1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 9 #include "mlir/Analysis/Presburger/Simplex.h" 10 #include "mlir/Analysis/Presburger/Matrix.h" 11 #include "mlir/Support/MathExtras.h" 12 #include "llvm/ADT/Optional.h" 13 14 using namespace mlir; 15 using namespace presburger; 16 17 using Direction = Simplex::Direction; 18 19 const int nullIndex = std::numeric_limits<int>::max(); 20 21 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM, unsigned symbolOffset, 22 unsigned nSymbol) 23 : usingBigM(mustUseBigM), nRow(0), nCol(getNumFixedCols() + nVar), 24 nRedundant(0), nSymbol(nSymbol), tableau(0, nCol), empty(false) { 25 assert(symbolOffset + nSymbol <= nVar); 26 27 colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex); 28 for (unsigned i = 0; i < nVar; ++i) { 29 var.emplace_back(Orientation::Column, /*restricted=*/false, 30 /*pos=*/getNumFixedCols() + i); 31 colUnknown.push_back(i); 32 } 33 34 // Move the symbols to be in columns [3, 3 + nSymbol). 35 for (unsigned i = 0; i < nSymbol; ++i) { 36 var[symbolOffset + i].isSymbol = true; 37 swapColumns(var[symbolOffset + i].pos, getNumFixedCols() + i); 38 } 39 } 40 41 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const { 42 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 43 return index >= 0 ? var[index] : con[~index]; 44 } 45 46 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const { 47 assert(col < nCol && "Invalid column"); 48 return unknownFromIndex(colUnknown[col]); 49 } 50 51 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const { 52 assert(row < nRow && "Invalid row"); 53 return unknownFromIndex(rowUnknown[row]); 54 } 55 56 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) { 57 assert(index != nullIndex && "nullIndex passed to unknownFromIndex"); 58 return index >= 0 ? var[index] : con[~index]; 59 } 60 61 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) { 62 assert(col < nCol && "Invalid column"); 63 return unknownFromIndex(colUnknown[col]); 64 } 65 66 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) { 67 assert(row < nRow && "Invalid row"); 68 return unknownFromIndex(rowUnknown[row]); 69 } 70 71 unsigned SimplexBase::addZeroRow(bool makeRestricted) { 72 ++nRow; 73 // If the tableau is not big enough to accomodate the extra row, we extend it. 74 if (nRow >= tableau.getNumRows()) 75 tableau.resizeVertically(nRow); 76 rowUnknown.push_back(~con.size()); 77 con.emplace_back(Orientation::Row, makeRestricted, nRow - 1); 78 undoLog.push_back(UndoLogEntry::RemoveLastConstraint); 79 80 // Zero out the new row. 81 tableau.fillRow(nRow - 1, 0); 82 83 tableau(nRow - 1, 0) = 1; 84 return con.size() - 1; 85 } 86 87 /// Add a new row to the tableau corresponding to the given constant term and 88 /// list of coefficients. The coefficients are specified as a vector of 89 /// (variable index, coefficient) pairs. 90 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) { 91 assert(coeffs.size() == var.size() + 1 && 92 "Incorrect number of coefficients!"); 93 94 addZeroRow(makeRestricted); 95 tableau(nRow - 1, 1) = coeffs.back(); 96 if (usingBigM) { 97 // When the lexicographic pivot rule is used, instead of the variables 98 // 99 // x, y, z ... 100 // 101 // we internally use the variables 102 // 103 // M, M + x, M + y, M + z, ... 104 // 105 // where M is the big M parameter. As such, when the user tries to add 106 // a row ax + by + cz + d, we express it in terms of our internal variables 107 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d. 108 // 109 // Symbols don't use the big M parameter since they do not get lex 110 // optimized. 111 int64_t bigMCoeff = 0; 112 for (unsigned i = 0; i < coeffs.size() - 1; ++i) 113 if (!var[i].isSymbol) 114 bigMCoeff -= coeffs[i]; 115 // The coefficient to the big M parameter is stored in column 2. 116 tableau(nRow - 1, 2) = bigMCoeff; 117 } 118 119 // Process each given variable coefficient. 120 for (unsigned i = 0; i < var.size(); ++i) { 121 unsigned pos = var[i].pos; 122 if (coeffs[i] == 0) 123 continue; 124 125 if (var[i].orientation == Orientation::Column) { 126 // If a variable is in column position at column col, then we just add the 127 // coefficient for that variable (scaled by the common row denominator) to 128 // the corresponding entry in the new row. 129 tableau(nRow - 1, pos) += coeffs[i] * tableau(nRow - 1, 0); 130 continue; 131 } 132 133 // If the variable is in row position, we need to add that row to the new 134 // row, scaled by the coefficient for the variable, accounting for the two 135 // rows potentially having different denominators. The new denominator is 136 // the lcm of the two. 137 int64_t lcm = mlir::lcm(tableau(nRow - 1, 0), tableau(pos, 0)); 138 int64_t nRowCoeff = lcm / tableau(nRow - 1, 0); 139 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0)); 140 tableau(nRow - 1, 0) = lcm; 141 for (unsigned col = 1; col < nCol; ++col) 142 tableau(nRow - 1, col) = 143 nRowCoeff * tableau(nRow - 1, col) + idxRowCoeff * tableau(pos, col); 144 } 145 146 normalizeRow(nRow - 1); 147 // Push to undo log along with the index of the new constraint. 148 return con.size() - 1; 149 } 150 151 /// Normalize the row by removing factors that are common between the 152 /// denominator and all the numerator coefficients. 153 void SimplexBase::normalizeRow(unsigned row) { 154 int64_t gcd = 0; 155 for (unsigned col = 0; col < nCol; ++col) { 156 gcd = llvm::greatestCommonDivisor(gcd, std::abs(tableau(row, col))); 157 // If the gcd becomes 1 then the row is already normalized. 158 if (gcd == 1) 159 return; 160 } 161 162 // Note that the gcd can never become zero since the first element of the row, 163 // the denominator, is non-zero. 164 assert(gcd != 0); 165 for (unsigned col = 0; col < nCol; ++col) 166 tableau(row, col) /= gcd; 167 } 168 169 namespace { 170 bool signMatchesDirection(int64_t elem, Direction direction) { 171 assert(elem != 0 && "elem should not be 0"); 172 return direction == Direction::Up ? elem > 0 : elem < 0; 173 } 174 175 Direction flippedDirection(Direction direction) { 176 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up; 177 } 178 } // namespace 179 180 /// We simply make the tableau consistent while maintaining a lexicopositive 181 /// basis transform, and then return the sample value. If the tableau becomes 182 /// empty, we return empty. 183 /// 184 /// Let the variables be x = (x_1, ... x_n). 185 /// Let the basis unknowns be y = (y_1, ... y_n). 186 /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b. 187 /// 188 /// As we will show below, A*y is either zero or lexicopositive. 189 /// Adding a lexicopositive vector to b will make it lexicographically 190 /// greater, so A*y + b is always equal to or lexicographically greater than b. 191 /// Thus, since we can attain x = b, that is the lexicographic minimum. 192 /// 193 /// We have that that every column in A is lexicopositive, i.e., has at least 194 /// one non-zero element, with the first such element being positive. Since for 195 /// the tableau to be consistent we must have non-negative sample values not 196 /// only for the constraints but also for the variables, we also have x >= 0 and 197 /// y >= 0, by which we mean every element in these vectors is non-negative. 198 /// 199 /// Proof that if every column in A is lexicopositive, and y >= 0, then 200 /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A. 201 /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next 202 /// row. If we run out of rows, A*y is zero and we are done; otherwise, we 203 /// encounter some row A_i that has a non-zero element. Every column is 204 /// lexicopositive and so has some positive element before any negative elements 205 /// occur, so the element in this row for any column, if non-zero, must be 206 /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are 207 /// non-negative, so if this is non-zero then it must be positive. Then the 208 /// first non-zero element of A*y is positive so A*y is lexicopositive. 209 /// 210 /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero 211 /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y 212 /// and we can completely ignore these columns of A. We now continue downwards, 213 /// looking for rows of A that have a non-zero element other than in the ignored 214 /// columns. If we find one, say A_k, once again these elements must be positive 215 /// since they are the first non-zero element in each of these columns, so if 216 /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we 217 /// add these to the set of ignored columns and continue to the next row. If we 218 /// run out of rows, then A*y is zero and we are done. 219 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() { 220 if (restoreRationalConsistency().failed()) 221 return OptimumKind::Empty; 222 return getRationalSample(); 223 } 224 225 /// Given a row that has a non-integer sample value, add an inequality such 226 /// that this fractional sample value is cut away from the polytope. The added 227 /// inequality will be such that no integer points are removed. i.e., the 228 /// integer lexmin, if it exists, is the same with and without this constraint. 229 /// 230 /// Let the row be 231 /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d, 232 /// where s_1, ... s_m are the symbols and 233 /// y_1, ... y_n are the other basis unknowns. 234 /// 235 /// For this to be an integer, we want 236 /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d) 237 /// Note that this constraint must always hold, independent of the basis, 238 /// becuse the row unknown's value always equals this expression, even if *we* 239 /// later compute the sample value from a different expression based on a 240 /// different basis. 241 /// 242 /// Let us assume that M has a factor of d in it. Imposing this constraint on M 243 /// does not in any way hinder us from finding a value of M that is big enough. 244 /// Moreover, this function is only called when the symbolic part of the sample, 245 /// a_1*s_1 + ... + a_m*s_m, is known to be an integer. 246 /// 247 /// Also, we can safely reduce the coefficients modulo d, so we have: 248 /// 249 /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k` 250 /// 251 /// Note that all coefficient modulos here are non-negative. Also, all the 252 /// unknowns are non-negative here as both constraints and variables are 253 /// non-negative in LexSimplexBase. (We used the big M trick to make the 254 /// variables non-negative). Therefore, the LHS here is non-negative. 255 /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and 256 /// is therefore non-negative as well. 257 /// 258 /// So we have 259 /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0. 260 /// 261 /// The constraint is violated when added (it would be useless otherwise) 262 /// so we immediately try to move it to a column. 263 LogicalResult LexSimplexBase::addCut(unsigned row) { 264 int64_t d = tableau(row, 0); 265 addZeroRow(/*makeRestricted=*/true); 266 tableau(nRow - 1, 0) = d; 267 tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -c%d. 268 tableau(nRow - 1, 2) = 0; 269 for (unsigned col = 3 + nSymbol; col < nCol; ++col) 270 tableau(nRow - 1, col) = mod(tableau(row, col), d); // b_i%d. 271 return moveRowUnknownToColumn(nRow - 1); 272 } 273 274 Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const { 275 for (const Unknown &u : var) { 276 if (u.orientation == Orientation::Column) 277 continue; 278 // If the sample value is of the form (a/d)M + b/d, we need b to be 279 // divisible by d. We assume M contains all possible 280 // factors and is divisible by everything. 281 unsigned row = u.pos; 282 if (tableau(row, 1) % tableau(row, 0) != 0) 283 return row; 284 } 285 return {}; 286 } 287 288 MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() { 289 // We first try to make the tableau consistent. 290 if (restoreRationalConsistency().failed()) 291 return OptimumKind::Empty; 292 293 // Then, if the sample value is integral, we are done. 294 while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) { 295 // Otherwise, for the variable whose row has a non-integral sample value, 296 // we add a cut, a constraint that remove this rational point 297 // while preserving all integer points, thus keeping the lexmin the same. 298 // We then again try to make the tableau with the new constraint 299 // consistent. This continues until the tableau becomes empty, in which 300 // case there is no integer point, or until there are no variables with 301 // non-integral sample values. 302 // 303 // Failure indicates that the tableau became empty, which occurs when the 304 // polytope is integer empty. 305 if (addCut(*maybeRow).failed()) 306 return OptimumKind::Empty; 307 if (restoreRationalConsistency().failed()) 308 return OptimumKind::Empty; 309 } 310 311 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample(); 312 assert(!sample.isEmpty() && "If we reached here the sample should exist!"); 313 if (sample.isUnbounded()) 314 return OptimumKind::Unbounded; 315 return llvm::to_vector<8>( 316 llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger))); 317 } 318 319 bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) { 320 SimplexRollbackScopeExit scopeExit(*this); 321 addInequality(coeffs); 322 return findIntegerLexMin().isEmpty(); 323 } 324 325 bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 326 return isSeparateInequality(getComplementIneq(coeffs)); 327 } 328 329 SmallVector<int64_t, 8> 330 SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const { 331 SmallVector<int64_t, 8> sample; 332 sample.reserve(nSymbol + 1); 333 for (unsigned col = 3; col < 3 + nSymbol; ++col) 334 sample.push_back(tableau(row, col)); 335 sample.push_back(tableau(row, 1)); 336 return sample; 337 } 338 339 void LexSimplexBase::appendSymbol() { 340 appendVariable(); 341 swapColumns(3 + nSymbol, nCol - 1); 342 var.back().isSymbol = true; 343 nSymbol++; 344 } 345 346 static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) { 347 assert(divisor > 0 && "divisor must be positive!"); 348 return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; }); 349 } 350 351 bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const { 352 int64_t denom = tableau(row, 0); 353 return tableau(row, 1) % denom == 0 && 354 isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom); 355 } 356 357 /// This proceeds similarly to LexSimplex::addCut(). We are given a row that has 358 /// a symbolic sample value with fractional coefficients. 359 /// 360 /// Let the row be 361 /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d, 362 /// where s_1, ... s_m are the symbols and 363 /// y_1, ... y_n are the other basis unknowns. 364 /// 365 /// As in LexSimplex::addCut, for this to be an integer, we want 366 /// 367 /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d) 368 /// 369 /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that 370 /// 371 /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k 372 /// 373 /// where we take a modulo of the whole symbolic expression on the right to 374 /// bring it into the range [0, d - 1]. Therefore, as in LexSimplex::addCut, 375 /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have 376 /// k >= 0 as well. We realize the modulo of the symbolic expression by adding a 377 /// division variable 378 /// 379 /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d 380 /// 381 /// to the symbol domain, so the equality becomes 382 /// 383 /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k 384 /// 385 /// So the cut is 386 /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0 387 /// This constraint is violated when added so we immediately try to move it to a 388 /// column. 389 LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) { 390 int64_t d = tableau(row, 0); 391 392 // Add the division variable `q` described above to the symbol domain. 393 // q = ((-c%d) + sum_i (-a_i%d)s_i)/d. 394 SmallVector<int64_t, 8> domainDivCoeffs; 395 domainDivCoeffs.reserve(nSymbol + 1); 396 for (unsigned col = 3; col < 3 + nSymbol; ++col) 397 domainDivCoeffs.push_back(mod(-tableau(row, col), d)); // (-a_i%d)s_i 398 domainDivCoeffs.push_back(mod(-tableau(row, 1), d)); // -c%d. 399 400 domainSimplex.addDivisionVariable(domainDivCoeffs, d); 401 domainPoly.addLocalFloorDiv(domainDivCoeffs, d); 402 403 // Update `this` to account for the additional symbol we just added. 404 appendSymbol(); 405 406 // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0. 407 addZeroRow(/*makeRestricted=*/true); 408 tableau(nRow - 1, 0) = d; 409 tableau(nRow - 1, 2) = 0; 410 411 tableau(nRow - 1, 1) = -mod(-tableau(row, 1), d); // -(-c%d). 412 for (unsigned col = 3; col < 3 + nSymbol - 1; ++col) 413 tableau(nRow - 1, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i. 414 tableau(nRow - 1, 3 + nSymbol - 1) = d; // q*d. 415 416 for (unsigned col = 3 + nSymbol; col < nCol; ++col) 417 tableau(nRow - 1, col) = mod(tableau(row, col), d); // (b_i%d)y_i. 418 return moveRowUnknownToColumn(nRow - 1); 419 } 420 421 void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const { 422 Matrix output(0, domainPoly.getNumIds() + 1); 423 output.reserveRows(result.lexmin.getNumOutputs()); 424 for (const Unknown &u : var) { 425 if (u.isSymbol) 426 continue; 427 428 if (u.orientation == Orientation::Column) { 429 // M + u has a sample value of zero so u has a sample value of -M, i.e, 430 // unbounded. 431 result.unboundedDomain.unionInPlace(domainPoly); 432 return; 433 } 434 435 int64_t denom = tableau(u.pos, 0); 436 if (tableau(u.pos, 2) < denom) { 437 // M + u has a sample value of fM + something, where f < 1, so 438 // u = (f - 1)M + something, which has a negative coefficient for M, 439 // and so is unbounded. 440 result.unboundedDomain.unionInPlace(domainPoly); 441 return; 442 } 443 assert(tableau(u.pos, 2) == denom && 444 "Coefficient of M should not be greater than 1!"); 445 446 SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos); 447 for (int64_t &elem : sample) { 448 assert(elem % denom == 0 && "coefficients must be integral!"); 449 elem /= denom; 450 } 451 output.appendExtraRow(sample); 452 } 453 result.lexmin.addPiece(domainPoly, output); 454 } 455 456 Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() { 457 // First look for rows that are clearly violated just from the big M 458 // coefficient, without needing to perform any simplex queries on the domain. 459 for (unsigned row = 0; row < nRow; ++row) 460 if (tableau(row, 2) < 0) 461 return row; 462 463 for (unsigned row = 0; row < nRow; ++row) { 464 if (tableau(row, 2) > 0) 465 continue; 466 if (domainSimplex.isSeparateInequality(getSymbolicSampleNumerator(row))) { 467 // Sample numerator always takes negative values in the symbol domain. 468 return row; 469 } 470 } 471 return {}; 472 } 473 474 Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() { 475 for (const Unknown &u : var) { 476 if (u.orientation == Orientation::Column) 477 continue; 478 assert(!u.isSymbol && "Symbol should not be in row orientation!"); 479 if (!isSymbolicSampleIntegral(u.pos)) 480 return u.pos; 481 } 482 return {}; 483 } 484 485 /// The non-branching pivots are just the ones moving the rows 486 /// that are always violated in the symbol domain. 487 LogicalResult SymbolicLexSimplex::doNonBranchingPivots() { 488 while (Optional<unsigned> row = maybeGetAlwaysViolatedRow()) 489 if (moveRowUnknownToColumn(*row).failed()) 490 return failure(); 491 return success(); 492 } 493 494 SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() { 495 SymbolicLexMin result(nSymbol, var.size() - nSymbol); 496 497 /// The algorithm is more naturally expressed recursively, but we implement 498 /// it iteratively here to avoid potential issues with stack overflows in the 499 /// compiler. We explicitly maintain the stack frames in a vector. 500 /// 501 /// To "recurse", we store the current "stack frame", i.e., state variables 502 /// that we will need when we "return", into `stack`, increment `level`, and 503 /// `continue`. To "tail recurse", we just `continue`. 504 /// To "return", we decrement `level` and `continue`. 505 /// 506 /// When there is no stack frame for the current `level`, this indicates that 507 /// we have just "recursed" or "tail recursed". When there does exist one, 508 /// this indicates that we have just "returned" from recursing. There is only 509 /// one point at which non-tail calls occur so we always "return" there. 510 unsigned level = 1; 511 struct StackFrame { 512 int splitIndex; 513 unsigned snapshot; 514 unsigned domainSnapshot; 515 IntegerRelation::CountsSnapshot domainPolyCounts; 516 }; 517 SmallVector<StackFrame, 8> stack; 518 519 while (level > 0) { 520 assert(level >= stack.size()); 521 if (level > stack.size()) { 522 if (empty || domainSimplex.findIntegerLexMin().isEmpty()) { 523 // No integer points; return. 524 --level; 525 continue; 526 } 527 528 if (doNonBranchingPivots().failed()) { 529 // Could not find pivots for violated constraints; return. 530 --level; 531 continue; 532 } 533 534 unsigned splitRow; 535 SmallVector<int64_t, 8> symbolicSample; 536 for (splitRow = 0; splitRow < nRow; ++splitRow) { 537 if (tableau(splitRow, 2) > 0) 538 continue; 539 assert(tableau(splitRow, 2) == 0 && 540 "Non-branching pivots should have been handled already!"); 541 542 symbolicSample = getSymbolicSampleNumerator(splitRow); 543 if (domainSimplex.isRedundantInequality(symbolicSample)) 544 continue; 545 546 // It's neither redundant nor separate, so it takes both positive and 547 // negative values, and hence constitutes a row for which we need to 548 // split the domain and separately run each case. 549 assert(!domainSimplex.isSeparateInequality(symbolicSample) && 550 "Non-branching pivots should have been handled already!"); 551 break; 552 } 553 554 if (splitRow < nRow) { 555 unsigned domainSnapshot = domainSimplex.getSnapshot(); 556 IntegerRelation::CountsSnapshot domainPolyCounts = 557 domainPoly.getCounts(); 558 559 // First, we consider the part of the domain where the row is not 560 // violated. We don't have to do any pivots for the row in this case, 561 // but we record the additional constraint that defines this part of 562 // the domain. 563 domainSimplex.addInequality(symbolicSample); 564 domainPoly.addInequality(symbolicSample); 565 566 // Recurse. 567 // 568 // On return, the basis as a set is preserved but not the internal 569 // ordering within rows or columns. Thus, we take note of the index of 570 // the Unknown that caused the split, which may be in a different 571 // row when we come back from recursing. We will need this to recurse 572 // on the other part of the split domain, where the row is violated. 573 // 574 // Note that we have to capture the index above and not a reference to 575 // the Unknown itself, since the array it lives in might get 576 // reallocated. 577 int splitIndex = rowUnknown[splitRow]; 578 unsigned snapshot = getSnapshot(); 579 stack.push_back( 580 {splitIndex, snapshot, domainSnapshot, domainPolyCounts}); 581 ++level; 582 continue; 583 } 584 585 // The tableau is rationally consistent for the current domain. 586 // Now we look for non-integral sample values and add cuts for them. 587 if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) { 588 if (addSymbolicCut(*row).failed()) { 589 // No integral points; return. 590 --level; 591 continue; 592 } 593 594 // Rerun this level with the added cut constraint (tail recurse). 595 continue; 596 } 597 598 // Record output and return. 599 recordOutput(result); 600 --level; 601 continue; 602 } 603 604 if (level == stack.size()) { 605 // We have "returned" from "recursing". 606 const StackFrame &frame = stack.back(); 607 domainPoly.truncate(frame.domainPolyCounts); 608 domainSimplex.rollback(frame.domainSnapshot); 609 rollback(frame.snapshot); 610 const Unknown &u = unknownFromIndex(frame.splitIndex); 611 612 // Drop the frame. We don't need it anymore. 613 stack.pop_back(); 614 615 // Now we consider the part of the domain where the unknown `splitIndex` 616 // was negative. 617 assert(u.orientation == Orientation::Row && 618 "The split row should have been returned to row orientation!"); 619 SmallVector<int64_t, 8> splitIneq = 620 getComplementIneq(getSymbolicSampleNumerator(u.pos)); 621 if (moveRowUnknownToColumn(u.pos).failed()) { 622 // The unknown can't be made non-negative; return. 623 --level; 624 continue; 625 } 626 627 // The unknown can be made negative; recurse with the corresponding domain 628 // constraints. 629 domainSimplex.addInequality(splitIneq); 630 domainPoly.addInequality(splitIneq); 631 632 // We are now taking care of the second half of the domain and we don't 633 // need to do anything else here after returning, so it's a tail recurse. 634 continue; 635 } 636 } 637 638 return result; 639 } 640 641 bool LexSimplex::rowIsViolated(unsigned row) const { 642 if (tableau(row, 2) < 0) 643 return true; 644 if (tableau(row, 2) == 0 && tableau(row, 1) < 0) 645 return true; 646 return false; 647 } 648 649 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const { 650 for (unsigned row = 0; row < nRow; ++row) 651 if (rowIsViolated(row)) 652 return row; 653 return {}; 654 } 655 656 /// We simply look for violated rows and keep trying to move them to column 657 /// orientation, which always succeeds unless the constraints have no solution 658 /// in which case we just give up and return. 659 LogicalResult LexSimplex::restoreRationalConsistency() { 660 if (empty) 661 return failure(); 662 while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow()) 663 if (moveRowUnknownToColumn(*maybeViolatedRow).failed()) 664 return failure(); 665 return success(); 666 } 667 668 // Move the row unknown to column orientation while preserving lexicopositivity 669 // of the basis transform. The sample value of the row must be negative. 670 // 671 // We only consider pivots where the pivot element is positive. Suppose no such 672 // pivot exists, i.e., some violated row has no positive coefficient for any 673 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d, 674 // where d is the denominator, s is the sample value and the c_i are the basis 675 // coefficients. Since any feasible assignment of the basis satisfies u_i >= 0 676 // for all i, and we have s < 0 as well as c_i < 0 for all i, any feasible 677 // assignment would violate this row and therefore the constraints have no 678 // solution. 679 // 680 // We can preserve lexicopositivity by picking the pivot column with positive 681 // pivot element that makes the lexicographically smallest change to the sample 682 // point. 683 // 684 // Proof. Let 685 // x = (x_1, ... x_n) be the variables, 686 // z = (z_1, ... z_m) be the constraints, 687 // y = (y_1, ... y_n) be the current basis, and 688 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s. 689 // B is basically the simplex tableau of our implementation except that instead 690 // of only describing the transform to get back the non-basis unknowns, it 691 // defines the values of all the unknowns in terms of the basis unknowns. 692 // Similarly, s is the column for the sample value. 693 // 694 // Our goal is to show that each column in B, restricted to the first n 695 // rows, is lexicopositive after the pivot if it is so before. This is 696 // equivalent to saying the columns in the whole matrix are lexicopositive; 697 // there must be some non-zero element in every column in the first n rows since 698 // the n variables cannot be spanned without using all the n basis unknowns. 699 // 700 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot 701 // transform for the tableau derived for SimplexBase::pivot: 702 // 703 // pivot col other col pivot col other col 704 // pivot row a b -> pivot row 1/a -b/a 705 // other row c d other row c/a d - bc/a 706 // 707 // Similarly, a pivot results in B changing to B' and c to c'; the difference 708 // between the tableau and these matrices B and B' is that there is no special 709 // case for the pivot row, since it continues to represent the same unknown. The 710 // same formula applies for all rows: 711 // 712 // B'.col(j) = B.col(j) / B(i,j) 713 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j 714 // and similarly, s' = s - s_i * B.col(j) / B(i,j). 715 // 716 // Since the row is violated, we have s_i < 0, so the change in sample value 717 // when pivoting with column a is lexicographically smaller than that when 718 // pivoting with column b iff B.col(a) / B(i, a) is lexicographically smaller 719 // than B.col(b) / B(i, b). 720 // 721 // Since B(i, j) > 0, column j remains lexicopositive. 722 // 723 // For the other columns, suppose C.col(k) is not lexicopositive. 724 // This means that for some p, for all t < p, 725 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and 726 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j), 727 // which is in contradiction to the fact that B.col(j) / B(i,j) must be 728 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically 729 // minimizes the change in sample value. 730 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) { 731 Optional<unsigned> maybeColumn; 732 for (unsigned col = 3 + nSymbol; col < nCol; ++col) { 733 if (tableau(row, col) <= 0) 734 continue; 735 maybeColumn = 736 !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col); 737 } 738 739 if (!maybeColumn) { 740 markEmpty(); 741 return failure(); 742 } 743 744 pivot(row, *maybeColumn); 745 return success(); 746 } 747 748 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA, 749 unsigned colB) const { 750 // First, let's consider the non-symbolic case. 751 // A pivot causes the following change. (in the diagram the matrix elements 752 // are shown as rationals and there is no common denominator used) 753 // 754 // pivot col big M col const col 755 // pivot row a p b 756 // other row c q d 757 // | 758 // v 759 // 760 // pivot col big M col const col 761 // pivot row 1/a -p/a -b/a 762 // other row c/a q - pc/a d - bc/a 763 // 764 // Let the sample value of the pivot row be s = pM + b before the pivot. Since 765 // the pivot row represents a violated constraint we know that s < 0. 766 // 767 // If the variable is a non-pivot column, its sample value is zero before and 768 // after the pivot. 769 // 770 // If the variable is the pivot column, then its sample value goes from 0 to 771 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample 772 // value is -s/a. 773 // 774 // If the variable is the pivot row, its sample value goes from s to 0, for a 775 // change of -s. 776 // 777 // If the variable is a non-pivot row, its sample value changes from 778 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value 779 // is -(pM + b)(c/a) = -sc/a. 780 // 781 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is 782 // fixed for all calls to this function since the row and tableau are fixed. 783 // The callee just wants to compare the return values with the return value of 784 // other invocations of the same function. So the -s is common for all 785 // comparisons involved and can be ignored, since -s is strictly positive. 786 // 787 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as 788 // appropriate. This allows us to run the entire algorithm treating M 789 // symbolically, as the pivot to be performed does not depend on the value 790 // of M, so long as the sample value s is negative. Note that this is not 791 // because of any special feature of M; by the same argument, we ignore the 792 // symbols too. The caller ensure that the sample value s is negative for 793 // all possible values of the symbols. 794 auto getSampleChangeCoeffForVar = [this, row](unsigned col, 795 const Unknown &u) -> Fraction { 796 int64_t a = tableau(row, col); 797 if (u.orientation == Orientation::Column) { 798 // Pivot column case. 799 if (u.pos == col) 800 return {1, a}; 801 802 // Non-pivot column case. 803 return {0, 1}; 804 } 805 806 // Pivot row case. 807 if (u.pos == row) 808 return {1, 1}; 809 810 // Non-pivot row case. 811 int64_t c = tableau(u.pos, col); 812 return {c, a}; 813 }; 814 815 for (const Unknown &u : var) { 816 Fraction changeA = getSampleChangeCoeffForVar(colA, u); 817 Fraction changeB = getSampleChangeCoeffForVar(colB, u); 818 if (changeA < changeB) 819 return colA; 820 if (changeA > changeB) 821 return colB; 822 } 823 824 // If we reached here, both result in exactly the same changes, so it 825 // doesn't matter which we return. 826 return colA; 827 } 828 829 /// Find a pivot to change the sample value of the row in the specified 830 /// direction. The returned pivot row will involve `row` if and only if the 831 /// unknown is unbounded in the specified direction. 832 /// 833 /// To increase (resp. decrease) the value of a row, we need to find a live 834 /// column with a non-zero coefficient. If the coefficient is positive, we need 835 /// to increase (decrease) the value of the column, and if the coefficient is 836 /// negative, we need to decrease (increase) the value of the column. Also, 837 /// we cannot decrease the sample value of restricted columns. 838 /// 839 /// If multiple columns are valid, we break ties by considering a lexicographic 840 /// ordering where we prefer unknowns with lower index. 841 Optional<SimplexBase::Pivot> Simplex::findPivot(int row, 842 Direction direction) const { 843 Optional<unsigned> col; 844 for (unsigned j = 2; j < nCol; ++j) { 845 int64_t elem = tableau(row, j); 846 if (elem == 0) 847 continue; 848 849 if (unknownFromColumn(j).restricted && 850 !signMatchesDirection(elem, direction)) 851 continue; 852 if (!col || colUnknown[j] < colUnknown[*col]) 853 col = j; 854 } 855 856 if (!col) 857 return {}; 858 859 Direction newDirection = 860 tableau(row, *col) < 0 ? flippedDirection(direction) : direction; 861 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col); 862 return Pivot{maybePivotRow.getValueOr(row), *col}; 863 } 864 865 /// Swap the associated unknowns for the row and the column. 866 /// 867 /// First we swap the index associated with the row and column. Then we update 868 /// the unknowns to reflect their new position and orientation. 869 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) { 870 std::swap(rowUnknown[row], colUnknown[col]); 871 Unknown &uCol = unknownFromColumn(col); 872 Unknown &uRow = unknownFromRow(row); 873 uCol.orientation = Orientation::Column; 874 uRow.orientation = Orientation::Row; 875 uCol.pos = col; 876 uRow.pos = row; 877 } 878 879 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); } 880 881 /// Pivot pivotRow and pivotCol. 882 /// 883 /// Let R be the pivot row unknown and let C be the pivot col unknown. 884 /// Since initially R = a*C + sum b_i * X_i 885 /// (where the sum is over the other column's unknowns, x_i) 886 /// C = (R - (sum b_i * X_i))/a 887 /// 888 /// Let u be some other row unknown. 889 /// u = c*C + sum d_i * X_i 890 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i 891 /// 892 /// This results in the following transform: 893 /// pivot col other col pivot col other col 894 /// pivot row a b -> pivot row 1/a -b/a 895 /// other row c d other row c/a d - bc/a 896 /// 897 /// Taking into account the common denominators p and q: 898 /// 899 /// pivot col other col pivot col other col 900 /// pivot row a/p b/p -> pivot row p/a -b/a 901 /// other row c/q d/q other row cp/aq (da - bc)/aq 902 /// 903 /// The pivot row transform is accomplished be swapping a with the pivot row's 904 /// common denominator and negating the pivot row except for the pivot column 905 /// element. 906 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) { 907 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column"); 908 assert(!unknownFromColumn(pivotCol).isSymbol); 909 910 swapRowWithCol(pivotRow, pivotCol); 911 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol)); 912 // We need to negate the whole pivot row except for the pivot column. 913 if (tableau(pivotRow, 0) < 0) { 914 // If the denominator is negative, we negate the row by simply negating the 915 // denominator. 916 tableau(pivotRow, 0) = -tableau(pivotRow, 0); 917 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol); 918 } else { 919 for (unsigned col = 1; col < nCol; ++col) { 920 if (col == pivotCol) 921 continue; 922 tableau(pivotRow, col) = -tableau(pivotRow, col); 923 } 924 } 925 normalizeRow(pivotRow); 926 927 for (unsigned row = 0; row < nRow; ++row) { 928 if (row == pivotRow) 929 continue; 930 if (tableau(row, pivotCol) == 0) // Nothing to do. 931 continue; 932 tableau(row, 0) *= tableau(pivotRow, 0); 933 for (unsigned j = 1; j < nCol; ++j) { 934 if (j == pivotCol) 935 continue; 936 // Add rather than subtract because the pivot row has been negated. 937 tableau(row, j) = tableau(row, j) * tableau(pivotRow, 0) + 938 tableau(row, pivotCol) * tableau(pivotRow, j); 939 } 940 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol); 941 normalizeRow(row); 942 } 943 } 944 945 /// Perform pivots until the unknown has a non-negative sample value or until 946 /// no more upward pivots can be performed. Return success if we were able to 947 /// bring the row to a non-negative sample value, and failure otherwise. 948 LogicalResult Simplex::restoreRow(Unknown &u) { 949 assert(u.orientation == Orientation::Row && 950 "unknown should be in row position"); 951 952 while (tableau(u.pos, 1) < 0) { 953 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up); 954 if (!maybePivot) 955 break; 956 957 pivot(*maybePivot); 958 if (u.orientation == Orientation::Column) 959 return success(); // the unknown is unbounded above. 960 } 961 return success(tableau(u.pos, 1) >= 0); 962 } 963 964 /// Find a row that can be used to pivot the column in the specified direction. 965 /// This returns an empty optional if and only if the column is unbounded in the 966 /// specified direction (ignoring skipRow, if skipRow is set). 967 /// 968 /// If skipRow is set, this row is not considered, and (if it is restricted) its 969 /// restriction may be violated by the returned pivot. Usually, skipRow is set 970 /// because we don't want to move it to column position unless it is unbounded, 971 /// and we are either trying to increase the value of skipRow or explicitly 972 /// trying to make skipRow negative, so we are not concerned about this. 973 /// 974 /// If the direction is up (resp. down) and a restricted row has a negative 975 /// (positive) coefficient for the column, then this row imposes a bound on how 976 /// much the sample value of the column can change. Such a row with constant 977 /// term c and coefficient f for the column imposes a bound of c/|f| on the 978 /// change in sample value (in the specified direction). (note that c is 979 /// non-negative here since the row is restricted and the tableau is consistent) 980 /// 981 /// We iterate through the rows and pick the row which imposes the most 982 /// stringent bound, since pivoting with a row changes the row's sample value to 983 /// 0 and hence saturates the bound it imposes. We break ties between rows that 984 /// impose the same bound by considering a lexicographic ordering where we 985 /// prefer unknowns with lower index value. 986 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow, 987 Direction direction, 988 unsigned col) const { 989 Optional<unsigned> retRow; 990 // Initialize these to zero in order to silence a warning about retElem and 991 // retConst being used uninitialized in the initialization of `diff` below. In 992 // reality, these are always initialized when that line is reached since these 993 // are set whenever retRow is set. 994 int64_t retElem = 0, retConst = 0; 995 for (unsigned row = nRedundant; row < nRow; ++row) { 996 if (skipRow && row == *skipRow) 997 continue; 998 int64_t elem = tableau(row, col); 999 if (elem == 0) 1000 continue; 1001 if (!unknownFromRow(row).restricted) 1002 continue; 1003 if (signMatchesDirection(elem, direction)) 1004 continue; 1005 int64_t constTerm = tableau(row, 1); 1006 1007 if (!retRow) { 1008 retRow = row; 1009 retElem = elem; 1010 retConst = constTerm; 1011 continue; 1012 } 1013 1014 int64_t diff = retConst * elem - constTerm * retElem; 1015 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) || 1016 (diff != 0 && !signMatchesDirection(diff, direction))) { 1017 retRow = row; 1018 retElem = elem; 1019 retConst = constTerm; 1020 } 1021 } 1022 return retRow; 1023 } 1024 1025 bool SimplexBase::isEmpty() const { return empty; } 1026 1027 void SimplexBase::swapRows(unsigned i, unsigned j) { 1028 if (i == j) 1029 return; 1030 tableau.swapRows(i, j); 1031 std::swap(rowUnknown[i], rowUnknown[j]); 1032 unknownFromRow(i).pos = i; 1033 unknownFromRow(j).pos = j; 1034 } 1035 1036 void SimplexBase::swapColumns(unsigned i, unsigned j) { 1037 assert(i < nCol && j < nCol && "Invalid columns provided!"); 1038 if (i == j) 1039 return; 1040 tableau.swapColumns(i, j); 1041 std::swap(colUnknown[i], colUnknown[j]); 1042 unknownFromColumn(i).pos = i; 1043 unknownFromColumn(j).pos = j; 1044 } 1045 1046 /// Mark this tableau empty and push an entry to the undo stack. 1047 void SimplexBase::markEmpty() { 1048 // If the set is already empty, then we shouldn't add another UnmarkEmpty log 1049 // entry, since in that case the Simplex will be erroneously marked as 1050 // non-empty when rolling back past this point. 1051 if (empty) 1052 return; 1053 undoLog.push_back(UndoLogEntry::UnmarkEmpty); 1054 empty = true; 1055 } 1056 1057 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 1058 /// is the current number of variables, then the corresponding inequality is 1059 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0. 1060 /// 1061 /// We add the inequality and mark it as restricted. We then try to make its 1062 /// sample value non-negative. If this is not possible, the tableau has become 1063 /// empty and we mark it as such. 1064 void Simplex::addInequality(ArrayRef<int64_t> coeffs) { 1065 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true); 1066 LogicalResult result = restoreRow(con[conIndex]); 1067 if (failed(result)) 1068 markEmpty(); 1069 } 1070 1071 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n 1072 /// is the current number of variables, then the corresponding equality is 1073 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0. 1074 /// 1075 /// We simply add two opposing inequalities, which force the expression to 1076 /// be zero. 1077 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) { 1078 addInequality(coeffs); 1079 SmallVector<int64_t, 8> negatedCoeffs; 1080 for (int64_t coeff : coeffs) 1081 negatedCoeffs.emplace_back(-coeff); 1082 addInequality(negatedCoeffs); 1083 } 1084 1085 unsigned SimplexBase::getNumVariables() const { return var.size(); } 1086 unsigned SimplexBase::getNumConstraints() const { return con.size(); } 1087 1088 /// Return a snapshot of the current state. This is just the current size of the 1089 /// undo log. 1090 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); } 1091 1092 unsigned SimplexBase::getSnapshotBasis() { 1093 SmallVector<int, 8> basis; 1094 for (int index : colUnknown) { 1095 if (index != nullIndex) 1096 basis.push_back(index); 1097 } 1098 savedBases.push_back(std::move(basis)); 1099 1100 undoLog.emplace_back(UndoLogEntry::RestoreBasis); 1101 return undoLog.size() - 1; 1102 } 1103 1104 void SimplexBase::removeLastConstraintRowOrientation() { 1105 assert(con.back().orientation == Orientation::Row); 1106 1107 // Move this unknown to the last row and remove the last row from the 1108 // tableau. 1109 swapRows(con.back().pos, nRow - 1); 1110 // It is not strictly necessary to shrink the tableau, but for now we 1111 // maintain the invariant that the tableau has exactly nRow rows. 1112 tableau.resizeVertically(nRow - 1); 1113 nRow--; 1114 rowUnknown.pop_back(); 1115 con.pop_back(); 1116 } 1117 1118 // This doesn't find a pivot row only if the column has zero 1119 // coefficients for every row. 1120 // 1121 // If the unknown is a constraint, this can't happen, since it was added 1122 // initially as a row. Such a row could never have been pivoted to a column. So 1123 // a pivot row will always be found if we have a constraint. 1124 // 1125 // If we have a variable, then the column has zero coefficients for every row 1126 // iff no constraints have been added with a non-zero coefficient for this row. 1127 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) { 1128 for (unsigned row = nRedundant; row < nRow; ++row) 1129 if (tableau(row, col) != 0) 1130 return row; 1131 return {}; 1132 } 1133 1134 // It's not valid to remove the constraint by deleting the column since this 1135 // would result in an invalid basis. 1136 void Simplex::undoLastConstraint() { 1137 if (con.back().orientation == Orientation::Column) { 1138 // We try to find any pivot row for this column that preserves tableau 1139 // consistency (except possibly the column itself, which is going to be 1140 // deallocated anyway). 1141 // 1142 // If no pivot row is found in either direction, then the unknown is 1143 // unbounded in both directions and we are free to perform any pivot at 1144 // all. To do this, we just need to find any row with a non-zero 1145 // coefficient for the column. findAnyPivotRow will always be able to 1146 // find such a row for a constraint. 1147 unsigned column = con.back().pos; 1148 if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) { 1149 pivot(*maybeRow, column); 1150 } else if (Optional<unsigned> maybeRow = 1151 findPivotRow({}, Direction::Down, column)) { 1152 pivot(*maybeRow, column); 1153 } else { 1154 Optional<unsigned> row = findAnyPivotRow(column); 1155 assert(row.hasValue() && "Pivot should always exist for a constraint!"); 1156 pivot(*row, column); 1157 } 1158 } 1159 removeLastConstraintRowOrientation(); 1160 } 1161 1162 // It's not valid to remove the constraint by deleting the column since this 1163 // would result in an invalid basis. 1164 void LexSimplexBase::undoLastConstraint() { 1165 if (con.back().orientation == Orientation::Column) { 1166 // When removing the last constraint during a rollback, we just need to find 1167 // any pivot at all, i.e., any row with non-zero coefficient for the 1168 // column, because when rolling back a lexicographic simplex, we always 1169 // end by restoring the exact basis that was present at the time of the 1170 // snapshot, so what pivots we perform while undoing doesn't matter as 1171 // long as we get the unknown to row orientation and remove it. 1172 unsigned column = con.back().pos; 1173 Optional<unsigned> row = findAnyPivotRow(column); 1174 assert(row.hasValue() && "Pivot should always exist for a constraint!"); 1175 pivot(*row, column); 1176 } 1177 removeLastConstraintRowOrientation(); 1178 } 1179 1180 void SimplexBase::undo(UndoLogEntry entry) { 1181 if (entry == UndoLogEntry::RemoveLastConstraint) { 1182 // Simplex and LexSimplex handle this differently, so we call out to a 1183 // virtual function to handle this. 1184 undoLastConstraint(); 1185 } else if (entry == UndoLogEntry::RemoveLastVariable) { 1186 // Whenever we are rolling back the addition of a variable, it is guaranteed 1187 // that the variable will be in column position. 1188 // 1189 // We can see this as follows: any constraint that depends on this variable 1190 // was added after this variable was added, so the addition of such 1191 // constraints should already have been rolled back by the time we get to 1192 // rolling back the addition of the variable. Therefore, no constraint 1193 // currently has a component along the variable, so the variable itself must 1194 // be part of the basis. 1195 assert(var.back().orientation == Orientation::Column && 1196 "Variable to be removed must be in column orientation!"); 1197 1198 if (var.back().isSymbol) 1199 nSymbol--; 1200 1201 // Move this variable to the last column and remove the column from the 1202 // tableau. 1203 swapColumns(var.back().pos, nCol - 1); 1204 tableau.resizeHorizontally(nCol - 1); 1205 var.pop_back(); 1206 colUnknown.pop_back(); 1207 nCol--; 1208 } else if (entry == UndoLogEntry::UnmarkEmpty) { 1209 empty = false; 1210 } else if (entry == UndoLogEntry::UnmarkLastRedundant) { 1211 nRedundant--; 1212 } else if (entry == UndoLogEntry::RestoreBasis) { 1213 assert(!savedBases.empty() && "No bases saved!"); 1214 1215 SmallVector<int, 8> basis = std::move(savedBases.back()); 1216 savedBases.pop_back(); 1217 1218 for (int index : basis) { 1219 Unknown &u = unknownFromIndex(index); 1220 if (u.orientation == Orientation::Column) 1221 continue; 1222 for (unsigned col = getNumFixedCols(); col < nCol; col++) { 1223 assert(colUnknown[col] != nullIndex && 1224 "Column should not be a fixed column!"); 1225 if (std::find(basis.begin(), basis.end(), colUnknown[col]) != 1226 basis.end()) 1227 continue; 1228 if (tableau(u.pos, col) == 0) 1229 continue; 1230 pivot(u.pos, col); 1231 break; 1232 } 1233 1234 assert(u.orientation == Orientation::Column && "No pivot found!"); 1235 } 1236 } 1237 } 1238 1239 /// Rollback to the specified snapshot. 1240 /// 1241 /// We undo all the log entries until the log size when the snapshot was taken 1242 /// is reached. 1243 void SimplexBase::rollback(unsigned snapshot) { 1244 while (undoLog.size() > snapshot) { 1245 undo(undoLog.back()); 1246 undoLog.pop_back(); 1247 } 1248 } 1249 1250 /// We add the usual floor division constraints: 1251 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division 1252 /// variable. 1253 /// 1254 /// This constrains the remainder `coeffs - denom*q` to be in the 1255 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`. 1256 void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) { 1257 assert(denom != 0 && "Cannot divide by zero!\n"); 1258 appendVariable(); 1259 1260 SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end()); 1261 int64_t constTerm = ineq.back(); 1262 ineq.back() = -denom; 1263 ineq.push_back(constTerm); 1264 addInequality(ineq); 1265 1266 for (int64_t &coeff : ineq) 1267 coeff = -coeff; 1268 ineq.back() += denom - 1; 1269 addInequality(ineq); 1270 } 1271 1272 void SimplexBase::appendVariable(unsigned count) { 1273 if (count == 0) 1274 return; 1275 var.reserve(var.size() + count); 1276 colUnknown.reserve(colUnknown.size() + count); 1277 for (unsigned i = 0; i < count; ++i) { 1278 nCol++; 1279 var.emplace_back(Orientation::Column, /*restricted=*/false, 1280 /*pos=*/nCol - 1); 1281 colUnknown.push_back(var.size() - 1); 1282 } 1283 tableau.resizeHorizontally(nCol); 1284 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable); 1285 } 1286 1287 /// Add all the constraints from the given IntegerRelation. 1288 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) { 1289 assert(rel.getNumIds() == getNumVariables() && 1290 "IntegerRelation must have same dimensionality as simplex"); 1291 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 1292 addInequality(rel.getInequality(i)); 1293 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 1294 addEquality(rel.getEquality(i)); 1295 } 1296 1297 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction, 1298 unsigned row) { 1299 // Keep trying to find a pivot for the row in the specified direction. 1300 while (Optional<Pivot> maybePivot = findPivot(row, direction)) { 1301 // If findPivot returns a pivot involving the row itself, then the optimum 1302 // is unbounded, so we return None. 1303 if (maybePivot->row == row) 1304 return OptimumKind::Unbounded; 1305 pivot(*maybePivot); 1306 } 1307 1308 // The row has reached its optimal sample value, which we return. 1309 // The sample value is the entry in the constant column divided by the common 1310 // denominator for this row. 1311 return Fraction(tableau(row, 1), tableau(row, 0)); 1312 } 1313 1314 /// Compute the optimum of the specified expression in the specified direction, 1315 /// or None if it is unbounded. 1316 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, 1317 ArrayRef<int64_t> coeffs) { 1318 if (empty) 1319 return OptimumKind::Empty; 1320 1321 SimplexRollbackScopeExit scopeExit(*this); 1322 unsigned conIndex = addRow(coeffs); 1323 unsigned row = con[conIndex].pos; 1324 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); 1325 return optimum; 1326 } 1327 1328 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction, 1329 Unknown &u) { 1330 if (empty) 1331 return OptimumKind::Empty; 1332 if (u.orientation == Orientation::Column) { 1333 unsigned column = u.pos; 1334 Optional<unsigned> pivotRow = findPivotRow({}, direction, column); 1335 // If no pivot is returned, the constraint is unbounded in the specified 1336 // direction. 1337 if (!pivotRow) 1338 return OptimumKind::Unbounded; 1339 pivot(*pivotRow, column); 1340 } 1341 1342 unsigned row = u.pos; 1343 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row); 1344 if (u.restricted && direction == Direction::Down && 1345 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) { 1346 if (failed(restoreRow(u))) 1347 llvm_unreachable("Could not restore row!"); 1348 } 1349 return optimum; 1350 } 1351 1352 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) { 1353 assert(!empty && "It is not meaningful to ask whether a direction is bounded " 1354 "in an empty set."); 1355 // The constraint's perpendicular is already bounded below, since it is a 1356 // constraint. If it is also bounded above, we can return true. 1357 return computeOptimum(Direction::Up, con[constraintIndex]).isBounded(); 1358 } 1359 1360 /// Redundant constraints are those that are in row orientation and lie in 1361 /// rows 0 to nRedundant - 1. 1362 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const { 1363 const Unknown &u = con[constraintIndex]; 1364 return u.orientation == Orientation::Row && u.pos < nRedundant; 1365 } 1366 1367 /// Mark the specified row redundant. 1368 /// 1369 /// This is done by moving the unknown to the end of the block of redundant 1370 /// rows (namely, to row nRedundant) and incrementing nRedundant to 1371 /// accomodate the new redundant row. 1372 void Simplex::markRowRedundant(Unknown &u) { 1373 assert(u.orientation == Orientation::Row && 1374 "Unknown should be in row position!"); 1375 assert(u.pos >= nRedundant && "Unknown is already marked redundant!"); 1376 swapRows(u.pos, nRedundant); 1377 ++nRedundant; 1378 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant); 1379 } 1380 1381 /// Find a subset of constraints that is redundant and mark them redundant. 1382 void Simplex::detectRedundant() { 1383 // It is not meaningful to talk about redundancy for empty sets. 1384 if (empty) 1385 return; 1386 1387 // Iterate through the constraints and check for each one if it can attain 1388 // negative sample values. If it can, it's not redundant. Otherwise, it is. 1389 // We mark redundant constraints redundant. 1390 // 1391 // Constraints that get marked redundant in one iteration are not respected 1392 // when checking constraints in later iterations. This prevents, for example, 1393 // two identical constraints both being marked redundant since each is 1394 // redundant given the other one. In this example, only the first of the 1395 // constraints that is processed will get marked redundant, as it should be. 1396 for (Unknown &u : con) { 1397 if (u.orientation == Orientation::Column) { 1398 unsigned column = u.pos; 1399 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column); 1400 // If no downward pivot is returned, the constraint is unbounded below 1401 // and hence not redundant. 1402 if (!pivotRow) 1403 continue; 1404 pivot(*pivotRow, column); 1405 } 1406 1407 unsigned row = u.pos; 1408 MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row); 1409 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) { 1410 // Constraint is unbounded below or can attain negative sample values and 1411 // hence is not redundant. 1412 if (failed(restoreRow(u))) 1413 llvm_unreachable("Could not restore non-redundant row!"); 1414 continue; 1415 } 1416 1417 markRowRedundant(u); 1418 } 1419 } 1420 1421 bool Simplex::isUnbounded() { 1422 if (empty) 1423 return false; 1424 1425 SmallVector<int64_t, 8> dir(var.size() + 1); 1426 for (unsigned i = 0; i < var.size(); ++i) { 1427 dir[i] = 1; 1428 1429 if (computeOptimum(Direction::Up, dir).isUnbounded()) 1430 return true; 1431 1432 if (computeOptimum(Direction::Down, dir).isUnbounded()) 1433 return true; 1434 1435 dir[i] = 0; 1436 } 1437 return false; 1438 } 1439 1440 /// Make a tableau to represent a pair of points in the original tableau. 1441 /// 1442 /// The product constraints and variables are stored as: first A's, then B's. 1443 /// 1444 /// The product tableau has row layout: 1445 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows. 1446 /// 1447 /// It has column layout: 1448 /// denominator, constant, A's columns, B's columns. 1449 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) { 1450 unsigned numVar = a.getNumVariables() + b.getNumVariables(); 1451 unsigned numCon = a.getNumConstraints() + b.getNumConstraints(); 1452 Simplex result(numVar); 1453 1454 result.tableau.resizeVertically(numCon); 1455 result.empty = a.empty || b.empty; 1456 1457 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) { 1458 SmallVector<Unknown, 8> result; 1459 result.reserve(v.size() + w.size()); 1460 result.insert(result.end(), v.begin(), v.end()); 1461 result.insert(result.end(), w.begin(), w.end()); 1462 return result; 1463 }; 1464 result.con = concat(a.con, b.con); 1465 result.var = concat(a.var, b.var); 1466 1467 auto indexFromBIndex = [&](int index) { 1468 return index >= 0 ? a.getNumVariables() + index 1469 : ~(a.getNumConstraints() + ~index); 1470 }; 1471 1472 result.colUnknown.assign(2, nullIndex); 1473 for (unsigned i = 2; i < a.nCol; ++i) { 1474 result.colUnknown.push_back(a.colUnknown[i]); 1475 result.unknownFromIndex(result.colUnknown.back()).pos = 1476 result.colUnknown.size() - 1; 1477 } 1478 for (unsigned i = 2; i < b.nCol; ++i) { 1479 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i])); 1480 result.unknownFromIndex(result.colUnknown.back()).pos = 1481 result.colUnknown.size() - 1; 1482 } 1483 1484 auto appendRowFromA = [&](unsigned row) { 1485 for (unsigned col = 0; col < a.nCol; ++col) 1486 result.tableau(result.nRow, col) = a.tableau(row, col); 1487 result.rowUnknown.push_back(a.rowUnknown[row]); 1488 result.unknownFromIndex(result.rowUnknown.back()).pos = 1489 result.rowUnknown.size() - 1; 1490 result.nRow++; 1491 }; 1492 1493 // Also fixes the corresponding entry in rowUnknown and var/con (as the case 1494 // may be). 1495 auto appendRowFromB = [&](unsigned row) { 1496 result.tableau(result.nRow, 0) = b.tableau(row, 0); 1497 result.tableau(result.nRow, 1) = b.tableau(row, 1); 1498 1499 unsigned offset = a.nCol - 2; 1500 for (unsigned col = 2; col < b.nCol; ++col) 1501 result.tableau(result.nRow, offset + col) = b.tableau(row, col); 1502 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row])); 1503 result.unknownFromIndex(result.rowUnknown.back()).pos = 1504 result.rowUnknown.size() - 1; 1505 result.nRow++; 1506 }; 1507 1508 result.nRedundant = a.nRedundant + b.nRedundant; 1509 for (unsigned row = 0; row < a.nRedundant; ++row) 1510 appendRowFromA(row); 1511 for (unsigned row = 0; row < b.nRedundant; ++row) 1512 appendRowFromB(row); 1513 for (unsigned row = a.nRedundant; row < a.nRow; ++row) 1514 appendRowFromA(row); 1515 for (unsigned row = b.nRedundant; row < b.nRow; ++row) 1516 appendRowFromB(row); 1517 1518 return result; 1519 } 1520 1521 Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const { 1522 if (empty) 1523 return {}; 1524 1525 SmallVector<Fraction, 8> sample; 1526 sample.reserve(var.size()); 1527 // Push the sample value for each variable into the vector. 1528 for (const Unknown &u : var) { 1529 if (u.orientation == Orientation::Column) { 1530 // If the variable is in column position, its sample value is zero. 1531 sample.emplace_back(0, 1); 1532 } else { 1533 // If the variable is in row position, its sample value is the 1534 // entry in the constant column divided by the denominator. 1535 int64_t denom = tableau(u.pos, 0); 1536 sample.emplace_back(tableau(u.pos, 1), denom); 1537 } 1538 } 1539 return sample; 1540 } 1541 1542 void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) { 1543 addRow(coeffs, /*makeRestricted=*/true); 1544 } 1545 1546 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const { 1547 if (empty) 1548 return OptimumKind::Empty; 1549 1550 SmallVector<Fraction, 8> sample; 1551 sample.reserve(var.size()); 1552 // Push the sample value for each variable into the vector. 1553 for (const Unknown &u : var) { 1554 // When the big M parameter is being used, each variable x is represented 1555 // as M + x, so its sample value is finite if and only if it is of the 1556 // form 1*M + c. If the coefficient of M is not one then the sample value 1557 // is infinite, and we return an empty optional. 1558 1559 if (u.orientation == Orientation::Column) { 1560 // If the variable is in column position, the sample value of M + x is 1561 // zero, so x = -M which is unbounded. 1562 return OptimumKind::Unbounded; 1563 } 1564 1565 // If the variable is in row position, its sample value is the 1566 // entry in the constant column divided by the denominator. 1567 int64_t denom = tableau(u.pos, 0); 1568 if (usingBigM) 1569 if (tableau(u.pos, 2) != denom) 1570 return OptimumKind::Unbounded; 1571 sample.emplace_back(tableau(u.pos, 1), denom); 1572 } 1573 return sample; 1574 } 1575 1576 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const { 1577 // If the tableau is empty, no sample point exists. 1578 if (empty) 1579 return {}; 1580 1581 // The value will always exist since the Simplex is non-empty. 1582 SmallVector<Fraction, 8> rationalSample = *getRationalSample(); 1583 SmallVector<int64_t, 8> integerSample; 1584 integerSample.reserve(var.size()); 1585 for (const Fraction &coord : rationalSample) { 1586 // If the sample is non-integral, return None. 1587 if (coord.num % coord.den != 0) 1588 return {}; 1589 integerSample.push_back(coord.num / coord.den); 1590 } 1591 return integerSample; 1592 } 1593 1594 /// Given a simplex for a polytope, construct a new simplex whose variables are 1595 /// identified with a pair of points (x, y) in the original polytope. Supports 1596 /// some operations needed for generalized basis reduction. In what follows, 1597 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the 1598 /// dimension of the original polytope. 1599 /// 1600 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It 1601 /// also supports rolling back this addition, by maintaining a snapshot stack 1602 /// that contains a snapshot of the Simplex's state for each equality, just 1603 /// before that equality was added. 1604 class presburger::GBRSimplex { 1605 using Orientation = Simplex::Orientation; 1606 1607 public: 1608 GBRSimplex(const Simplex &originalSimplex) 1609 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)), 1610 simplexConstraintOffset(simplex.getNumConstraints()) {} 1611 1612 /// Add an equality dotProduct(dir, x - y) == 0. 1613 /// First pushes a snapshot for the current simplex state to the stack so 1614 /// that this can be rolled back later. 1615 void addEqualityForDirection(ArrayRef<int64_t> dir) { 1616 assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) && 1617 "Direction passed is the zero vector!"); 1618 snapshotStack.push_back(simplex.getSnapshot()); 1619 simplex.addEquality(getCoeffsForDirection(dir)); 1620 } 1621 /// Compute max(dotProduct(dir, x - y)). 1622 Fraction computeWidth(ArrayRef<int64_t> dir) { 1623 MaybeOptimum<Fraction> maybeWidth = 1624 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir)); 1625 assert(maybeWidth.isBounded() && "Width should be bounded!"); 1626 return *maybeWidth; 1627 } 1628 1629 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only 1630 /// the direction equalities to `dual`. 1631 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir, 1632 SmallVectorImpl<int64_t> &dual, 1633 int64_t &dualDenom) { 1634 // We can't just call into computeWidth or computeOptimum since we need to 1635 // access the state of the tableau after computing the optimum, and these 1636 // functions rollback the insertion of the objective function into the 1637 // tableau before returning. We instead add a row for the objective function 1638 // ourselves, call into computeOptimum, compute the duals from the tableau 1639 // state, and finally rollback the addition of the row before returning. 1640 SimplexRollbackScopeExit scopeExit(simplex); 1641 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir)); 1642 unsigned row = simplex.con[conIndex].pos; 1643 MaybeOptimum<Fraction> maybeWidth = 1644 simplex.computeRowOptimum(Simplex::Direction::Up, row); 1645 assert(maybeWidth.isBounded() && "Width should be bounded!"); 1646 dualDenom = simplex.tableau(row, 0); 1647 dual.clear(); 1648 1649 // The increment is i += 2 because equalities are added as two inequalities, 1650 // one positive and one negative. Each iteration processes one equality. 1651 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) { 1652 // The dual variable for an inequality in column orientation is the 1653 // negative of its coefficient at the objective row. If the inequality is 1654 // in row orientation, the corresponding dual variable is zero. 1655 // 1656 // We want the dual for the original equality, which corresponds to two 1657 // inequalities: a positive inequality, which has the same coefficients as 1658 // the equality, and a negative equality, which has negated coefficients. 1659 // 1660 // Note that at most one of these inequalities can be in column 1661 // orientation because the column unknowns should form a basis and hence 1662 // must be linearly independent. If the positive inequality is in column 1663 // position, its dual is the dual corresponding to the equality. If the 1664 // negative inequality is in column position, the negation of its dual is 1665 // the dual corresponding to the equality. If neither is in column 1666 // position, then that means that this equality is redundant, and its dual 1667 // is zero. 1668 // 1669 // Note that it is NOT valid to perform pivots during the computation of 1670 // the duals. This entire dual computation must be performed on the same 1671 // tableau configuration. 1672 assert(!(simplex.con[i].orientation == Orientation::Column && 1673 simplex.con[i + 1].orientation == Orientation::Column) && 1674 "Both inequalities for the equality cannot be in column " 1675 "orientation!"); 1676 if (simplex.con[i].orientation == Orientation::Column) 1677 dual.push_back(-simplex.tableau(row, simplex.con[i].pos)); 1678 else if (simplex.con[i + 1].orientation == Orientation::Column) 1679 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos)); 1680 else 1681 dual.push_back(0); 1682 } 1683 return *maybeWidth; 1684 } 1685 1686 /// Remove the last equality that was added through addEqualityForDirection. 1687 /// 1688 /// We do this by rolling back to the snapshot at the top of the stack, which 1689 /// should be a snapshot taken just before the last equality was added. 1690 void removeLastEquality() { 1691 assert(!snapshotStack.empty() && "Snapshot stack is empty!"); 1692 simplex.rollback(snapshotStack.back()); 1693 snapshotStack.pop_back(); 1694 } 1695 1696 private: 1697 /// Returns coefficients of the expression 'dot_product(dir, x - y)', 1698 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n 1699 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n, 1700 /// where n is the dimension of the original polytope. 1701 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) { 1702 assert(2 * dir.size() == simplex.getNumVariables() && 1703 "Direction vector has wrong dimensionality"); 1704 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end()); 1705 coeffs.reserve(2 * dir.size()); 1706 for (int64_t coeff : dir) 1707 coeffs.push_back(-coeff); 1708 coeffs.push_back(0); // constant term 1709 return coeffs; 1710 } 1711 1712 Simplex simplex; 1713 /// The first index of the equality constraints, the index immediately after 1714 /// the last constraint in the initial product simplex. 1715 unsigned simplexConstraintOffset; 1716 /// A stack of snapshots, used for rolling back. 1717 SmallVector<unsigned, 8> snapshotStack; 1718 }; 1719 1720 // Return a + scale*b; 1721 static SmallVector<int64_t, 8> scaleAndAdd(ArrayRef<int64_t> a, int64_t scale, 1722 ArrayRef<int64_t> b) { 1723 assert(a.size() == b.size()); 1724 SmallVector<int64_t, 8> res; 1725 res.reserve(a.size()); 1726 for (unsigned i = 0, e = a.size(); i < e; ++i) 1727 res.push_back(a[i] + scale * b[i]); 1728 return res; 1729 } 1730 1731 /// Reduce the basis to try and find a direction in which the polytope is 1732 /// "thin". This only works for bounded polytopes. 1733 /// 1734 /// This is an implementation of the algorithm described in the paper 1735 /// "An Implementation of Generalized Basis Reduction for Integer Programming" 1736 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross. 1737 /// 1738 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis. 1739 /// Let width_i(v) = max <v, x - y> where x and y are points in the original 1740 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i. 1741 /// 1742 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u 1743 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i 1744 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when 1745 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the 1746 /// minimizing value of u, if it were allowed to be fractional. Due to 1747 /// convexity, the minimizing integer value is either floor(dual_i) or 1748 /// ceil(dual_i), so we just need to check which of these gives a lower 1749 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i. 1750 /// 1751 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new) 1752 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the 1753 /// same i). Otherwise, we increment i. 1754 /// 1755 /// We keep f values and duals cached and invalidate them when necessary. 1756 /// Whenever possible, we use them instead of recomputing them. We implement the 1757 /// algorithm as follows. 1758 /// 1759 /// In an iteration at i we need to compute: 1760 /// a) width_i(b_{i + 1}) 1761 /// b) width_i(b_i) 1762 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i) 1763 /// 1764 /// If width_i(b_i) is not already cached, we compute it. 1765 /// 1766 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and 1767 /// store the duals from this computation. 1768 /// 1769 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value 1770 /// of u as explained before, caches the duals from this computation, sets 1771 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}). 1772 /// 1773 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and 1774 /// decrement i, resulting in the basis 1775 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ... 1776 /// with corresponding f values 1777 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ... 1778 /// The values up to i - 1 remain unchanged. We have just gotten the middle 1779 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the 1780 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from 1781 /// the cache. The iteration after decrementing needs exactly the duals from the 1782 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache. 1783 /// 1784 /// When incrementing i, no cached f values get invalidated. However, the cached 1785 /// duals do get invalidated as the duals for the higher levels are different. 1786 void Simplex::reduceBasis(Matrix &basis, unsigned level) { 1787 const Fraction epsilon(3, 4); 1788 1789 if (level == basis.getNumRows() - 1) 1790 return; 1791 1792 GBRSimplex gbrSimplex(*this); 1793 SmallVector<Fraction, 8> width; 1794 SmallVector<int64_t, 8> dual; 1795 int64_t dualDenom; 1796 1797 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the 1798 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns 1799 // the new value of width_i(b_{i+1}). 1800 // 1801 // If dual_i is not an integer, the minimizing value must be either 1802 // floor(dual_i) or ceil(dual_i). We compute the expression for both and 1803 // choose the minimizing value. 1804 // 1805 // If dual_i is an integer, we don't need to perform these computations. We 1806 // know that in this case, 1807 // a) u = dual_i. 1808 // b) one can show that dual_j for j < i are the same duals we would have 1809 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals 1810 // are the ones already in the cache. 1811 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i), 1812 // which 1813 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must 1814 // be in the cache, so we get it from there and return it. 1815 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction { 1816 assert(i < level + dual.size() && "dual_i is not known!"); 1817 1818 int64_t u = floorDiv(dual[i - level], dualDenom); 1819 basis.addToRow(i, i + 1, u); 1820 if (dual[i - level] % dualDenom != 0) { 1821 SmallVector<int64_t, 8> candidateDual[2]; 1822 int64_t candidateDualDenom[2]; 1823 Fraction widthI[2]; 1824 1825 // Initially u is floor(dual) and basis reflects this. 1826 widthI[0] = gbrSimplex.computeWidthAndDuals( 1827 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]); 1828 1829 // Now try ceil(dual), i.e. floor(dual) + 1. 1830 ++u; 1831 basis.addToRow(i, i + 1, 1); 1832 widthI[1] = gbrSimplex.computeWidthAndDuals( 1833 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]); 1834 1835 unsigned j = widthI[0] < widthI[1] ? 0 : 1; 1836 if (j == 0) 1837 // Subtract 1 to go from u = ceil(dual) back to floor(dual). 1838 basis.addToRow(i, i + 1, -1); 1839 1840 // width_i(b{i+1} + u*b_i) should be minimized at our value of u. 1841 // We assert that this holds by checking that the values of width_i at 1842 // u - 1 and u + 1 are greater than or equal to the value at u. If the 1843 // width is lesser at either of the adjacent values, then our computed 1844 // value of u is clearly not the minimizer. Otherwise by convexity the 1845 // computed value of u is really the minimizer. 1846 1847 // Check the value at u - 1. 1848 assert(gbrSimplex.computeWidth(scaleAndAdd( 1849 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] && 1850 "Computed u value does not minimize the width!"); 1851 // Check the value at u + 1. 1852 assert(gbrSimplex.computeWidth(scaleAndAdd( 1853 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] && 1854 "Computed u value does not minimize the width!"); 1855 1856 dual = std::move(candidateDual[j]); 1857 dualDenom = candidateDualDenom[j]; 1858 return widthI[j]; 1859 } 1860 1861 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved"); 1862 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the 1863 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in 1864 // the above expression is equal to basis.getRow(i+1) below.) 1865 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) == 1866 width[i + 1 - level]); 1867 return width[i + 1 - level]; 1868 }; 1869 1870 // In the ith iteration of the loop, gbrSimplex has constraints for directions 1871 // from `level` to i - 1. 1872 unsigned i = level; 1873 while (i < basis.getNumRows() - 1) { 1874 if (i >= level + width.size()) { 1875 // We don't even know the value of f_i(b_i), so let's find that first. 1876 // We have to do this first since later we assume that width already 1877 // contains values up to and including i. 1878 1879 assert((i == 0 || i - 1 < level + width.size()) && 1880 "We are at level i but we don't know the value of width_{i-1}"); 1881 1882 // We don't actually use these duals at all, but it doesn't matter 1883 // because this case should only occur when i is level, and there are no 1884 // duals in that case anyway. 1885 assert(i == level && "This case should only occur when i == level"); 1886 width.push_back( 1887 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom)); 1888 } 1889 1890 if (i >= level + dual.size()) { 1891 assert(i + 1 >= level + width.size() && 1892 "We don't know dual_i but we know width_{i+1}"); 1893 // We don't know dual for our level, so let's find it. 1894 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1895 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual, 1896 dualDenom)); 1897 gbrSimplex.removeLastEquality(); 1898 } 1899 1900 // This variable stores width_i(b_{i+1} + u*b_i). 1901 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i); 1902 if (widthICandidate < epsilon * width[i - level]) { 1903 basis.swapRows(i, i + 1); 1904 width[i - level] = widthICandidate; 1905 // The values of width_{i+1}(b_{i+1}) and higher may change after the 1906 // swap, so we remove the cached values here. 1907 width.resize(i - level + 1); 1908 if (i == level) { 1909 dual.clear(); 1910 continue; 1911 } 1912 1913 gbrSimplex.removeLastEquality(); 1914 i--; 1915 continue; 1916 } 1917 1918 // Invalidate duals since the higher level needs to recompute its own duals. 1919 dual.clear(); 1920 gbrSimplex.addEqualityForDirection(basis.getRow(i)); 1921 i++; 1922 } 1923 } 1924 1925 /// Search for an integer sample point using a branch and bound algorithm. 1926 /// 1927 /// Each row in the basis matrix is a vector, and the set of basis vectors 1928 /// should span the space. Initially this is the identity matrix, 1929 /// i.e., the basis vectors are just the variables. 1930 /// 1931 /// In every level, a value is assigned to the level-th basis vector, as 1932 /// follows. Compute the minimum and maximum rational values of this direction. 1933 /// If only one integer point lies in this range, constrain the variable to 1934 /// have this value and recurse to the next variable. 1935 /// 1936 /// If the range has multiple values, perform generalized basis reduction via 1937 /// reduceBasis and then compute the bounds again. Now we try constraining 1938 /// this direction in the first value in this range and "recurse" to the next 1939 /// level. If we fail to find a sample, we try assigning the direction the next 1940 /// value in this range, and so on. 1941 /// 1942 /// If no integer sample is found from any of the assignments, or if the range 1943 /// contains no integer value, then of course the polytope is empty for the 1944 /// current assignment of the values in previous levels, so we return to 1945 /// the previous level. 1946 /// 1947 /// If we reach the last level where all the variables have been assigned values 1948 /// already, then we simply return the current sample point if it is integral, 1949 /// and go back to the previous level otherwise. 1950 /// 1951 /// To avoid potentially arbitrarily large recursion depths leading to stack 1952 /// overflows, this algorithm is implemented iteratively. 1953 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() { 1954 if (empty) 1955 return {}; 1956 1957 unsigned nDims = var.size(); 1958 Matrix basis = Matrix::identity(nDims); 1959 1960 unsigned level = 0; 1961 // The snapshot just before constraining a direction to a value at each level. 1962 SmallVector<unsigned, 8> snapshotStack; 1963 // The maximum value in the range of the direction for each level. 1964 SmallVector<int64_t, 8> upperBoundStack; 1965 // The next value to try constraining the basis vector to at each level. 1966 SmallVector<int64_t, 8> nextValueStack; 1967 1968 snapshotStack.reserve(basis.getNumRows()); 1969 upperBoundStack.reserve(basis.getNumRows()); 1970 nextValueStack.reserve(basis.getNumRows()); 1971 while (level != -1u) { 1972 if (level == basis.getNumRows()) { 1973 // We've assigned values to all variables. Return if we have a sample, 1974 // or go back up to the previous level otherwise. 1975 if (auto maybeSample = getSamplePointIfIntegral()) 1976 return maybeSample; 1977 level--; 1978 continue; 1979 } 1980 1981 if (level >= upperBoundStack.size()) { 1982 // We haven't populated the stack values for this level yet, so we have 1983 // just come down a level ("recursed"). Find the lower and upper bounds. 1984 // If there is more than one integer point in the range, perform 1985 // generalized basis reduction. 1986 SmallVector<int64_t, 8> basisCoeffs = 1987 llvm::to_vector<8>(basis.getRow(level)); 1988 basisCoeffs.push_back(0); 1989 1990 MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown; 1991 std::tie(minRoundedUp, maxRoundedDown) = 1992 computeIntegerBounds(basisCoeffs); 1993 1994 // We don't have any integer values in the range. 1995 // Pop the stack and return up a level. 1996 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) { 1997 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) && 1998 "If one bound is empty, both should be."); 1999 snapshotStack.pop_back(); 2000 nextValueStack.pop_back(); 2001 upperBoundStack.pop_back(); 2002 level--; 2003 continue; 2004 } 2005 2006 // We already checked the empty case above. 2007 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) && 2008 "Polyhedron should be bounded!"); 2009 2010 // Heuristic: if the sample point is integral at this point, just return 2011 // it. 2012 if (auto maybeSample = getSamplePointIfIntegral()) 2013 return *maybeSample; 2014 2015 if (*minRoundedUp < *maxRoundedDown) { 2016 reduceBasis(basis, level); 2017 basisCoeffs = llvm::to_vector<8>(basis.getRow(level)); 2018 basisCoeffs.push_back(0); 2019 std::tie(minRoundedUp, maxRoundedDown) = 2020 computeIntegerBounds(basisCoeffs); 2021 } 2022 2023 snapshotStack.push_back(getSnapshot()); 2024 // The smallest value in the range is the next value to try. 2025 // The values in the optionals are guaranteed to exist since we know the 2026 // polytope is bounded. 2027 nextValueStack.push_back(*minRoundedUp); 2028 upperBoundStack.push_back(*maxRoundedDown); 2029 } 2030 2031 assert((snapshotStack.size() - 1 == level && 2032 nextValueStack.size() - 1 == level && 2033 upperBoundStack.size() - 1 == level) && 2034 "Mismatched variable stack sizes!"); 2035 2036 // Whether we "recursed" or "returned" from a lower level, we rollback 2037 // to the snapshot of the starting state at this level. (in the "recursed" 2038 // case this has no effect) 2039 rollback(snapshotStack.back()); 2040 int64_t nextValue = nextValueStack.back(); 2041 nextValueStack.back()++; 2042 if (nextValue > upperBoundStack.back()) { 2043 // We have exhausted the range and found no solution. Pop the stack and 2044 // return up a level. 2045 snapshotStack.pop_back(); 2046 nextValueStack.pop_back(); 2047 upperBoundStack.pop_back(); 2048 level--; 2049 continue; 2050 } 2051 2052 // Try the next value in the range and "recurse" into the next level. 2053 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(), 2054 basis.getRow(level).end()); 2055 basisCoeffs.push_back(-nextValue); 2056 addEquality(basisCoeffs); 2057 level++; 2058 } 2059 2060 return {}; 2061 } 2062 2063 /// Compute the minimum and maximum integer values the expression can take. We 2064 /// compute each separately. 2065 std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>> 2066 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) { 2067 MaybeOptimum<int64_t> minRoundedUp( 2068 computeOptimum(Simplex::Direction::Down, coeffs).map(ceil)); 2069 MaybeOptimum<int64_t> maxRoundedDown( 2070 computeOptimum(Simplex::Direction::Up, coeffs).map(floor)); 2071 return {minRoundedUp, maxRoundedDown}; 2072 } 2073 2074 void SimplexBase::print(raw_ostream &os) const { 2075 os << "rows = " << nRow << ", columns = " << nCol << "\n"; 2076 if (empty) 2077 os << "Simplex marked empty!\n"; 2078 os << "var: "; 2079 for (unsigned i = 0; i < var.size(); ++i) { 2080 if (i > 0) 2081 os << ", "; 2082 var[i].print(os); 2083 } 2084 os << "\ncon: "; 2085 for (unsigned i = 0; i < con.size(); ++i) { 2086 if (i > 0) 2087 os << ", "; 2088 con[i].print(os); 2089 } 2090 os << '\n'; 2091 for (unsigned row = 0; row < nRow; ++row) { 2092 if (row > 0) 2093 os << ", "; 2094 os << "r" << row << ": " << rowUnknown[row]; 2095 } 2096 os << '\n'; 2097 os << "c0: denom, c1: const"; 2098 for (unsigned col = 2; col < nCol; ++col) 2099 os << ", c" << col << ": " << colUnknown[col]; 2100 os << '\n'; 2101 for (unsigned row = 0; row < nRow; ++row) { 2102 for (unsigned col = 0; col < nCol; ++col) 2103 os << tableau(row, col) << '\t'; 2104 os << '\n'; 2105 } 2106 os << '\n'; 2107 } 2108 2109 void SimplexBase::dump() const { print(llvm::errs()); } 2110 2111 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) { 2112 if (isEmpty()) 2113 return true; 2114 2115 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i) 2116 if (findIneqType(rel.getInequality(i)) != IneqType::Redundant) 2117 return false; 2118 2119 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i) 2120 if (!isRedundantEquality(rel.getEquality(i))) 2121 return false; 2122 2123 return true; 2124 } 2125 2126 /// Returns the type of the inequality with coefficients `coeffs`. 2127 /// Possible types are: 2128 /// Redundant The inequality is satisfied by all points in the polytope 2129 /// Cut The inequality is satisfied by some points, but not by others 2130 /// Separate The inequality is not satisfied by any point 2131 /// 2132 /// Internally, this computes the minimum and the maximum the inequality with 2133 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds 2134 /// for all points in the polytope, so it is redundant. If the minimum is <= 0 2135 /// and the maximum is >= 0, the points in between the minimum and the 2136 /// inequality do not satisfy it, the points in between the inequality and the 2137 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no 2138 /// points of the polytope satisfy the inequality, which means it is a separate 2139 /// inequality. 2140 Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) { 2141 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 2142 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) { 2143 return IneqType::Redundant; 2144 } 2145 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 2146 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) && 2147 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) { 2148 return IneqType::Cut; 2149 } 2150 return IneqType::Separate; 2151 } 2152 2153 /// Checks whether the type of the inequality with coefficients `coeffs` 2154 /// is Redundant. 2155 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) { 2156 assert(!empty && 2157 "It is not meaningful to ask about redundancy in an empty set!"); 2158 return findIneqType(coeffs) == IneqType::Redundant; 2159 } 2160 2161 /// Check whether the equality given by `coeffs == 0` is redundant given 2162 /// the existing constraints. This is redundant when `coeffs` is already 2163 /// always zero under the existing constraints. `coeffs` is always zero 2164 /// when the minimum and maximum value that `coeffs` can take are both zero. 2165 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) { 2166 assert(!empty && 2167 "It is not meaningful to ask about redundancy in an empty set!"); 2168 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs); 2169 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs); 2170 assert((!minimum.isEmpty() && !maximum.isEmpty()) && 2171 "Optima should be non-empty for a non-empty set"); 2172 return minimum.isBounded() && maximum.isBounded() && 2173 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1); 2174 } 2175