1 //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend is responsible for emitting the memory fold tables of 10 // the X86 backend instructions. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "X86RecognizableInstr.h" 16 #include "llvm/TableGen/Error.h" 17 #include "llvm/TableGen/TableGenBackend.h" 18 19 using namespace llvm; 20 21 namespace { 22 23 // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the 24 // manual added entries. 25 enum UnfoldStrategy { 26 UNFOLD, // Allow unfolding 27 NO_UNFOLD, // Prevent unfolding 28 NO_STRATEGY // Make decision according to operands' sizes 29 }; 30 31 // Represents an entry in the manual mapped instructions set. 32 struct ManualMapEntry { 33 const char *RegInstStr; 34 const char *MemInstStr; 35 UnfoldStrategy Strategy; 36 37 ManualMapEntry(const char *RegInstStr, const char *MemInstStr, 38 UnfoldStrategy Strategy = NO_STRATEGY) 39 : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {} 40 }; 41 42 class IsMatch; 43 44 // List of instructions requiring explicitly aligned memory. 45 const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS", 46 "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; 47 48 // List of instructions NOT requiring explicit memory alignment. 49 const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD", 50 "PCMPESTRM", "PCMPESTRI", 51 "PCMPISTRM", "PCMPISTRI" }; 52 53 // For manually mapping instructions that do not match by their encoding. 54 const ManualMapEntry ManualMapSet[] = { 55 { "ADD16ri_DB", "ADD16mi", NO_UNFOLD }, 56 { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD }, 57 { "ADD16rr_DB", "ADD16mr", NO_UNFOLD }, 58 { "ADD32ri_DB", "ADD32mi", NO_UNFOLD }, 59 { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD }, 60 { "ADD32rr_DB", "ADD32mr", NO_UNFOLD }, 61 { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD }, 62 { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD }, 63 { "ADD64rr_DB", "ADD64mr", NO_UNFOLD }, 64 { "ADD8ri_DB", "ADD8mi", NO_UNFOLD }, 65 { "ADD8rr_DB", "ADD8mr", NO_UNFOLD }, 66 { "ADD16rr_DB", "ADD16rm", NO_UNFOLD }, 67 { "ADD32rr_DB", "ADD32rm", NO_UNFOLD }, 68 { "ADD64rr_DB", "ADD64rm", NO_UNFOLD }, 69 { "ADD8rr_DB", "ADD8rm", NO_UNFOLD }, 70 { "PUSH16r", "PUSH16rmm", UNFOLD }, 71 { "PUSH32r", "PUSH32rmm", UNFOLD }, 72 { "PUSH64r", "PUSH64rmm", UNFOLD }, 73 { "TAILJMPr", "TAILJMPm", UNFOLD }, 74 { "TAILJMPr64", "TAILJMPm64", UNFOLD }, 75 { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD }, 76 }; 77 78 79 static bool isExplicitAlign(const CodeGenInstruction *Inst) { 80 return any_of(ExplicitAlign, [Inst](const char *InstStr) { 81 return Inst->TheDef->getName().find(InstStr) != StringRef::npos; 82 }); 83 } 84 85 static bool isExplicitUnalign(const CodeGenInstruction *Inst) { 86 return any_of(ExplicitUnalign, [Inst](const char *InstStr) { 87 return Inst->TheDef->getName().find(InstStr) != StringRef::npos; 88 }); 89 } 90 91 class X86FoldTablesEmitter { 92 RecordKeeper &Records; 93 CodeGenTarget Target; 94 95 // Represents an entry in the folding table 96 class X86FoldTableEntry { 97 const CodeGenInstruction *RegInst; 98 const CodeGenInstruction *MemInst; 99 100 public: 101 bool CannotUnfold = false; 102 bool IsLoad = false; 103 bool IsStore = false; 104 bool IsAligned = false; 105 unsigned int Alignment = 0; 106 107 X86FoldTableEntry(const CodeGenInstruction *RegInst, 108 const CodeGenInstruction *MemInst) 109 : RegInst(RegInst), MemInst(MemInst) {} 110 111 friend raw_ostream &operator<<(raw_ostream &OS, 112 const X86FoldTableEntry &E) { 113 OS << "{ X86::" << E.RegInst->TheDef->getName() 114 << ", X86::" << E.MemInst->TheDef->getName() << ", "; 115 116 if (E.IsLoad) 117 OS << "TB_FOLDED_LOAD | "; 118 if (E.IsStore) 119 OS << "TB_FOLDED_STORE | "; 120 if (E.CannotUnfold) 121 OS << "TB_NO_REVERSE | "; 122 if (E.IsAligned) 123 OS << "TB_ALIGN_" << E.Alignment << " | "; 124 125 OS << "0 },\n"; 126 127 return OS; 128 } 129 }; 130 131 typedef std::vector<X86FoldTableEntry> FoldTable; 132 // std::vector for each folding table. 133 // Table2Addr - Holds instructions which their memory form performs load+store 134 // Table#i - Holds instructions which the their memory form perform a load OR 135 // a store, and their #i'th operand is folded. 136 FoldTable Table2Addr; 137 FoldTable Table0; 138 FoldTable Table1; 139 FoldTable Table2; 140 FoldTable Table3; 141 FoldTable Table4; 142 143 public: 144 X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} 145 146 // run - Generate the 6 X86 memory fold tables. 147 void run(raw_ostream &OS); 148 149 private: 150 // Decides to which table to add the entry with the given instructions. 151 // S sets the strategy of adding the TB_NO_REVERSE flag. 152 void updateTables(const CodeGenInstruction *RegInstr, 153 const CodeGenInstruction *MemInstr, 154 const UnfoldStrategy S = NO_STRATEGY); 155 156 // Generates X86FoldTableEntry with the given instructions and fill it with 157 // the appropriate flags - then adds it to Table. 158 void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr, 159 const CodeGenInstruction *MemInstr, 160 const UnfoldStrategy S, const unsigned int FoldedInd); 161 162 // Print the given table as a static const C++ array of type 163 // X86MemoryFoldTableEntry. 164 void printTable(const FoldTable &Table, StringRef TableName, 165 raw_ostream &OS) { 166 OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName 167 << "[] = {\n"; 168 169 for (const X86FoldTableEntry &E : Table) 170 OS << E; 171 172 OS << "};\n"; 173 } 174 }; 175 176 // Return true if one of the instruction's operands is a RST register class 177 static bool hasRSTRegClass(const CodeGenInstruction *Inst) { 178 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { 179 return OpIn.Rec->getName() == "RST"; 180 }); 181 } 182 183 // Return true if one of the instruction's operands is a ptr_rc_tailcall 184 static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { 185 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { 186 return OpIn.Rec->getName() == "ptr_rc_tailcall"; 187 }); 188 } 189 190 // Calculates the integer value representing the BitsInit object 191 static inline uint64_t getValueFromBitsInit(const BitsInit *B) { 192 assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!"); 193 194 uint64_t Value = 0; 195 for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { 196 BitInit *Bit = cast<BitInit>(B->getBit(i)); 197 Value |= uint64_t(Bit->getValue()) << i; 198 } 199 return Value; 200 } 201 202 // Returns true if the two given BitsInits represent the same integer value 203 static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { 204 if (B1->getNumBits() != B2->getNumBits()) 205 PrintFatalError("Comparing two BitsInits with different sizes!"); 206 207 for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { 208 BitInit *Bit1 = cast<BitInit>(B1->getBit(i)); 209 BitInit *Bit2 = cast<BitInit>(B2->getBit(i)); 210 if (Bit1->getValue() != Bit2->getValue()) 211 return false; 212 } 213 return true; 214 } 215 216 // Return the size of the register operand 217 static inline unsigned int getRegOperandSize(const Record *RegRec) { 218 if (RegRec->isSubClassOf("RegisterOperand")) 219 RegRec = RegRec->getValueAsDef("RegClass"); 220 if (RegRec->isSubClassOf("RegisterClass")) 221 return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size"); 222 223 llvm_unreachable("Register operand's size not known!"); 224 } 225 226 // Return the size of the memory operand 227 static inline unsigned int 228 getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) { 229 if (MemRec->isSubClassOf("Operand")) { 230 // Intrinsic memory instructions use ssmem/sdmem. 231 if (IntrinsicSensitive && 232 (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem")) 233 return 128; 234 235 StringRef Name = 236 MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name"); 237 if (Name == "Mem8") 238 return 8; 239 if (Name == "Mem16") 240 return 16; 241 if (Name == "Mem32") 242 return 32; 243 if (Name == "Mem64") 244 return 64; 245 if (Name == "Mem80") 246 return 80; 247 if (Name == "Mem128") 248 return 128; 249 if (Name == "Mem256") 250 return 256; 251 if (Name == "Mem512") 252 return 512; 253 } 254 255 llvm_unreachable("Memory operand's size not known!"); 256 } 257 258 // Return true if the instruction defined as a register flavor. 259 static inline bool hasRegisterFormat(const Record *Inst) { 260 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); 261 uint64_t FormBitsNum = getValueFromBitsInit(FormBits); 262 263 // Values from X86Local namespace defined in X86RecognizableInstr.cpp 264 return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r; 265 } 266 267 // Return true if the instruction defined as a memory flavor. 268 static inline bool hasMemoryFormat(const Record *Inst) { 269 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); 270 uint64_t FormBitsNum = getValueFromBitsInit(FormBits); 271 272 // Values from X86Local namespace defined in X86RecognizableInstr.cpp 273 return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m; 274 } 275 276 static inline bool isNOREXRegClass(const Record *Op) { 277 return Op->getName().find("_NOREX") != StringRef::npos; 278 } 279 280 static inline bool isRegisterOperand(const Record *Rec) { 281 return Rec->isSubClassOf("RegisterClass") || 282 Rec->isSubClassOf("RegisterOperand") || 283 Rec->isSubClassOf("PointerLikeRegClass"); 284 } 285 286 static inline bool isMemoryOperand(const Record *Rec) { 287 return Rec->isSubClassOf("Operand") && 288 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; 289 } 290 291 static inline bool isImmediateOperand(const Record *Rec) { 292 return Rec->isSubClassOf("Operand") && 293 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; 294 } 295 296 // Get the alternative instruction pointed by "FoldGenRegForm" field. 297 static inline const CodeGenInstruction * 298 getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records, 299 const CodeGenTarget &Target) { 300 301 StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm"); 302 Record *AltRegInstRec = Records.getDef(AltRegInstStr); 303 assert(AltRegInstRec && 304 "Alternative register form instruction def not found"); 305 CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec); 306 return &AltRegInst; 307 } 308 309 // Function object - Operator() returns true if the given VEX instruction 310 // matches the EVEX instruction of this object. 311 class IsMatch { 312 const CodeGenInstruction *MemInst; 313 314 public: 315 IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records) 316 : MemInst(Inst) {} 317 318 bool operator()(const CodeGenInstruction *RegInst) { 319 Record *MemRec = MemInst->TheDef; 320 Record *RegRec = RegInst->TheDef; 321 322 // Return false if one (at least) of the encoding fields of both 323 // instructions do not match. 324 if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") || 325 !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"), 326 MemRec->getValueAsBitsInit("Opcode")) || 327 // VEX/EVEX fields 328 RegRec->getValueAsDef("OpPrefix") != 329 MemRec->getValueAsDef("OpPrefix") || 330 RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") || 331 RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") || 332 RegRec->getValueAsDef("AdSize") != MemRec->getValueAsDef("AdSize") || 333 RegRec->getValueAsBit("hasVEX_4V") != 334 MemRec->getValueAsBit("hasVEX_4V") || 335 RegRec->getValueAsBit("hasEVEX_K") != 336 MemRec->getValueAsBit("hasEVEX_K") || 337 RegRec->getValueAsBit("hasEVEX_Z") != 338 MemRec->getValueAsBit("hasEVEX_Z") || 339 // EVEX_B means different things for memory and register forms. 340 RegRec->getValueAsBit("hasEVEX_B") != 0 || 341 MemRec->getValueAsBit("hasEVEX_B") != 0 || 342 RegRec->getValueAsBit("hasEVEX_RC") != 343 MemRec->getValueAsBit("hasEVEX_RC") || 344 RegRec->getValueAsBit("hasREX_WPrefix") != 345 MemRec->getValueAsBit("hasREX_WPrefix") || 346 RegRec->getValueAsBit("hasLockPrefix") != 347 MemRec->getValueAsBit("hasLockPrefix") || 348 RegRec->getValueAsBit("hasNoTrackPrefix") != 349 MemRec->getValueAsBit("hasNoTrackPrefix") || 350 !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"), 351 MemRec->getValueAsBitsInit("EVEX_LL")) || 352 !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"), 353 MemRec->getValueAsBitsInit("VEX_WPrefix")) || 354 // Instruction's format - The register form's "Form" field should be 355 // the opposite of the memory form's "Form" field. 356 !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"), 357 MemRec->getValueAsBitsInit("FormBits")) || 358 RegRec->getValueAsBit("isAsmParserOnly") != 359 MemRec->getValueAsBit("isAsmParserOnly")) 360 return false; 361 362 // Make sure the sizes of the operands of both instructions suit each other. 363 // This is needed for instructions with intrinsic version (_Int). 364 // Where the only difference is the size of the operands. 365 // For example: VUCOMISDZrm and Int_VUCOMISDrm 366 // Also for instructions that their EVEX version was upgraded to work with 367 // k-registers. For example VPCMPEQBrm (xmm output register) and 368 // VPCMPEQBZ128rm (k register output register). 369 bool ArgFolded = false; 370 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); 371 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); 372 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 373 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 374 375 // Instructions with one output in their memory form use the memory folded 376 // operand as source and destination (Read-Modify-Write). 377 unsigned RegStartIdx = 378 (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; 379 380 for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) { 381 Record *MemOpRec = MemInst->Operands[i].Rec; 382 Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec; 383 384 if (MemOpRec == RegOpRec) 385 continue; 386 387 if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) { 388 if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) || 389 isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)) 390 return false; 391 } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) { 392 if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)) 393 return false; 394 } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) { 395 if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")) 396 return false; 397 } else { 398 // Only one operand can be folded. 399 if (ArgFolded) 400 return false; 401 402 assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); 403 ArgFolded = true; 404 } 405 } 406 407 return true; 408 } 409 410 private: 411 // Return true of the 2 given forms are the opposite of each other. 412 bool areOppositeForms(const BitsInit *RegFormBits, 413 const BitsInit *MemFormBits) { 414 uint64_t MemFormNum = getValueFromBitsInit(MemFormBits); 415 uint64_t RegFormNum = getValueFromBitsInit(RegFormBits); 416 417 if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) || 418 (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) || 419 (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) || 420 (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) || 421 (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) || 422 (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) || 423 (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) || 424 (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) || 425 (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) || 426 (MemFormNum == X86Local::MRMDestMem && 427 RegFormNum == X86Local::MRMDestReg) || 428 (MemFormNum == X86Local::MRMSrcMem && 429 RegFormNum == X86Local::MRMSrcReg) || 430 (MemFormNum == X86Local::MRMSrcMem4VOp3 && 431 RegFormNum == X86Local::MRMSrcReg4VOp3) || 432 (MemFormNum == X86Local::MRMSrcMemOp4 && 433 RegFormNum == X86Local::MRMSrcRegOp4)) 434 return true; 435 436 return false; 437 } 438 }; 439 440 } // end anonymous namespace 441 442 void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, 443 const CodeGenInstruction *RegInstr, 444 const CodeGenInstruction *MemInstr, 445 const UnfoldStrategy S, 446 const unsigned int FoldedInd) { 447 448 X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr); 449 Record *RegRec = RegInstr->TheDef; 450 Record *MemRec = MemInstr->TheDef; 451 452 // Only table0 entries should explicitly specify a load or store flag. 453 if (&Table == &Table0) { 454 unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 455 unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 456 // If the instruction writes to the folded operand, it will appear as an 457 // output in the register form instruction and as an input in the memory 458 // form instruction. 459 // If the instruction reads from the folded operand, it well appear as in 460 // input in both forms. 461 if (MemInOpsNum == RegInOpsNum) 462 Result.IsLoad = true; 463 else 464 Result.IsStore = true; 465 } 466 467 Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec; 468 Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec; 469 470 // Unfolding code generates a load/store instruction according to the size of 471 // the register in the register form instruction. 472 // If the register's size is greater than the memory's operand size, do not 473 // allow unfolding. 474 if (S == UNFOLD) 475 Result.CannotUnfold = false; 476 else if (S == NO_UNFOLD) 477 Result.CannotUnfold = true; 478 else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) 479 Result.CannotUnfold = true; // S == NO_STRATEGY 480 481 uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); 482 if (isExplicitAlign(RegInstr)) { 483 // The instruction require explicitly aligned memory. 484 BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); 485 uint64_t Value = getValueFromBitsInit(VectSize); 486 Result.IsAligned = true; 487 Result.Alignment = Value; 488 } else if (Enc != X86Local::XOP && Enc != X86Local::VEX && 489 Enc != X86Local::EVEX) { 490 // Instructions with VEX encoding do not require alignment. 491 if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) { 492 // SSE packed vector instructions require a 16 byte alignment. 493 Result.IsAligned = true; 494 Result.Alignment = 16; 495 } 496 } 497 498 Table.push_back(Result); 499 } 500 501 void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr, 502 const CodeGenInstruction *MemInstr, 503 const UnfoldStrategy S) { 504 505 Record *RegRec = RegInstr->TheDef; 506 Record *MemRec = MemInstr->TheDef; 507 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); 508 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); 509 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 510 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 511 512 // Instructions which Read-Modify-Write should be added to Table2Addr. 513 if (MemOutSize != RegOutSize && MemInSize == RegInSize) { 514 addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0); 515 return; 516 } 517 518 if (MemInSize == RegInSize && MemOutSize == RegOutSize) { 519 // Load-Folding cases. 520 // If the i'th register form operand is a register and the i'th memory form 521 // operand is a memory operand, add instructions to Table#i. 522 for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) { 523 Record *RegOpRec = RegInstr->Operands[i].Rec; 524 Record *MemOpRec = MemInstr->Operands[i].Rec; 525 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) { 526 switch (i) { 527 case 0: 528 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); 529 return; 530 case 1: 531 addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1); 532 return; 533 case 2: 534 addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2); 535 return; 536 case 3: 537 addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3); 538 return; 539 case 4: 540 addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4); 541 return; 542 } 543 } 544 } 545 } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { 546 // Store-Folding cases. 547 // If the memory form instruction performs a store, the *output* 548 // register of the register form instructions disappear and instead a 549 // memory *input* operand appears in the memory form instruction. 550 // For example: 551 // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) 552 // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) 553 Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec; 554 Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec; 555 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec) && 556 getRegOperandSize(RegOpRec) == getMemOperandSize(MemOpRec)) 557 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); 558 } 559 560 return; 561 } 562 563 void X86FoldTablesEmitter::run(raw_ostream &OS) { 564 emitSourceFileHeader("X86 fold tables", OS); 565 566 // Holds all memory instructions 567 std::vector<const CodeGenInstruction *> MemInsts; 568 // Holds all register instructions - divided according to opcode. 569 std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; 570 571 ArrayRef<const CodeGenInstruction *> NumberedInstructions = 572 Target.getInstructionsByEnumValue(); 573 574 for (const CodeGenInstruction *Inst : NumberedInstructions) { 575 if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst")) 576 continue; 577 578 const Record *Rec = Inst->TheDef; 579 580 // - Do not proceed if the instruction is marked as notMemoryFoldable. 581 // - Instructions including RST register class operands are not relevant 582 // for memory folding (for further details check the explanation in 583 // lib/Target/X86/X86InstrFPStack.td file). 584 // - Some instructions (listed in the manual map above) use the register 585 // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure 586 // safe mapping of these instruction we manually map them and exclude 587 // them from the automation. 588 if (Rec->getValueAsBit("isMemoryFoldable") == false || 589 hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) 590 continue; 591 592 // Add all the memory form instructions to MemInsts, and all the register 593 // form instructions to RegInsts[Opc], where Opc in the opcode of each 594 // instructions. this helps reducing the runtime of the backend. 595 if (hasMemoryFormat(Rec)) 596 MemInsts.push_back(Inst); 597 else if (hasRegisterFormat(Rec)) { 598 uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode")); 599 RegInsts[Opc].push_back(Inst); 600 } 601 } 602 603 // For each memory form instruction, try to find its register form 604 // instruction. 605 for (const CodeGenInstruction *MemInst : MemInsts) { 606 uint8_t Opc = 607 getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); 608 609 if (RegInsts.count(Opc) == 0) 610 continue; 611 612 // Two forms (memory & register) of the same instruction must have the same 613 // opcode. try matching only with register form instructions with the same 614 // opcode. 615 std::vector<const CodeGenInstruction *> &OpcRegInsts = 616 RegInsts.find(Opc)->second; 617 618 auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records)); 619 if (Match != OpcRegInsts.end()) { 620 const CodeGenInstruction *RegInst = *Match; 621 // If the matched instruction has it's "FoldGenRegForm" set, map the 622 // memory form instruction to the register form instruction pointed by 623 // this field 624 if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) { 625 updateTables(RegInst, MemInst); 626 } else { 627 const CodeGenInstruction *AltRegInst = 628 getAltRegInst(RegInst, Records, Target); 629 updateTables(AltRegInst, MemInst); 630 } 631 OpcRegInsts.erase(Match); 632 } 633 } 634 635 // Add the manually mapped instructions listed above. 636 for (const ManualMapEntry &Entry : ManualMapSet) { 637 Record *RegInstIter = Records.getDef(Entry.RegInstStr); 638 Record *MemInstIter = Records.getDef(Entry.MemInstStr); 639 640 updateTables(&(Target.getInstruction(RegInstIter)), 641 &(Target.getInstruction(MemInstIter)), Entry.Strategy); 642 } 643 644 // Print all tables to raw_ostream OS. 645 printTable(Table2Addr, "Table2Addr", OS); 646 printTable(Table0, "Table0", OS); 647 printTable(Table1, "Table1", OS); 648 printTable(Table2, "Table2", OS); 649 printTable(Table3, "Table3", OS); 650 printTable(Table4, "Table4", OS); 651 } 652 653 namespace llvm { 654 655 void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) { 656 X86FoldTablesEmitter(RK).run(OS); 657 } 658 } // namespace llvm 659