 } 477 } 478 479 /// Rollback to the specified snapshot. 480 /// 481 /// We undo all the log entries until the log size when the snapshot was taken 482 /// is reached. 483 void Simplex::rollback(unsigned snapshot) { 484 while (undoLog.size() > snapshot) { 485 undo(undoLog.back()); 486 undoLog.pop_back(); 487 } 488 } 489 490 void Simplex::appendVariable(unsigned count) { 491 if (count == 0) 492 return; 493 var.reserve(var.size() + count); 494 colUnknown.reserve(colUnknown.size() + count); 495 for (unsigned i = 0; i < count; ++i) { 496 nCol++; 497 var.emplace_back(Orientation::Column, /*restricted=*/false, 498 /*pos=*/nCol - 1); 499 colUnknown.push_back(var.size() - 1); 500 } 501 tableau.resizeHorizontally(nCol); 502 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 503 } 504 505 /// Add all the constraints from the given FlatAffineConstraints. 506 void Simplex::intersectFlatAffineConstraints(const FlatAffineConstraints &fac) { 507 assert(fac.getNumIds() == getNumVariables() && 508 "FlatAffineConstraints must have same dimensionality as simplex"); 509 for (unsigned i = 0, e = fac.getNumInequalities(); i < e; ++i) 510 addInequality(fac.getInequality(i)); 511 for (unsigned i = 0, e = fac.getNumEqualities(); i < e; ++i) 512 addEquality(fac.getEquality(i)); 513 } 514 515 Optional<Fraction> Simplex::computeRowOptimum(Direction direction, 516 unsigned row) { 517 // Keep trying to find a pivot for the row in the specified direction. 518 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 519 // If findPivot returns a pivot involving the row itself, then the optimum 520 // is unbounded, so we return None. 521 if (maybePivot->row == row) 522 return {}; 523 pivot(*maybePivot); 524 } 525 526 // The row has reached its optimal sample value, which we return. 527 // The sample value is the entry in the constant column divided by the common 528 // denominator for this row. 529 return Fraction(tableau(row, 1), tableau(row, 0)); 530 } 531 532 /// Compute the optimum of the specified expression in the specified direction, 533 /// or None if it is unbounded. 534 Optional<Fraction> Simplex::computeOptimum(Direction direction, 535 ArrayRef<int64_t> coeffs) { 536 assert(!empty && "Simplex should not be empty"); 537 538 unsigned snapshot = getSnapshot(); 539 unsigned conIndex = addRow(coeffs); 540 unsigned row = con[conIndex].pos; 541 Optional<Fraction> optimum = computeRowOptimum(direction, row); 542 rollback(snapshot); 543 return optimum; 544 } 545 546 Optional<Fraction> Simplex::computeOptimum(Direction direction, Unknown &u) { 547 assert(!empty && "Simplex should not be empty!"); 548 if (u.orientation == Orientation::Column) { 549 unsigned column = u.pos; 550 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 551 // If no pivot is returned, the constraint is unbounded in the specified 552 // direction. 553 if (!pivotRow) 554 return {}; 555 pivot(*pivotRow, column); 556 } 557 558 unsigned row = u.pos; 559 Optional<Fraction> optimum = computeRowOptimum(direction, row); 560 if (u.restricted && direction == Direction::Down && 561 (!optimum || *optimum < Fraction(0, 1))) 562 (void)restoreRow(u); 563 return optimum; 564 } 565 566 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 567 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 568 "in an empty set."); 569 // The constraint's perpendicular is already bounded below, since it is a 570 // constraint. If it is also bounded above, we can return true. 571 return computeOptimum(Direction::Up, con[constraintIndex]).hasValue(); 572 } 573 574 /// Redundant constraints are those that are in row orientation and lie in 575 /// rows 0 to nRedundant - 1. 576 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 577 const Unknown &u = con[constraintIndex]; 578 return u.orientation == Orientation::Row && u.pos < nRedundant; 579 } 580 581 /// Mark the specified row redundant. 582 /// 583 /// This is done by moving the unknown to the end of the block of redundant 584 /// rows (namely, to row nRedundant) and incrementing nRedundant to 585 /// accomodate the new redundant row. 586 void Simplex::markRowRedundant(Unknown &u) { 587 assert(u.orientation == Orientation::Row && 588 "Unknown should be in row position!"); 589 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 590 swapRows(u.pos, nRedundant); 591 ++nRedundant; 592 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 593 } 594 595 /// Find a subset of constraints that is redundant and mark them redundant. 596 void Simplex::detectRedundant() { 597 // It is not meaningful to talk about redundancy for empty sets. 598 if (empty) 599 return; 600 601 // Iterate through the constraints and check for each one if it can attain 602 // negative sample values. If it can, it's not redundant. Otherwise, it is. 603 // We mark redundant constraints redundant. 604 // 605 // Constraints that get marked redundant in one iteration are not respected 606 // when checking constraints in later iterations. This prevents, for example, 607 // two identical constraints both being marked redundant since each is 608 // redundant given the other one. In this example, only the first of the 609 // constraints that is processed will get marked redundant, as it should be. 610 for (Unknown &u : con) { 611 if (u.orientation == Orientation::Column) { 612 unsigned column = u.pos; 613 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 614 // If no downward pivot is returned, the constraint is unbounded below 615 // and hence not redundant. 616 if (!pivotRow) 617 continue; 618 pivot(*pivotRow, column); 619 } 620 621 unsigned row = u.pos; 622 Optional<Fraction> minimum = computeRowOptimum(Direction::Down, row); 623 if (!minimum || *minimum < Fraction(0, 1)) { 624 // Constraint is unbounded below or can attain negative sample values and 625 // hence is not redundant. 626 (void)restoreRow(u); 627 continue; 628 } 629 630 markRowRedundant(u); 631 } 632 } 633 634 bool Simplex::isUnbounded() { 635 if (empty) 636 return false; 637 638 SmallVector<int64_t, 8> dir(var.size() + 1); 639 for (unsigned i = 0; i < var.size(); ++i) { 640 dir[i] = 1; 641 642 Optional<Fraction> maybeMax = computeOptimum(Direction::Up, dir); 643 if (!maybeMax) 644 return true; 645 646 Optional<Fraction> maybeMin = computeOptimum(Direction::Down, dir); 647 if (!maybeMin) 648 return true; 649 650 dir[i] = 0; 651 } 652 return false; 653 } 654 655 /// Make a tableau to represent a pair of points in the original tableau. 656 /// 657 /// The product constraints and variables are stored as: first A's, then B's. 658 /// 659 /// The product tableau has row layout: 660 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 661 /// 662 /// It has column layout: 663 /// denominator, constant, A's columns, B's columns. 664 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 665 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 666 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 667 Simplex result(numVar); 668 669 result.tableau.resizeVertically(numCon); 670 result.empty = a.empty || b.empty; 671 672 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 673 SmallVector<Unknown, 8> result; 674 result.reserve(v.size() + w.size()); 675 result.insert(result.end(), v.begin(), v.end()); 676 result.insert(result.end(), w.begin(), w.end()); 677 return result; 678 }; 679 result.con = concat(a.con, b.con); 680 result.var = concat(a.var, b.var); 681 682 auto indexFromBIndex = [&](int index) { 683 return index >= 0 ? a.getNumVariables() + index 684 : ~(a.getNumConstraints() + ~index); 685 }; 686 687 result.colUnknown.assign(2, nullIndex); 688 for (unsigned i = 2; i < a.nCol; ++i) { 689 result.colUnknown.push_back(a.colUnknown[i]); 690 result.unknownFromIndex(result.colUnknown.back()).pos = 691 result.colUnknown.size() - 1; 692 } 693 for (unsigned i = 2; i < b.nCol; ++i) { 694 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 695 result.unknownFromIndex(result.colUnknown.back()).pos = 696 result.colUnknown.size() - 1; 697 } 698 699 auto appendRowFromA = [&](unsigned row) { 700 for (unsigned col = 0; col < a.nCol; ++col) 701 result.tableau(result.nRow, col) = a.tableau(row, col); 702 result.rowUnknown.push_back(a.rowUnknown[row]); 703 result.unknownFromIndex(result.rowUnknown.back()).pos = 704 result.rowUnknown.size() - 1; 705 result.nRow++; 706 }; 707 708 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 709 // may be). 710 auto appendRowFromB = [&](unsigned row) { 711 result.tableau(result.nRow, 0) = b.tableau(row, 0); 712 result.tableau(result.nRow, 1) = b.tableau(row, 1); 713 714 unsigned offset = a.nCol - 2; 715 for (unsigned col = 2; col < b.nCol; ++col) 716 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 717 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 718 result.unknownFromIndex(result.rowUnknown.back()).pos = 719 result.rowUnknown.size() - 1; 720 result.nRow++; 721 }; 722 723 result.nRedundant = a.nRedundant + b.nRedundant; 724 for (unsigned row = 0; row < a.nRedundant; ++row) 725 appendRowFromA(row); 726 for (unsigned row = 0; row < b.nRedundant; ++row) 727 appendRowFromB(row); 728 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 729 appendRowFromA(row); 730 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 731 appendRowFromB(row); 732 733 return result; 734 } 735 736 SmallVector<Fraction, 8> Simplex::getRationalSample() const { 737 assert(!empty && "This should not be called when Simplex is empty."); 738 739 SmallVector<Fraction, 8> sample; 740 sample.reserve(var.size()); 741 // Push the sample value for each variable into the vector. 742 for (const Unknown &u : var) { 743 if (u.orientation == Orientation::Column) { 744 // If the variable is in column position, its sample value is zero. 745 sample.emplace_back(0, 1); 746 } else { 747 // If the variable is in row position, its sample value is the entry in 748 // the constant column divided by the entry in the common denominator 749 // column. 750 sample.emplace_back(tableau(u.pos, 1), tableau(u.pos, 0)); 751 } 752 } 753 return sample; 754 } 755 756 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 757 // If the tableau is empty, no sample point exists. 758 if (empty) 759 return {}; 760 SmallVector<Fraction, 8> rationalSample = getRationalSample(); 761 SmallVector<int64_t, 8> integerSample; 762 integerSample.reserve(var.size()); 763 for (const Fraction &coord : rationalSample) { 764 // If the sample is non-integral, return None. 765 if (coord.num % coord.den != 0) 766 return {}; 767 integerSample.push_back(coord.num / coord.den); 768 } 769 return integerSample; 770 } 771 772 /// Given a simplex for a polytope, construct a new simplex whose variables are 773 /// identified with a pair of points (x, y) in the original polytope. Supports 774 /// some operations needed for generalized basis reduction. In what follows, 775 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 776 /// dimension of the original polytope. 777 /// 778 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 779 /// also supports rolling back this addition, by maintaining a snapshot stack 780 /// that contains a snapshot of the Simplex's state for each equality, just 781 /// before that equality was added. 782 class GBRSimplex { 783 using Orientation = Simplex::Orientation; 784 785 public: 786 GBRSimplex(const Simplex &originalSimplex) 787 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 788 simplexConstraintOffset(simplex.getNumConstraints()) {} 789 790 /// Add an equality dotProduct(dir, x - y) == 0. 791 /// First pushes a snapshot for the current simplex state to the stack so 792 /// that this can be rolled back later. 793 void addEqualityForDirection(ArrayRef<int64_t> dir) { 794 assert( 795 std::any_of(dir.begin(), dir.end(), [](int64_t x) { return x != 0; }) && 796 "Direction passed is the zero vector!"); 797 snapshotStack.push_back(simplex.getSnapshot()); 798 simplex.addEquality(getCoeffsForDirection(dir)); 799 } 800 801 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 802 /// the direction equalities to `dual`. 803 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 804 SmallVectorImpl<int64_t> &dual, 805 int64_t &dualDenom) { 806 unsigned snap = simplex.getSnapshot(); 807 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 808 unsigned row = simplex.con[conIndex].pos; 809 Optional<Fraction> maybeWidth = 810 simplex.computeRowOptimum(Simplex::Direction::Up, row); 811 assert(maybeWidth.hasValue() && "Width should not be unbounded!"); 812 dualDenom = simplex.tableau(row, 0); 813 dual.clear(); 814 // The increment is i += 2 because equalities are added as two inequalities, 815 // one positive and one negative. Each iteration processes one equality. 816 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 817 // The dual variable is the negative of the coefficient of the new row 818 // in the column of the constraint, if the constraint is in a column. 819 // Note that the second inequality for the equality is negated. 820 // 821 // We want the dual for the original equality. If the positive inequality 822 // is in column position, the negative of its row coefficient is the 823 // desired dual. If the negative inequality is in column position, its row 824 // coefficient is the desired dual. (its coefficients are already the 825 // negated coefficients of the original equality, so we don't need to 826 // negate it now.) 827 // 828 // If neither are in column position, we move the negated inequality to 829 // column position. Since the inequality must have sample value zero 830 // (since it corresponds to an equality), we are free to pivot with 831 // any column. Since both the unknowns have sample value before and after 832 // pivoting, no other sample values will change and the tableau will 833 // remain consistent. To pivot, we just need to find a column that has a 834 // non-zero coefficient in this row. There must be one since otherwise the 835 // equality would be 0 == 0, which should never be passed to 836 // addEqualityForDirection. 837 // 838 // After finding a column, we pivot with the column, after which we can 839 // get the dual from the inequality in column position as explained above. 840 if (simplex.con[i].orientation == Orientation::Column) { 841 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 842 } else { 843 if (simplex.con[i + 1].orientation == Orientation::Row) { 844 unsigned ineqRow = simplex.con[i + 1].pos; 845 // Since it is an equality, the sample value must be zero. 846 assert(simplex.tableau(ineqRow, 1) == 0 && 847 "Equality's sample value must be zero."); 848 for (unsigned col = 2; col < simplex.nCol; ++col) { 849 if (simplex.tableau(ineqRow, col) != 0) { 850 simplex.pivot(ineqRow, col); 851 break; 852 } 853 } 854 assert(simplex.con[i + 1].orientation == Orientation::Column && 855 "No pivot found. Equality has all-zeros row in tableau!"); 856 } 857 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 858 } 859 } 860 simplex.rollback(snap); 861 return *maybeWidth; 862 } 863 864 /// Remove the last equality that was added through addEqualityForDirection. 865 /// 866 /// We do this by rolling back to the snapshot at the top of the stack, which 867 /// should be a snapshot taken just before the last equality was added. 868 void removeLastEquality() { 869 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 870 simplex.rollback(snapshotStack.back()); 871 snapshotStack.pop_back(); 872 } 873 874 private: 875 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 876 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 877 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 878 /// where n is the dimension of the original polytope. 879 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 880 assert(2 * dir.size() == simplex.getNumVariables() && 881 "Direction vector has wrong dimensionality"); 882 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 883 coeffs.reserve(2 * dir.size()); 884 for (int64_t coeff : dir) 885 coeffs.push_back(-coeff); 886 coeffs.push_back(0); // constant term 887 return coeffs; 888 } 889 890 Simplex simplex; 891 /// The first index of the equality constraints, the index immediately after 892 /// the last constraint in the initial product simplex. 893 unsigned simplexConstraintOffset; 894 /// A stack of snapshots, used for rolling back. 895 SmallVector<unsigned, 8> snapshotStack; 896 }; 897 898 /// Reduce the basis to try and find a direction in which the polytope is 899 /// "thin". This only works for bounded polytopes. 900 /// 901 /// This is an implementation of the algorithm described in the paper 902 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 903 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 904 /// 905 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 906 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 907 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 908 /// 909 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 910 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 911 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 912 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 913 /// minimizing value of u, if it were allowed to be fractional. Due to 914 /// convexity, the minimizing integer value is either floor(dual_i) or 915 /// ceil(dual_i), so we just need to check which of these gives a lower 916 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 917 /// 918 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 919 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 920 /// same i). Otherwise, we increment i. 921 /// 922 /// We keep f values and duals cached and invalidate them when necessary. 923 /// Whenever possible, we use them instead of recomputing them. We implement the 924 /// algorithm as follows. 925 /// 926 /// In an iteration at i we need to compute: 927 /// a) width_i(b_{i + 1}) 928 /// b) width_i(b_i) 929 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 930 /// 931 /// If width_i(b_i) is not already cached, we compute it. 932 /// 933 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 934 /// store the duals from this computation. 935 /// 936 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 937 /// of u as explained before, caches the duals from this computation, sets 938 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 939 /// 940 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 941 /// decrement i, resulting in the basis 942 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 943 /// with corresponding f values 944 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 945 /// The values up to i - 1 remain unchanged. We have just gotten the middle 946 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 947 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 948 /// the cache. The iteration after decrementing needs exactly the duals from the 949 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 950 /// 951 /// When incrementing i, no cached f values get invalidated. However, the cached 952 /// duals do get invalidated as the duals for the higher levels are different. 953 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 954 const Fraction epsilon(3, 4); 955 956 if (level == basis.getNumRows() - 1) 957 return; 958 959 GBRSimplex gbrSimplex(*this); 960 SmallVector<Fraction, 8> width; 961 SmallVector<int64_t, 8> dual; 962 int64_t dualDenom; 963 964 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 965 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 966 // the new value of width_i(b_{i+1}). 967 // 968 // If dual_i is not an integer, the minimizing value must be either 969 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 970 // choose the minimizing value. 971 // 972 // If dual_i is an integer, we don't need to perform these computations. We 973 // know that in this case, 974 // a) u = dual_i. 975 // b) one can show that dual_j for j < i are the same duals we would have 976 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 977 // are the ones already in the cache. 978 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 979 // which 980 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 981 // be in the cache, so we get it from there and return it. 982 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 983 assert(i < level + dual.size() && "dual_i is not known!"); 984 985 int64_t u = floorDiv(dual[i - level], dualDenom); 986 basis.addToRow(i, i + 1, u); 987 if (dual[i - level] % dualDenom != 0) { 988 SmallVector<int64_t, 8> candidateDual[2]; 989 int64_t candidateDualDenom[2]; 990 Fraction widthI[2]; 991 992 // Initially u is floor(dual) and basis reflects this. 993 widthI[0] = gbrSimplex.computeWidthAndDuals( 994 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 995 996 // Now try ceil(dual), i.e. floor(dual) + 1. 997 ++u; 998 basis.addToRow(i, i + 1, 1); 999 widthI[1] = gbrSimplex.computeWidthAndDuals( 1000 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1001 1002 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1003 if (j == 0) 1004 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1005 basis.addToRow(i, i + 1, -1); 1006 dual = std::move(candidateDual[j]); 1007 dualDenom = candidateDualDenom[j]; 1008 return widthI[j]; 1009 } 1010 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1011 // When dual minimizes f_i(b_{i+1} + dual*b_i), this is equal to 1012 // width_{i+1}(b_{i+1}). 1013 return width[i + 1 - level]; 1014 }; 1015 1016 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1017 // from `level` to i - 1. 1018 unsigned i = level; 1019 while (i < basis.getNumRows() - 1) { 1020 if (i >= level + width.size()) { 1021 // We don't even know the value of f_i(b_i), so let's find that first. 1022 // We have to do this first since later we assume that width already 1023 // contains values up to and including i. 1024 1025 assert((i == 0 || i - 1 < level + width.size()) && 1026 "We are at level i but we don't know the value of width_{i-1}"); 1027 1028 // We don't actually use these duals at all, but it doesn't matter 1029 // because this case should only occur when i is level, and there are no 1030 // duals in that case anyway. 1031 assert(i == level && "This case should only occur when i == level"); 1032 width.push_back( 1033 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1034 } 1035 1036 if (i >= level + dual.size()) { 1037 assert(i + 1 >= level + width.size() && 1038 "We don't know dual_i but we know width_{i+1}"); 1039 // We don't know dual for our level, so let's find it. 1040 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1041 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 1042 dualDenom)); 1043 gbrSimplex.removeLastEquality(); 1044 } 1045 1046 // This variable stores width_i(b_{i+1} + u*b_i). 1047 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1048 if (widthICandidate < epsilon * width[i - level]) { 1049 basis.swapRows(i, i + 1); 1050 width[i - level] = widthICandidate; 1051 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1052 // swap, so we remove the cached values here. 1053 width.resize(i - level + 1); 1054 if (i == level) { 1055 dual.clear(); 1056 continue; 1057 } 1058 1059 gbrSimplex.removeLastEquality(); 1060 i--; 1061 continue; 1062 } 1063 1064 // Invalidate duals since the higher level needs to recompute its own duals. 1065 dual.clear(); 1066 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1067 i++; 1068 } 1069 } 1070 1071 /// Search for an integer sample point using a branch and bound algorithm. 1072 /// 1073 /// Each row in the basis matrix is a vector, and the set of basis vectors 1074 /// should span the space. Initially this is the identity matrix, 1075 /// i.e., the basis vectors are just the variables. 1076 /// 1077 /// In every level, a value is assigned to the level-th basis vector, as 1078 /// follows. Compute the minimum and maximum rational values of this direction. 1079 /// If only one integer point lies in this range, constrain the variable to 1080 /// have this value and recurse to the next variable. 1081 /// 1082 /// If the range has multiple values, perform generalized basis reduction via 1083 /// reduceBasis and then compute the bounds again. Now we try constraining 1084 /// this direction in the first value in this range and "recurse" to the next 1085 /// level. If we fail to find a sample, we try assigning the direction the next 1086 /// value in this range, and so on. 1087 /// 1088 /// If no integer sample is found from any of the assignments, or if the range 1089 /// contains no integer value, then of course the polytope is empty for the 1090 /// current assignment of the values in previous levels, so we return to 1091 /// the previous level. 1092 /// 1093 /// If we reach the last level where all the variables have been assigned values 1094 /// already, then we simply return the current sample point if it is integral, 1095 /// and go back to the previous level otherwise. 1096 /// 1097 /// To avoid potentially arbitrarily large recursion depths leading to stack 1098 /// overflows, this algorithm is implemented iteratively. 1099 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1100 if (empty) 1101 return {}; 1102 1103 unsigned nDims = var.size(); 1104 Matrix basis = Matrix::identity(nDims); 1105 1106 unsigned level = 0; 1107 // The snapshot just before constraining a direction to a value at each level. 1108 SmallVector<unsigned, 8> snapshotStack; 1109 // The maximum value in the range of the direction for each level. 1110 SmallVector<int64_t, 8> upperBoundStack; 1111 // The next value to try constraining the basis vector to at each level. 1112 SmallVector<int64_t, 8> nextValueStack; 1113 1114 snapshotStack.reserve(basis.getNumRows()); 1115 upperBoundStack.reserve(basis.getNumRows()); 1116 nextValueStack.reserve(basis.getNumRows()); 1117 while (level != -1u) { 1118 if (level == basis.getNumRows()) { 1119 // We've assigned values to all variables. Return if we have a sample, 1120 // or go back up to the previous level otherwise. 1121 if (auto maybeSample = getSamplePointIfIntegral()) 1122 return maybeSample; 1123 level--; 1124 continue; 1125 } 1126 1127 if (level >= upperBoundStack.size()) { 1128 // We haven't populated the stack values for this level yet, so we have 1129 // just come down a level ("recursed"). Find the lower and upper bounds. 1130 // If there is more than one integer point in the range, perform 1131 // generalized basis reduction. 1132 SmallVector<int64_t, 8> basisCoeffs = 1133 llvm::to_vector<8>(basis.getRow(level)); 1134 basisCoeffs.push_back(0); 1135 1136 int64_t minRoundedUp, maxRoundedDown; 1137 std::tie(minRoundedUp, maxRoundedDown) = 1138 computeIntegerBounds(basisCoeffs); 1139 1140 // Heuristic: if the sample point is integral at this point, just return 1141 // it. 1142 if (auto maybeSample = getSamplePointIfIntegral()) 1143 return *maybeSample; 1144 1145 if (minRoundedUp < maxRoundedDown) { 1146 reduceBasis(basis, level); 1147 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 1148 basisCoeffs.push_back(0); 1149 std::tie(minRoundedUp, maxRoundedDown) = 1150 computeIntegerBounds(basisCoeffs); 1151 } 1152 1153 snapshotStack.push_back(getSnapshot()); 1154 // The smallest value in the range is the next value to try. 1155 nextValueStack.push_back(minRoundedUp); 1156 upperBoundStack.push_back(maxRoundedDown); 1157 } 1158 1159 assert((snapshotStack.size() - 1 == level && 1160 nextValueStack.size() - 1 == level && 1161 upperBoundStack.size() - 1 == level) && 1162 "Mismatched variable stack sizes!"); 1163 1164 // Whether we "recursed" or "returned" from a lower level, we rollback 1165 // to the snapshot of the starting state at this level. (in the "recursed" 1166 // case this has no effect) 1167 rollback(snapshotStack.back()); 1168 int64_t nextValue = nextValueStack.back(); 1169 nextValueStack.back()++; 1170 if (nextValue > upperBoundStack.back()) { 1171 // We have exhausted the range and found no solution. Pop the stack and 1172 // return up a level. 1173 snapshotStack.pop_back(); 1174 nextValueStack.pop_back(); 1175 upperBoundStack.pop_back(); 1176 level--; 1177 continue; 1178 } 1179 1180 // Try the next value in the range and "recurse" into the next level. 1181 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 1182 basis.getRow(level).end()); 1183 basisCoeffs.push_back(-nextValue); 1184 addEquality(basisCoeffs); 1185 level++; 1186 } 1187 1188 return {}; 1189 } 1190 1191 /// Compute the minimum and maximum integer values the expression can take. We 1192 /// compute each separately. 1193 std::pair<int64_t, int64_t> 1194 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 1195 int64_t minRoundedUp; 1196 if (Optional<Fraction> maybeMin = 1197 computeOptimum(Simplex::Direction::Down, coeffs)) 1198 minRoundedUp = ceil(*maybeMin); 1199 else 1200 llvm_unreachable("Tableau should not be unbounded"); 1201 1202 int64_t maxRoundedDown; 1203 if (Optional<Fraction> maybeMax = 1204 computeOptimum(Simplex::Direction::Up, coeffs)) 1205 maxRoundedDown = floor(*maybeMax); 1206 else 1207 llvm_unreachable("Tableau should not be unbounded"); 1208 1209 return {minRoundedUp, maxRoundedDown}; 1210 } 1211 1212 void Simplex::print(raw_ostream &os) const { 1213 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 1214 if (empty) 1215 os << "Simplex marked empty!\n"; 1216 os << "var: "; 1217 for (unsigned i = 0; i < var.size(); ++i) { 1218 if (i > 0) 1219 os << ", "; 1220 var[i].print(os); 1221 } 1222 os << "\ncon: "; 1223 for (unsigned i = 0; i < con.size(); ++i) { 1224 if (i > 0) 1225 os << ", "; 1226 con[i].print(os); 1227 } 1228 os << '\n'; 1229 for (unsigned row = 0; row < nRow; ++row) { 1230 if (row > 0) 1231 os << ", "; 1232 os << "r" << row << ": " << rowUnknown[row]; 1233 } 1234 os << '\n'; 1235 os << "c0: denom, c1: const"; 1236 for (unsigned col = 2; col < nCol; ++col) 1237 os << ", c" << col << ": " << colUnknown[col]; 1238 os << '\n'; 1239 for (unsigned row = 0; row < nRow; ++row) { 1240 for (unsigned col = 0; col < nCol; ++col) 1241 os << tableau(row, col) << '\t'; 1242 os << '\n'; 1243 } 1244 os << '\n'; 1245 } 1246 1247 void Simplex::dump() const { print(llvm::errs()); } 1248 1249 } // namespace mlir 1250