1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/Support/Compiler.h"
14
15 using namespace mlir;
16 using namespace presburger;
17
18 using Direction = Simplex::Direction;
19
20 const int nullIndex = std::numeric_limits<int>::max();
21
22 // Return a + scale*b;
23 LLVM_ATTRIBUTE_UNUSED
24 static SmallVector<int64_t, 8>
scaleAndAddForAssert(ArrayRef<int64_t> a,int64_t scale,ArrayRef<int64_t> b)25 scaleAndAddForAssert(ArrayRef<int64_t> a, int64_t scale, ArrayRef<int64_t> b) {
26 assert(a.size() == b.size());
27 SmallVector<int64_t, 8> res;
28 res.reserve(a.size());
29 for (unsigned i = 0, e = a.size(); i < e; ++i)
30 res.push_back(a[i] + scale * b[i]);
31 return res;
32 }
33
SimplexBase(unsigned nVar,bool mustUseBigM)34 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
35 : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0),
36 tableau(0, getNumFixedCols() + nVar), empty(false) {
37 colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
38 for (unsigned i = 0; i < nVar; ++i) {
39 var.emplace_back(Orientation::Column, /*restricted=*/false,
40 /*pos=*/getNumFixedCols() + i);
41 colUnknown.push_back(i);
42 }
43 }
44
SimplexBase(unsigned nVar,bool mustUseBigM,const llvm::SmallBitVector & isSymbol)45 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM,
46 const llvm::SmallBitVector &isSymbol)
47 : SimplexBase(nVar, mustUseBigM) {
48 assert(isSymbol.size() == nVar && "invalid bitmask!");
49 // Invariant: nSymbol is the number of symbols that have been marked
50 // already and these occupy the columns
51 // [getNumFixedCols(), getNumFixedCols() + nSymbol).
52 for (unsigned symbolIdx : isSymbol.set_bits()) {
53 var[symbolIdx].isSymbol = true;
54 swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol);
55 ++nSymbol;
56 }
57 }
58
unknownFromIndex(int index) const59 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
60 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
61 return index >= 0 ? var[index] : con[~index];
62 }
63
unknownFromColumn(unsigned col) const64 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
65 assert(col < getNumColumns() && "Invalid column");
66 return unknownFromIndex(colUnknown[col]);
67 }
68
unknownFromRow(unsigned row) const69 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
70 assert(row < getNumRows() && "Invalid row");
71 return unknownFromIndex(rowUnknown[row]);
72 }
73
unknownFromIndex(int index)74 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
75 assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
76 return index >= 0 ? var[index] : con[~index];
77 }
78
unknownFromColumn(unsigned col)79 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
80 assert(col < getNumColumns() && "Invalid column");
81 return unknownFromIndex(colUnknown[col]);
82 }
83
unknownFromRow(unsigned row)84 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
85 assert(row < getNumRows() && "Invalid row");
86 return unknownFromIndex(rowUnknown[row]);
87 }
88
addZeroRow(bool makeRestricted)89 unsigned SimplexBase::addZeroRow(bool makeRestricted) {
90 // Resize the tableau to accommodate the extra row.
91 unsigned newRow = tableau.appendExtraRow();
92 assert(getNumRows() == getNumRows() && "Inconsistent tableau size");
93 rowUnknown.push_back(~con.size());
94 con.emplace_back(Orientation::Row, makeRestricted, newRow);
95 undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
96 tableau(newRow, 0) = 1;
97 return newRow;
98 }
99
100 /// Add a new row to the tableau corresponding to the given constant term and
101 /// list of coefficients. The coefficients are specified as a vector of
102 /// (variable index, coefficient) pairs.
addRow(ArrayRef<int64_t> coeffs,bool makeRestricted)103 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
104 assert(coeffs.size() == var.size() + 1 &&
105 "Incorrect number of coefficients!");
106 assert(var.size() + getNumFixedCols() == getNumColumns() &&
107 "inconsistent column count!");
108
109 unsigned newRow = addZeroRow(makeRestricted);
110 tableau(newRow, 1) = coeffs.back();
111 if (usingBigM) {
112 // When the lexicographic pivot rule is used, instead of the variables
113 //
114 // x, y, z ...
115 //
116 // we internally use the variables
117 //
118 // M, M + x, M + y, M + z, ...
119 //
120 // where M is the big M parameter. As such, when the user tries to add
121 // a row ax + by + cz + d, we express it in terms of our internal variables
122 // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
123 //
124 // Symbols don't use the big M parameter since they do not get lex
125 // optimized.
126 int64_t bigMCoeff = 0;
127 for (unsigned i = 0; i < coeffs.size() - 1; ++i)
128 if (!var[i].isSymbol)
129 bigMCoeff -= coeffs[i];
130 // The coefficient to the big M parameter is stored in column 2.
131 tableau(newRow, 2) = bigMCoeff;
132 }
133
134 // Process each given variable coefficient.
135 for (unsigned i = 0; i < var.size(); ++i) {
136 unsigned pos = var[i].pos;
137 if (coeffs[i] == 0)
138 continue;
139
140 if (var[i].orientation == Orientation::Column) {
141 // If a variable is in column position at column col, then we just add the
142 // coefficient for that variable (scaled by the common row denominator) to
143 // the corresponding entry in the new row.
144 tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0);
145 continue;
146 }
147
148 // If the variable is in row position, we need to add that row to the new
149 // row, scaled by the coefficient for the variable, accounting for the two
150 // rows potentially having different denominators. The new denominator is
151 // the lcm of the two.
152 int64_t lcm = mlir::lcm(tableau(newRow, 0), tableau(pos, 0));
153 int64_t nRowCoeff = lcm / tableau(newRow, 0);
154 int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
155 tableau(newRow, 0) = lcm;
156 for (unsigned col = 1, e = getNumColumns(); col < e; ++col)
157 tableau(newRow, col) =
158 nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col);
159 }
160
161 tableau.normalizeRow(newRow);
162 // Push to undo log along with the index of the new constraint.
163 return con.size() - 1;
164 }
165
166 namespace {
signMatchesDirection(int64_t elem,Direction direction)167 bool signMatchesDirection(int64_t elem, Direction direction) {
168 assert(elem != 0 && "elem should not be 0");
169 return direction == Direction::Up ? elem > 0 : elem < 0;
170 }
171
flippedDirection(Direction direction)172 Direction flippedDirection(Direction direction) {
173 return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
174 }
175 } // namespace
176
177 /// We simply make the tableau consistent while maintaining a lexicopositive
178 /// basis transform, and then return the sample value. If the tableau becomes
179 /// empty, we return empty.
180 ///
181 /// Let the variables be x = (x_1, ... x_n).
182 /// Let the basis unknowns be y = (y_1, ... y_n).
183 /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
184 ///
185 /// As we will show below, A*y is either zero or lexicopositive.
186 /// Adding a lexicopositive vector to b will make it lexicographically
187 /// greater, so A*y + b is always equal to or lexicographically greater than b.
188 /// Thus, since we can attain x = b, that is the lexicographic minimum.
189 ///
190 /// We have that that every column in A is lexicopositive, i.e., has at least
191 /// one non-zero element, with the first such element being positive. Since for
192 /// the tableau to be consistent we must have non-negative sample values not
193 /// only for the constraints but also for the variables, we also have x >= 0 and
194 /// y >= 0, by which we mean every element in these vectors is non-negative.
195 ///
196 /// Proof that if every column in A is lexicopositive, and y >= 0, then
197 /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
198 /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
199 /// row. If we run out of rows, A*y is zero and we are done; otherwise, we
200 /// encounter some row A_i that has a non-zero element. Every column is
201 /// lexicopositive and so has some positive element before any negative elements
202 /// occur, so the element in this row for any column, if non-zero, must be
203 /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
204 /// non-negative, so if this is non-zero then it must be positive. Then the
205 /// first non-zero element of A*y is positive so A*y is lexicopositive.
206 ///
207 /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
208 /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
209 /// and we can completely ignore these columns of A. We now continue downwards,
210 /// looking for rows of A that have a non-zero element other than in the ignored
211 /// columns. If we find one, say A_k, once again these elements must be positive
212 /// since they are the first non-zero element in each of these columns, so if
213 /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
214 /// add these to the set of ignored columns and continue to the next row. If we
215 /// run out of rows, then A*y is zero and we are done.
findRationalLexMin()216 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
217 if (restoreRationalConsistency().failed()) {
218 markEmpty();
219 return OptimumKind::Empty;
220 }
221 return getRationalSample();
222 }
223
224 /// Given a row that has a non-integer sample value, add an inequality such
225 /// that this fractional sample value is cut away from the polytope. The added
226 /// inequality will be such that no integer points are removed. i.e., the
227 /// integer lexmin, if it exists, is the same with and without this constraint.
228 ///
229 /// Let the row be
230 /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
231 /// where s_1, ... s_m are the symbols and
232 /// y_1, ... y_n are the other basis unknowns.
233 ///
234 /// For this to be an integer, we want
235 /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
236 /// Note that this constraint must always hold, independent of the basis,
237 /// becuse the row unknown's value always equals this expression, even if *we*
238 /// later compute the sample value from a different expression based on a
239 /// different basis.
240 ///
241 /// Let us assume that M has a factor of d in it. Imposing this constraint on M
242 /// does not in any way hinder us from finding a value of M that is big enough.
243 /// Moreover, this function is only called when the symbolic part of the sample,
244 /// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
245 ///
246 /// Also, we can safely reduce the coefficients modulo d, so we have:
247 ///
248 /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
249 ///
250 /// Note that all coefficient modulos here are non-negative. Also, all the
251 /// unknowns are non-negative here as both constraints and variables are
252 /// non-negative in LexSimplexBase. (We used the big M trick to make the
253 /// variables non-negative). Therefore, the LHS here is non-negative.
254 /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
255 /// is therefore non-negative as well.
256 ///
257 /// So we have
258 /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
259 ///
260 /// The constraint is violated when added (it would be useless otherwise)
261 /// so we immediately try to move it to a column.
addCut(unsigned row)262 LogicalResult LexSimplexBase::addCut(unsigned row) {
263 int64_t d = tableau(row, 0);
264 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
265 tableau(cutRow, 0) = d;
266 tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d.
267 tableau(cutRow, 2) = 0;
268 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
269 tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d.
270 return moveRowUnknownToColumn(cutRow);
271 }
272
maybeGetNonIntegralVarRow() const273 Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
274 for (const Unknown &u : var) {
275 if (u.orientation == Orientation::Column)
276 continue;
277 // If the sample value is of the form (a/d)M + b/d, we need b to be
278 // divisible by d. We assume M contains all possible
279 // factors and is divisible by everything.
280 unsigned row = u.pos;
281 if (tableau(row, 1) % tableau(row, 0) != 0)
282 return row;
283 }
284 return {};
285 }
286
findIntegerLexMin()287 MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
288 // We first try to make the tableau consistent.
289 if (restoreRationalConsistency().failed())
290 return OptimumKind::Empty;
291
292 // Then, if the sample value is integral, we are done.
293 while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
294 // Otherwise, for the variable whose row has a non-integral sample value,
295 // we add a cut, a constraint that remove this rational point
296 // while preserving all integer points, thus keeping the lexmin the same.
297 // We then again try to make the tableau with the new constraint
298 // consistent. This continues until the tableau becomes empty, in which
299 // case there is no integer point, or until there are no variables with
300 // non-integral sample values.
301 //
302 // Failure indicates that the tableau became empty, which occurs when the
303 // polytope is integer empty.
304 if (addCut(*maybeRow).failed())
305 return OptimumKind::Empty;
306 if (restoreRationalConsistency().failed())
307 return OptimumKind::Empty;
308 }
309
310 MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
311 assert(!sample.isEmpty() && "If we reached here the sample should exist!");
312 if (sample.isUnbounded())
313 return OptimumKind::Unbounded;
314 return llvm::to_vector<8>(
315 llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
316 }
317
isSeparateInequality(ArrayRef<int64_t> coeffs)318 bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
319 SimplexRollbackScopeExit scopeExit(*this);
320 addInequality(coeffs);
321 return findIntegerLexMin().isEmpty();
322 }
323
isRedundantInequality(ArrayRef<int64_t> coeffs)324 bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
325 return isSeparateInequality(getComplementIneq(coeffs));
326 }
327
328 SmallVector<int64_t, 8>
getSymbolicSampleNumerator(unsigned row) const329 SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
330 SmallVector<int64_t, 8> sample;
331 sample.reserve(nSymbol + 1);
332 for (unsigned col = 3; col < 3 + nSymbol; ++col)
333 sample.push_back(tableau(row, col));
334 sample.push_back(tableau(row, 1));
335 return sample;
336 }
337
338 SmallVector<int64_t, 8>
getSymbolicSampleIneq(unsigned row) const339 SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
340 SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(row);
341 // The inequality is equivalent to the GCD-normalized one.
342 normalizeRange(sample);
343 return sample;
344 }
345
appendSymbol()346 void LexSimplexBase::appendSymbol() {
347 appendVariable();
348 swapColumns(3 + nSymbol, getNumColumns() - 1);
349 var.back().isSymbol = true;
350 nSymbol++;
351 }
352
isRangeDivisibleBy(ArrayRef<int64_t> range,int64_t divisor)353 static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) {
354 assert(divisor > 0 && "divisor must be positive!");
355 return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; });
356 }
357
isSymbolicSampleIntegral(unsigned row) const358 bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
359 int64_t denom = tableau(row, 0);
360 return tableau(row, 1) % denom == 0 &&
361 isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
362 }
363
364 /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
365 /// has a symbolic sample value with fractional coefficients.
366 ///
367 /// Let the row be
368 /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
369 /// where s_1, ... s_m are the symbols and
370 /// y_1, ... y_n are the other basis unknowns.
371 ///
372 /// As in LexSimplex::addCut, for this to be an integer, we want
373 ///
374 /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
375 ///
376 /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
377 ///
378 /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
379 ///
380 /// where we take a modulo of the whole symbolic expression on the right to
381 /// bring it into the range [0, d - 1]. Therefore, as in addCut(),
382 /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
383 /// k >= 0 as well. If all the a_i are divisible by d, then we can add the
384 /// constraint directly. Otherwise, we realize the modulo of the symbolic
385 /// expression by adding a division variable
386 ///
387 /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
388 ///
389 /// to the symbol domain, so the equality becomes
390 ///
391 /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
392 ///
393 /// So the cut is
394 /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
395 /// This constraint is violated when added so we immediately try to move it to a
396 /// column.
addSymbolicCut(unsigned row)397 LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
398 int64_t d = tableau(row, 0);
399 if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) {
400 // The coefficients of symbols in the symbol numerator are divisible
401 // by the denominator, so we can add the constraint directly,
402 // i.e., ignore the symbols and add a regular cut as in addCut().
403 return addCut(row);
404 }
405
406 // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
407 SmallVector<int64_t, 8> divCoeffs;
408 divCoeffs.reserve(nSymbol + 1);
409 int64_t divDenom = d;
410 for (unsigned col = 3; col < 3 + nSymbol; ++col)
411 divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i
412 divCoeffs.push_back(mod(-tableau(row, 1), divDenom)); // -c%d.
413 normalizeDiv(divCoeffs, divDenom);
414
415 domainSimplex.addDivisionVariable(divCoeffs, divDenom);
416 domainPoly.addLocalFloorDiv(divCoeffs, divDenom);
417
418 // Update `this` to account for the additional symbol we just added.
419 appendSymbol();
420
421 // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
422 unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
423 tableau(cutRow, 0) = d;
424 tableau(cutRow, 2) = 0;
425
426 tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
427 for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
428 tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
429 tableau(cutRow, 3 + nSymbol - 1) = d; // q*d.
430
431 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
432 tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
433 return moveRowUnknownToColumn(cutRow);
434 }
435
recordOutput(SymbolicLexMin & result) const436 void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
437 Matrix output(0, domainPoly.getNumVars() + 1);
438 output.reserveRows(result.lexmin.getNumOutputs());
439 for (const Unknown &u : var) {
440 if (u.isSymbol)
441 continue;
442
443 if (u.orientation == Orientation::Column) {
444 // M + u has a sample value of zero so u has a sample value of -M, i.e,
445 // unbounded.
446 result.unboundedDomain.unionInPlace(domainPoly);
447 return;
448 }
449
450 int64_t denom = tableau(u.pos, 0);
451 if (tableau(u.pos, 2) < denom) {
452 // M + u has a sample value of fM + something, where f < 1, so
453 // u = (f - 1)M + something, which has a negative coefficient for M,
454 // and so is unbounded.
455 result.unboundedDomain.unionInPlace(domainPoly);
456 return;
457 }
458 assert(tableau(u.pos, 2) == denom &&
459 "Coefficient of M should not be greater than 1!");
460
461 SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos);
462 for (int64_t &elem : sample) {
463 assert(elem % denom == 0 && "coefficients must be integral!");
464 elem /= denom;
465 }
466 output.appendExtraRow(sample);
467 }
468 result.lexmin.addPiece(domainPoly, output);
469 }
470
maybeGetAlwaysViolatedRow()471 Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
472 // First look for rows that are clearly violated just from the big M
473 // coefficient, without needing to perform any simplex queries on the domain.
474 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
475 if (tableau(row, 2) < 0)
476 return row;
477
478 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
479 if (tableau(row, 2) > 0)
480 continue;
481 if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) {
482 // Sample numerator always takes negative values in the symbol domain.
483 return row;
484 }
485 }
486 return {};
487 }
488
maybeGetNonIntegralVarRow()489 Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
490 for (const Unknown &u : var) {
491 if (u.orientation == Orientation::Column)
492 continue;
493 assert(!u.isSymbol && "Symbol should not be in row orientation!");
494 if (!isSymbolicSampleIntegral(u.pos))
495 return u.pos;
496 }
497 return {};
498 }
499
500 /// The non-branching pivots are just the ones moving the rows
501 /// that are always violated in the symbol domain.
doNonBranchingPivots()502 LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
503 while (Optional<unsigned> row = maybeGetAlwaysViolatedRow())
504 if (moveRowUnknownToColumn(*row).failed())
505 return failure();
506 return success();
507 }
508
computeSymbolicIntegerLexMin()509 SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
510 SymbolicLexMin result(domainPoly.getSpace(), var.size() - nSymbol);
511
512 /// The algorithm is more naturally expressed recursively, but we implement
513 /// it iteratively here to avoid potential issues with stack overflows in the
514 /// compiler. We explicitly maintain the stack frames in a vector.
515 ///
516 /// To "recurse", we store the current "stack frame", i.e., state variables
517 /// that we will need when we "return", into `stack`, increment `level`, and
518 /// `continue`. To "tail recurse", we just `continue`.
519 /// To "return", we decrement `level` and `continue`.
520 ///
521 /// When there is no stack frame for the current `level`, this indicates that
522 /// we have just "recursed" or "tail recursed". When there does exist one,
523 /// this indicates that we have just "returned" from recursing. There is only
524 /// one point at which non-tail calls occur so we always "return" there.
525 unsigned level = 1;
526 struct StackFrame {
527 int splitIndex;
528 unsigned snapshot;
529 unsigned domainSnapshot;
530 IntegerRelation::CountsSnapshot domainPolyCounts;
531 };
532 SmallVector<StackFrame, 8> stack;
533
534 while (level > 0) {
535 assert(level >= stack.size());
536 if (level > stack.size()) {
537 if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
538 // No integer points; return.
539 --level;
540 continue;
541 }
542
543 if (doNonBranchingPivots().failed()) {
544 // Could not find pivots for violated constraints; return.
545 --level;
546 continue;
547 }
548
549 SmallVector<int64_t, 8> symbolicSample;
550 unsigned splitRow = 0;
551 for (unsigned e = getNumRows(); splitRow < e; ++splitRow) {
552 if (tableau(splitRow, 2) > 0)
553 continue;
554 assert(tableau(splitRow, 2) == 0 &&
555 "Non-branching pivots should have been handled already!");
556
557 symbolicSample = getSymbolicSampleIneq(splitRow);
558 if (domainSimplex.isRedundantInequality(symbolicSample))
559 continue;
560
561 // It's neither redundant nor separate, so it takes both positive and
562 // negative values, and hence constitutes a row for which we need to
563 // split the domain and separately run each case.
564 assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
565 "Non-branching pivots should have been handled already!");
566 break;
567 }
568
569 if (splitRow < getNumRows()) {
570 unsigned domainSnapshot = domainSimplex.getSnapshot();
571 IntegerRelation::CountsSnapshot domainPolyCounts =
572 domainPoly.getCounts();
573
574 // First, we consider the part of the domain where the row is not
575 // violated. We don't have to do any pivots for the row in this case,
576 // but we record the additional constraint that defines this part of
577 // the domain.
578 domainSimplex.addInequality(symbolicSample);
579 domainPoly.addInequality(symbolicSample);
580
581 // Recurse.
582 //
583 // On return, the basis as a set is preserved but not the internal
584 // ordering within rows or columns. Thus, we take note of the index of
585 // the Unknown that caused the split, which may be in a different
586 // row when we come back from recursing. We will need this to recurse
587 // on the other part of the split domain, where the row is violated.
588 //
589 // Note that we have to capture the index above and not a reference to
590 // the Unknown itself, since the array it lives in might get
591 // reallocated.
592 int splitIndex = rowUnknown[splitRow];
593 unsigned snapshot = getSnapshot();
594 stack.push_back(
595 {splitIndex, snapshot, domainSnapshot, domainPolyCounts});
596 ++level;
597 continue;
598 }
599
600 // The tableau is rationally consistent for the current domain.
601 // Now we look for non-integral sample values and add cuts for them.
602 if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) {
603 if (addSymbolicCut(*row).failed()) {
604 // No integral points; return.
605 --level;
606 continue;
607 }
608
609 // Rerun this level with the added cut constraint (tail recurse).
610 continue;
611 }
612
613 // Record output and return.
614 recordOutput(result);
615 --level;
616 continue;
617 }
618
619 if (level == stack.size()) {
620 // We have "returned" from "recursing".
621 const StackFrame &frame = stack.back();
622 domainPoly.truncate(frame.domainPolyCounts);
623 domainSimplex.rollback(frame.domainSnapshot);
624 rollback(frame.snapshot);
625 const Unknown &u = unknownFromIndex(frame.splitIndex);
626
627 // Drop the frame. We don't need it anymore.
628 stack.pop_back();
629
630 // Now we consider the part of the domain where the unknown `splitIndex`
631 // was negative.
632 assert(u.orientation == Orientation::Row &&
633 "The split row should have been returned to row orientation!");
634 SmallVector<int64_t, 8> splitIneq =
635 getComplementIneq(getSymbolicSampleIneq(u.pos));
636 normalizeRange(splitIneq);
637 if (moveRowUnknownToColumn(u.pos).failed()) {
638 // The unknown can't be made non-negative; return.
639 --level;
640 continue;
641 }
642
643 // The unknown can be made negative; recurse with the corresponding domain
644 // constraints.
645 domainSimplex.addInequality(splitIneq);
646 domainPoly.addInequality(splitIneq);
647
648 // We are now taking care of the second half of the domain and we don't
649 // need to do anything else here after returning, so it's a tail recurse.
650 continue;
651 }
652 }
653
654 return result;
655 }
656
rowIsViolated(unsigned row) const657 bool LexSimplex::rowIsViolated(unsigned row) const {
658 if (tableau(row, 2) < 0)
659 return true;
660 if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
661 return true;
662 return false;
663 }
664
maybeGetViolatedRow() const665 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
666 for (unsigned row = 0, e = getNumRows(); row < e; ++row)
667 if (rowIsViolated(row))
668 return row;
669 return {};
670 }
671
672 /// We simply look for violated rows and keep trying to move them to column
673 /// orientation, which always succeeds unless the constraints have no solution
674 /// in which case we just give up and return.
restoreRationalConsistency()675 LogicalResult LexSimplex::restoreRationalConsistency() {
676 if (empty)
677 return failure();
678 while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
679 if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
680 return failure();
681 return success();
682 }
683
684 // Move the row unknown to column orientation while preserving lexicopositivity
685 // of the basis transform. The sample value of the row must be non-positive.
686 //
687 // We only consider pivots where the pivot element is positive. Suppose no such
688 // pivot exists, i.e., some violated row has no positive coefficient for any
689 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
690 // where d is the denominator, s is the sample value and the c_i are the basis
691 // coefficients. If s != 0, then since any feasible assignment of the basis
692 // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
693 // any feasible assignment would violate this row and therefore the constraints
694 // have no solution.
695 //
696 // We can preserve lexicopositivity by picking the pivot column with positive
697 // pivot element that makes the lexicographically smallest change to the sample
698 // point.
699 //
700 // Proof. Let
701 // x = (x_1, ... x_n) be the variables,
702 // z = (z_1, ... z_m) be the constraints,
703 // y = (y_1, ... y_n) be the current basis, and
704 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
705 // B is basically the simplex tableau of our implementation except that instead
706 // of only describing the transform to get back the non-basis unknowns, it
707 // defines the values of all the unknowns in terms of the basis unknowns.
708 // Similarly, s is the column for the sample value.
709 //
710 // Our goal is to show that each column in B, restricted to the first n
711 // rows, is lexicopositive after the pivot if it is so before. This is
712 // equivalent to saying the columns in the whole matrix are lexicopositive;
713 // there must be some non-zero element in every column in the first n rows since
714 // the n variables cannot be spanned without using all the n basis unknowns.
715 //
716 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
717 // transform for the tableau derived for SimplexBase::pivot:
718 //
719 // pivot col other col pivot col other col
720 // pivot row a b -> pivot row 1/a -b/a
721 // other row c d other row c/a d - bc/a
722 //
723 // Similarly, a pivot results in B changing to B' and c to c'; the difference
724 // between the tableau and these matrices B and B' is that there is no special
725 // case for the pivot row, since it continues to represent the same unknown. The
726 // same formula applies for all rows:
727 //
728 // B'.col(j) = B.col(j) / B(i,j)
729 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
730 // and similarly, s' = s - s_i * B.col(j) / B(i,j).
731 //
732 // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
733 // the change in sample value when pivoting with column a is lexicographically
734 // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
735 // lexicographically smaller than B.col(b) / B(i, b).
736 //
737 // Since B(i, j) > 0, column j remains lexicopositive.
738 //
739 // For the other columns, suppose C.col(k) is not lexicopositive.
740 // This means that for some p, for all t < p,
741 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
742 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
743 // which is in contradiction to the fact that B.col(j) / B(i,j) must be
744 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
745 // minimizes the change in sample value.
moveRowUnknownToColumn(unsigned row)746 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
747 Optional<unsigned> maybeColumn;
748 for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) {
749 if (tableau(row, col) <= 0)
750 continue;
751 maybeColumn =
752 !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
753 }
754
755 if (!maybeColumn)
756 return failure();
757
758 pivot(row, *maybeColumn);
759 return success();
760 }
761
getLexMinPivotColumn(unsigned row,unsigned colA,unsigned colB) const762 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
763 unsigned colB) const {
764 // First, let's consider the non-symbolic case.
765 // A pivot causes the following change. (in the diagram the matrix elements
766 // are shown as rationals and there is no common denominator used)
767 //
768 // pivot col big M col const col
769 // pivot row a p b
770 // other row c q d
771 // |
772 // v
773 //
774 // pivot col big M col const col
775 // pivot row 1/a -p/a -b/a
776 // other row c/a q - pc/a d - bc/a
777 //
778 // Let the sample value of the pivot row be s = pM + b before the pivot. Since
779 // the pivot row represents a violated constraint we know that s < 0.
780 //
781 // If the variable is a non-pivot column, its sample value is zero before and
782 // after the pivot.
783 //
784 // If the variable is the pivot column, then its sample value goes from 0 to
785 // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
786 // value is -s/a.
787 //
788 // If the variable is the pivot row, its sample value goes from s to 0, for a
789 // change of -s.
790 //
791 // If the variable is a non-pivot row, its sample value changes from
792 // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
793 // is -(pM + b)(c/a) = -sc/a.
794 //
795 // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
796 // fixed for all calls to this function since the row and tableau are fixed.
797 // The callee just wants to compare the return values with the return value of
798 // other invocations of the same function. So the -s is common for all
799 // comparisons involved and can be ignored, since -s is strictly positive.
800 //
801 // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
802 // appropriate. This allows us to run the entire algorithm treating M
803 // symbolically, as the pivot to be performed does not depend on the value
804 // of M, so long as the sample value s is negative. Note that this is not
805 // because of any special feature of M; by the same argument, we ignore the
806 // symbols too. The caller ensure that the sample value s is negative for
807 // all possible values of the symbols.
808 auto getSampleChangeCoeffForVar = [this, row](unsigned col,
809 const Unknown &u) -> Fraction {
810 int64_t a = tableau(row, col);
811 if (u.orientation == Orientation::Column) {
812 // Pivot column case.
813 if (u.pos == col)
814 return {1, a};
815
816 // Non-pivot column case.
817 return {0, 1};
818 }
819
820 // Pivot row case.
821 if (u.pos == row)
822 return {1, 1};
823
824 // Non-pivot row case.
825 int64_t c = tableau(u.pos, col);
826 return {c, a};
827 };
828
829 for (const Unknown &u : var) {
830 Fraction changeA = getSampleChangeCoeffForVar(colA, u);
831 Fraction changeB = getSampleChangeCoeffForVar(colB, u);
832 if (changeA < changeB)
833 return colA;
834 if (changeA > changeB)
835 return colB;
836 }
837
838 // If we reached here, both result in exactly the same changes, so it
839 // doesn't matter which we return.
840 return colA;
841 }
842
843 /// Find a pivot to change the sample value of the row in the specified
844 /// direction. The returned pivot row will involve `row` if and only if the
845 /// unknown is unbounded in the specified direction.
846 ///
847 /// To increase (resp. decrease) the value of a row, we need to find a live
848 /// column with a non-zero coefficient. If the coefficient is positive, we need
849 /// to increase (decrease) the value of the column, and if the coefficient is
850 /// negative, we need to decrease (increase) the value of the column. Also,
851 /// we cannot decrease the sample value of restricted columns.
852 ///
853 /// If multiple columns are valid, we break ties by considering a lexicographic
854 /// ordering where we prefer unknowns with lower index.
findPivot(int row,Direction direction) const855 Optional<SimplexBase::Pivot> Simplex::findPivot(int row,
856 Direction direction) const {
857 Optional<unsigned> col;
858 for (unsigned j = 2, e = getNumColumns(); j < e; ++j) {
859 int64_t elem = tableau(row, j);
860 if (elem == 0)
861 continue;
862
863 if (unknownFromColumn(j).restricted &&
864 !signMatchesDirection(elem, direction))
865 continue;
866 if (!col || colUnknown[j] < colUnknown[*col])
867 col = j;
868 }
869
870 if (!col)
871 return {};
872
873 Direction newDirection =
874 tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
875 Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
876 return Pivot{maybePivotRow.value_or(row), *col};
877 }
878
879 /// Swap the associated unknowns for the row and the column.
880 ///
881 /// First we swap the index associated with the row and column. Then we update
882 /// the unknowns to reflect their new position and orientation.
swapRowWithCol(unsigned row,unsigned col)883 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
884 std::swap(rowUnknown[row], colUnknown[col]);
885 Unknown &uCol = unknownFromColumn(col);
886 Unknown &uRow = unknownFromRow(row);
887 uCol.orientation = Orientation::Column;
888 uRow.orientation = Orientation::Row;
889 uCol.pos = col;
890 uRow.pos = row;
891 }
892
pivot(Pivot pair)893 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
894
895 /// Pivot pivotRow and pivotCol.
896 ///
897 /// Let R be the pivot row unknown and let C be the pivot col unknown.
898 /// Since initially R = a*C + sum b_i * X_i
899 /// (where the sum is over the other column's unknowns, x_i)
900 /// C = (R - (sum b_i * X_i))/a
901 ///
902 /// Let u be some other row unknown.
903 /// u = c*C + sum d_i * X_i
904 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
905 ///
906 /// This results in the following transform:
907 /// pivot col other col pivot col other col
908 /// pivot row a b -> pivot row 1/a -b/a
909 /// other row c d other row c/a d - bc/a
910 ///
911 /// Taking into account the common denominators p and q:
912 ///
913 /// pivot col other col pivot col other col
914 /// pivot row a/p b/p -> pivot row p/a -b/a
915 /// other row c/q d/q other row cp/aq (da - bc)/aq
916 ///
917 /// The pivot row transform is accomplished be swapping a with the pivot row's
918 /// common denominator and negating the pivot row except for the pivot column
919 /// element.
pivot(unsigned pivotRow,unsigned pivotCol)920 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
921 assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
922 assert(!unknownFromColumn(pivotCol).isSymbol);
923
924 swapRowWithCol(pivotRow, pivotCol);
925 std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
926 // We need to negate the whole pivot row except for the pivot column.
927 if (tableau(pivotRow, 0) < 0) {
928 // If the denominator is negative, we negate the row by simply negating the
929 // denominator.
930 tableau(pivotRow, 0) = -tableau(pivotRow, 0);
931 tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
932 } else {
933 for (unsigned col = 1, e = getNumColumns(); col < e; ++col) {
934 if (col == pivotCol)
935 continue;
936 tableau(pivotRow, col) = -tableau(pivotRow, col);
937 }
938 }
939 tableau.normalizeRow(pivotRow);
940
941 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
942 if (row == pivotRow)
943 continue;
944 if (tableau(row, pivotCol) == 0) // Nothing to do.
945 continue;
946 tableau(row, 0) *= tableau(pivotRow, 0);
947 for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) {
948 if (col == pivotCol)
949 continue;
950 // Add rather than subtract because the pivot row has been negated.
951 tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) +
952 tableau(row, pivotCol) * tableau(pivotRow, col);
953 }
954 tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
955 tableau.normalizeRow(row);
956 }
957 }
958
959 /// Perform pivots until the unknown has a non-negative sample value or until
960 /// no more upward pivots can be performed. Return success if we were able to
961 /// bring the row to a non-negative sample value, and failure otherwise.
restoreRow(Unknown & u)962 LogicalResult Simplex::restoreRow(Unknown &u) {
963 assert(u.orientation == Orientation::Row &&
964 "unknown should be in row position");
965
966 while (tableau(u.pos, 1) < 0) {
967 Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
968 if (!maybePivot)
969 break;
970
971 pivot(*maybePivot);
972 if (u.orientation == Orientation::Column)
973 return success(); // the unknown is unbounded above.
974 }
975 return success(tableau(u.pos, 1) >= 0);
976 }
977
978 /// Find a row that can be used to pivot the column in the specified direction.
979 /// This returns an empty optional if and only if the column is unbounded in the
980 /// specified direction (ignoring skipRow, if skipRow is set).
981 ///
982 /// If skipRow is set, this row is not considered, and (if it is restricted) its
983 /// restriction may be violated by the returned pivot. Usually, skipRow is set
984 /// because we don't want to move it to column position unless it is unbounded,
985 /// and we are either trying to increase the value of skipRow or explicitly
986 /// trying to make skipRow negative, so we are not concerned about this.
987 ///
988 /// If the direction is up (resp. down) and a restricted row has a negative
989 /// (positive) coefficient for the column, then this row imposes a bound on how
990 /// much the sample value of the column can change. Such a row with constant
991 /// term c and coefficient f for the column imposes a bound of c/|f| on the
992 /// change in sample value (in the specified direction). (note that c is
993 /// non-negative here since the row is restricted and the tableau is consistent)
994 ///
995 /// We iterate through the rows and pick the row which imposes the most
996 /// stringent bound, since pivoting with a row changes the row's sample value to
997 /// 0 and hence saturates the bound it imposes. We break ties between rows that
998 /// impose the same bound by considering a lexicographic ordering where we
999 /// prefer unknowns with lower index value.
findPivotRow(Optional<unsigned> skipRow,Direction direction,unsigned col) const1000 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
1001 Direction direction,
1002 unsigned col) const {
1003 Optional<unsigned> retRow;
1004 // Initialize these to zero in order to silence a warning about retElem and
1005 // retConst being used uninitialized in the initialization of `diff` below. In
1006 // reality, these are always initialized when that line is reached since these
1007 // are set whenever retRow is set.
1008 int64_t retElem = 0, retConst = 0;
1009 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) {
1010 if (skipRow && row == *skipRow)
1011 continue;
1012 int64_t elem = tableau(row, col);
1013 if (elem == 0)
1014 continue;
1015 if (!unknownFromRow(row).restricted)
1016 continue;
1017 if (signMatchesDirection(elem, direction))
1018 continue;
1019 int64_t constTerm = tableau(row, 1);
1020
1021 if (!retRow) {
1022 retRow = row;
1023 retElem = elem;
1024 retConst = constTerm;
1025 continue;
1026 }
1027
1028 int64_t diff = retConst * elem - constTerm * retElem;
1029 if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1030 (diff != 0 && !signMatchesDirection(diff, direction))) {
1031 retRow = row;
1032 retElem = elem;
1033 retConst = constTerm;
1034 }
1035 }
1036 return retRow;
1037 }
1038
isEmpty() const1039 bool SimplexBase::isEmpty() const { return empty; }
1040
swapRows(unsigned i,unsigned j)1041 void SimplexBase::swapRows(unsigned i, unsigned j) {
1042 if (i == j)
1043 return;
1044 tableau.swapRows(i, j);
1045 std::swap(rowUnknown[i], rowUnknown[j]);
1046 unknownFromRow(i).pos = i;
1047 unknownFromRow(j).pos = j;
1048 }
1049
swapColumns(unsigned i,unsigned j)1050 void SimplexBase::swapColumns(unsigned i, unsigned j) {
1051 assert(i < getNumColumns() && j < getNumColumns() &&
1052 "Invalid columns provided!");
1053 if (i == j)
1054 return;
1055 tableau.swapColumns(i, j);
1056 std::swap(colUnknown[i], colUnknown[j]);
1057 unknownFromColumn(i).pos = i;
1058 unknownFromColumn(j).pos = j;
1059 }
1060
1061 /// Mark this tableau empty and push an entry to the undo stack.
markEmpty()1062 void SimplexBase::markEmpty() {
1063 // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1064 // entry, since in that case the Simplex will be erroneously marked as
1065 // non-empty when rolling back past this point.
1066 if (empty)
1067 return;
1068 undoLog.push_back(UndoLogEntry::UnmarkEmpty);
1069 empty = true;
1070 }
1071
1072 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1073 /// is the current number of variables, then the corresponding inequality is
1074 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1075 ///
1076 /// We add the inequality and mark it as restricted. We then try to make its
1077 /// sample value non-negative. If this is not possible, the tableau has become
1078 /// empty and we mark it as such.
addInequality(ArrayRef<int64_t> coeffs)1079 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
1080 unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1081 LogicalResult result = restoreRow(con[conIndex]);
1082 if (failed(result))
1083 markEmpty();
1084 }
1085
1086 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1087 /// is the current number of variables, then the corresponding equality is
1088 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1089 ///
1090 /// We simply add two opposing inequalities, which force the expression to
1091 /// be zero.
addEquality(ArrayRef<int64_t> coeffs)1092 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
1093 addInequality(coeffs);
1094 SmallVector<int64_t, 8> negatedCoeffs;
1095 for (int64_t coeff : coeffs)
1096 negatedCoeffs.emplace_back(-coeff);
1097 addInequality(negatedCoeffs);
1098 }
1099
getNumVariables() const1100 unsigned SimplexBase::getNumVariables() const { return var.size(); }
getNumConstraints() const1101 unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1102
1103 /// Return a snapshot of the current state. This is just the current size of the
1104 /// undo log.
getSnapshot() const1105 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1106
getSnapshotBasis()1107 unsigned SimplexBase::getSnapshotBasis() {
1108 SmallVector<int, 8> basis;
1109 for (int index : colUnknown) {
1110 if (index != nullIndex)
1111 basis.push_back(index);
1112 }
1113 savedBases.push_back(std::move(basis));
1114
1115 undoLog.emplace_back(UndoLogEntry::RestoreBasis);
1116 return undoLog.size() - 1;
1117 }
1118
removeLastConstraintRowOrientation()1119 void SimplexBase::removeLastConstraintRowOrientation() {
1120 assert(con.back().orientation == Orientation::Row);
1121
1122 // Move this unknown to the last row and remove the last row from the
1123 // tableau.
1124 swapRows(con.back().pos, getNumRows() - 1);
1125 // It is not strictly necessary to shrink the tableau, but for now we
1126 // maintain the invariant that the tableau has exactly getNumRows()
1127 // rows.
1128 tableau.resizeVertically(getNumRows() - 1);
1129 rowUnknown.pop_back();
1130 con.pop_back();
1131 }
1132
1133 // This doesn't find a pivot row only if the column has zero
1134 // coefficients for every row.
1135 //
1136 // If the unknown is a constraint, this can't happen, since it was added
1137 // initially as a row. Such a row could never have been pivoted to a column. So
1138 // a pivot row will always be found if we have a constraint.
1139 //
1140 // If we have a variable, then the column has zero coefficients for every row
1141 // iff no constraints have been added with a non-zero coefficient for this row.
findAnyPivotRow(unsigned col)1142 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1143 for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row)
1144 if (tableau(row, col) != 0)
1145 return row;
1146 return {};
1147 }
1148
1149 // It's not valid to remove the constraint by deleting the column since this
1150 // would result in an invalid basis.
undoLastConstraint()1151 void Simplex::undoLastConstraint() {
1152 if (con.back().orientation == Orientation::Column) {
1153 // We try to find any pivot row for this column that preserves tableau
1154 // consistency (except possibly the column itself, which is going to be
1155 // deallocated anyway).
1156 //
1157 // If no pivot row is found in either direction, then the unknown is
1158 // unbounded in both directions and we are free to perform any pivot at
1159 // all. To do this, we just need to find any row with a non-zero
1160 // coefficient for the column. findAnyPivotRow will always be able to
1161 // find such a row for a constraint.
1162 unsigned column = con.back().pos;
1163 if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) {
1164 pivot(*maybeRow, column);
1165 } else if (Optional<unsigned> maybeRow =
1166 findPivotRow({}, Direction::Down, column)) {
1167 pivot(*maybeRow, column);
1168 } else {
1169 Optional<unsigned> row = findAnyPivotRow(column);
1170 assert(row && "Pivot should always exist for a constraint!");
1171 pivot(*row, column);
1172 }
1173 }
1174 removeLastConstraintRowOrientation();
1175 }
1176
1177 // It's not valid to remove the constraint by deleting the column since this
1178 // would result in an invalid basis.
undoLastConstraint()1179 void LexSimplexBase::undoLastConstraint() {
1180 if (con.back().orientation == Orientation::Column) {
1181 // When removing the last constraint during a rollback, we just need to find
1182 // any pivot at all, i.e., any row with non-zero coefficient for the
1183 // column, because when rolling back a lexicographic simplex, we always
1184 // end by restoring the exact basis that was present at the time of the
1185 // snapshot, so what pivots we perform while undoing doesn't matter as
1186 // long as we get the unknown to row orientation and remove it.
1187 unsigned column = con.back().pos;
1188 Optional<unsigned> row = findAnyPivotRow(column);
1189 assert(row && "Pivot should always exist for a constraint!");
1190 pivot(*row, column);
1191 }
1192 removeLastConstraintRowOrientation();
1193 }
1194
undo(UndoLogEntry entry)1195 void SimplexBase::undo(UndoLogEntry entry) {
1196 if (entry == UndoLogEntry::RemoveLastConstraint) {
1197 // Simplex and LexSimplex handle this differently, so we call out to a
1198 // virtual function to handle this.
1199 undoLastConstraint();
1200 } else if (entry == UndoLogEntry::RemoveLastVariable) {
1201 // Whenever we are rolling back the addition of a variable, it is guaranteed
1202 // that the variable will be in column position.
1203 //
1204 // We can see this as follows: any constraint that depends on this variable
1205 // was added after this variable was added, so the addition of such
1206 // constraints should already have been rolled back by the time we get to
1207 // rolling back the addition of the variable. Therefore, no constraint
1208 // currently has a component along the variable, so the variable itself must
1209 // be part of the basis.
1210 assert(var.back().orientation == Orientation::Column &&
1211 "Variable to be removed must be in column orientation!");
1212
1213 if (var.back().isSymbol)
1214 nSymbol--;
1215
1216 // Move this variable to the last column and remove the column from the
1217 // tableau.
1218 swapColumns(var.back().pos, getNumColumns() - 1);
1219 tableau.resizeHorizontally(getNumColumns() - 1);
1220 var.pop_back();
1221 colUnknown.pop_back();
1222 } else if (entry == UndoLogEntry::UnmarkEmpty) {
1223 empty = false;
1224 } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1225 nRedundant--;
1226 } else if (entry == UndoLogEntry::RestoreBasis) {
1227 assert(!savedBases.empty() && "No bases saved!");
1228
1229 SmallVector<int, 8> basis = std::move(savedBases.back());
1230 savedBases.pop_back();
1231
1232 for (int index : basis) {
1233 Unknown &u = unknownFromIndex(index);
1234 if (u.orientation == Orientation::Column)
1235 continue;
1236 for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e;
1237 col++) {
1238 assert(colUnknown[col] != nullIndex &&
1239 "Column should not be a fixed column!");
1240 if (std::find(basis.begin(), basis.end(), colUnknown[col]) !=
1241 basis.end())
1242 continue;
1243 if (tableau(u.pos, col) == 0)
1244 continue;
1245 pivot(u.pos, col);
1246 break;
1247 }
1248
1249 assert(u.orientation == Orientation::Column && "No pivot found!");
1250 }
1251 }
1252 }
1253
1254 /// Rollback to the specified snapshot.
1255 ///
1256 /// We undo all the log entries until the log size when the snapshot was taken
1257 /// is reached.
rollback(unsigned snapshot)1258 void SimplexBase::rollback(unsigned snapshot) {
1259 while (undoLog.size() > snapshot) {
1260 undo(undoLog.back());
1261 undoLog.pop_back();
1262 }
1263 }
1264
1265 /// We add the usual floor division constraints:
1266 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1267 /// variable.
1268 ///
1269 /// This constrains the remainder `coeffs - denom*q` to be in the
1270 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
addDivisionVariable(ArrayRef<int64_t> coeffs,int64_t denom)1271 void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) {
1272 assert(denom != 0 && "Cannot divide by zero!\n");
1273 appendVariable();
1274
1275 SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end());
1276 int64_t constTerm = ineq.back();
1277 ineq.back() = -denom;
1278 ineq.push_back(constTerm);
1279 addInequality(ineq);
1280
1281 for (int64_t &coeff : ineq)
1282 coeff = -coeff;
1283 ineq.back() += denom - 1;
1284 addInequality(ineq);
1285 }
1286
appendVariable(unsigned count)1287 void SimplexBase::appendVariable(unsigned count) {
1288 if (count == 0)
1289 return;
1290 var.reserve(var.size() + count);
1291 colUnknown.reserve(colUnknown.size() + count);
1292 for (unsigned i = 0; i < count; ++i) {
1293 var.emplace_back(Orientation::Column, /*restricted=*/false,
1294 /*pos=*/getNumColumns() + i);
1295 colUnknown.push_back(var.size() - 1);
1296 }
1297 tableau.resizeHorizontally(getNumColumns() + count);
1298 undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
1299 }
1300
1301 /// Add all the constraints from the given IntegerRelation.
intersectIntegerRelation(const IntegerRelation & rel)1302 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1303 assert(rel.getNumVars() == getNumVariables() &&
1304 "IntegerRelation must have same dimensionality as simplex");
1305 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1306 addInequality(rel.getInequality(i));
1307 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1308 addEquality(rel.getEquality(i));
1309 }
1310
computeRowOptimum(Direction direction,unsigned row)1311 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1312 unsigned row) {
1313 // Keep trying to find a pivot for the row in the specified direction.
1314 while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
1315 // If findPivot returns a pivot involving the row itself, then the optimum
1316 // is unbounded, so we return None.
1317 if (maybePivot->row == row)
1318 return OptimumKind::Unbounded;
1319 pivot(*maybePivot);
1320 }
1321
1322 // The row has reached its optimal sample value, which we return.
1323 // The sample value is the entry in the constant column divided by the common
1324 // denominator for this row.
1325 return Fraction(tableau(row, 1), tableau(row, 0));
1326 }
1327
1328 /// Compute the optimum of the specified expression in the specified direction,
1329 /// or None if it is unbounded.
computeOptimum(Direction direction,ArrayRef<int64_t> coeffs)1330 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1331 ArrayRef<int64_t> coeffs) {
1332 if (empty)
1333 return OptimumKind::Empty;
1334
1335 SimplexRollbackScopeExit scopeExit(*this);
1336 unsigned conIndex = addRow(coeffs);
1337 unsigned row = con[conIndex].pos;
1338 return computeRowOptimum(direction, row);
1339 }
1340
computeOptimum(Direction direction,Unknown & u)1341 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1342 Unknown &u) {
1343 if (empty)
1344 return OptimumKind::Empty;
1345 if (u.orientation == Orientation::Column) {
1346 unsigned column = u.pos;
1347 Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
1348 // If no pivot is returned, the constraint is unbounded in the specified
1349 // direction.
1350 if (!pivotRow)
1351 return OptimumKind::Unbounded;
1352 pivot(*pivotRow, column);
1353 }
1354
1355 unsigned row = u.pos;
1356 MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1357 if (u.restricted && direction == Direction::Down &&
1358 (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1359 if (failed(restoreRow(u)))
1360 llvm_unreachable("Could not restore row!");
1361 }
1362 return optimum;
1363 }
1364
isBoundedAlongConstraint(unsigned constraintIndex)1365 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1366 assert(!empty && "It is not meaningful to ask whether a direction is bounded "
1367 "in an empty set.");
1368 // The constraint's perpendicular is already bounded below, since it is a
1369 // constraint. If it is also bounded above, we can return true.
1370 return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
1371 }
1372
1373 /// Redundant constraints are those that are in row orientation and lie in
1374 /// rows 0 to nRedundant - 1.
isMarkedRedundant(unsigned constraintIndex) const1375 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1376 const Unknown &u = con[constraintIndex];
1377 return u.orientation == Orientation::Row && u.pos < nRedundant;
1378 }
1379
1380 /// Mark the specified row redundant.
1381 ///
1382 /// This is done by moving the unknown to the end of the block of redundant
1383 /// rows (namely, to row nRedundant) and incrementing nRedundant to
1384 /// accomodate the new redundant row.
markRowRedundant(Unknown & u)1385 void Simplex::markRowRedundant(Unknown &u) {
1386 assert(u.orientation == Orientation::Row &&
1387 "Unknown should be in row position!");
1388 assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
1389 swapRows(u.pos, nRedundant);
1390 ++nRedundant;
1391 undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
1392 }
1393
1394 /// Find a subset of constraints that is redundant and mark them redundant.
detectRedundant(unsigned offset,unsigned count)1395 void Simplex::detectRedundant(unsigned offset, unsigned count) {
1396 assert(offset + count <= con.size() && "invalid range!");
1397 // It is not meaningful to talk about redundancy for empty sets.
1398 if (empty)
1399 return;
1400
1401 // Iterate through the constraints and check for each one if it can attain
1402 // negative sample values. If it can, it's not redundant. Otherwise, it is.
1403 // We mark redundant constraints redundant.
1404 //
1405 // Constraints that get marked redundant in one iteration are not respected
1406 // when checking constraints in later iterations. This prevents, for example,
1407 // two identical constraints both being marked redundant since each is
1408 // redundant given the other one. In this example, only the first of the
1409 // constraints that is processed will get marked redundant, as it should be.
1410 for (unsigned i = 0; i < count; ++i) {
1411 Unknown &u = con[offset + i];
1412 if (u.orientation == Orientation::Column) {
1413 unsigned column = u.pos;
1414 Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
1415 // If no downward pivot is returned, the constraint is unbounded below
1416 // and hence not redundant.
1417 if (!pivotRow)
1418 continue;
1419 pivot(*pivotRow, column);
1420 }
1421
1422 unsigned row = u.pos;
1423 MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
1424 if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1425 // Constraint is unbounded below or can attain negative sample values and
1426 // hence is not redundant.
1427 if (failed(restoreRow(u)))
1428 llvm_unreachable("Could not restore non-redundant row!");
1429 continue;
1430 }
1431
1432 markRowRedundant(u);
1433 }
1434 }
1435
isUnbounded()1436 bool Simplex::isUnbounded() {
1437 if (empty)
1438 return false;
1439
1440 SmallVector<int64_t, 8> dir(var.size() + 1);
1441 for (unsigned i = 0; i < var.size(); ++i) {
1442 dir[i] = 1;
1443
1444 if (computeOptimum(Direction::Up, dir).isUnbounded())
1445 return true;
1446
1447 if (computeOptimum(Direction::Down, dir).isUnbounded())
1448 return true;
1449
1450 dir[i] = 0;
1451 }
1452 return false;
1453 }
1454
1455 /// Make a tableau to represent a pair of points in the original tableau.
1456 ///
1457 /// The product constraints and variables are stored as: first A's, then B's.
1458 ///
1459 /// The product tableau has row layout:
1460 /// A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1461 ///
1462 /// It has column layout:
1463 /// denominator, constant, A's columns, B's columns.
makeProduct(const Simplex & a,const Simplex & b)1464 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1465 unsigned numVar = a.getNumVariables() + b.getNumVariables();
1466 unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1467 Simplex result(numVar);
1468
1469 result.tableau.reserveRows(numCon);
1470 result.empty = a.empty || b.empty;
1471
1472 auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1473 SmallVector<Unknown, 8> result;
1474 result.reserve(v.size() + w.size());
1475 result.insert(result.end(), v.begin(), v.end());
1476 result.insert(result.end(), w.begin(), w.end());
1477 return result;
1478 };
1479 result.con = concat(a.con, b.con);
1480 result.var = concat(a.var, b.var);
1481
1482 auto indexFromBIndex = [&](int index) {
1483 return index >= 0 ? a.getNumVariables() + index
1484 : ~(a.getNumConstraints() + ~index);
1485 };
1486
1487 result.colUnknown.assign(2, nullIndex);
1488 for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) {
1489 result.colUnknown.push_back(a.colUnknown[i]);
1490 result.unknownFromIndex(result.colUnknown.back()).pos =
1491 result.colUnknown.size() - 1;
1492 }
1493 for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) {
1494 result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
1495 result.unknownFromIndex(result.colUnknown.back()).pos =
1496 result.colUnknown.size() - 1;
1497 }
1498
1499 auto appendRowFromA = [&](unsigned row) {
1500 unsigned resultRow = result.tableau.appendExtraRow();
1501 for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col)
1502 result.tableau(resultRow, col) = a.tableau(row, col);
1503 result.rowUnknown.push_back(a.rowUnknown[row]);
1504 result.unknownFromIndex(result.rowUnknown.back()).pos =
1505 result.rowUnknown.size() - 1;
1506 };
1507
1508 // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1509 // may be).
1510 auto appendRowFromB = [&](unsigned row) {
1511 unsigned resultRow = result.tableau.appendExtraRow();
1512 result.tableau(resultRow, 0) = b.tableau(row, 0);
1513 result.tableau(resultRow, 1) = b.tableau(row, 1);
1514
1515 unsigned offset = a.getNumColumns() - 2;
1516 for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col)
1517 result.tableau(resultRow, offset + col) = b.tableau(row, col);
1518 result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
1519 result.unknownFromIndex(result.rowUnknown.back()).pos =
1520 result.rowUnknown.size() - 1;
1521 };
1522
1523 result.nRedundant = a.nRedundant + b.nRedundant;
1524 for (unsigned row = 0; row < a.nRedundant; ++row)
1525 appendRowFromA(row);
1526 for (unsigned row = 0; row < b.nRedundant; ++row)
1527 appendRowFromB(row);
1528 for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row)
1529 appendRowFromA(row);
1530 for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row)
1531 appendRowFromB(row);
1532
1533 return result;
1534 }
1535
getRationalSample() const1536 Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1537 if (empty)
1538 return {};
1539
1540 SmallVector<Fraction, 8> sample;
1541 sample.reserve(var.size());
1542 // Push the sample value for each variable into the vector.
1543 for (const Unknown &u : var) {
1544 if (u.orientation == Orientation::Column) {
1545 // If the variable is in column position, its sample value is zero.
1546 sample.emplace_back(0, 1);
1547 } else {
1548 // If the variable is in row position, its sample value is the
1549 // entry in the constant column divided by the denominator.
1550 int64_t denom = tableau(u.pos, 0);
1551 sample.emplace_back(tableau(u.pos, 1), denom);
1552 }
1553 }
1554 return sample;
1555 }
1556
addInequality(ArrayRef<int64_t> coeffs)1557 void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) {
1558 addRow(coeffs, /*makeRestricted=*/true);
1559 }
1560
getRationalSample() const1561 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1562 if (empty)
1563 return OptimumKind::Empty;
1564
1565 SmallVector<Fraction, 8> sample;
1566 sample.reserve(var.size());
1567 // Push the sample value for each variable into the vector.
1568 for (const Unknown &u : var) {
1569 // When the big M parameter is being used, each variable x is represented
1570 // as M + x, so its sample value is finite if and only if it is of the
1571 // form 1*M + c. If the coefficient of M is not one then the sample value
1572 // is infinite, and we return an empty optional.
1573
1574 if (u.orientation == Orientation::Column) {
1575 // If the variable is in column position, the sample value of M + x is
1576 // zero, so x = -M which is unbounded.
1577 return OptimumKind::Unbounded;
1578 }
1579
1580 // If the variable is in row position, its sample value is the
1581 // entry in the constant column divided by the denominator.
1582 int64_t denom = tableau(u.pos, 0);
1583 if (usingBigM)
1584 if (tableau(u.pos, 2) != denom)
1585 return OptimumKind::Unbounded;
1586 sample.emplace_back(tableau(u.pos, 1), denom);
1587 }
1588 return sample;
1589 }
1590
getSamplePointIfIntegral() const1591 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
1592 // If the tableau is empty, no sample point exists.
1593 if (empty)
1594 return {};
1595
1596 // The value will always exist since the Simplex is non-empty.
1597 SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1598 SmallVector<int64_t, 8> integerSample;
1599 integerSample.reserve(var.size());
1600 for (const Fraction &coord : rationalSample) {
1601 // If the sample is non-integral, return None.
1602 if (coord.num % coord.den != 0)
1603 return {};
1604 integerSample.push_back(coord.num / coord.den);
1605 }
1606 return integerSample;
1607 }
1608
1609 /// Given a simplex for a polytope, construct a new simplex whose variables are
1610 /// identified with a pair of points (x, y) in the original polytope. Supports
1611 /// some operations needed for generalized basis reduction. In what follows,
1612 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1613 /// dimension of the original polytope.
1614 ///
1615 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1616 /// also supports rolling back this addition, by maintaining a snapshot stack
1617 /// that contains a snapshot of the Simplex's state for each equality, just
1618 /// before that equality was added.
1619 class presburger::GBRSimplex {
1620 using Orientation = Simplex::Orientation;
1621
1622 public:
GBRSimplex(const Simplex & originalSimplex)1623 GBRSimplex(const Simplex &originalSimplex)
1624 : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
1625 simplexConstraintOffset(simplex.getNumConstraints()) {}
1626
1627 /// Add an equality dotProduct(dir, x - y) == 0.
1628 /// First pushes a snapshot for the current simplex state to the stack so
1629 /// that this can be rolled back later.
addEqualityForDirection(ArrayRef<int64_t> dir)1630 void addEqualityForDirection(ArrayRef<int64_t> dir) {
1631 assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) &&
1632 "Direction passed is the zero vector!");
1633 snapshotStack.push_back(simplex.getSnapshot());
1634 simplex.addEquality(getCoeffsForDirection(dir));
1635 }
1636 /// Compute max(dotProduct(dir, x - y)).
computeWidth(ArrayRef<int64_t> dir)1637 Fraction computeWidth(ArrayRef<int64_t> dir) {
1638 MaybeOptimum<Fraction> maybeWidth =
1639 simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
1640 assert(maybeWidth.isBounded() && "Width should be bounded!");
1641 return *maybeWidth;
1642 }
1643
1644 /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1645 /// the direction equalities to `dual`.
computeWidthAndDuals(ArrayRef<int64_t> dir,SmallVectorImpl<int64_t> & dual,int64_t & dualDenom)1646 Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
1647 SmallVectorImpl<int64_t> &dual,
1648 int64_t &dualDenom) {
1649 // We can't just call into computeWidth or computeOptimum since we need to
1650 // access the state of the tableau after computing the optimum, and these
1651 // functions rollback the insertion of the objective function into the
1652 // tableau before returning. We instead add a row for the objective function
1653 // ourselves, call into computeOptimum, compute the duals from the tableau
1654 // state, and finally rollback the addition of the row before returning.
1655 SimplexRollbackScopeExit scopeExit(simplex);
1656 unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
1657 unsigned row = simplex.con[conIndex].pos;
1658 MaybeOptimum<Fraction> maybeWidth =
1659 simplex.computeRowOptimum(Simplex::Direction::Up, row);
1660 assert(maybeWidth.isBounded() && "Width should be bounded!");
1661 dualDenom = simplex.tableau(row, 0);
1662 dual.clear();
1663
1664 // The increment is i += 2 because equalities are added as two inequalities,
1665 // one positive and one negative. Each iteration processes one equality.
1666 for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1667 // The dual variable for an inequality in column orientation is the
1668 // negative of its coefficient at the objective row. If the inequality is
1669 // in row orientation, the corresponding dual variable is zero.
1670 //
1671 // We want the dual for the original equality, which corresponds to two
1672 // inequalities: a positive inequality, which has the same coefficients as
1673 // the equality, and a negative equality, which has negated coefficients.
1674 //
1675 // Note that at most one of these inequalities can be in column
1676 // orientation because the column unknowns should form a basis and hence
1677 // must be linearly independent. If the positive inequality is in column
1678 // position, its dual is the dual corresponding to the equality. If the
1679 // negative inequality is in column position, the negation of its dual is
1680 // the dual corresponding to the equality. If neither is in column
1681 // position, then that means that this equality is redundant, and its dual
1682 // is zero.
1683 //
1684 // Note that it is NOT valid to perform pivots during the computation of
1685 // the duals. This entire dual computation must be performed on the same
1686 // tableau configuration.
1687 assert(!(simplex.con[i].orientation == Orientation::Column &&
1688 simplex.con[i + 1].orientation == Orientation::Column) &&
1689 "Both inequalities for the equality cannot be in column "
1690 "orientation!");
1691 if (simplex.con[i].orientation == Orientation::Column)
1692 dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
1693 else if (simplex.con[i + 1].orientation == Orientation::Column)
1694 dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
1695 else
1696 dual.emplace_back(0);
1697 }
1698 return *maybeWidth;
1699 }
1700
1701 /// Remove the last equality that was added through addEqualityForDirection.
1702 ///
1703 /// We do this by rolling back to the snapshot at the top of the stack, which
1704 /// should be a snapshot taken just before the last equality was added.
removeLastEquality()1705 void removeLastEquality() {
1706 assert(!snapshotStack.empty() && "Snapshot stack is empty!");
1707 simplex.rollback(snapshotStack.back());
1708 snapshotStack.pop_back();
1709 }
1710
1711 private:
1712 /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1713 /// i.e., dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1714 /// - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1715 /// where n is the dimension of the original polytope.
getCoeffsForDirection(ArrayRef<int64_t> dir)1716 SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
1717 assert(2 * dir.size() == simplex.getNumVariables() &&
1718 "Direction vector has wrong dimensionality");
1719 SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
1720 coeffs.reserve(2 * dir.size());
1721 for (int64_t coeff : dir)
1722 coeffs.push_back(-coeff);
1723 coeffs.emplace_back(0); // constant term
1724 return coeffs;
1725 }
1726
1727 Simplex simplex;
1728 /// The first index of the equality constraints, the index immediately after
1729 /// the last constraint in the initial product simplex.
1730 unsigned simplexConstraintOffset;
1731 /// A stack of snapshots, used for rolling back.
1732 SmallVector<unsigned, 8> snapshotStack;
1733 };
1734
1735 /// Reduce the basis to try and find a direction in which the polytope is
1736 /// "thin". This only works for bounded polytopes.
1737 ///
1738 /// This is an implementation of the algorithm described in the paper
1739 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
1740 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1741 ///
1742 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1743 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
1744 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1745 ///
1746 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1747 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1748 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1749 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1750 /// minimizing value of u, if it were allowed to be fractional. Due to
1751 /// convexity, the minimizing integer value is either floor(dual_i) or
1752 /// ceil(dual_i), so we just need to check which of these gives a lower
1753 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1754 ///
1755 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1756 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1757 /// same i). Otherwise, we increment i.
1758 ///
1759 /// We keep f values and duals cached and invalidate them when necessary.
1760 /// Whenever possible, we use them instead of recomputing them. We implement the
1761 /// algorithm as follows.
1762 ///
1763 /// In an iteration at i we need to compute:
1764 /// a) width_i(b_{i + 1})
1765 /// b) width_i(b_i)
1766 /// c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1767 ///
1768 /// If width_i(b_i) is not already cached, we compute it.
1769 ///
1770 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1771 /// store the duals from this computation.
1772 ///
1773 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1774 /// of u as explained before, caches the duals from this computation, sets
1775 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1776 ///
1777 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1778 /// decrement i, resulting in the basis
1779 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1780 /// with corresponding f values
1781 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1782 /// The values up to i - 1 remain unchanged. We have just gotten the middle
1783 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1784 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1785 /// the cache. The iteration after decrementing needs exactly the duals from the
1786 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1787 ///
1788 /// When incrementing i, no cached f values get invalidated. However, the cached
1789 /// duals do get invalidated as the duals for the higher levels are different.
reduceBasis(Matrix & basis,unsigned level)1790 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
1791 const Fraction epsilon(3, 4);
1792
1793 if (level == basis.getNumRows() - 1)
1794 return;
1795
1796 GBRSimplex gbrSimplex(*this);
1797 SmallVector<Fraction, 8> width;
1798 SmallVector<int64_t, 8> dual;
1799 int64_t dualDenom;
1800
1801 // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1802 // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1803 // the new value of width_i(b_{i+1}).
1804 //
1805 // If dual_i is not an integer, the minimizing value must be either
1806 // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1807 // choose the minimizing value.
1808 //
1809 // If dual_i is an integer, we don't need to perform these computations. We
1810 // know that in this case,
1811 // a) u = dual_i.
1812 // b) one can show that dual_j for j < i are the same duals we would have
1813 // gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1814 // are the ones already in the cache.
1815 // c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1816 // which
1817 // one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1818 // be in the cache, so we get it from there and return it.
1819 auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1820 assert(i < level + dual.size() && "dual_i is not known!");
1821
1822 int64_t u = floorDiv(dual[i - level], dualDenom);
1823 basis.addToRow(i, i + 1, u);
1824 if (dual[i - level] % dualDenom != 0) {
1825 SmallVector<int64_t, 8> candidateDual[2];
1826 int64_t candidateDualDenom[2];
1827 Fraction widthI[2];
1828
1829 // Initially u is floor(dual) and basis reflects this.
1830 widthI[0] = gbrSimplex.computeWidthAndDuals(
1831 basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
1832
1833 // Now try ceil(dual), i.e. floor(dual) + 1.
1834 ++u;
1835 basis.addToRow(i, i + 1, 1);
1836 widthI[1] = gbrSimplex.computeWidthAndDuals(
1837 basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
1838
1839 unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1840 if (j == 0)
1841 // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1842 basis.addToRow(i, i + 1, -1);
1843
1844 // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1845 // We assert that this holds by checking that the values of width_i at
1846 // u - 1 and u + 1 are greater than or equal to the value at u. If the
1847 // width is lesser at either of the adjacent values, then our computed
1848 // value of u is clearly not the minimizer. Otherwise by convexity the
1849 // computed value of u is really the minimizer.
1850
1851 // Check the value at u - 1.
1852 assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1853 basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
1854 "Computed u value does not minimize the width!");
1855 // Check the value at u + 1.
1856 assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1857 basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
1858 "Computed u value does not minimize the width!");
1859
1860 dual = std::move(candidateDual[j]);
1861 dualDenom = candidateDualDenom[j];
1862 return widthI[j];
1863 }
1864
1865 assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1866 // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1867 // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1868 // the above expression is equal to basis.getRow(i+1) below.)
1869 assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1870 width[i + 1 - level]);
1871 return width[i + 1 - level];
1872 };
1873
1874 // In the ith iteration of the loop, gbrSimplex has constraints for directions
1875 // from `level` to i - 1.
1876 unsigned i = level;
1877 while (i < basis.getNumRows() - 1) {
1878 if (i >= level + width.size()) {
1879 // We don't even know the value of f_i(b_i), so let's find that first.
1880 // We have to do this first since later we assume that width already
1881 // contains values up to and including i.
1882
1883 assert((i == 0 || i - 1 < level + width.size()) &&
1884 "We are at level i but we don't know the value of width_{i-1}");
1885
1886 // We don't actually use these duals at all, but it doesn't matter
1887 // because this case should only occur when i is level, and there are no
1888 // duals in that case anyway.
1889 assert(i == level && "This case should only occur when i == level");
1890 width.push_back(
1891 gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1892 }
1893
1894 if (i >= level + dual.size()) {
1895 assert(i + 1 >= level + width.size() &&
1896 "We don't know dual_i but we know width_{i+1}");
1897 // We don't know dual for our level, so let's find it.
1898 gbrSimplex.addEqualityForDirection(basis.getRow(i));
1899 width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1900 dualDenom));
1901 gbrSimplex.removeLastEquality();
1902 }
1903
1904 // This variable stores width_i(b_{i+1} + u*b_i).
1905 Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1906 if (widthICandidate < epsilon * width[i - level]) {
1907 basis.swapRows(i, i + 1);
1908 width[i - level] = widthICandidate;
1909 // The values of width_{i+1}(b_{i+1}) and higher may change after the
1910 // swap, so we remove the cached values here.
1911 width.resize(i - level + 1);
1912 if (i == level) {
1913 dual.clear();
1914 continue;
1915 }
1916
1917 gbrSimplex.removeLastEquality();
1918 i--;
1919 continue;
1920 }
1921
1922 // Invalidate duals since the higher level needs to recompute its own duals.
1923 dual.clear();
1924 gbrSimplex.addEqualityForDirection(basis.getRow(i));
1925 i++;
1926 }
1927 }
1928
1929 /// Search for an integer sample point using a branch and bound algorithm.
1930 ///
1931 /// Each row in the basis matrix is a vector, and the set of basis vectors
1932 /// should span the space. Initially this is the identity matrix,
1933 /// i.e., the basis vectors are just the variables.
1934 ///
1935 /// In every level, a value is assigned to the level-th basis vector, as
1936 /// follows. Compute the minimum and maximum rational values of this direction.
1937 /// If only one integer point lies in this range, constrain the variable to
1938 /// have this value and recurse to the next variable.
1939 ///
1940 /// If the range has multiple values, perform generalized basis reduction via
1941 /// reduceBasis and then compute the bounds again. Now we try constraining
1942 /// this direction in the first value in this range and "recurse" to the next
1943 /// level. If we fail to find a sample, we try assigning the direction the next
1944 /// value in this range, and so on.
1945 ///
1946 /// If no integer sample is found from any of the assignments, or if the range
1947 /// contains no integer value, then of course the polytope is empty for the
1948 /// current assignment of the values in previous levels, so we return to
1949 /// the previous level.
1950 ///
1951 /// If we reach the last level where all the variables have been assigned values
1952 /// already, then we simply return the current sample point if it is integral,
1953 /// and go back to the previous level otherwise.
1954 ///
1955 /// To avoid potentially arbitrarily large recursion depths leading to stack
1956 /// overflows, this algorithm is implemented iteratively.
findIntegerSample()1957 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1958 if (empty)
1959 return {};
1960
1961 unsigned nDims = var.size();
1962 Matrix basis = Matrix::identity(nDims);
1963
1964 unsigned level = 0;
1965 // The snapshot just before constraining a direction to a value at each level.
1966 SmallVector<unsigned, 8> snapshotStack;
1967 // The maximum value in the range of the direction for each level.
1968 SmallVector<int64_t, 8> upperBoundStack;
1969 // The next value to try constraining the basis vector to at each level.
1970 SmallVector<int64_t, 8> nextValueStack;
1971
1972 snapshotStack.reserve(basis.getNumRows());
1973 upperBoundStack.reserve(basis.getNumRows());
1974 nextValueStack.reserve(basis.getNumRows());
1975 while (level != -1u) {
1976 if (level == basis.getNumRows()) {
1977 // We've assigned values to all variables. Return if we have a sample,
1978 // or go back up to the previous level otherwise.
1979 if (auto maybeSample = getSamplePointIfIntegral())
1980 return maybeSample;
1981 level--;
1982 continue;
1983 }
1984
1985 if (level >= upperBoundStack.size()) {
1986 // We haven't populated the stack values for this level yet, so we have
1987 // just come down a level ("recursed"). Find the lower and upper bounds.
1988 // If there is more than one integer point in the range, perform
1989 // generalized basis reduction.
1990 SmallVector<int64_t, 8> basisCoeffs =
1991 llvm::to_vector<8>(basis.getRow(level));
1992 basisCoeffs.emplace_back(0);
1993
1994 MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown;
1995 std::tie(minRoundedUp, maxRoundedDown) =
1996 computeIntegerBounds(basisCoeffs);
1997
1998 // We don't have any integer values in the range.
1999 // Pop the stack and return up a level.
2000 if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
2001 assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
2002 "If one bound is empty, both should be.");
2003 snapshotStack.pop_back();
2004 nextValueStack.pop_back();
2005 upperBoundStack.pop_back();
2006 level--;
2007 continue;
2008 }
2009
2010 // We already checked the empty case above.
2011 assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
2012 "Polyhedron should be bounded!");
2013
2014 // Heuristic: if the sample point is integral at this point, just return
2015 // it.
2016 if (auto maybeSample = getSamplePointIfIntegral())
2017 return *maybeSample;
2018
2019 if (*minRoundedUp < *maxRoundedDown) {
2020 reduceBasis(basis, level);
2021 basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
2022 basisCoeffs.emplace_back(0);
2023 std::tie(minRoundedUp, maxRoundedDown) =
2024 computeIntegerBounds(basisCoeffs);
2025 }
2026
2027 snapshotStack.push_back(getSnapshot());
2028 // The smallest value in the range is the next value to try.
2029 // The values in the optionals are guaranteed to exist since we know the
2030 // polytope is bounded.
2031 nextValueStack.push_back(*minRoundedUp);
2032 upperBoundStack.push_back(*maxRoundedDown);
2033 }
2034
2035 assert((snapshotStack.size() - 1 == level &&
2036 nextValueStack.size() - 1 == level &&
2037 upperBoundStack.size() - 1 == level) &&
2038 "Mismatched variable stack sizes!");
2039
2040 // Whether we "recursed" or "returned" from a lower level, we rollback
2041 // to the snapshot of the starting state at this level. (in the "recursed"
2042 // case this has no effect)
2043 rollback(snapshotStack.back());
2044 int64_t nextValue = nextValueStack.back();
2045 ++nextValueStack.back();
2046 if (nextValue > upperBoundStack.back()) {
2047 // We have exhausted the range and found no solution. Pop the stack and
2048 // return up a level.
2049 snapshotStack.pop_back();
2050 nextValueStack.pop_back();
2051 upperBoundStack.pop_back();
2052 level--;
2053 continue;
2054 }
2055
2056 // Try the next value in the range and "recurse" into the next level.
2057 SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
2058 basis.getRow(level).end());
2059 basisCoeffs.push_back(-nextValue);
2060 addEquality(basisCoeffs);
2061 level++;
2062 }
2063
2064 return {};
2065 }
2066
2067 /// Compute the minimum and maximum integer values the expression can take. We
2068 /// compute each separately.
2069 std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>>
computeIntegerBounds(ArrayRef<int64_t> coeffs)2070 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
2071 MaybeOptimum<int64_t> minRoundedUp(
2072 computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
2073 MaybeOptimum<int64_t> maxRoundedDown(
2074 computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
2075 return {minRoundedUp, maxRoundedDown};
2076 }
2077
print(raw_ostream & os) const2078 void SimplexBase::print(raw_ostream &os) const {
2079 os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n";
2080 if (empty)
2081 os << "Simplex marked empty!\n";
2082 os << "var: ";
2083 for (unsigned i = 0; i < var.size(); ++i) {
2084 if (i > 0)
2085 os << ", ";
2086 var[i].print(os);
2087 }
2088 os << "\ncon: ";
2089 for (unsigned i = 0; i < con.size(); ++i) {
2090 if (i > 0)
2091 os << ", ";
2092 con[i].print(os);
2093 }
2094 os << '\n';
2095 for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
2096 if (row > 0)
2097 os << ", ";
2098 os << "r" << row << ": " << rowUnknown[row];
2099 }
2100 os << '\n';
2101 os << "c0: denom, c1: const";
2102 for (unsigned col = 2, e = getNumColumns(); col < e; ++col)
2103 os << ", c" << col << ": " << colUnknown[col];
2104 os << '\n';
2105 for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
2106 for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col)
2107 os << tableau(row, col) << '\t';
2108 os << '\n';
2109 }
2110 os << '\n';
2111 }
2112
dump() const2113 void SimplexBase::dump() const { print(llvm::errs()); }
2114
isRationalSubsetOf(const IntegerRelation & rel)2115 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2116 if (isEmpty())
2117 return true;
2118
2119 for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2120 if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
2121 return false;
2122
2123 for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2124 if (!isRedundantEquality(rel.getEquality(i)))
2125 return false;
2126
2127 return true;
2128 }
2129
2130 /// Returns the type of the inequality with coefficients `coeffs`.
2131 /// Possible types are:
2132 /// Redundant The inequality is satisfied by all points in the polytope
2133 /// Cut The inequality is satisfied by some points, but not by others
2134 /// Separate The inequality is not satisfied by any point
2135 ///
2136 /// Internally, this computes the minimum and the maximum the inequality with
2137 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2138 /// for all points in the polytope, so it is redundant. If the minimum is <= 0
2139 /// and the maximum is >= 0, the points in between the minimum and the
2140 /// inequality do not satisfy it, the points in between the inequality and the
2141 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2142 /// points of the polytope satisfy the inequality, which means it is a separate
2143 /// inequality.
findIneqType(ArrayRef<int64_t> coeffs)2144 Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) {
2145 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2146 if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2147 return IneqType::Redundant;
2148 }
2149 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2150 if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2151 (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2152 return IneqType::Cut;
2153 }
2154 return IneqType::Separate;
2155 }
2156
2157 /// Checks whether the type of the inequality with coefficients `coeffs`
2158 /// is Redundant.
isRedundantInequality(ArrayRef<int64_t> coeffs)2159 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
2160 assert(!empty &&
2161 "It is not meaningful to ask about redundancy in an empty set!");
2162 return findIneqType(coeffs) == IneqType::Redundant;
2163 }
2164
2165 /// Check whether the equality given by `coeffs == 0` is redundant given
2166 /// the existing constraints. This is redundant when `coeffs` is already
2167 /// always zero under the existing constraints. `coeffs` is always zero
2168 /// when the minimum and maximum value that `coeffs` can take are both zero.
isRedundantEquality(ArrayRef<int64_t> coeffs)2169 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
2170 assert(!empty &&
2171 "It is not meaningful to ask about redundancy in an empty set!");
2172 MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2173 MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2174 assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
2175 "Optima should be non-empty for a non-empty set");
2176 return minimum.isBounded() && maximum.isBounded() &&
2177 *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2178 }
2179