1 //===- Simplex.cpp - MLIR Simplex Class -----------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 
9 #include "mlir/Analysis/Presburger/Simplex.h"
10 #include "mlir/Analysis/Presburger/Matrix.h"
11 #include "mlir/Support/MathExtras.h"
12 #include "llvm/ADT/Optional.h"
13 #include "llvm/Support/Compiler.h"
14 
15 using namespace mlir;
16 using namespace presburger;
17 
18 using Direction = Simplex::Direction;
19 
20 const int nullIndex = std::numeric_limits<int>::max();
21 
22 // Return a + scale*b;
23 LLVM_ATTRIBUTE_UNUSED
24 static SmallVector<int64_t, 8>
scaleAndAddForAssert(ArrayRef<int64_t> a,int64_t scale,ArrayRef<int64_t> b)25 scaleAndAddForAssert(ArrayRef<int64_t> a, int64_t scale, ArrayRef<int64_t> b) {
26   assert(a.size() == b.size());
27   SmallVector<int64_t, 8> res;
28   res.reserve(a.size());
29   for (unsigned i = 0, e = a.size(); i < e; ++i)
30     res.push_back(a[i] + scale * b[i]);
31   return res;
32 }
33 
SimplexBase(unsigned nVar,bool mustUseBigM)34 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM)
35     : usingBigM(mustUseBigM), nRedundant(0), nSymbol(0),
36       tableau(0, getNumFixedCols() + nVar), empty(false) {
37   colUnknown.insert(colUnknown.begin(), getNumFixedCols(), nullIndex);
38   for (unsigned i = 0; i < nVar; ++i) {
39     var.emplace_back(Orientation::Column, /*restricted=*/false,
40                      /*pos=*/getNumFixedCols() + i);
41     colUnknown.push_back(i);
42   }
43 }
44 
SimplexBase(unsigned nVar,bool mustUseBigM,const llvm::SmallBitVector & isSymbol)45 SimplexBase::SimplexBase(unsigned nVar, bool mustUseBigM,
46                          const llvm::SmallBitVector &isSymbol)
47     : SimplexBase(nVar, mustUseBigM) {
48   assert(isSymbol.size() == nVar && "invalid bitmask!");
49   // Invariant: nSymbol is the number of symbols that have been marked
50   // already and these occupy the columns
51   // [getNumFixedCols(), getNumFixedCols() + nSymbol).
52   for (unsigned symbolIdx : isSymbol.set_bits()) {
53     var[symbolIdx].isSymbol = true;
54     swapColumns(var[symbolIdx].pos, getNumFixedCols() + nSymbol);
55     ++nSymbol;
56   }
57 }
58 
unknownFromIndex(int index) const59 const Simplex::Unknown &SimplexBase::unknownFromIndex(int index) const {
60   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
61   return index >= 0 ? var[index] : con[~index];
62 }
63 
unknownFromColumn(unsigned col) const64 const Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) const {
65   assert(col < getNumColumns() && "Invalid column");
66   return unknownFromIndex(colUnknown[col]);
67 }
68 
unknownFromRow(unsigned row) const69 const Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) const {
70   assert(row < getNumRows() && "Invalid row");
71   return unknownFromIndex(rowUnknown[row]);
72 }
73 
unknownFromIndex(int index)74 Simplex::Unknown &SimplexBase::unknownFromIndex(int index) {
75   assert(index != nullIndex && "nullIndex passed to unknownFromIndex");
76   return index >= 0 ? var[index] : con[~index];
77 }
78 
unknownFromColumn(unsigned col)79 Simplex::Unknown &SimplexBase::unknownFromColumn(unsigned col) {
80   assert(col < getNumColumns() && "Invalid column");
81   return unknownFromIndex(colUnknown[col]);
82 }
83 
unknownFromRow(unsigned row)84 Simplex::Unknown &SimplexBase::unknownFromRow(unsigned row) {
85   assert(row < getNumRows() && "Invalid row");
86   return unknownFromIndex(rowUnknown[row]);
87 }
88 
addZeroRow(bool makeRestricted)89 unsigned SimplexBase::addZeroRow(bool makeRestricted) {
90   // Resize the tableau to accommodate the extra row.
91   unsigned newRow = tableau.appendExtraRow();
92   assert(getNumRows() == getNumRows() && "Inconsistent tableau size");
93   rowUnknown.push_back(~con.size());
94   con.emplace_back(Orientation::Row, makeRestricted, newRow);
95   undoLog.push_back(UndoLogEntry::RemoveLastConstraint);
96   tableau(newRow, 0) = 1;
97   return newRow;
98 }
99 
100 /// Add a new row to the tableau corresponding to the given constant term and
101 /// list of coefficients. The coefficients are specified as a vector of
102 /// (variable index, coefficient) pairs.
addRow(ArrayRef<int64_t> coeffs,bool makeRestricted)103 unsigned SimplexBase::addRow(ArrayRef<int64_t> coeffs, bool makeRestricted) {
104   assert(coeffs.size() == var.size() + 1 &&
105          "Incorrect number of coefficients!");
106   assert(var.size() + getNumFixedCols() == getNumColumns() &&
107          "inconsistent column count!");
108 
109   unsigned newRow = addZeroRow(makeRestricted);
110   tableau(newRow, 1) = coeffs.back();
111   if (usingBigM) {
112     // When the lexicographic pivot rule is used, instead of the variables
113     //
114     // x, y, z ...
115     //
116     // we internally use the variables
117     //
118     // M, M + x, M + y, M + z, ...
119     //
120     // where M is the big M parameter. As such, when the user tries to add
121     // a row ax + by + cz + d, we express it in terms of our internal variables
122     // as -(a + b + c)M + a(M + x) + b(M + y) + c(M + z) + d.
123     //
124     // Symbols don't use the big M parameter since they do not get lex
125     // optimized.
126     int64_t bigMCoeff = 0;
127     for (unsigned i = 0; i < coeffs.size() - 1; ++i)
128       if (!var[i].isSymbol)
129         bigMCoeff -= coeffs[i];
130     // The coefficient to the big M parameter is stored in column 2.
131     tableau(newRow, 2) = bigMCoeff;
132   }
133 
134   // Process each given variable coefficient.
135   for (unsigned i = 0; i < var.size(); ++i) {
136     unsigned pos = var[i].pos;
137     if (coeffs[i] == 0)
138       continue;
139 
140     if (var[i].orientation == Orientation::Column) {
141       // If a variable is in column position at column col, then we just add the
142       // coefficient for that variable (scaled by the common row denominator) to
143       // the corresponding entry in the new row.
144       tableau(newRow, pos) += coeffs[i] * tableau(newRow, 0);
145       continue;
146     }
147 
148     // If the variable is in row position, we need to add that row to the new
149     // row, scaled by the coefficient for the variable, accounting for the two
150     // rows potentially having different denominators. The new denominator is
151     // the lcm of the two.
152     int64_t lcm = mlir::lcm(tableau(newRow, 0), tableau(pos, 0));
153     int64_t nRowCoeff = lcm / tableau(newRow, 0);
154     int64_t idxRowCoeff = coeffs[i] * (lcm / tableau(pos, 0));
155     tableau(newRow, 0) = lcm;
156     for (unsigned col = 1, e = getNumColumns(); col < e; ++col)
157       tableau(newRow, col) =
158           nRowCoeff * tableau(newRow, col) + idxRowCoeff * tableau(pos, col);
159   }
160 
161   tableau.normalizeRow(newRow);
162   // Push to undo log along with the index of the new constraint.
163   return con.size() - 1;
164 }
165 
166 namespace {
signMatchesDirection(int64_t elem,Direction direction)167 bool signMatchesDirection(int64_t elem, Direction direction) {
168   assert(elem != 0 && "elem should not be 0");
169   return direction == Direction::Up ? elem > 0 : elem < 0;
170 }
171 
flippedDirection(Direction direction)172 Direction flippedDirection(Direction direction) {
173   return direction == Direction::Up ? Direction::Down : Simplex::Direction::Up;
174 }
175 } // namespace
176 
177 /// We simply make the tableau consistent while maintaining a lexicopositive
178 /// basis transform, and then return the sample value. If the tableau becomes
179 /// empty, we return empty.
180 ///
181 /// Let the variables be x = (x_1, ... x_n).
182 /// Let the basis unknowns be y = (y_1, ... y_n).
183 /// We have that x = A*y + b for some n x n matrix A and n x 1 column vector b.
184 ///
185 /// As we will show below, A*y is either zero or lexicopositive.
186 /// Adding a lexicopositive vector to b will make it lexicographically
187 /// greater, so A*y + b is always equal to or lexicographically greater than b.
188 /// Thus, since we can attain x = b, that is the lexicographic minimum.
189 ///
190 /// We have that that every column in A is lexicopositive, i.e., has at least
191 /// one non-zero element, with the first such element being positive. Since for
192 /// the tableau to be consistent we must have non-negative sample values not
193 /// only for the constraints but also for the variables, we also have x >= 0 and
194 /// y >= 0, by which we mean every element in these vectors is non-negative.
195 ///
196 /// Proof that if every column in A is lexicopositive, and y >= 0, then
197 /// A*y is zero or lexicopositive. Begin by considering A_1, the first row of A.
198 /// If this row is all zeros, then (A*y)_1 = (A_1)*y = 0; proceed to the next
199 /// row. If we run out of rows, A*y is zero and we are done; otherwise, we
200 /// encounter some row A_i that has a non-zero element. Every column is
201 /// lexicopositive and so has some positive element before any negative elements
202 /// occur, so the element in this row for any column, if non-zero, must be
203 /// positive. Consider (A*y)_i = (A_i)*y. All the elements in both vectors are
204 /// non-negative, so if this is non-zero then it must be positive. Then the
205 /// first non-zero element of A*y is positive so A*y is lexicopositive.
206 ///
207 /// Otherwise, if (A_i)*y is zero, then for every column j that had a non-zero
208 /// element in A_i, y_j is zero. Thus these columns have no contribution to A*y
209 /// and we can completely ignore these columns of A. We now continue downwards,
210 /// looking for rows of A that have a non-zero element other than in the ignored
211 /// columns. If we find one, say A_k, once again these elements must be positive
212 /// since they are the first non-zero element in each of these columns, so if
213 /// (A_k)*y is not zero then we have that A*y is lexicopositive and if not we
214 /// add these to the set of ignored columns and continue to the next row. If we
215 /// run out of rows, then A*y is zero and we are done.
findRationalLexMin()216 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::findRationalLexMin() {
217   if (restoreRationalConsistency().failed()) {
218     markEmpty();
219     return OptimumKind::Empty;
220   }
221   return getRationalSample();
222 }
223 
224 /// Given a row that has a non-integer sample value, add an inequality such
225 /// that this fractional sample value is cut away from the polytope. The added
226 /// inequality will be such that no integer points are removed. i.e., the
227 /// integer lexmin, if it exists, is the same with and without this constraint.
228 ///
229 /// Let the row be
230 /// (c + coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n)/d,
231 /// where s_1, ... s_m are the symbols and
232 ///       y_1, ... y_n are the other basis unknowns.
233 ///
234 /// For this to be an integer, we want
235 /// coeffM*M + a_1*s_1 + ... + a_m*s_m + b_1*y_1 + ... + b_n*y_n = -c (mod d)
236 /// Note that this constraint must always hold, independent of the basis,
237 /// becuse the row unknown's value always equals this expression, even if *we*
238 /// later compute the sample value from a different expression based on a
239 /// different basis.
240 ///
241 /// Let us assume that M has a factor of d in it. Imposing this constraint on M
242 /// does not in any way hinder us from finding a value of M that is big enough.
243 /// Moreover, this function is only called when the symbolic part of the sample,
244 /// a_1*s_1 + ... + a_m*s_m, is known to be an integer.
245 ///
246 /// Also, we can safely reduce the coefficients modulo d, so we have:
247 ///
248 /// (b_1%d)y_1 + ... + (b_n%d)y_n = (-c%d) + k*d for some integer `k`
249 ///
250 /// Note that all coefficient modulos here are non-negative. Also, all the
251 /// unknowns are non-negative here as both constraints and variables are
252 /// non-negative in LexSimplexBase. (We used the big M trick to make the
253 /// variables non-negative). Therefore, the LHS here is non-negative.
254 /// Since 0 <= (-c%d) < d, k is the quotient of dividing the LHS by d and
255 /// is therefore non-negative as well.
256 ///
257 /// So we have
258 /// ((b_1%d)y_1 + ... + (b_n%d)y_n - (-c%d))/d >= 0.
259 ///
260 /// The constraint is violated when added (it would be useless otherwise)
261 /// so we immediately try to move it to a column.
addCut(unsigned row)262 LogicalResult LexSimplexBase::addCut(unsigned row) {
263   int64_t d = tableau(row, 0);
264   unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
265   tableau(cutRow, 0) = d;
266   tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -c%d.
267   tableau(cutRow, 2) = 0;
268   for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
269     tableau(cutRow, col) = mod(tableau(row, col), d); // b_i%d.
270   return moveRowUnknownToColumn(cutRow);
271 }
272 
maybeGetNonIntegralVarRow() const273 Optional<unsigned> LexSimplex::maybeGetNonIntegralVarRow() const {
274   for (const Unknown &u : var) {
275     if (u.orientation == Orientation::Column)
276       continue;
277     // If the sample value is of the form (a/d)M + b/d, we need b to be
278     // divisible by d. We assume M contains all possible
279     // factors and is divisible by everything.
280     unsigned row = u.pos;
281     if (tableau(row, 1) % tableau(row, 0) != 0)
282       return row;
283   }
284   return {};
285 }
286 
findIntegerLexMin()287 MaybeOptimum<SmallVector<int64_t, 8>> LexSimplex::findIntegerLexMin() {
288   // We first try to make the tableau consistent.
289   if (restoreRationalConsistency().failed())
290     return OptimumKind::Empty;
291 
292   // Then, if the sample value is integral, we are done.
293   while (Optional<unsigned> maybeRow = maybeGetNonIntegralVarRow()) {
294     // Otherwise, for the variable whose row has a non-integral sample value,
295     // we add a cut, a constraint that remove this rational point
296     // while preserving all integer points, thus keeping the lexmin the same.
297     // We then again try to make the tableau with the new constraint
298     // consistent. This continues until the tableau becomes empty, in which
299     // case there is no integer point, or until there are no variables with
300     // non-integral sample values.
301     //
302     // Failure indicates that the tableau became empty, which occurs when the
303     // polytope is integer empty.
304     if (addCut(*maybeRow).failed())
305       return OptimumKind::Empty;
306     if (restoreRationalConsistency().failed())
307       return OptimumKind::Empty;
308   }
309 
310   MaybeOptimum<SmallVector<Fraction, 8>> sample = getRationalSample();
311   assert(!sample.isEmpty() && "If we reached here the sample should exist!");
312   if (sample.isUnbounded())
313     return OptimumKind::Unbounded;
314   return llvm::to_vector<8>(
315       llvm::map_range(*sample, std::mem_fn(&Fraction::getAsInteger)));
316 }
317 
isSeparateInequality(ArrayRef<int64_t> coeffs)318 bool LexSimplex::isSeparateInequality(ArrayRef<int64_t> coeffs) {
319   SimplexRollbackScopeExit scopeExit(*this);
320   addInequality(coeffs);
321   return findIntegerLexMin().isEmpty();
322 }
323 
isRedundantInequality(ArrayRef<int64_t> coeffs)324 bool LexSimplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
325   return isSeparateInequality(getComplementIneq(coeffs));
326 }
327 
328 SmallVector<int64_t, 8>
getSymbolicSampleNumerator(unsigned row) const329 SymbolicLexSimplex::getSymbolicSampleNumerator(unsigned row) const {
330   SmallVector<int64_t, 8> sample;
331   sample.reserve(nSymbol + 1);
332   for (unsigned col = 3; col < 3 + nSymbol; ++col)
333     sample.push_back(tableau(row, col));
334   sample.push_back(tableau(row, 1));
335   return sample;
336 }
337 
338 SmallVector<int64_t, 8>
getSymbolicSampleIneq(unsigned row) const339 SymbolicLexSimplex::getSymbolicSampleIneq(unsigned row) const {
340   SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(row);
341   // The inequality is equivalent to the GCD-normalized one.
342   normalizeRange(sample);
343   return sample;
344 }
345 
appendSymbol()346 void LexSimplexBase::appendSymbol() {
347   appendVariable();
348   swapColumns(3 + nSymbol, getNumColumns() - 1);
349   var.back().isSymbol = true;
350   nSymbol++;
351 }
352 
isRangeDivisibleBy(ArrayRef<int64_t> range,int64_t divisor)353 static bool isRangeDivisibleBy(ArrayRef<int64_t> range, int64_t divisor) {
354   assert(divisor > 0 && "divisor must be positive!");
355   return llvm::all_of(range, [divisor](int64_t x) { return x % divisor == 0; });
356 }
357 
isSymbolicSampleIntegral(unsigned row) const358 bool SymbolicLexSimplex::isSymbolicSampleIntegral(unsigned row) const {
359   int64_t denom = tableau(row, 0);
360   return tableau(row, 1) % denom == 0 &&
361          isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), denom);
362 }
363 
364 /// This proceeds similarly to LexSimplexBase::addCut(). We are given a row that
365 /// has a symbolic sample value with fractional coefficients.
366 ///
367 /// Let the row be
368 /// (c + coeffM*M + sum_i a_i*s_i + sum_j b_j*y_j)/d,
369 /// where s_1, ... s_m are the symbols and
370 ///       y_1, ... y_n are the other basis unknowns.
371 ///
372 /// As in LexSimplex::addCut, for this to be an integer, we want
373 ///
374 /// coeffM*M + sum_j b_j*y_j = -c + sum_i (-a_i*s_i) (mod d)
375 ///
376 /// This time, a_1*s_1 + ... + a_m*s_m may not be an integer. We find that
377 ///
378 /// sum_i (b_i%d)y_i = ((-c%d) + sum_i (-a_i%d)s_i)%d + k*d for some integer k
379 ///
380 /// where we take a modulo of the whole symbolic expression on the right to
381 /// bring it into the range [0, d - 1]. Therefore, as in addCut(),
382 /// k is the quotient on dividing the LHS by d, and since LHS >= 0, we have
383 /// k >= 0 as well. If all the a_i are divisible by d, then we can add the
384 /// constraint directly.  Otherwise, we realize the modulo of the symbolic
385 /// expression by adding a division variable
386 ///
387 /// q = ((-c%d) + sum_i (-a_i%d)s_i)/d
388 ///
389 /// to the symbol domain, so the equality becomes
390 ///
391 /// sum_i (b_i%d)y_i = (-c%d) + sum_i (-a_i%d)s_i - q*d + k*d for some integer k
392 ///
393 /// So the cut is
394 /// (sum_i (b_i%d)y_i - (-c%d) - sum_i (-a_i%d)s_i + q*d)/d >= 0
395 /// This constraint is violated when added so we immediately try to move it to a
396 /// column.
addSymbolicCut(unsigned row)397 LogicalResult SymbolicLexSimplex::addSymbolicCut(unsigned row) {
398   int64_t d = tableau(row, 0);
399   if (isRangeDivisibleBy(tableau.getRow(row).slice(3, nSymbol), d)) {
400     // The coefficients of symbols in the symbol numerator are divisible
401     // by the denominator, so we can add the constraint directly,
402     // i.e., ignore the symbols and add a regular cut as in addCut().
403     return addCut(row);
404   }
405 
406   // Construct the division variable `q = ((-c%d) + sum_i (-a_i%d)s_i)/d`.
407   SmallVector<int64_t, 8> divCoeffs;
408   divCoeffs.reserve(nSymbol + 1);
409   int64_t divDenom = d;
410   for (unsigned col = 3; col < 3 + nSymbol; ++col)
411     divCoeffs.push_back(mod(-tableau(row, col), divDenom)); // (-a_i%d)s_i
412   divCoeffs.push_back(mod(-tableau(row, 1), divDenom));     // -c%d.
413   normalizeDiv(divCoeffs, divDenom);
414 
415   domainSimplex.addDivisionVariable(divCoeffs, divDenom);
416   domainPoly.addLocalFloorDiv(divCoeffs, divDenom);
417 
418   // Update `this` to account for the additional symbol we just added.
419   appendSymbol();
420 
421   // Add the cut (sum_i (b_i%d)y_i - (-c%d) + sum_i -(-a_i%d)s_i + q*d)/d >= 0.
422   unsigned cutRow = addZeroRow(/*makeRestricted=*/true);
423   tableau(cutRow, 0) = d;
424   tableau(cutRow, 2) = 0;
425 
426   tableau(cutRow, 1) = -mod(-tableau(row, 1), d); // -(-c%d).
427   for (unsigned col = 3; col < 3 + nSymbol - 1; ++col)
428     tableau(cutRow, col) = -mod(-tableau(row, col), d); // -(-a_i%d)s_i.
429   tableau(cutRow, 3 + nSymbol - 1) = d;                 // q*d.
430 
431   for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col)
432     tableau(cutRow, col) = mod(tableau(row, col), d); // (b_i%d)y_i.
433   return moveRowUnknownToColumn(cutRow);
434 }
435 
recordOutput(SymbolicLexMin & result) const436 void SymbolicLexSimplex::recordOutput(SymbolicLexMin &result) const {
437   Matrix output(0, domainPoly.getNumVars() + 1);
438   output.reserveRows(result.lexmin.getNumOutputs());
439   for (const Unknown &u : var) {
440     if (u.isSymbol)
441       continue;
442 
443     if (u.orientation == Orientation::Column) {
444       // M + u has a sample value of zero so u has a sample value of -M, i.e,
445       // unbounded.
446       result.unboundedDomain.unionInPlace(domainPoly);
447       return;
448     }
449 
450     int64_t denom = tableau(u.pos, 0);
451     if (tableau(u.pos, 2) < denom) {
452       // M + u has a sample value of fM + something, where f < 1, so
453       // u = (f - 1)M + something, which has a negative coefficient for M,
454       // and so is unbounded.
455       result.unboundedDomain.unionInPlace(domainPoly);
456       return;
457     }
458     assert(tableau(u.pos, 2) == denom &&
459            "Coefficient of M should not be greater than 1!");
460 
461     SmallVector<int64_t, 8> sample = getSymbolicSampleNumerator(u.pos);
462     for (int64_t &elem : sample) {
463       assert(elem % denom == 0 && "coefficients must be integral!");
464       elem /= denom;
465     }
466     output.appendExtraRow(sample);
467   }
468   result.lexmin.addPiece(domainPoly, output);
469 }
470 
maybeGetAlwaysViolatedRow()471 Optional<unsigned> SymbolicLexSimplex::maybeGetAlwaysViolatedRow() {
472   // First look for rows that are clearly violated just from the big M
473   // coefficient, without needing to perform any simplex queries on the domain.
474   for (unsigned row = 0, e = getNumRows(); row < e; ++row)
475     if (tableau(row, 2) < 0)
476       return row;
477 
478   for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
479     if (tableau(row, 2) > 0)
480       continue;
481     if (domainSimplex.isSeparateInequality(getSymbolicSampleIneq(row))) {
482       // Sample numerator always takes negative values in the symbol domain.
483       return row;
484     }
485   }
486   return {};
487 }
488 
maybeGetNonIntegralVarRow()489 Optional<unsigned> SymbolicLexSimplex::maybeGetNonIntegralVarRow() {
490   for (const Unknown &u : var) {
491     if (u.orientation == Orientation::Column)
492       continue;
493     assert(!u.isSymbol && "Symbol should not be in row orientation!");
494     if (!isSymbolicSampleIntegral(u.pos))
495       return u.pos;
496   }
497   return {};
498 }
499 
500 /// The non-branching pivots are just the ones moving the rows
501 /// that are always violated in the symbol domain.
doNonBranchingPivots()502 LogicalResult SymbolicLexSimplex::doNonBranchingPivots() {
503   while (Optional<unsigned> row = maybeGetAlwaysViolatedRow())
504     if (moveRowUnknownToColumn(*row).failed())
505       return failure();
506   return success();
507 }
508 
computeSymbolicIntegerLexMin()509 SymbolicLexMin SymbolicLexSimplex::computeSymbolicIntegerLexMin() {
510   SymbolicLexMin result(domainPoly.getSpace(), var.size() - nSymbol);
511 
512   /// The algorithm is more naturally expressed recursively, but we implement
513   /// it iteratively here to avoid potential issues with stack overflows in the
514   /// compiler. We explicitly maintain the stack frames in a vector.
515   ///
516   /// To "recurse", we store the current "stack frame", i.e., state variables
517   /// that we will need when we "return", into `stack`, increment `level`, and
518   /// `continue`. To "tail recurse", we just `continue`.
519   /// To "return", we decrement `level` and `continue`.
520   ///
521   /// When there is no stack frame for the current `level`, this indicates that
522   /// we have just "recursed" or "tail recursed". When there does exist one,
523   /// this indicates that we have just "returned" from recursing. There is only
524   /// one point at which non-tail calls occur so we always "return" there.
525   unsigned level = 1;
526   struct StackFrame {
527     int splitIndex;
528     unsigned snapshot;
529     unsigned domainSnapshot;
530     IntegerRelation::CountsSnapshot domainPolyCounts;
531   };
532   SmallVector<StackFrame, 8> stack;
533 
534   while (level > 0) {
535     assert(level >= stack.size());
536     if (level > stack.size()) {
537       if (empty || domainSimplex.findIntegerLexMin().isEmpty()) {
538         // No integer points; return.
539         --level;
540         continue;
541       }
542 
543       if (doNonBranchingPivots().failed()) {
544         // Could not find pivots for violated constraints; return.
545         --level;
546         continue;
547       }
548 
549       SmallVector<int64_t, 8> symbolicSample;
550       unsigned splitRow = 0;
551       for (unsigned e = getNumRows(); splitRow < e; ++splitRow) {
552         if (tableau(splitRow, 2) > 0)
553           continue;
554         assert(tableau(splitRow, 2) == 0 &&
555                "Non-branching pivots should have been handled already!");
556 
557         symbolicSample = getSymbolicSampleIneq(splitRow);
558         if (domainSimplex.isRedundantInequality(symbolicSample))
559           continue;
560 
561         // It's neither redundant nor separate, so it takes both positive and
562         // negative values, and hence constitutes a row for which we need to
563         // split the domain and separately run each case.
564         assert(!domainSimplex.isSeparateInequality(symbolicSample) &&
565                "Non-branching pivots should have been handled already!");
566         break;
567       }
568 
569       if (splitRow < getNumRows()) {
570         unsigned domainSnapshot = domainSimplex.getSnapshot();
571         IntegerRelation::CountsSnapshot domainPolyCounts =
572             domainPoly.getCounts();
573 
574         // First, we consider the part of the domain where the row is not
575         // violated. We don't have to do any pivots for the row in this case,
576         // but we record the additional constraint that defines this part of
577         // the domain.
578         domainSimplex.addInequality(symbolicSample);
579         domainPoly.addInequality(symbolicSample);
580 
581         // Recurse.
582         //
583         // On return, the basis as a set is preserved but not the internal
584         // ordering within rows or columns. Thus, we take note of the index of
585         // the Unknown that caused the split, which may be in a different
586         // row when we come back from recursing. We will need this to recurse
587         // on the other part of the split domain, where the row is violated.
588         //
589         // Note that we have to capture the index above and not a reference to
590         // the Unknown itself, since the array it lives in might get
591         // reallocated.
592         int splitIndex = rowUnknown[splitRow];
593         unsigned snapshot = getSnapshot();
594         stack.push_back(
595             {splitIndex, snapshot, domainSnapshot, domainPolyCounts});
596         ++level;
597         continue;
598       }
599 
600       // The tableau is rationally consistent for the current domain.
601       // Now we look for non-integral sample values and add cuts for them.
602       if (Optional<unsigned> row = maybeGetNonIntegralVarRow()) {
603         if (addSymbolicCut(*row).failed()) {
604           // No integral points; return.
605           --level;
606           continue;
607         }
608 
609         // Rerun this level with the added cut constraint (tail recurse).
610         continue;
611       }
612 
613       // Record output and return.
614       recordOutput(result);
615       --level;
616       continue;
617     }
618 
619     if (level == stack.size()) {
620       // We have "returned" from "recursing".
621       const StackFrame &frame = stack.back();
622       domainPoly.truncate(frame.domainPolyCounts);
623       domainSimplex.rollback(frame.domainSnapshot);
624       rollback(frame.snapshot);
625       const Unknown &u = unknownFromIndex(frame.splitIndex);
626 
627       // Drop the frame. We don't need it anymore.
628       stack.pop_back();
629 
630       // Now we consider the part of the domain where the unknown `splitIndex`
631       // was negative.
632       assert(u.orientation == Orientation::Row &&
633              "The split row should have been returned to row orientation!");
634       SmallVector<int64_t, 8> splitIneq =
635           getComplementIneq(getSymbolicSampleIneq(u.pos));
636       normalizeRange(splitIneq);
637       if (moveRowUnknownToColumn(u.pos).failed()) {
638         // The unknown can't be made non-negative; return.
639         --level;
640         continue;
641       }
642 
643       // The unknown can be made negative; recurse with the corresponding domain
644       // constraints.
645       domainSimplex.addInequality(splitIneq);
646       domainPoly.addInequality(splitIneq);
647 
648       // We are now taking care of the second half of the domain and we don't
649       // need to do anything else here after returning, so it's a tail recurse.
650       continue;
651     }
652   }
653 
654   return result;
655 }
656 
rowIsViolated(unsigned row) const657 bool LexSimplex::rowIsViolated(unsigned row) const {
658   if (tableau(row, 2) < 0)
659     return true;
660   if (tableau(row, 2) == 0 && tableau(row, 1) < 0)
661     return true;
662   return false;
663 }
664 
maybeGetViolatedRow() const665 Optional<unsigned> LexSimplex::maybeGetViolatedRow() const {
666   for (unsigned row = 0, e = getNumRows(); row < e; ++row)
667     if (rowIsViolated(row))
668       return row;
669   return {};
670 }
671 
672 /// We simply look for violated rows and keep trying to move them to column
673 /// orientation, which always succeeds unless the constraints have no solution
674 /// in which case we just give up and return.
restoreRationalConsistency()675 LogicalResult LexSimplex::restoreRationalConsistency() {
676   if (empty)
677     return failure();
678   while (Optional<unsigned> maybeViolatedRow = maybeGetViolatedRow())
679     if (moveRowUnknownToColumn(*maybeViolatedRow).failed())
680       return failure();
681   return success();
682 }
683 
684 // Move the row unknown to column orientation while preserving lexicopositivity
685 // of the basis transform. The sample value of the row must be non-positive.
686 //
687 // We only consider pivots where the pivot element is positive. Suppose no such
688 // pivot exists, i.e., some violated row has no positive coefficient for any
689 // basis unknown. The row can be represented as (s + c_1*u_1 + ... + c_n*u_n)/d,
690 // where d is the denominator, s is the sample value and the c_i are the basis
691 // coefficients. If s != 0, then since any feasible assignment of the basis
692 // satisfies u_i >= 0 for all i, and we have s < 0 as well as c_i < 0 for all i,
693 // any feasible assignment would violate this row and therefore the constraints
694 // have no solution.
695 //
696 // We can preserve lexicopositivity by picking the pivot column with positive
697 // pivot element that makes the lexicographically smallest change to the sample
698 // point.
699 //
700 // Proof. Let
701 // x = (x_1, ... x_n) be the variables,
702 // z = (z_1, ... z_m) be the constraints,
703 // y = (y_1, ... y_n) be the current basis, and
704 // define w = (x_1, ... x_n, z_1, ... z_m) = B*y + s.
705 // B is basically the simplex tableau of our implementation except that instead
706 // of only describing the transform to get back the non-basis unknowns, it
707 // defines the values of all the unknowns in terms of the basis unknowns.
708 // Similarly, s is the column for the sample value.
709 //
710 // Our goal is to show that each column in B, restricted to the first n
711 // rows, is lexicopositive after the pivot if it is so before. This is
712 // equivalent to saying the columns in the whole matrix are lexicopositive;
713 // there must be some non-zero element in every column in the first n rows since
714 // the n variables cannot be spanned without using all the n basis unknowns.
715 //
716 // Consider a pivot where z_i replaces y_j in the basis. Recall the pivot
717 // transform for the tableau derived for SimplexBase::pivot:
718 //
719 //            pivot col    other col                   pivot col    other col
720 // pivot row     a             b       ->   pivot row     1/a         -b/a
721 // other row     c             d            other row     c/a        d - bc/a
722 //
723 // Similarly, a pivot results in B changing to B' and c to c'; the difference
724 // between the tableau and these matrices B and B' is that there is no special
725 // case for the pivot row, since it continues to represent the same unknown. The
726 // same formula applies for all rows:
727 //
728 // B'.col(j) = B.col(j) / B(i,j)
729 // B'.col(k) = B.col(k) - B(i,k) * B.col(j) / B(i,j) for k != j
730 // and similarly, s' = s - s_i * B.col(j) / B(i,j).
731 //
732 // If s_i == 0, then the sample value remains unchanged. Otherwise, if s_i < 0,
733 // the change in sample value when pivoting with column a is lexicographically
734 // smaller than that when pivoting with column b iff B.col(a) / B(i, a) is
735 // lexicographically smaller than B.col(b) / B(i, b).
736 //
737 // Since B(i, j) > 0, column j remains lexicopositive.
738 //
739 // For the other columns, suppose C.col(k) is not lexicopositive.
740 // This means that for some p, for all t < p,
741 // C(t,k) = 0 => B(t,k) = B(t,j) * B(i,k) / B(i,j) and
742 // C(t,k) < 0 => B(p,k) < B(t,j) * B(i,k) / B(i,j),
743 // which is in contradiction to the fact that B.col(j) / B(i,j) must be
744 // lexicographically smaller than B.col(k) / B(i,k), since it lexicographically
745 // minimizes the change in sample value.
moveRowUnknownToColumn(unsigned row)746 LogicalResult LexSimplexBase::moveRowUnknownToColumn(unsigned row) {
747   Optional<unsigned> maybeColumn;
748   for (unsigned col = 3 + nSymbol, e = getNumColumns(); col < e; ++col) {
749     if (tableau(row, col) <= 0)
750       continue;
751     maybeColumn =
752         !maybeColumn ? col : getLexMinPivotColumn(row, *maybeColumn, col);
753   }
754 
755   if (!maybeColumn)
756     return failure();
757 
758   pivot(row, *maybeColumn);
759   return success();
760 }
761 
getLexMinPivotColumn(unsigned row,unsigned colA,unsigned colB) const762 unsigned LexSimplexBase::getLexMinPivotColumn(unsigned row, unsigned colA,
763                                               unsigned colB) const {
764   // First, let's consider the non-symbolic case.
765   // A pivot causes the following change. (in the diagram the matrix elements
766   // are shown as rationals and there is no common denominator used)
767   //
768   //            pivot col    big M col      const col
769   // pivot row     a            p               b
770   // other row     c            q               d
771   //                        |
772   //                        v
773   //
774   //            pivot col    big M col      const col
775   // pivot row     1/a         -p/a           -b/a
776   // other row     c/a        q - pc/a       d - bc/a
777   //
778   // Let the sample value of the pivot row be s = pM + b before the pivot. Since
779   // the pivot row represents a violated constraint we know that s < 0.
780   //
781   // If the variable is a non-pivot column, its sample value is zero before and
782   // after the pivot.
783   //
784   // If the variable is the pivot column, then its sample value goes from 0 to
785   // (-p/a)M + (-b/a), i.e. 0 to -(pM + b)/a. Thus the change in the sample
786   // value is -s/a.
787   //
788   // If the variable is the pivot row, its sample value goes from s to 0, for a
789   // change of -s.
790   //
791   // If the variable is a non-pivot row, its sample value changes from
792   // qM + d to qM + d + (-pc/a)M + (-bc/a). Thus the change in sample value
793   // is -(pM + b)(c/a) = -sc/a.
794   //
795   // Thus the change in sample value is either 0, -s/a, -s, or -sc/a. Here -s is
796   // fixed for all calls to this function since the row and tableau are fixed.
797   // The callee just wants to compare the return values with the return value of
798   // other invocations of the same function. So the -s is common for all
799   // comparisons involved and can be ignored, since -s is strictly positive.
800   //
801   // Thus we take away this common factor and just return 0, 1/a, 1, or c/a as
802   // appropriate. This allows us to run the entire algorithm treating M
803   // symbolically, as the pivot to be performed does not depend on the value
804   // of M, so long as the sample value s is negative. Note that this is not
805   // because of any special feature of M; by the same argument, we ignore the
806   // symbols too. The caller ensure that the sample value s is negative for
807   // all possible values of the symbols.
808   auto getSampleChangeCoeffForVar = [this, row](unsigned col,
809                                                 const Unknown &u) -> Fraction {
810     int64_t a = tableau(row, col);
811     if (u.orientation == Orientation::Column) {
812       // Pivot column case.
813       if (u.pos == col)
814         return {1, a};
815 
816       // Non-pivot column case.
817       return {0, 1};
818     }
819 
820     // Pivot row case.
821     if (u.pos == row)
822       return {1, 1};
823 
824     // Non-pivot row case.
825     int64_t c = tableau(u.pos, col);
826     return {c, a};
827   };
828 
829   for (const Unknown &u : var) {
830     Fraction changeA = getSampleChangeCoeffForVar(colA, u);
831     Fraction changeB = getSampleChangeCoeffForVar(colB, u);
832     if (changeA < changeB)
833       return colA;
834     if (changeA > changeB)
835       return colB;
836   }
837 
838   // If we reached here, both result in exactly the same changes, so it
839   // doesn't matter which we return.
840   return colA;
841 }
842 
843 /// Find a pivot to change the sample value of the row in the specified
844 /// direction. The returned pivot row will involve `row` if and only if the
845 /// unknown is unbounded in the specified direction.
846 ///
847 /// To increase (resp. decrease) the value of a row, we need to find a live
848 /// column with a non-zero coefficient. If the coefficient is positive, we need
849 /// to increase (decrease) the value of the column, and if the coefficient is
850 /// negative, we need to decrease (increase) the value of the column. Also,
851 /// we cannot decrease the sample value of restricted columns.
852 ///
853 /// If multiple columns are valid, we break ties by considering a lexicographic
854 /// ordering where we prefer unknowns with lower index.
findPivot(int row,Direction direction) const855 Optional<SimplexBase::Pivot> Simplex::findPivot(int row,
856                                                 Direction direction) const {
857   Optional<unsigned> col;
858   for (unsigned j = 2, e = getNumColumns(); j < e; ++j) {
859     int64_t elem = tableau(row, j);
860     if (elem == 0)
861       continue;
862 
863     if (unknownFromColumn(j).restricted &&
864         !signMatchesDirection(elem, direction))
865       continue;
866     if (!col || colUnknown[j] < colUnknown[*col])
867       col = j;
868   }
869 
870   if (!col)
871     return {};
872 
873   Direction newDirection =
874       tableau(row, *col) < 0 ? flippedDirection(direction) : direction;
875   Optional<unsigned> maybePivotRow = findPivotRow(row, newDirection, *col);
876   return Pivot{maybePivotRow.value_or(row), *col};
877 }
878 
879 /// Swap the associated unknowns for the row and the column.
880 ///
881 /// First we swap the index associated with the row and column. Then we update
882 /// the unknowns to reflect their new position and orientation.
swapRowWithCol(unsigned row,unsigned col)883 void SimplexBase::swapRowWithCol(unsigned row, unsigned col) {
884   std::swap(rowUnknown[row], colUnknown[col]);
885   Unknown &uCol = unknownFromColumn(col);
886   Unknown &uRow = unknownFromRow(row);
887   uCol.orientation = Orientation::Column;
888   uRow.orientation = Orientation::Row;
889   uCol.pos = col;
890   uRow.pos = row;
891 }
892 
pivot(Pivot pair)893 void SimplexBase::pivot(Pivot pair) { pivot(pair.row, pair.column); }
894 
895 /// Pivot pivotRow and pivotCol.
896 ///
897 /// Let R be the pivot row unknown and let C be the pivot col unknown.
898 /// Since initially R = a*C + sum b_i * X_i
899 /// (where the sum is over the other column's unknowns, x_i)
900 /// C = (R - (sum b_i * X_i))/a
901 ///
902 /// Let u be some other row unknown.
903 /// u = c*C + sum d_i * X_i
904 /// So u = c*(R - sum b_i * X_i)/a + sum d_i * X_i
905 ///
906 /// This results in the following transform:
907 ///            pivot col    other col                   pivot col    other col
908 /// pivot row     a             b       ->   pivot row     1/a         -b/a
909 /// other row     c             d            other row     c/a        d - bc/a
910 ///
911 /// Taking into account the common denominators p and q:
912 ///
913 ///            pivot col    other col                    pivot col   other col
914 /// pivot row     a/p          b/p     ->   pivot row      p/a         -b/a
915 /// other row     c/q          d/q          other row     cp/aq    (da - bc)/aq
916 ///
917 /// The pivot row transform is accomplished be swapping a with the pivot row's
918 /// common denominator and negating the pivot row except for the pivot column
919 /// element.
pivot(unsigned pivotRow,unsigned pivotCol)920 void SimplexBase::pivot(unsigned pivotRow, unsigned pivotCol) {
921   assert(pivotCol >= getNumFixedCols() && "Refusing to pivot invalid column");
922   assert(!unknownFromColumn(pivotCol).isSymbol);
923 
924   swapRowWithCol(pivotRow, pivotCol);
925   std::swap(tableau(pivotRow, 0), tableau(pivotRow, pivotCol));
926   // We need to negate the whole pivot row except for the pivot column.
927   if (tableau(pivotRow, 0) < 0) {
928     // If the denominator is negative, we negate the row by simply negating the
929     // denominator.
930     tableau(pivotRow, 0) = -tableau(pivotRow, 0);
931     tableau(pivotRow, pivotCol) = -tableau(pivotRow, pivotCol);
932   } else {
933     for (unsigned col = 1, e = getNumColumns(); col < e; ++col) {
934       if (col == pivotCol)
935         continue;
936       tableau(pivotRow, col) = -tableau(pivotRow, col);
937     }
938   }
939   tableau.normalizeRow(pivotRow);
940 
941   for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
942     if (row == pivotRow)
943       continue;
944     if (tableau(row, pivotCol) == 0) // Nothing to do.
945       continue;
946     tableau(row, 0) *= tableau(pivotRow, 0);
947     for (unsigned col = 1, numCols = getNumColumns(); col < numCols; ++col) {
948       if (col == pivotCol)
949         continue;
950       // Add rather than subtract because the pivot row has been negated.
951       tableau(row, col) = tableau(row, col) * tableau(pivotRow, 0) +
952                           tableau(row, pivotCol) * tableau(pivotRow, col);
953     }
954     tableau(row, pivotCol) *= tableau(pivotRow, pivotCol);
955     tableau.normalizeRow(row);
956   }
957 }
958 
959 /// Perform pivots until the unknown has a non-negative sample value or until
960 /// no more upward pivots can be performed. Return success if we were able to
961 /// bring the row to a non-negative sample value, and failure otherwise.
restoreRow(Unknown & u)962 LogicalResult Simplex::restoreRow(Unknown &u) {
963   assert(u.orientation == Orientation::Row &&
964          "unknown should be in row position");
965 
966   while (tableau(u.pos, 1) < 0) {
967     Optional<Pivot> maybePivot = findPivot(u.pos, Direction::Up);
968     if (!maybePivot)
969       break;
970 
971     pivot(*maybePivot);
972     if (u.orientation == Orientation::Column)
973       return success(); // the unknown is unbounded above.
974   }
975   return success(tableau(u.pos, 1) >= 0);
976 }
977 
978 /// Find a row that can be used to pivot the column in the specified direction.
979 /// This returns an empty optional if and only if the column is unbounded in the
980 /// specified direction (ignoring skipRow, if skipRow is set).
981 ///
982 /// If skipRow is set, this row is not considered, and (if it is restricted) its
983 /// restriction may be violated by the returned pivot. Usually, skipRow is set
984 /// because we don't want to move it to column position unless it is unbounded,
985 /// and we are either trying to increase the value of skipRow or explicitly
986 /// trying to make skipRow negative, so we are not concerned about this.
987 ///
988 /// If the direction is up (resp. down) and a restricted row has a negative
989 /// (positive) coefficient for the column, then this row imposes a bound on how
990 /// much the sample value of the column can change. Such a row with constant
991 /// term c and coefficient f for the column imposes a bound of c/|f| on the
992 /// change in sample value (in the specified direction). (note that c is
993 /// non-negative here since the row is restricted and the tableau is consistent)
994 ///
995 /// We iterate through the rows and pick the row which imposes the most
996 /// stringent bound, since pivoting with a row changes the row's sample value to
997 /// 0 and hence saturates the bound it imposes. We break ties between rows that
998 /// impose the same bound by considering a lexicographic ordering where we
999 /// prefer unknowns with lower index value.
findPivotRow(Optional<unsigned> skipRow,Direction direction,unsigned col) const1000 Optional<unsigned> Simplex::findPivotRow(Optional<unsigned> skipRow,
1001                                          Direction direction,
1002                                          unsigned col) const {
1003   Optional<unsigned> retRow;
1004   // Initialize these to zero in order to silence a warning about retElem and
1005   // retConst being used uninitialized in the initialization of `diff` below. In
1006   // reality, these are always initialized when that line is reached since these
1007   // are set whenever retRow is set.
1008   int64_t retElem = 0, retConst = 0;
1009   for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row) {
1010     if (skipRow && row == *skipRow)
1011       continue;
1012     int64_t elem = tableau(row, col);
1013     if (elem == 0)
1014       continue;
1015     if (!unknownFromRow(row).restricted)
1016       continue;
1017     if (signMatchesDirection(elem, direction))
1018       continue;
1019     int64_t constTerm = tableau(row, 1);
1020 
1021     if (!retRow) {
1022       retRow = row;
1023       retElem = elem;
1024       retConst = constTerm;
1025       continue;
1026     }
1027 
1028     int64_t diff = retConst * elem - constTerm * retElem;
1029     if ((diff == 0 && rowUnknown[row] < rowUnknown[*retRow]) ||
1030         (diff != 0 && !signMatchesDirection(diff, direction))) {
1031       retRow = row;
1032       retElem = elem;
1033       retConst = constTerm;
1034     }
1035   }
1036   return retRow;
1037 }
1038 
isEmpty() const1039 bool SimplexBase::isEmpty() const { return empty; }
1040 
swapRows(unsigned i,unsigned j)1041 void SimplexBase::swapRows(unsigned i, unsigned j) {
1042   if (i == j)
1043     return;
1044   tableau.swapRows(i, j);
1045   std::swap(rowUnknown[i], rowUnknown[j]);
1046   unknownFromRow(i).pos = i;
1047   unknownFromRow(j).pos = j;
1048 }
1049 
swapColumns(unsigned i,unsigned j)1050 void SimplexBase::swapColumns(unsigned i, unsigned j) {
1051   assert(i < getNumColumns() && j < getNumColumns() &&
1052          "Invalid columns provided!");
1053   if (i == j)
1054     return;
1055   tableau.swapColumns(i, j);
1056   std::swap(colUnknown[i], colUnknown[j]);
1057   unknownFromColumn(i).pos = i;
1058   unknownFromColumn(j).pos = j;
1059 }
1060 
1061 /// Mark this tableau empty and push an entry to the undo stack.
markEmpty()1062 void SimplexBase::markEmpty() {
1063   // If the set is already empty, then we shouldn't add another UnmarkEmpty log
1064   // entry, since in that case the Simplex will be erroneously marked as
1065   // non-empty when rolling back past this point.
1066   if (empty)
1067     return;
1068   undoLog.push_back(UndoLogEntry::UnmarkEmpty);
1069   empty = true;
1070 }
1071 
1072 /// Add an inequality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1073 /// is the current number of variables, then the corresponding inequality is
1074 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} >= 0.
1075 ///
1076 /// We add the inequality and mark it as restricted. We then try to make its
1077 /// sample value non-negative. If this is not possible, the tableau has become
1078 /// empty and we mark it as such.
addInequality(ArrayRef<int64_t> coeffs)1079 void Simplex::addInequality(ArrayRef<int64_t> coeffs) {
1080   unsigned conIndex = addRow(coeffs, /*makeRestricted=*/true);
1081   LogicalResult result = restoreRow(con[conIndex]);
1082   if (failed(result))
1083     markEmpty();
1084 }
1085 
1086 /// Add an equality to the tableau. If coeffs is c_0, c_1, ... c_n, where n
1087 /// is the current number of variables, then the corresponding equality is
1088 /// c_n + c_0*x_0 + c_1*x_1 + ... + c_{n-1}*x_{n-1} == 0.
1089 ///
1090 /// We simply add two opposing inequalities, which force the expression to
1091 /// be zero.
addEquality(ArrayRef<int64_t> coeffs)1092 void SimplexBase::addEquality(ArrayRef<int64_t> coeffs) {
1093   addInequality(coeffs);
1094   SmallVector<int64_t, 8> negatedCoeffs;
1095   for (int64_t coeff : coeffs)
1096     negatedCoeffs.emplace_back(-coeff);
1097   addInequality(negatedCoeffs);
1098 }
1099 
getNumVariables() const1100 unsigned SimplexBase::getNumVariables() const { return var.size(); }
getNumConstraints() const1101 unsigned SimplexBase::getNumConstraints() const { return con.size(); }
1102 
1103 /// Return a snapshot of the current state. This is just the current size of the
1104 /// undo log.
getSnapshot() const1105 unsigned SimplexBase::getSnapshot() const { return undoLog.size(); }
1106 
getSnapshotBasis()1107 unsigned SimplexBase::getSnapshotBasis() {
1108   SmallVector<int, 8> basis;
1109   for (int index : colUnknown) {
1110     if (index != nullIndex)
1111       basis.push_back(index);
1112   }
1113   savedBases.push_back(std::move(basis));
1114 
1115   undoLog.emplace_back(UndoLogEntry::RestoreBasis);
1116   return undoLog.size() - 1;
1117 }
1118 
removeLastConstraintRowOrientation()1119 void SimplexBase::removeLastConstraintRowOrientation() {
1120   assert(con.back().orientation == Orientation::Row);
1121 
1122   // Move this unknown to the last row and remove the last row from the
1123   // tableau.
1124   swapRows(con.back().pos, getNumRows() - 1);
1125   // It is not strictly necessary to shrink the tableau, but for now we
1126   // maintain the invariant that the tableau has exactly getNumRows()
1127   // rows.
1128   tableau.resizeVertically(getNumRows() - 1);
1129   rowUnknown.pop_back();
1130   con.pop_back();
1131 }
1132 
1133 // This doesn't find a pivot row only if the column has zero
1134 // coefficients for every row.
1135 //
1136 // If the unknown is a constraint, this can't happen, since it was added
1137 // initially as a row. Such a row could never have been pivoted to a column. So
1138 // a pivot row will always be found if we have a constraint.
1139 //
1140 // If we have a variable, then the column has zero coefficients for every row
1141 // iff no constraints have been added with a non-zero coefficient for this row.
findAnyPivotRow(unsigned col)1142 Optional<unsigned> SimplexBase::findAnyPivotRow(unsigned col) {
1143   for (unsigned row = nRedundant, e = getNumRows(); row < e; ++row)
1144     if (tableau(row, col) != 0)
1145       return row;
1146   return {};
1147 }
1148 
1149 // It's not valid to remove the constraint by deleting the column since this
1150 // would result in an invalid basis.
undoLastConstraint()1151 void Simplex::undoLastConstraint() {
1152   if (con.back().orientation == Orientation::Column) {
1153     // We try to find any pivot row for this column that preserves tableau
1154     // consistency (except possibly the column itself, which is going to be
1155     // deallocated anyway).
1156     //
1157     // If no pivot row is found in either direction, then the unknown is
1158     // unbounded in both directions and we are free to perform any pivot at
1159     // all. To do this, we just need to find any row with a non-zero
1160     // coefficient for the column. findAnyPivotRow will always be able to
1161     // find such a row for a constraint.
1162     unsigned column = con.back().pos;
1163     if (Optional<unsigned> maybeRow = findPivotRow({}, Direction::Up, column)) {
1164       pivot(*maybeRow, column);
1165     } else if (Optional<unsigned> maybeRow =
1166                    findPivotRow({}, Direction::Down, column)) {
1167       pivot(*maybeRow, column);
1168     } else {
1169       Optional<unsigned> row = findAnyPivotRow(column);
1170       assert(row && "Pivot should always exist for a constraint!");
1171       pivot(*row, column);
1172     }
1173   }
1174   removeLastConstraintRowOrientation();
1175 }
1176 
1177 // It's not valid to remove the constraint by deleting the column since this
1178 // would result in an invalid basis.
undoLastConstraint()1179 void LexSimplexBase::undoLastConstraint() {
1180   if (con.back().orientation == Orientation::Column) {
1181     // When removing the last constraint during a rollback, we just need to find
1182     // any pivot at all, i.e., any row with non-zero coefficient for the
1183     // column, because when rolling back a lexicographic simplex, we always
1184     // end by restoring the exact basis that was present at the time of the
1185     // snapshot, so what pivots we perform while undoing doesn't matter as
1186     // long as we get the unknown to row orientation and remove it.
1187     unsigned column = con.back().pos;
1188     Optional<unsigned> row = findAnyPivotRow(column);
1189     assert(row && "Pivot should always exist for a constraint!");
1190     pivot(*row, column);
1191   }
1192   removeLastConstraintRowOrientation();
1193 }
1194 
undo(UndoLogEntry entry)1195 void SimplexBase::undo(UndoLogEntry entry) {
1196   if (entry == UndoLogEntry::RemoveLastConstraint) {
1197     // Simplex and LexSimplex handle this differently, so we call out to a
1198     // virtual function to handle this.
1199     undoLastConstraint();
1200   } else if (entry == UndoLogEntry::RemoveLastVariable) {
1201     // Whenever we are rolling back the addition of a variable, it is guaranteed
1202     // that the variable will be in column position.
1203     //
1204     // We can see this as follows: any constraint that depends on this variable
1205     // was added after this variable was added, so the addition of such
1206     // constraints should already have been rolled back by the time we get to
1207     // rolling back the addition of the variable. Therefore, no constraint
1208     // currently has a component along the variable, so the variable itself must
1209     // be part of the basis.
1210     assert(var.back().orientation == Orientation::Column &&
1211            "Variable to be removed must be in column orientation!");
1212 
1213     if (var.back().isSymbol)
1214       nSymbol--;
1215 
1216     // Move this variable to the last column and remove the column from the
1217     // tableau.
1218     swapColumns(var.back().pos, getNumColumns() - 1);
1219     tableau.resizeHorizontally(getNumColumns() - 1);
1220     var.pop_back();
1221     colUnknown.pop_back();
1222   } else if (entry == UndoLogEntry::UnmarkEmpty) {
1223     empty = false;
1224   } else if (entry == UndoLogEntry::UnmarkLastRedundant) {
1225     nRedundant--;
1226   } else if (entry == UndoLogEntry::RestoreBasis) {
1227     assert(!savedBases.empty() && "No bases saved!");
1228 
1229     SmallVector<int, 8> basis = std::move(savedBases.back());
1230     savedBases.pop_back();
1231 
1232     for (int index : basis) {
1233       Unknown &u = unknownFromIndex(index);
1234       if (u.orientation == Orientation::Column)
1235         continue;
1236       for (unsigned col = getNumFixedCols(), e = getNumColumns(); col < e;
1237            col++) {
1238         assert(colUnknown[col] != nullIndex &&
1239                "Column should not be a fixed column!");
1240         if (std::find(basis.begin(), basis.end(), colUnknown[col]) !=
1241             basis.end())
1242           continue;
1243         if (tableau(u.pos, col) == 0)
1244           continue;
1245         pivot(u.pos, col);
1246         break;
1247       }
1248 
1249       assert(u.orientation == Orientation::Column && "No pivot found!");
1250     }
1251   }
1252 }
1253 
1254 /// Rollback to the specified snapshot.
1255 ///
1256 /// We undo all the log entries until the log size when the snapshot was taken
1257 /// is reached.
rollback(unsigned snapshot)1258 void SimplexBase::rollback(unsigned snapshot) {
1259   while (undoLog.size() > snapshot) {
1260     undo(undoLog.back());
1261     undoLog.pop_back();
1262   }
1263 }
1264 
1265 /// We add the usual floor division constraints:
1266 /// `0 <= coeffs - denom*q <= denom - 1`, where `q` is the new division
1267 /// variable.
1268 ///
1269 /// This constrains the remainder `coeffs - denom*q` to be in the
1270 /// range `[0, denom - 1]`, which fixes the integer value of the quotient `q`.
addDivisionVariable(ArrayRef<int64_t> coeffs,int64_t denom)1271 void SimplexBase::addDivisionVariable(ArrayRef<int64_t> coeffs, int64_t denom) {
1272   assert(denom != 0 && "Cannot divide by zero!\n");
1273   appendVariable();
1274 
1275   SmallVector<int64_t, 8> ineq(coeffs.begin(), coeffs.end());
1276   int64_t constTerm = ineq.back();
1277   ineq.back() = -denom;
1278   ineq.push_back(constTerm);
1279   addInequality(ineq);
1280 
1281   for (int64_t &coeff : ineq)
1282     coeff = -coeff;
1283   ineq.back() += denom - 1;
1284   addInequality(ineq);
1285 }
1286 
appendVariable(unsigned count)1287 void SimplexBase::appendVariable(unsigned count) {
1288   if (count == 0)
1289     return;
1290   var.reserve(var.size() + count);
1291   colUnknown.reserve(colUnknown.size() + count);
1292   for (unsigned i = 0; i < count; ++i) {
1293     var.emplace_back(Orientation::Column, /*restricted=*/false,
1294                      /*pos=*/getNumColumns() + i);
1295     colUnknown.push_back(var.size() - 1);
1296   }
1297   tableau.resizeHorizontally(getNumColumns() + count);
1298   undoLog.insert(undoLog.end(), count, UndoLogEntry::RemoveLastVariable);
1299 }
1300 
1301 /// Add all the constraints from the given IntegerRelation.
intersectIntegerRelation(const IntegerRelation & rel)1302 void SimplexBase::intersectIntegerRelation(const IntegerRelation &rel) {
1303   assert(rel.getNumVars() == getNumVariables() &&
1304          "IntegerRelation must have same dimensionality as simplex");
1305   for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
1306     addInequality(rel.getInequality(i));
1307   for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
1308     addEquality(rel.getEquality(i));
1309 }
1310 
computeRowOptimum(Direction direction,unsigned row)1311 MaybeOptimum<Fraction> Simplex::computeRowOptimum(Direction direction,
1312                                                   unsigned row) {
1313   // Keep trying to find a pivot for the row in the specified direction.
1314   while (Optional<Pivot> maybePivot = findPivot(row, direction)) {
1315     // If findPivot returns a pivot involving the row itself, then the optimum
1316     // is unbounded, so we return None.
1317     if (maybePivot->row == row)
1318       return OptimumKind::Unbounded;
1319     pivot(*maybePivot);
1320   }
1321 
1322   // The row has reached its optimal sample value, which we return.
1323   // The sample value is the entry in the constant column divided by the common
1324   // denominator for this row.
1325   return Fraction(tableau(row, 1), tableau(row, 0));
1326 }
1327 
1328 /// Compute the optimum of the specified expression in the specified direction,
1329 /// or None if it is unbounded.
computeOptimum(Direction direction,ArrayRef<int64_t> coeffs)1330 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1331                                                ArrayRef<int64_t> coeffs) {
1332   if (empty)
1333     return OptimumKind::Empty;
1334 
1335   SimplexRollbackScopeExit scopeExit(*this);
1336   unsigned conIndex = addRow(coeffs);
1337   unsigned row = con[conIndex].pos;
1338   return computeRowOptimum(direction, row);
1339 }
1340 
computeOptimum(Direction direction,Unknown & u)1341 MaybeOptimum<Fraction> Simplex::computeOptimum(Direction direction,
1342                                                Unknown &u) {
1343   if (empty)
1344     return OptimumKind::Empty;
1345   if (u.orientation == Orientation::Column) {
1346     unsigned column = u.pos;
1347     Optional<unsigned> pivotRow = findPivotRow({}, direction, column);
1348     // If no pivot is returned, the constraint is unbounded in the specified
1349     // direction.
1350     if (!pivotRow)
1351       return OptimumKind::Unbounded;
1352     pivot(*pivotRow, column);
1353   }
1354 
1355   unsigned row = u.pos;
1356   MaybeOptimum<Fraction> optimum = computeRowOptimum(direction, row);
1357   if (u.restricted && direction == Direction::Down &&
1358       (optimum.isUnbounded() || *optimum < Fraction(0, 1))) {
1359     if (failed(restoreRow(u)))
1360       llvm_unreachable("Could not restore row!");
1361   }
1362   return optimum;
1363 }
1364 
isBoundedAlongConstraint(unsigned constraintIndex)1365 bool Simplex::isBoundedAlongConstraint(unsigned constraintIndex) {
1366   assert(!empty && "It is not meaningful to ask whether a direction is bounded "
1367                    "in an empty set.");
1368   // The constraint's perpendicular is already bounded below, since it is a
1369   // constraint. If it is also bounded above, we can return true.
1370   return computeOptimum(Direction::Up, con[constraintIndex]).isBounded();
1371 }
1372 
1373 /// Redundant constraints are those that are in row orientation and lie in
1374 /// rows 0 to nRedundant - 1.
isMarkedRedundant(unsigned constraintIndex) const1375 bool Simplex::isMarkedRedundant(unsigned constraintIndex) const {
1376   const Unknown &u = con[constraintIndex];
1377   return u.orientation == Orientation::Row && u.pos < nRedundant;
1378 }
1379 
1380 /// Mark the specified row redundant.
1381 ///
1382 /// This is done by moving the unknown to the end of the block of redundant
1383 /// rows (namely, to row nRedundant) and incrementing nRedundant to
1384 /// accomodate the new redundant row.
markRowRedundant(Unknown & u)1385 void Simplex::markRowRedundant(Unknown &u) {
1386   assert(u.orientation == Orientation::Row &&
1387          "Unknown should be in row position!");
1388   assert(u.pos >= nRedundant && "Unknown is already marked redundant!");
1389   swapRows(u.pos, nRedundant);
1390   ++nRedundant;
1391   undoLog.emplace_back(UndoLogEntry::UnmarkLastRedundant);
1392 }
1393 
1394 /// Find a subset of constraints that is redundant and mark them redundant.
detectRedundant(unsigned offset,unsigned count)1395 void Simplex::detectRedundant(unsigned offset, unsigned count) {
1396   assert(offset + count <= con.size() && "invalid range!");
1397   // It is not meaningful to talk about redundancy for empty sets.
1398   if (empty)
1399     return;
1400 
1401   // Iterate through the constraints and check for each one if it can attain
1402   // negative sample values. If it can, it's not redundant. Otherwise, it is.
1403   // We mark redundant constraints redundant.
1404   //
1405   // Constraints that get marked redundant in one iteration are not respected
1406   // when checking constraints in later iterations. This prevents, for example,
1407   // two identical constraints both being marked redundant since each is
1408   // redundant given the other one. In this example, only the first of the
1409   // constraints that is processed will get marked redundant, as it should be.
1410   for (unsigned i = 0; i < count; ++i) {
1411     Unknown &u = con[offset + i];
1412     if (u.orientation == Orientation::Column) {
1413       unsigned column = u.pos;
1414       Optional<unsigned> pivotRow = findPivotRow({}, Direction::Down, column);
1415       // If no downward pivot is returned, the constraint is unbounded below
1416       // and hence not redundant.
1417       if (!pivotRow)
1418         continue;
1419       pivot(*pivotRow, column);
1420     }
1421 
1422     unsigned row = u.pos;
1423     MaybeOptimum<Fraction> minimum = computeRowOptimum(Direction::Down, row);
1424     if (minimum.isUnbounded() || *minimum < Fraction(0, 1)) {
1425       // Constraint is unbounded below or can attain negative sample values and
1426       // hence is not redundant.
1427       if (failed(restoreRow(u)))
1428         llvm_unreachable("Could not restore non-redundant row!");
1429       continue;
1430     }
1431 
1432     markRowRedundant(u);
1433   }
1434 }
1435 
isUnbounded()1436 bool Simplex::isUnbounded() {
1437   if (empty)
1438     return false;
1439 
1440   SmallVector<int64_t, 8> dir(var.size() + 1);
1441   for (unsigned i = 0; i < var.size(); ++i) {
1442     dir[i] = 1;
1443 
1444     if (computeOptimum(Direction::Up, dir).isUnbounded())
1445       return true;
1446 
1447     if (computeOptimum(Direction::Down, dir).isUnbounded())
1448       return true;
1449 
1450     dir[i] = 0;
1451   }
1452   return false;
1453 }
1454 
1455 /// Make a tableau to represent a pair of points in the original tableau.
1456 ///
1457 /// The product constraints and variables are stored as: first A's, then B's.
1458 ///
1459 /// The product tableau has row layout:
1460 ///   A's redundant rows, B's redundant rows, A's other rows, B's other rows.
1461 ///
1462 /// It has column layout:
1463 ///   denominator, constant, A's columns, B's columns.
makeProduct(const Simplex & a,const Simplex & b)1464 Simplex Simplex::makeProduct(const Simplex &a, const Simplex &b) {
1465   unsigned numVar = a.getNumVariables() + b.getNumVariables();
1466   unsigned numCon = a.getNumConstraints() + b.getNumConstraints();
1467   Simplex result(numVar);
1468 
1469   result.tableau.reserveRows(numCon);
1470   result.empty = a.empty || b.empty;
1471 
1472   auto concat = [](ArrayRef<Unknown> v, ArrayRef<Unknown> w) {
1473     SmallVector<Unknown, 8> result;
1474     result.reserve(v.size() + w.size());
1475     result.insert(result.end(), v.begin(), v.end());
1476     result.insert(result.end(), w.begin(), w.end());
1477     return result;
1478   };
1479   result.con = concat(a.con, b.con);
1480   result.var = concat(a.var, b.var);
1481 
1482   auto indexFromBIndex = [&](int index) {
1483     return index >= 0 ? a.getNumVariables() + index
1484                       : ~(a.getNumConstraints() + ~index);
1485   };
1486 
1487   result.colUnknown.assign(2, nullIndex);
1488   for (unsigned i = 2, e = a.getNumColumns(); i < e; ++i) {
1489     result.colUnknown.push_back(a.colUnknown[i]);
1490     result.unknownFromIndex(result.colUnknown.back()).pos =
1491         result.colUnknown.size() - 1;
1492   }
1493   for (unsigned i = 2, e = b.getNumColumns(); i < e; ++i) {
1494     result.colUnknown.push_back(indexFromBIndex(b.colUnknown[i]));
1495     result.unknownFromIndex(result.colUnknown.back()).pos =
1496         result.colUnknown.size() - 1;
1497   }
1498 
1499   auto appendRowFromA = [&](unsigned row) {
1500     unsigned resultRow = result.tableau.appendExtraRow();
1501     for (unsigned col = 0, e = a.getNumColumns(); col < e; ++col)
1502       result.tableau(resultRow, col) = a.tableau(row, col);
1503     result.rowUnknown.push_back(a.rowUnknown[row]);
1504     result.unknownFromIndex(result.rowUnknown.back()).pos =
1505         result.rowUnknown.size() - 1;
1506   };
1507 
1508   // Also fixes the corresponding entry in rowUnknown and var/con (as the case
1509   // may be).
1510   auto appendRowFromB = [&](unsigned row) {
1511     unsigned resultRow = result.tableau.appendExtraRow();
1512     result.tableau(resultRow, 0) = b.tableau(row, 0);
1513     result.tableau(resultRow, 1) = b.tableau(row, 1);
1514 
1515     unsigned offset = a.getNumColumns() - 2;
1516     for (unsigned col = 2, e = b.getNumColumns(); col < e; ++col)
1517       result.tableau(resultRow, offset + col) = b.tableau(row, col);
1518     result.rowUnknown.push_back(indexFromBIndex(b.rowUnknown[row]));
1519     result.unknownFromIndex(result.rowUnknown.back()).pos =
1520         result.rowUnknown.size() - 1;
1521   };
1522 
1523   result.nRedundant = a.nRedundant + b.nRedundant;
1524   for (unsigned row = 0; row < a.nRedundant; ++row)
1525     appendRowFromA(row);
1526   for (unsigned row = 0; row < b.nRedundant; ++row)
1527     appendRowFromB(row);
1528   for (unsigned row = a.nRedundant, e = a.getNumRows(); row < e; ++row)
1529     appendRowFromA(row);
1530   for (unsigned row = b.nRedundant, e = b.getNumRows(); row < e; ++row)
1531     appendRowFromB(row);
1532 
1533   return result;
1534 }
1535 
getRationalSample() const1536 Optional<SmallVector<Fraction, 8>> Simplex::getRationalSample() const {
1537   if (empty)
1538     return {};
1539 
1540   SmallVector<Fraction, 8> sample;
1541   sample.reserve(var.size());
1542   // Push the sample value for each variable into the vector.
1543   for (const Unknown &u : var) {
1544     if (u.orientation == Orientation::Column) {
1545       // If the variable is in column position, its sample value is zero.
1546       sample.emplace_back(0, 1);
1547     } else {
1548       // If the variable is in row position, its sample value is the
1549       // entry in the constant column divided by the denominator.
1550       int64_t denom = tableau(u.pos, 0);
1551       sample.emplace_back(tableau(u.pos, 1), denom);
1552     }
1553   }
1554   return sample;
1555 }
1556 
addInequality(ArrayRef<int64_t> coeffs)1557 void LexSimplexBase::addInequality(ArrayRef<int64_t> coeffs) {
1558   addRow(coeffs, /*makeRestricted=*/true);
1559 }
1560 
getRationalSample() const1561 MaybeOptimum<SmallVector<Fraction, 8>> LexSimplex::getRationalSample() const {
1562   if (empty)
1563     return OptimumKind::Empty;
1564 
1565   SmallVector<Fraction, 8> sample;
1566   sample.reserve(var.size());
1567   // Push the sample value for each variable into the vector.
1568   for (const Unknown &u : var) {
1569     // When the big M parameter is being used, each variable x is represented
1570     // as M + x, so its sample value is finite if and only if it is of the
1571     // form 1*M + c. If the coefficient of M is not one then the sample value
1572     // is infinite, and we return an empty optional.
1573 
1574     if (u.orientation == Orientation::Column) {
1575       // If the variable is in column position, the sample value of M + x is
1576       // zero, so x = -M which is unbounded.
1577       return OptimumKind::Unbounded;
1578     }
1579 
1580     // If the variable is in row position, its sample value is the
1581     // entry in the constant column divided by the denominator.
1582     int64_t denom = tableau(u.pos, 0);
1583     if (usingBigM)
1584       if (tableau(u.pos, 2) != denom)
1585         return OptimumKind::Unbounded;
1586     sample.emplace_back(tableau(u.pos, 1), denom);
1587   }
1588   return sample;
1589 }
1590 
getSamplePointIfIntegral() const1591 Optional<SmallVector<int64_t, 8>> Simplex::getSamplePointIfIntegral() const {
1592   // If the tableau is empty, no sample point exists.
1593   if (empty)
1594     return {};
1595 
1596   // The value will always exist since the Simplex is non-empty.
1597   SmallVector<Fraction, 8> rationalSample = *getRationalSample();
1598   SmallVector<int64_t, 8> integerSample;
1599   integerSample.reserve(var.size());
1600   for (const Fraction &coord : rationalSample) {
1601     // If the sample is non-integral, return None.
1602     if (coord.num % coord.den != 0)
1603       return {};
1604     integerSample.push_back(coord.num / coord.den);
1605   }
1606   return integerSample;
1607 }
1608 
1609 /// Given a simplex for a polytope, construct a new simplex whose variables are
1610 /// identified with a pair of points (x, y) in the original polytope. Supports
1611 /// some operations needed for generalized basis reduction. In what follows,
1612 /// dotProduct(x, y) = x_1 * y_1 + x_2 * y_2 + ... x_n * y_n where n is the
1613 /// dimension of the original polytope.
1614 ///
1615 /// This supports adding equality constraints dotProduct(dir, x - y) == 0. It
1616 /// also supports rolling back this addition, by maintaining a snapshot stack
1617 /// that contains a snapshot of the Simplex's state for each equality, just
1618 /// before that equality was added.
1619 class presburger::GBRSimplex {
1620   using Orientation = Simplex::Orientation;
1621 
1622 public:
GBRSimplex(const Simplex & originalSimplex)1623   GBRSimplex(const Simplex &originalSimplex)
1624       : simplex(Simplex::makeProduct(originalSimplex, originalSimplex)),
1625         simplexConstraintOffset(simplex.getNumConstraints()) {}
1626 
1627   /// Add an equality dotProduct(dir, x - y) == 0.
1628   /// First pushes a snapshot for the current simplex state to the stack so
1629   /// that this can be rolled back later.
addEqualityForDirection(ArrayRef<int64_t> dir)1630   void addEqualityForDirection(ArrayRef<int64_t> dir) {
1631     assert(llvm::any_of(dir, [](int64_t x) { return x != 0; }) &&
1632            "Direction passed is the zero vector!");
1633     snapshotStack.push_back(simplex.getSnapshot());
1634     simplex.addEquality(getCoeffsForDirection(dir));
1635   }
1636   /// Compute max(dotProduct(dir, x - y)).
computeWidth(ArrayRef<int64_t> dir)1637   Fraction computeWidth(ArrayRef<int64_t> dir) {
1638     MaybeOptimum<Fraction> maybeWidth =
1639         simplex.computeOptimum(Direction::Up, getCoeffsForDirection(dir));
1640     assert(maybeWidth.isBounded() && "Width should be bounded!");
1641     return *maybeWidth;
1642   }
1643 
1644   /// Compute max(dotProduct(dir, x - y)) and save the dual variables for only
1645   /// the direction equalities to `dual`.
computeWidthAndDuals(ArrayRef<int64_t> dir,SmallVectorImpl<int64_t> & dual,int64_t & dualDenom)1646   Fraction computeWidthAndDuals(ArrayRef<int64_t> dir,
1647                                 SmallVectorImpl<int64_t> &dual,
1648                                 int64_t &dualDenom) {
1649     // We can't just call into computeWidth or computeOptimum since we need to
1650     // access the state of the tableau after computing the optimum, and these
1651     // functions rollback the insertion of the objective function into the
1652     // tableau before returning. We instead add a row for the objective function
1653     // ourselves, call into computeOptimum, compute the duals from the tableau
1654     // state, and finally rollback the addition of the row before returning.
1655     SimplexRollbackScopeExit scopeExit(simplex);
1656     unsigned conIndex = simplex.addRow(getCoeffsForDirection(dir));
1657     unsigned row = simplex.con[conIndex].pos;
1658     MaybeOptimum<Fraction> maybeWidth =
1659         simplex.computeRowOptimum(Simplex::Direction::Up, row);
1660     assert(maybeWidth.isBounded() && "Width should be bounded!");
1661     dualDenom = simplex.tableau(row, 0);
1662     dual.clear();
1663 
1664     // The increment is i += 2 because equalities are added as two inequalities,
1665     // one positive and one negative. Each iteration processes one equality.
1666     for (unsigned i = simplexConstraintOffset; i < conIndex; i += 2) {
1667       // The dual variable for an inequality in column orientation is the
1668       // negative of its coefficient at the objective row. If the inequality is
1669       // in row orientation, the corresponding dual variable is zero.
1670       //
1671       // We want the dual for the original equality, which corresponds to two
1672       // inequalities: a positive inequality, which has the same coefficients as
1673       // the equality, and a negative equality, which has negated coefficients.
1674       //
1675       // Note that at most one of these inequalities can be in column
1676       // orientation because the column unknowns should form a basis and hence
1677       // must be linearly independent. If the positive inequality is in column
1678       // position, its dual is the dual corresponding to the equality. If the
1679       // negative inequality is in column position, the negation of its dual is
1680       // the dual corresponding to the equality. If neither is in column
1681       // position, then that means that this equality is redundant, and its dual
1682       // is zero.
1683       //
1684       // Note that it is NOT valid to perform pivots during the computation of
1685       // the duals. This entire dual computation must be performed on the same
1686       // tableau configuration.
1687       assert(!(simplex.con[i].orientation == Orientation::Column &&
1688                simplex.con[i + 1].orientation == Orientation::Column) &&
1689              "Both inequalities for the equality cannot be in column "
1690              "orientation!");
1691       if (simplex.con[i].orientation == Orientation::Column)
1692         dual.push_back(-simplex.tableau(row, simplex.con[i].pos));
1693       else if (simplex.con[i + 1].orientation == Orientation::Column)
1694         dual.push_back(simplex.tableau(row, simplex.con[i + 1].pos));
1695       else
1696         dual.emplace_back(0);
1697     }
1698     return *maybeWidth;
1699   }
1700 
1701   /// Remove the last equality that was added through addEqualityForDirection.
1702   ///
1703   /// We do this by rolling back to the snapshot at the top of the stack, which
1704   /// should be a snapshot taken just before the last equality was added.
removeLastEquality()1705   void removeLastEquality() {
1706     assert(!snapshotStack.empty() && "Snapshot stack is empty!");
1707     simplex.rollback(snapshotStack.back());
1708     snapshotStack.pop_back();
1709   }
1710 
1711 private:
1712   /// Returns coefficients of the expression 'dot_product(dir, x - y)',
1713   /// i.e.,   dir_1 * x_1 + dir_2 * x_2 + ... + dir_n * x_n
1714   ///       - dir_1 * y_1 - dir_2 * y_2 - ... - dir_n * y_n,
1715   /// where n is the dimension of the original polytope.
getCoeffsForDirection(ArrayRef<int64_t> dir)1716   SmallVector<int64_t, 8> getCoeffsForDirection(ArrayRef<int64_t> dir) {
1717     assert(2 * dir.size() == simplex.getNumVariables() &&
1718            "Direction vector has wrong dimensionality");
1719     SmallVector<int64_t, 8> coeffs(dir.begin(), dir.end());
1720     coeffs.reserve(2 * dir.size());
1721     for (int64_t coeff : dir)
1722       coeffs.push_back(-coeff);
1723     coeffs.emplace_back(0); // constant term
1724     return coeffs;
1725   }
1726 
1727   Simplex simplex;
1728   /// The first index of the equality constraints, the index immediately after
1729   /// the last constraint in the initial product simplex.
1730   unsigned simplexConstraintOffset;
1731   /// A stack of snapshots, used for rolling back.
1732   SmallVector<unsigned, 8> snapshotStack;
1733 };
1734 
1735 /// Reduce the basis to try and find a direction in which the polytope is
1736 /// "thin". This only works for bounded polytopes.
1737 ///
1738 /// This is an implementation of the algorithm described in the paper
1739 /// "An Implementation of Generalized Basis Reduction for Integer Programming"
1740 /// by W. Cook, T. Rutherford, H. E. Scarf, D. Shallcross.
1741 ///
1742 /// Let b_{level}, b_{level + 1}, ... b_n be the current basis.
1743 /// Let width_i(v) = max <v, x - y> where x and y are points in the original
1744 /// polytope such that <b_j, x - y> = 0 is satisfied for all level <= j < i.
1745 ///
1746 /// In every iteration, we first replace b_{i+1} with b_{i+1} + u*b_i, where u
1747 /// is the integer such that width_i(b_{i+1} + u*b_i) is minimized. Let dual_i
1748 /// be the dual variable associated with the constraint <b_i, x - y> = 0 when
1749 /// computing width_{i+1}(b_{i+1}). It can be shown that dual_i is the
1750 /// minimizing value of u, if it were allowed to be fractional. Due to
1751 /// convexity, the minimizing integer value is either floor(dual_i) or
1752 /// ceil(dual_i), so we just need to check which of these gives a lower
1753 /// width_{i+1} value. If dual_i turned out to be an integer, then u = dual_i.
1754 ///
1755 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and (the new)
1756 /// b_{i + 1} and decrement i (unless i = level, in which case we stay at the
1757 /// same i). Otherwise, we increment i.
1758 ///
1759 /// We keep f values and duals cached and invalidate them when necessary.
1760 /// Whenever possible, we use them instead of recomputing them. We implement the
1761 /// algorithm as follows.
1762 ///
1763 /// In an iteration at i we need to compute:
1764 ///   a) width_i(b_{i + 1})
1765 ///   b) width_i(b_i)
1766 ///   c) the integer u that minimizes width_i(b_{i + 1} + u*b_i)
1767 ///
1768 /// If width_i(b_i) is not already cached, we compute it.
1769 ///
1770 /// If the duals are not already cached, we compute width_{i+1}(b_{i+1}) and
1771 /// store the duals from this computation.
1772 ///
1773 /// We call updateBasisWithUAndGetFCandidate, which finds the minimizing value
1774 /// of u as explained before, caches the duals from this computation, sets
1775 /// b_{i+1} to b_{i+1} + u*b_i, and returns the new value of width_i(b_{i+1}).
1776 ///
1777 /// Now if width_i(b_{i+1}) < 0.75 * width_i(b_i), we swap b_i and b_{i+1} and
1778 /// decrement i, resulting in the basis
1779 /// ... b_{i - 1}, b_{i + 1} + u*b_i, b_i, b_{i+2}, ...
1780 /// with corresponding f values
1781 /// ... width_{i-1}(b_{i-1}), width_i(b_{i+1} + u*b_i), width_{i+1}(b_i), ...
1782 /// The values up to i - 1 remain unchanged. We have just gotten the middle
1783 /// value from updateBasisWithUAndGetFCandidate, so we can update that in the
1784 /// cache. The value at width_{i+1}(b_i) is unknown, so we evict this value from
1785 /// the cache. The iteration after decrementing needs exactly the duals from the
1786 /// computation of width_i(b_{i + 1} + u*b_i), so we keep these in the cache.
1787 ///
1788 /// When incrementing i, no cached f values get invalidated. However, the cached
1789 /// duals do get invalidated as the duals for the higher levels are different.
reduceBasis(Matrix & basis,unsigned level)1790 void Simplex::reduceBasis(Matrix &basis, unsigned level) {
1791   const Fraction epsilon(3, 4);
1792 
1793   if (level == basis.getNumRows() - 1)
1794     return;
1795 
1796   GBRSimplex gbrSimplex(*this);
1797   SmallVector<Fraction, 8> width;
1798   SmallVector<int64_t, 8> dual;
1799   int64_t dualDenom;
1800 
1801   // Finds the value of u that minimizes width_i(b_{i+1} + u*b_i), caches the
1802   // duals from this computation, sets b_{i+1} to b_{i+1} + u*b_i, and returns
1803   // the new value of width_i(b_{i+1}).
1804   //
1805   // If dual_i is not an integer, the minimizing value must be either
1806   // floor(dual_i) or ceil(dual_i). We compute the expression for both and
1807   // choose the minimizing value.
1808   //
1809   // If dual_i is an integer, we don't need to perform these computations. We
1810   // know that in this case,
1811   //   a) u = dual_i.
1812   //   b) one can show that dual_j for j < i are the same duals we would have
1813   //      gotten from computing width_i(b_{i + 1} + u*b_i), so the correct duals
1814   //      are the ones already in the cache.
1815   //   c) width_i(b_{i+1} + u*b_i) = min_{alpha} width_i(b_{i+1} + alpha * b_i),
1816   //   which
1817   //      one can show is equal to width_{i+1}(b_{i+1}). The latter value must
1818   //      be in the cache, so we get it from there and return it.
1819   auto updateBasisWithUAndGetFCandidate = [&](unsigned i) -> Fraction {
1820     assert(i < level + dual.size() && "dual_i is not known!");
1821 
1822     int64_t u = floorDiv(dual[i - level], dualDenom);
1823     basis.addToRow(i, i + 1, u);
1824     if (dual[i - level] % dualDenom != 0) {
1825       SmallVector<int64_t, 8> candidateDual[2];
1826       int64_t candidateDualDenom[2];
1827       Fraction widthI[2];
1828 
1829       // Initially u is floor(dual) and basis reflects this.
1830       widthI[0] = gbrSimplex.computeWidthAndDuals(
1831           basis.getRow(i + 1), candidateDual[0], candidateDualDenom[0]);
1832 
1833       // Now try ceil(dual), i.e. floor(dual) + 1.
1834       ++u;
1835       basis.addToRow(i, i + 1, 1);
1836       widthI[1] = gbrSimplex.computeWidthAndDuals(
1837           basis.getRow(i + 1), candidateDual[1], candidateDualDenom[1]);
1838 
1839       unsigned j = widthI[0] < widthI[1] ? 0 : 1;
1840       if (j == 0)
1841         // Subtract 1 to go from u = ceil(dual) back to floor(dual).
1842         basis.addToRow(i, i + 1, -1);
1843 
1844       // width_i(b{i+1} + u*b_i) should be minimized at our value of u.
1845       // We assert that this holds by checking that the values of width_i at
1846       // u - 1 and u + 1 are greater than or equal to the value at u. If the
1847       // width is lesser at either of the adjacent values, then our computed
1848       // value of u is clearly not the minimizer. Otherwise by convexity the
1849       // computed value of u is really the minimizer.
1850 
1851       // Check the value at u - 1.
1852       assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1853                  basis.getRow(i + 1), -1, basis.getRow(i))) >= widthI[j] &&
1854              "Computed u value does not minimize the width!");
1855       // Check the value at u + 1.
1856       assert(gbrSimplex.computeWidth(scaleAndAddForAssert(
1857                  basis.getRow(i + 1), +1, basis.getRow(i))) >= widthI[j] &&
1858              "Computed u value does not minimize the width!");
1859 
1860       dual = std::move(candidateDual[j]);
1861       dualDenom = candidateDualDenom[j];
1862       return widthI[j];
1863     }
1864 
1865     assert(i + 1 - level < width.size() && "width_{i+1} wasn't saved");
1866     // f_i(b_{i+1} + dual*b_i) == width_{i+1}(b_{i+1}) when `dual` minimizes the
1867     // LHS. (note: the basis has already been updated, so b_{i+1} + dual*b_i in
1868     // the above expression is equal to basis.getRow(i+1) below.)
1869     assert(gbrSimplex.computeWidth(basis.getRow(i + 1)) ==
1870            width[i + 1 - level]);
1871     return width[i + 1 - level];
1872   };
1873 
1874   // In the ith iteration of the loop, gbrSimplex has constraints for directions
1875   // from `level` to i - 1.
1876   unsigned i = level;
1877   while (i < basis.getNumRows() - 1) {
1878     if (i >= level + width.size()) {
1879       // We don't even know the value of f_i(b_i), so let's find that first.
1880       // We have to do this first since later we assume that width already
1881       // contains values up to and including i.
1882 
1883       assert((i == 0 || i - 1 < level + width.size()) &&
1884              "We are at level i but we don't know the value of width_{i-1}");
1885 
1886       // We don't actually use these duals at all, but it doesn't matter
1887       // because this case should only occur when i is level, and there are no
1888       // duals in that case anyway.
1889       assert(i == level && "This case should only occur when i == level");
1890       width.push_back(
1891           gbrSimplex.computeWidthAndDuals(basis.getRow(i), dual, dualDenom));
1892     }
1893 
1894     if (i >= level + dual.size()) {
1895       assert(i + 1 >= level + width.size() &&
1896              "We don't know dual_i but we know width_{i+1}");
1897       // We don't know dual for our level, so let's find it.
1898       gbrSimplex.addEqualityForDirection(basis.getRow(i));
1899       width.push_back(gbrSimplex.computeWidthAndDuals(basis.getRow(i + 1), dual,
1900                                                       dualDenom));
1901       gbrSimplex.removeLastEquality();
1902     }
1903 
1904     // This variable stores width_i(b_{i+1} + u*b_i).
1905     Fraction widthICandidate = updateBasisWithUAndGetFCandidate(i);
1906     if (widthICandidate < epsilon * width[i - level]) {
1907       basis.swapRows(i, i + 1);
1908       width[i - level] = widthICandidate;
1909       // The values of width_{i+1}(b_{i+1}) and higher may change after the
1910       // swap, so we remove the cached values here.
1911       width.resize(i - level + 1);
1912       if (i == level) {
1913         dual.clear();
1914         continue;
1915       }
1916 
1917       gbrSimplex.removeLastEquality();
1918       i--;
1919       continue;
1920     }
1921 
1922     // Invalidate duals since the higher level needs to recompute its own duals.
1923     dual.clear();
1924     gbrSimplex.addEqualityForDirection(basis.getRow(i));
1925     i++;
1926   }
1927 }
1928 
1929 /// Search for an integer sample point using a branch and bound algorithm.
1930 ///
1931 /// Each row in the basis matrix is a vector, and the set of basis vectors
1932 /// should span the space. Initially this is the identity matrix,
1933 /// i.e., the basis vectors are just the variables.
1934 ///
1935 /// In every level, a value is assigned to the level-th basis vector, as
1936 /// follows. Compute the minimum and maximum rational values of this direction.
1937 /// If only one integer point lies in this range, constrain the variable to
1938 /// have this value and recurse to the next variable.
1939 ///
1940 /// If the range has multiple values, perform generalized basis reduction via
1941 /// reduceBasis and then compute the bounds again. Now we try constraining
1942 /// this direction in the first value in this range and "recurse" to the next
1943 /// level. If we fail to find a sample, we try assigning the direction the next
1944 /// value in this range, and so on.
1945 ///
1946 /// If no integer sample is found from any of the assignments, or if the range
1947 /// contains no integer value, then of course the polytope is empty for the
1948 /// current assignment of the values in previous levels, so we return to
1949 /// the previous level.
1950 ///
1951 /// If we reach the last level where all the variables have been assigned values
1952 /// already, then we simply return the current sample point if it is integral,
1953 /// and go back to the previous level otherwise.
1954 ///
1955 /// To avoid potentially arbitrarily large recursion depths leading to stack
1956 /// overflows, this algorithm is implemented iteratively.
findIntegerSample()1957 Optional<SmallVector<int64_t, 8>> Simplex::findIntegerSample() {
1958   if (empty)
1959     return {};
1960 
1961   unsigned nDims = var.size();
1962   Matrix basis = Matrix::identity(nDims);
1963 
1964   unsigned level = 0;
1965   // The snapshot just before constraining a direction to a value at each level.
1966   SmallVector<unsigned, 8> snapshotStack;
1967   // The maximum value in the range of the direction for each level.
1968   SmallVector<int64_t, 8> upperBoundStack;
1969   // The next value to try constraining the basis vector to at each level.
1970   SmallVector<int64_t, 8> nextValueStack;
1971 
1972   snapshotStack.reserve(basis.getNumRows());
1973   upperBoundStack.reserve(basis.getNumRows());
1974   nextValueStack.reserve(basis.getNumRows());
1975   while (level != -1u) {
1976     if (level == basis.getNumRows()) {
1977       // We've assigned values to all variables. Return if we have a sample,
1978       // or go back up to the previous level otherwise.
1979       if (auto maybeSample = getSamplePointIfIntegral())
1980         return maybeSample;
1981       level--;
1982       continue;
1983     }
1984 
1985     if (level >= upperBoundStack.size()) {
1986       // We haven't populated the stack values for this level yet, so we have
1987       // just come down a level ("recursed"). Find the lower and upper bounds.
1988       // If there is more than one integer point in the range, perform
1989       // generalized basis reduction.
1990       SmallVector<int64_t, 8> basisCoeffs =
1991           llvm::to_vector<8>(basis.getRow(level));
1992       basisCoeffs.emplace_back(0);
1993 
1994       MaybeOptimum<int64_t> minRoundedUp, maxRoundedDown;
1995       std::tie(minRoundedUp, maxRoundedDown) =
1996           computeIntegerBounds(basisCoeffs);
1997 
1998       // We don't have any integer values in the range.
1999       // Pop the stack and return up a level.
2000       if (minRoundedUp.isEmpty() || maxRoundedDown.isEmpty()) {
2001         assert((minRoundedUp.isEmpty() && maxRoundedDown.isEmpty()) &&
2002                "If one bound is empty, both should be.");
2003         snapshotStack.pop_back();
2004         nextValueStack.pop_back();
2005         upperBoundStack.pop_back();
2006         level--;
2007         continue;
2008       }
2009 
2010       // We already checked the empty case above.
2011       assert((minRoundedUp.isBounded() && maxRoundedDown.isBounded()) &&
2012              "Polyhedron should be bounded!");
2013 
2014       // Heuristic: if the sample point is integral at this point, just return
2015       // it.
2016       if (auto maybeSample = getSamplePointIfIntegral())
2017         return *maybeSample;
2018 
2019       if (*minRoundedUp < *maxRoundedDown) {
2020         reduceBasis(basis, level);
2021         basisCoeffs = llvm::to_vector<8>(basis.getRow(level));
2022         basisCoeffs.emplace_back(0);
2023         std::tie(minRoundedUp, maxRoundedDown) =
2024             computeIntegerBounds(basisCoeffs);
2025       }
2026 
2027       snapshotStack.push_back(getSnapshot());
2028       // The smallest value in the range is the next value to try.
2029       // The values in the optionals are guaranteed to exist since we know the
2030       // polytope is bounded.
2031       nextValueStack.push_back(*minRoundedUp);
2032       upperBoundStack.push_back(*maxRoundedDown);
2033     }
2034 
2035     assert((snapshotStack.size() - 1 == level &&
2036             nextValueStack.size() - 1 == level &&
2037             upperBoundStack.size() - 1 == level) &&
2038            "Mismatched variable stack sizes!");
2039 
2040     // Whether we "recursed" or "returned" from a lower level, we rollback
2041     // to the snapshot of the starting state at this level. (in the "recursed"
2042     // case this has no effect)
2043     rollback(snapshotStack.back());
2044     int64_t nextValue = nextValueStack.back();
2045     ++nextValueStack.back();
2046     if (nextValue > upperBoundStack.back()) {
2047       // We have exhausted the range and found no solution. Pop the stack and
2048       // return up a level.
2049       snapshotStack.pop_back();
2050       nextValueStack.pop_back();
2051       upperBoundStack.pop_back();
2052       level--;
2053       continue;
2054     }
2055 
2056     // Try the next value in the range and "recurse" into the next level.
2057     SmallVector<int64_t, 8> basisCoeffs(basis.getRow(level).begin(),
2058                                         basis.getRow(level).end());
2059     basisCoeffs.push_back(-nextValue);
2060     addEquality(basisCoeffs);
2061     level++;
2062   }
2063 
2064   return {};
2065 }
2066 
2067 /// Compute the minimum and maximum integer values the expression can take. We
2068 /// compute each separately.
2069 std::pair<MaybeOptimum<int64_t>, MaybeOptimum<int64_t>>
computeIntegerBounds(ArrayRef<int64_t> coeffs)2070 Simplex::computeIntegerBounds(ArrayRef<int64_t> coeffs) {
2071   MaybeOptimum<int64_t> minRoundedUp(
2072       computeOptimum(Simplex::Direction::Down, coeffs).map(ceil));
2073   MaybeOptimum<int64_t> maxRoundedDown(
2074       computeOptimum(Simplex::Direction::Up, coeffs).map(floor));
2075   return {minRoundedUp, maxRoundedDown};
2076 }
2077 
print(raw_ostream & os) const2078 void SimplexBase::print(raw_ostream &os) const {
2079   os << "rows = " << getNumRows() << ", columns = " << getNumColumns() << "\n";
2080   if (empty)
2081     os << "Simplex marked empty!\n";
2082   os << "var: ";
2083   for (unsigned i = 0; i < var.size(); ++i) {
2084     if (i > 0)
2085       os << ", ";
2086     var[i].print(os);
2087   }
2088   os << "\ncon: ";
2089   for (unsigned i = 0; i < con.size(); ++i) {
2090     if (i > 0)
2091       os << ", ";
2092     con[i].print(os);
2093   }
2094   os << '\n';
2095   for (unsigned row = 0, e = getNumRows(); row < e; ++row) {
2096     if (row > 0)
2097       os << ", ";
2098     os << "r" << row << ": " << rowUnknown[row];
2099   }
2100   os << '\n';
2101   os << "c0: denom, c1: const";
2102   for (unsigned col = 2, e = getNumColumns(); col < e; ++col)
2103     os << ", c" << col << ": " << colUnknown[col];
2104   os << '\n';
2105   for (unsigned row = 0, numRows = getNumRows(); row < numRows; ++row) {
2106     for (unsigned col = 0, numCols = getNumColumns(); col < numCols; ++col)
2107       os << tableau(row, col) << '\t';
2108     os << '\n';
2109   }
2110   os << '\n';
2111 }
2112 
dump() const2113 void SimplexBase::dump() const { print(llvm::errs()); }
2114 
isRationalSubsetOf(const IntegerRelation & rel)2115 bool Simplex::isRationalSubsetOf(const IntegerRelation &rel) {
2116   if (isEmpty())
2117     return true;
2118 
2119   for (unsigned i = 0, e = rel.getNumInequalities(); i < e; ++i)
2120     if (findIneqType(rel.getInequality(i)) != IneqType::Redundant)
2121       return false;
2122 
2123   for (unsigned i = 0, e = rel.getNumEqualities(); i < e; ++i)
2124     if (!isRedundantEquality(rel.getEquality(i)))
2125       return false;
2126 
2127   return true;
2128 }
2129 
2130 /// Returns the type of the inequality with coefficients `coeffs`.
2131 /// Possible types are:
2132 /// Redundant   The inequality is satisfied by all points in the polytope
2133 /// Cut         The inequality is satisfied by some points, but not by others
2134 /// Separate    The inequality is not satisfied by any point
2135 ///
2136 /// Internally, this computes the minimum and the maximum the inequality with
2137 /// coefficients `coeffs` can take. If the minimum is >= 0, the inequality holds
2138 /// for all points in the polytope, so it is redundant.  If the minimum is <= 0
2139 /// and the maximum is >= 0, the points in between the minimum and the
2140 /// inequality do not satisfy it, the points in between the inequality and the
2141 /// maximum satisfy it. Hence, it is a cut inequality. If both are < 0, no
2142 /// points of the polytope satisfy the inequality, which means it is a separate
2143 /// inequality.
findIneqType(ArrayRef<int64_t> coeffs)2144 Simplex::IneqType Simplex::findIneqType(ArrayRef<int64_t> coeffs) {
2145   MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2146   if (minimum.isBounded() && *minimum >= Fraction(0, 1)) {
2147     return IneqType::Redundant;
2148   }
2149   MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2150   if ((!minimum.isBounded() || *minimum <= Fraction(0, 1)) &&
2151       (!maximum.isBounded() || *maximum >= Fraction(0, 1))) {
2152     return IneqType::Cut;
2153   }
2154   return IneqType::Separate;
2155 }
2156 
2157 /// Checks whether the type of the inequality with coefficients `coeffs`
2158 /// is Redundant.
isRedundantInequality(ArrayRef<int64_t> coeffs)2159 bool Simplex::isRedundantInequality(ArrayRef<int64_t> coeffs) {
2160   assert(!empty &&
2161          "It is not meaningful to ask about redundancy in an empty set!");
2162   return findIneqType(coeffs) == IneqType::Redundant;
2163 }
2164 
2165 /// Check whether the equality given by `coeffs == 0` is redundant given
2166 /// the existing constraints. This is redundant when `coeffs` is already
2167 /// always zero under the existing constraints. `coeffs` is always zero
2168 /// when the minimum and maximum value that `coeffs` can take are both zero.
isRedundantEquality(ArrayRef<int64_t> coeffs)2169 bool Simplex::isRedundantEquality(ArrayRef<int64_t> coeffs) {
2170   assert(!empty &&
2171          "It is not meaningful to ask about redundancy in an empty set!");
2172   MaybeOptimum<Fraction> minimum = computeOptimum(Direction::Down, coeffs);
2173   MaybeOptimum<Fraction> maximum = computeOptimum(Direction::Up, coeffs);
2174   assert((!minimum.isEmpty() && !maximum.isEmpty()) &&
2175          "Optima should be non-empty for a non-empty set");
2176   return minimum.isBounded() && maximum.isBounded() &&
2177          *maximum == Fraction(0, 1) && *minimum == Fraction(0, 1);
2178 }
2179