1 //===- utils/TableGen/X86FoldTablesEmitter.cpp - X86 backend-*- C++ -*-===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend is responsible for emitting the memory fold tables of 11 // the X86 backend instructions. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "CodeGenTarget.h" 16 #include "X86RecognizableInstr.h" 17 #include "llvm/TableGen/Error.h" 18 #include "llvm/TableGen/TableGenBackend.h" 19 20 using namespace llvm; 21 22 namespace { 23 24 // 3 possible strategies for the unfolding flag (TB_NO_REVERSE) of the 25 // manual added entries. 26 enum UnfoldStrategy { 27 UNFOLD, // Allow unfolding 28 NO_UNFOLD, // Prevent unfolding 29 NO_STRATEGY // Make decision according to operands' sizes 30 }; 31 32 // Represents an entry in the manual mapped instructions set. 33 struct ManualMapEntry { 34 const char *RegInstStr; 35 const char *MemInstStr; 36 UnfoldStrategy Strategy; 37 38 ManualMapEntry(const char *RegInstStr, const char *MemInstStr, 39 UnfoldStrategy Strategy = NO_STRATEGY) 40 : RegInstStr(RegInstStr), MemInstStr(MemInstStr), Strategy(Strategy) {} 41 }; 42 43 class IsMatch; 44 45 // List of instructions requiring explicitly aligned memory. 46 const char *ExplicitAlign[] = {"MOVDQA", "MOVAPS", "MOVAPD", "MOVNTPS", 47 "MOVNTPD", "MOVNTDQ", "MOVNTDQA"}; 48 49 // List of instructions NOT requiring explicit memory alignment. 50 const char *ExplicitUnalign[] = {"MOVDQU", "MOVUPS", "MOVUPD"}; 51 52 // For manually mapping instructions that do not match by their encoding. 53 const ManualMapEntry ManualMapSet[] = { 54 { "ADD16ri_DB", "ADD16mi", NO_UNFOLD }, 55 { "ADD16ri8_DB", "ADD16mi8", NO_UNFOLD }, 56 { "ADD16rr_DB", "ADD16mr", NO_UNFOLD }, 57 { "ADD32ri_DB", "ADD32mi", NO_UNFOLD }, 58 { "ADD32ri8_DB", "ADD32mi8", NO_UNFOLD }, 59 { "ADD32rr_DB", "ADD32mr", NO_UNFOLD }, 60 { "ADD64ri32_DB", "ADD64mi32", NO_UNFOLD }, 61 { "ADD64ri8_DB", "ADD64mi8", NO_UNFOLD }, 62 { "ADD64rr_DB", "ADD64mr", NO_UNFOLD }, 63 { "ADD16rr_DB", "ADD16rm", NO_UNFOLD }, 64 { "ADD32rr_DB", "ADD32rm", NO_UNFOLD }, 65 { "ADD64rr_DB", "ADD64rm", NO_UNFOLD }, 66 { "PUSH16r", "PUSH16rmm", NO_UNFOLD }, 67 { "PUSH32r", "PUSH32rmm", NO_UNFOLD }, 68 { "PUSH64r", "PUSH64rmm", NO_UNFOLD }, 69 { "TAILJMPr", "TAILJMPm", UNFOLD }, 70 { "TAILJMPr64", "TAILJMPm64", UNFOLD }, 71 { "TAILJMPr64_REX", "TAILJMPm64_REX", UNFOLD }, 72 }; 73 74 75 static bool isExplicitAlign(const CodeGenInstruction *Inst) { 76 return any_of(ExplicitAlign, [Inst](const char *InstStr) { 77 return Inst->TheDef->getName().find(InstStr) != StringRef::npos; 78 }); 79 } 80 81 static bool isExplicitUnalign(const CodeGenInstruction *Inst) { 82 return any_of(ExplicitUnalign, [Inst](const char *InstStr) { 83 return Inst->TheDef->getName().find(InstStr) != StringRef::npos; 84 }); 85 } 86 87 class X86FoldTablesEmitter { 88 RecordKeeper &Records; 89 CodeGenTarget Target; 90 91 // Represents an entry in the folding table 92 class X86FoldTableEntry { 93 const CodeGenInstruction *RegInst; 94 const CodeGenInstruction *MemInst; 95 96 public: 97 bool CannotUnfold = false; 98 bool IsLoad = false; 99 bool IsStore = false; 100 bool IsAligned = false; 101 unsigned int Alignment = 0; 102 103 X86FoldTableEntry(const CodeGenInstruction *RegInst, 104 const CodeGenInstruction *MemInst) 105 : RegInst(RegInst), MemInst(MemInst) {} 106 107 friend raw_ostream &operator<<(raw_ostream &OS, 108 const X86FoldTableEntry &E) { 109 OS << "{ X86::" << E.RegInst->TheDef->getName() 110 << ", X86::" << E.MemInst->TheDef->getName() << ", "; 111 112 if (E.IsLoad) 113 OS << "TB_FOLDED_LOAD | "; 114 if (E.IsStore) 115 OS << "TB_FOLDED_STORE | "; 116 if (E.CannotUnfold) 117 OS << "TB_NO_REVERSE | "; 118 if (E.IsAligned) 119 OS << "TB_ALIGN_" << E.Alignment << " | "; 120 121 OS << "0 },\n"; 122 123 return OS; 124 } 125 }; 126 127 typedef std::vector<X86FoldTableEntry> FoldTable; 128 // std::vector for each folding table. 129 // Table2Addr - Holds instructions which their memory form performs load+store 130 // Table#i - Holds instructions which the their memory form perform a load OR 131 // a store, and their #i'th operand is folded. 132 FoldTable Table2Addr; 133 FoldTable Table0; 134 FoldTable Table1; 135 FoldTable Table2; 136 FoldTable Table3; 137 FoldTable Table4; 138 139 public: 140 X86FoldTablesEmitter(RecordKeeper &R) : Records(R), Target(R) {} 141 142 // run - Generate the 6 X86 memory fold tables. 143 void run(raw_ostream &OS); 144 145 private: 146 // Decides to which table to add the entry with the given instructions. 147 // S sets the strategy of adding the TB_NO_REVERSE flag. 148 void updateTables(const CodeGenInstruction *RegInstr, 149 const CodeGenInstruction *MemInstr, 150 const UnfoldStrategy S = NO_STRATEGY); 151 152 // Generates X86FoldTableEntry with the given instructions and fill it with 153 // the appropriate flags - then adds it to Table. 154 void addEntryWithFlags(FoldTable &Table, const CodeGenInstruction *RegInstr, 155 const CodeGenInstruction *MemInstr, 156 const UnfoldStrategy S, const unsigned int FoldedInd); 157 158 // Print the given table as a static const C++ array of type 159 // X86MemoryFoldTableEntry. 160 void printTable(const FoldTable &Table, StringRef TableName, 161 raw_ostream &OS) { 162 OS << "static const X86MemoryFoldTableEntry MemoryFold" << TableName 163 << "[] = {\n"; 164 165 for (const X86FoldTableEntry &E : Table) 166 OS << E; 167 168 OS << "};\n"; 169 } 170 }; 171 172 // Return true if one of the instruction's operands is a RST register class 173 static bool hasRSTRegClass(const CodeGenInstruction *Inst) { 174 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { 175 return OpIn.Rec->getName() == "RST"; 176 }); 177 } 178 179 // Return true if one of the instruction's operands is a ptr_rc_tailcall 180 static bool hasPtrTailcallRegClass(const CodeGenInstruction *Inst) { 181 return any_of(Inst->Operands, [](const CGIOperandList::OperandInfo &OpIn) { 182 return OpIn.Rec->getName() == "ptr_rc_tailcall"; 183 }); 184 } 185 186 // Calculates the integer value representing the BitsInit object 187 static inline uint64_t getValueFromBitsInit(const BitsInit *B) { 188 assert(B->getNumBits() <= sizeof(uint64_t) * 8 && "BitInits' too long!"); 189 190 uint64_t Value = 0; 191 for (unsigned i = 0, e = B->getNumBits(); i != e; ++i) { 192 BitInit *Bit = cast<BitInit>(B->getBit(i)); 193 Value |= uint64_t(Bit->getValue()) << i; 194 } 195 return Value; 196 } 197 198 // Returns true if the two given BitsInits represent the same integer value 199 static inline bool equalBitsInits(const BitsInit *B1, const BitsInit *B2) { 200 if (B1->getNumBits() != B2->getNumBits()) 201 PrintFatalError("Comparing two BitsInits with different sizes!"); 202 203 for (unsigned i = 0, e = B1->getNumBits(); i != e; ++i) { 204 BitInit *Bit1 = cast<BitInit>(B1->getBit(i)); 205 BitInit *Bit2 = cast<BitInit>(B2->getBit(i)); 206 if (Bit1->getValue() != Bit2->getValue()) 207 return false; 208 } 209 return true; 210 } 211 212 // Return the size of the register operand 213 static inline unsigned int getRegOperandSize(const Record *RegRec) { 214 if (RegRec->isSubClassOf("RegisterOperand")) 215 RegRec = RegRec->getValueAsDef("RegClass"); 216 if (RegRec->isSubClassOf("RegisterClass")) 217 return RegRec->getValueAsListOfDefs("RegTypes")[0]->getValueAsInt("Size"); 218 219 llvm_unreachable("Register operand's size not known!"); 220 } 221 222 // Return the size of the memory operand 223 static inline unsigned int 224 getMemOperandSize(const Record *MemRec, const bool IntrinsicSensitive = false) { 225 if (MemRec->isSubClassOf("Operand")) { 226 // Intrinsic memory instructions use ssmem/sdmem. 227 if (IntrinsicSensitive && 228 (MemRec->getName() == "sdmem" || MemRec->getName() == "ssmem")) 229 return 128; 230 231 StringRef Name = 232 MemRec->getValueAsDef("ParserMatchClass")->getValueAsString("Name"); 233 if (Name == "Mem8") 234 return 8; 235 if (Name == "Mem16") 236 return 16; 237 if (Name == "Mem32") 238 return 32; 239 if (Name == "Mem64") 240 return 64; 241 if (Name == "Mem80") 242 return 80; 243 if (Name == "Mem128") 244 return 128; 245 if (Name == "Mem256") 246 return 256; 247 if (Name == "Mem512") 248 return 512; 249 } 250 251 llvm_unreachable("Memory operand's size not known!"); 252 } 253 254 // Returns true if the record's list of defs includes the given def. 255 static inline bool hasDefInList(const Record *Rec, const StringRef List, 256 const StringRef Def) { 257 if (!Rec->isValueUnset(List)) { 258 return any_of(*(Rec->getValueAsListInit(List)), 259 [Def](const Init *I) { return I->getAsString() == Def; }); 260 } 261 return false; 262 } 263 264 // Return true if the instruction defined as a register flavor. 265 static inline bool hasRegisterFormat(const Record *Inst) { 266 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); 267 uint64_t FormBitsNum = getValueFromBitsInit(FormBits); 268 269 // Values from X86Local namespace defined in X86RecognizableInstr.cpp 270 return FormBitsNum >= X86Local::MRMDestReg && FormBitsNum <= X86Local::MRM7r; 271 } 272 273 // Return true if the instruction defined as a memory flavor. 274 static inline bool hasMemoryFormat(const Record *Inst) { 275 const BitsInit *FormBits = Inst->getValueAsBitsInit("FormBits"); 276 uint64_t FormBitsNum = getValueFromBitsInit(FormBits); 277 278 // Values from X86Local namespace defined in X86RecognizableInstr.cpp 279 return FormBitsNum >= X86Local::MRMDestMem && FormBitsNum <= X86Local::MRM7m; 280 } 281 282 static inline bool isNOREXRegClass(const Record *Op) { 283 return Op->getName().find("_NOREX") != StringRef::npos; 284 } 285 286 static inline bool isRegisterOperand(const Record *Rec) { 287 return Rec->isSubClassOf("RegisterClass") || 288 Rec->isSubClassOf("RegisterOperand") || 289 Rec->isSubClassOf("PointerLikeRegClass"); 290 } 291 292 static inline bool isMemoryOperand(const Record *Rec) { 293 return Rec->isSubClassOf("Operand") && 294 Rec->getValueAsString("OperandType") == "OPERAND_MEMORY"; 295 } 296 297 static inline bool isImmediateOperand(const Record *Rec) { 298 return Rec->isSubClassOf("Operand") && 299 Rec->getValueAsString("OperandType") == "OPERAND_IMMEDIATE"; 300 } 301 302 // Get the alternative instruction pointed by "FoldGenRegForm" field. 303 static inline const CodeGenInstruction * 304 getAltRegInst(const CodeGenInstruction *I, const RecordKeeper &Records, 305 const CodeGenTarget &Target) { 306 307 StringRef AltRegInstStr = I->TheDef->getValueAsString("FoldGenRegForm"); 308 Record *AltRegInstRec = Records.getDef(AltRegInstStr); 309 assert(AltRegInstRec && 310 "Alternative register form instruction def not found"); 311 CodeGenInstruction &AltRegInst = Target.getInstruction(AltRegInstRec); 312 return &AltRegInst; 313 } 314 315 // Function object - Operator() returns true if the given VEX instruction 316 // matches the EVEX instruction of this object. 317 class IsMatch { 318 const CodeGenInstruction *MemInst; 319 320 public: 321 IsMatch(const CodeGenInstruction *Inst, const RecordKeeper &Records) 322 : MemInst(Inst) {} 323 324 bool operator()(const CodeGenInstruction *RegInst) { 325 Record *MemRec = MemInst->TheDef; 326 Record *RegRec = RegInst->TheDef; 327 328 // Return false if one (at least) of the encoding fields of both 329 // instructions do not match. 330 if (RegRec->getValueAsDef("OpEnc") != MemRec->getValueAsDef("OpEnc") || 331 !equalBitsInits(RegRec->getValueAsBitsInit("Opcode"), 332 MemRec->getValueAsBitsInit("Opcode")) || 333 // VEX/EVEX fields 334 RegRec->getValueAsDef("OpPrefix") != 335 MemRec->getValueAsDef("OpPrefix") || 336 RegRec->getValueAsDef("OpMap") != MemRec->getValueAsDef("OpMap") || 337 RegRec->getValueAsDef("OpSize") != MemRec->getValueAsDef("OpSize") || 338 RegRec->getValueAsBit("hasVEX_4V") != 339 MemRec->getValueAsBit("hasVEX_4V") || 340 RegRec->getValueAsBit("hasEVEX_K") != 341 MemRec->getValueAsBit("hasEVEX_K") || 342 RegRec->getValueAsBit("hasEVEX_Z") != 343 MemRec->getValueAsBit("hasEVEX_Z") || 344 // EVEX_B means different things for memory and register forms. 345 RegRec->getValueAsBit("hasEVEX_B") != 0 || 346 MemRec->getValueAsBit("hasEVEX_B") != 0 || 347 RegRec->getValueAsBit("hasEVEX_RC") != 348 MemRec->getValueAsBit("hasEVEX_RC") || 349 RegRec->getValueAsBit("hasREX_WPrefix") != 350 MemRec->getValueAsBit("hasREX_WPrefix") || 351 RegRec->getValueAsBit("hasLockPrefix") != 352 MemRec->getValueAsBit("hasLockPrefix") || 353 RegRec->getValueAsBit("hasNoTrackPrefix") != 354 MemRec->getValueAsBit("hasNoTrackPrefix") || 355 !equalBitsInits(RegRec->getValueAsBitsInit("EVEX_LL"), 356 MemRec->getValueAsBitsInit("EVEX_LL")) || 357 !equalBitsInits(RegRec->getValueAsBitsInit("VEX_WPrefix"), 358 MemRec->getValueAsBitsInit("VEX_WPrefix")) || 359 // Instruction's format - The register form's "Form" field should be 360 // the opposite of the memory form's "Form" field. 361 !areOppositeForms(RegRec->getValueAsBitsInit("FormBits"), 362 MemRec->getValueAsBitsInit("FormBits")) || 363 RegRec->getValueAsBit("isAsmParserOnly") != 364 MemRec->getValueAsBit("isAsmParserOnly")) 365 return false; 366 367 // Make sure the sizes of the operands of both instructions suit each other. 368 // This is needed for instructions with intrinsic version (_Int). 369 // Where the only difference is the size of the operands. 370 // For example: VUCOMISDZrm and Int_VUCOMISDrm 371 // Also for instructions that their EVEX version was upgraded to work with 372 // k-registers. For example VPCMPEQBrm (xmm output register) and 373 // VPCMPEQBZ128rm (k register output register). 374 bool ArgFolded = false; 375 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); 376 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); 377 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 378 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 379 380 // Instructions with one output in their memory form use the memory folded 381 // operand as source and destination (Read-Modify-Write). 382 unsigned RegStartIdx = 383 (MemOutSize + 1 == RegOutSize) && (MemInSize == RegInSize) ? 1 : 0; 384 385 for (unsigned i = 0, e = MemInst->Operands.size(); i < e; i++) { 386 Record *MemOpRec = MemInst->Operands[i].Rec; 387 Record *RegOpRec = RegInst->Operands[i + RegStartIdx].Rec; 388 389 if (MemOpRec == RegOpRec) 390 continue; 391 392 if (isRegisterOperand(MemOpRec) && isRegisterOperand(RegOpRec)) { 393 if (getRegOperandSize(MemOpRec) != getRegOperandSize(RegOpRec) || 394 isNOREXRegClass(MemOpRec) != isNOREXRegClass(RegOpRec)) 395 return false; 396 } else if (isMemoryOperand(MemOpRec) && isMemoryOperand(RegOpRec)) { 397 if (getMemOperandSize(MemOpRec) != getMemOperandSize(RegOpRec)) 398 return false; 399 } else if (isImmediateOperand(MemOpRec) && isImmediateOperand(RegOpRec)) { 400 if (MemOpRec->getValueAsDef("Type") != RegOpRec->getValueAsDef("Type")) 401 return false; 402 } else { 403 // Only one operand can be folded. 404 if (ArgFolded) 405 return false; 406 407 assert(isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)); 408 ArgFolded = true; 409 } 410 } 411 412 return true; 413 } 414 415 private: 416 // Return true of the 2 given forms are the opposite of each other. 417 bool areOppositeForms(const BitsInit *RegFormBits, 418 const BitsInit *MemFormBits) { 419 uint64_t MemFormNum = getValueFromBitsInit(MemFormBits); 420 uint64_t RegFormNum = getValueFromBitsInit(RegFormBits); 421 422 if ((MemFormNum == X86Local::MRM0m && RegFormNum == X86Local::MRM0r) || 423 (MemFormNum == X86Local::MRM1m && RegFormNum == X86Local::MRM1r) || 424 (MemFormNum == X86Local::MRM2m && RegFormNum == X86Local::MRM2r) || 425 (MemFormNum == X86Local::MRM3m && RegFormNum == X86Local::MRM3r) || 426 (MemFormNum == X86Local::MRM4m && RegFormNum == X86Local::MRM4r) || 427 (MemFormNum == X86Local::MRM5m && RegFormNum == X86Local::MRM5r) || 428 (MemFormNum == X86Local::MRM6m && RegFormNum == X86Local::MRM6r) || 429 (MemFormNum == X86Local::MRM7m && RegFormNum == X86Local::MRM7r) || 430 (MemFormNum == X86Local::MRMXm && RegFormNum == X86Local::MRMXr) || 431 (MemFormNum == X86Local::MRMDestMem && 432 RegFormNum == X86Local::MRMDestReg) || 433 (MemFormNum == X86Local::MRMSrcMem && 434 RegFormNum == X86Local::MRMSrcReg) || 435 (MemFormNum == X86Local::MRMSrcMem4VOp3 && 436 RegFormNum == X86Local::MRMSrcReg4VOp3) || 437 (MemFormNum == X86Local::MRMSrcMemOp4 && 438 RegFormNum == X86Local::MRMSrcRegOp4)) 439 return true; 440 441 return false; 442 } 443 }; 444 445 } // end anonymous namespace 446 447 void X86FoldTablesEmitter::addEntryWithFlags(FoldTable &Table, 448 const CodeGenInstruction *RegInstr, 449 const CodeGenInstruction *MemInstr, 450 const UnfoldStrategy S, 451 const unsigned int FoldedInd) { 452 453 X86FoldTableEntry Result = X86FoldTableEntry(RegInstr, MemInstr); 454 Record *RegRec = RegInstr->TheDef; 455 Record *MemRec = MemInstr->TheDef; 456 457 // Only table0 entries should explicitly specify a load or store flag. 458 if (&Table == &Table0) { 459 unsigned MemInOpsNum = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 460 unsigned RegInOpsNum = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 461 // If the instruction writes to the folded operand, it will appear as an 462 // output in the register form instruction and as an input in the memory 463 // form instruction. 464 // If the instruction reads from the folded operand, it well appear as in 465 // input in both forms. 466 if (MemInOpsNum == RegInOpsNum) 467 Result.IsLoad = true; 468 else 469 Result.IsStore = true; 470 } 471 472 Record *RegOpRec = RegInstr->Operands[FoldedInd].Rec; 473 Record *MemOpRec = MemInstr->Operands[FoldedInd].Rec; 474 475 // Unfolding code generates a load/store instruction according to the size of 476 // the register in the register form instruction. 477 // If the register's size is greater than the memory's operand size, do not 478 // allow unfolding. 479 if (S == UNFOLD) 480 Result.CannotUnfold = false; 481 else if (S == NO_UNFOLD) 482 Result.CannotUnfold = true; 483 else if (getRegOperandSize(RegOpRec) > getMemOperandSize(MemOpRec)) 484 Result.CannotUnfold = true; // S == NO_STRATEGY 485 486 uint64_t Enc = getValueFromBitsInit(RegRec->getValueAsBitsInit("OpEncBits")); 487 if (isExplicitAlign(RegInstr)) { 488 // The instruction require explicitly aligned memory. 489 BitsInit *VectSize = RegRec->getValueAsBitsInit("VectSize"); 490 uint64_t Value = getValueFromBitsInit(VectSize); 491 Result.IsAligned = true; 492 Result.Alignment = Value; 493 } else if (Enc != X86Local::XOP && Enc != X86Local::VEX && 494 Enc != X86Local::EVEX) { 495 // Instructions with VEX encoding do not require alignment. 496 if (!isExplicitUnalign(RegInstr) && getMemOperandSize(MemOpRec) > 64) { 497 // SSE packed vector instructions require a 16 byte alignment. 498 Result.IsAligned = true; 499 Result.Alignment = 16; 500 } 501 } 502 503 Table.push_back(Result); 504 } 505 506 void X86FoldTablesEmitter::updateTables(const CodeGenInstruction *RegInstr, 507 const CodeGenInstruction *MemInstr, 508 const UnfoldStrategy S) { 509 510 Record *RegRec = RegInstr->TheDef; 511 Record *MemRec = MemInstr->TheDef; 512 unsigned MemOutSize = MemRec->getValueAsDag("OutOperandList")->getNumArgs(); 513 unsigned RegOutSize = RegRec->getValueAsDag("OutOperandList")->getNumArgs(); 514 unsigned MemInSize = MemRec->getValueAsDag("InOperandList")->getNumArgs(); 515 unsigned RegInSize = RegRec->getValueAsDag("InOperandList")->getNumArgs(); 516 517 // Instructions which have the WriteRMW value (Read-Modify-Write) should be 518 // added to Table2Addr. 519 if (hasDefInList(MemRec, "SchedRW", "WriteRMW") && MemOutSize != RegOutSize && 520 MemInSize == RegInSize) { 521 addEntryWithFlags(Table2Addr, RegInstr, MemInstr, S, 0); 522 return; 523 } 524 525 if (MemInSize == RegInSize && MemOutSize == RegOutSize) { 526 // Load-Folding cases. 527 // If the i'th register form operand is a register and the i'th memory form 528 // operand is a memory operand, add instructions to Table#i. 529 for (unsigned i = RegOutSize, e = RegInstr->Operands.size(); i < e; i++) { 530 Record *RegOpRec = RegInstr->Operands[i].Rec; 531 Record *MemOpRec = MemInstr->Operands[i].Rec; 532 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) { 533 switch (i) { 534 case 0: 535 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); 536 return; 537 case 1: 538 addEntryWithFlags(Table1, RegInstr, MemInstr, S, 1); 539 return; 540 case 2: 541 addEntryWithFlags(Table2, RegInstr, MemInstr, S, 2); 542 return; 543 case 3: 544 addEntryWithFlags(Table3, RegInstr, MemInstr, S, 3); 545 return; 546 case 4: 547 addEntryWithFlags(Table4, RegInstr, MemInstr, S, 4); 548 return; 549 } 550 } 551 } 552 } else if (MemInSize == RegInSize + 1 && MemOutSize + 1 == RegOutSize) { 553 // Store-Folding cases. 554 // If the memory form instruction performs a store, the *output* 555 // register of the register form instructions disappear and instead a 556 // memory *input* operand appears in the memory form instruction. 557 // For example: 558 // MOVAPSrr => (outs VR128:$dst), (ins VR128:$src) 559 // MOVAPSmr => (outs), (ins f128mem:$dst, VR128:$src) 560 Record *RegOpRec = RegInstr->Operands[RegOutSize - 1].Rec; 561 Record *MemOpRec = MemInstr->Operands[RegOutSize - 1].Rec; 562 if (isRegisterOperand(RegOpRec) && isMemoryOperand(MemOpRec)) 563 addEntryWithFlags(Table0, RegInstr, MemInstr, S, 0); 564 } 565 566 return; 567 } 568 569 void X86FoldTablesEmitter::run(raw_ostream &OS) { 570 emitSourceFileHeader("X86 fold tables", OS); 571 572 // Holds all memory instructions 573 std::vector<const CodeGenInstruction *> MemInsts; 574 // Holds all register instructions - divided according to opcode. 575 std::map<uint8_t, std::vector<const CodeGenInstruction *>> RegInsts; 576 577 ArrayRef<const CodeGenInstruction *> NumberedInstructions = 578 Target.getInstructionsByEnumValue(); 579 580 for (const CodeGenInstruction *Inst : NumberedInstructions) { 581 if (!Inst->TheDef->getNameInit() || !Inst->TheDef->isSubClassOf("X86Inst")) 582 continue; 583 584 const Record *Rec = Inst->TheDef; 585 586 // - Do not proceed if the instruction is marked as notMemoryFoldable. 587 // - Instructions including RST register class operands are not relevant 588 // for memory folding (for further details check the explanation in 589 // lib/Target/X86/X86InstrFPStack.td file). 590 // - Some instructions (listed in the manual map above) use the register 591 // class ptr_rc_tailcall, which can be of a size 32 or 64, to ensure 592 // safe mapping of these instruction we manually map them and exclude 593 // them from the automation. 594 if (Rec->getValueAsBit("isMemoryFoldable") == false || 595 hasRSTRegClass(Inst) || hasPtrTailcallRegClass(Inst)) 596 continue; 597 598 // Add all the memory form instructions to MemInsts, and all the register 599 // form instructions to RegInsts[Opc], where Opc in the opcode of each 600 // instructions. this helps reducing the runtime of the backend. 601 if (hasMemoryFormat(Rec)) 602 MemInsts.push_back(Inst); 603 else if (hasRegisterFormat(Rec)) { 604 uint8_t Opc = getValueFromBitsInit(Rec->getValueAsBitsInit("Opcode")); 605 RegInsts[Opc].push_back(Inst); 606 } 607 } 608 609 // For each memory form instruction, try to find its register form 610 // instruction. 611 for (const CodeGenInstruction *MemInst : MemInsts) { 612 uint8_t Opc = 613 getValueFromBitsInit(MemInst->TheDef->getValueAsBitsInit("Opcode")); 614 615 if (RegInsts.count(Opc) == 0) 616 continue; 617 618 // Two forms (memory & register) of the same instruction must have the same 619 // opcode. try matching only with register form instructions with the same 620 // opcode. 621 std::vector<const CodeGenInstruction *> &OpcRegInsts = 622 RegInsts.find(Opc)->second; 623 624 auto Match = find_if(OpcRegInsts, IsMatch(MemInst, Records)); 625 if (Match != OpcRegInsts.end()) { 626 const CodeGenInstruction *RegInst = *Match; 627 // If the matched instruction has it's "FoldGenRegForm" set, map the 628 // memory form instruction to the register form instruction pointed by 629 // this field 630 if (RegInst->TheDef->isValueUnset("FoldGenRegForm")) { 631 updateTables(RegInst, MemInst); 632 } else { 633 const CodeGenInstruction *AltRegInst = 634 getAltRegInst(RegInst, Records, Target); 635 updateTables(AltRegInst, MemInst); 636 } 637 OpcRegInsts.erase(Match); 638 } 639 } 640 641 // Add the manually mapped instructions listed above. 642 for (const ManualMapEntry &Entry : ManualMapSet) { 643 Record *RegInstIter = Records.getDef(Entry.RegInstStr); 644 Record *MemInstIter = Records.getDef(Entry.MemInstStr); 645 646 updateTables(&(Target.getInstruction(RegInstIter)), 647 &(Target.getInstruction(MemInstIter)), Entry.Strategy); 648 } 649 650 // Print all tables to raw_ostream OS. 651 printTable(Table2Addr, "Table2Addr", OS); 652 printTable(Table0, "Table0", OS); 653 printTable(Table1, "Table1", OS); 654 printTable(Table2, "Table2", OS); 655 printTable(Table3, "Table3", OS); 656 printTable(Table4, "Table4", OS); 657 } 658 659 namespace llvm { 660 661 void EmitX86FoldTables(RecordKeeper &RK, raw_ostream &OS) { 662 X86FoldTablesEmitter(RK).run(OS); 663 } 664 } // namespace llvm 665