1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/MC/MCInstrItineraries.h" 19 #include "llvm/MC/MCSchedule.h" 20 #include "llvm/MC/SubtargetFeature.h" 21 #include "llvm/Support/Debug.h" 22 #include "llvm/Support/Format.h" 23 #include "llvm/Support/raw_ostream.h" 24 #include "llvm/TableGen/Error.h" 25 #include "llvm/TableGen/Record.h" 26 #include "llvm/TableGen/TableGenBackend.h" 27 #include <algorithm> 28 #include <cassert> 29 #include <cstdint> 30 #include <map> 31 #include <string> 32 #include <vector> 33 34 using namespace llvm; 35 36 #define DEBUG_TYPE "subtarget-emitter" 37 38 namespace { 39 40 class SubtargetEmitter { 41 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 42 // The SchedClassDesc table indexes into a global write resource table, write 43 // latency table, and read advance table. 44 struct SchedClassTables { 45 std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses; 46 std::vector<MCWriteProcResEntry> WriteProcResources; 47 std::vector<MCWriteLatencyEntry> WriteLatencies; 48 std::vector<std::string> WriterNames; 49 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 50 51 // Reserve an invalid entry at index 0 52 SchedClassTables() { 53 ProcSchedClasses.resize(1); 54 WriteProcResources.resize(1); 55 WriteLatencies.resize(1); 56 WriterNames.push_back("InvalidWrite"); 57 ReadAdvanceEntries.resize(1); 58 } 59 }; 60 61 struct LessWriteProcResources { 62 bool operator()(const MCWriteProcResEntry &LHS, 63 const MCWriteProcResEntry &RHS) { 64 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 65 } 66 }; 67 68 RecordKeeper &Records; 69 CodeGenSchedModels &SchedModels; 70 std::string Target; 71 72 void Enumeration(raw_ostream &OS); 73 unsigned FeatureKeyValues(raw_ostream &OS); 74 unsigned CPUKeyValues(raw_ostream &OS); 75 void FormItineraryStageString(const std::string &Names, 76 Record *ItinData, std::string &ItinString, 77 unsigned &NStages); 78 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 79 unsigned &NOperandCycles); 80 void FormItineraryBypassString(const std::string &Names, 81 Record *ItinData, 82 std::string &ItinString, unsigned NOperandCycles); 83 void EmitStageAndOperandCycleData(raw_ostream &OS, 84 std::vector<std::vector<InstrItinerary> > 85 &ProcItinLists); 86 void EmitItineraries(raw_ostream &OS, 87 std::vector<std::vector<InstrItinerary> > 88 &ProcItinLists); 89 void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, 90 char Separator); 91 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 92 raw_ostream &OS); 93 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 94 const CodeGenProcModel &ProcModel); 95 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 96 const CodeGenProcModel &ProcModel); 97 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 98 const CodeGenProcModel &ProcModel); 99 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 100 SchedClassTables &SchedTables); 101 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 102 void EmitProcessorModels(raw_ostream &OS); 103 void EmitProcessorLookup(raw_ostream &OS); 104 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 105 void EmitSchedModel(raw_ostream &OS); 106 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 107 unsigned NumProcs); 108 109 public: 110 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): 111 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} 112 113 void run(raw_ostream &o); 114 }; 115 116 } // end anonymous namespace 117 118 // 119 // Enumeration - Emit the specified class as an enumeration. 120 // 121 void SubtargetEmitter::Enumeration(raw_ostream &OS) { 122 // Get all records of class and sort 123 std::vector<Record*> DefList = 124 Records.getAllDerivedDefinitions("SubtargetFeature"); 125 std::sort(DefList.begin(), DefList.end(), LessRecord()); 126 127 unsigned N = DefList.size(); 128 if (N == 0) 129 return; 130 if (N > MAX_SUBTARGET_FEATURES) 131 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 132 133 OS << "namespace " << Target << " {\n"; 134 135 // Open enumeration. 136 OS << "enum {\n"; 137 138 // For each record 139 for (unsigned i = 0; i < N;) { 140 // Next record 141 Record *Def = DefList[i]; 142 143 // Get and emit name 144 OS << " " << Def->getName() << " = " << i; 145 if (++i < N) OS << ","; 146 147 OS << "\n"; 148 } 149 150 // Close enumeration and namespace 151 OS << "};\n"; 152 OS << "} // end namespace " << Target << "\n"; 153 } 154 155 // 156 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 157 // command line. 158 // 159 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 160 // Gather and sort all the features 161 std::vector<Record*> FeatureList = 162 Records.getAllDerivedDefinitions("SubtargetFeature"); 163 164 if (FeatureList.empty()) 165 return 0; 166 167 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 168 169 // Begin feature table 170 OS << "// Sorted (by key) array of values for CPU features.\n" 171 << "extern const llvm::SubtargetFeatureKV " << Target 172 << "FeatureKV[] = {\n"; 173 174 // For each feature 175 unsigned NumFeatures = 0; 176 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 177 // Next feature 178 Record *Feature = FeatureList[i]; 179 180 const std::string &Name = Feature->getName(); 181 const std::string &CommandLineName = Feature->getValueAsString("Name"); 182 const std::string &Desc = Feature->getValueAsString("Desc"); 183 184 if (CommandLineName.empty()) continue; 185 186 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 187 OS << " { " 188 << "\"" << CommandLineName << "\", " 189 << "\"" << Desc << "\", " 190 << "{ " << Target << "::" << Name << " }, "; 191 192 const std::vector<Record*> &ImpliesList = 193 Feature->getValueAsListOfDefs("Implies"); 194 195 OS << "{"; 196 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 197 OS << " " << Target << "::" << ImpliesList[j]->getName(); 198 if (++j < M) OS << ","; 199 } 200 OS << " }"; 201 202 OS << " }"; 203 ++NumFeatures; 204 205 // Depending on 'if more in the list' emit comma 206 if ((i + 1) < N) OS << ","; 207 208 OS << "\n"; 209 } 210 211 // End feature table 212 OS << "};\n"; 213 214 return NumFeatures; 215 } 216 217 // 218 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 219 // line. 220 // 221 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 222 // Gather and sort processor information 223 std::vector<Record*> ProcessorList = 224 Records.getAllDerivedDefinitions("Processor"); 225 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 226 227 // Begin processor table 228 OS << "// Sorted (by key) array of values for CPU subtype.\n" 229 << "extern const llvm::SubtargetFeatureKV " << Target 230 << "SubTypeKV[] = {\n"; 231 232 // For each processor 233 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 234 // Next processor 235 Record *Processor = ProcessorList[i]; 236 237 const std::string &Name = Processor->getValueAsString("Name"); 238 const std::vector<Record*> &FeatureList = 239 Processor->getValueAsListOfDefs("Features"); 240 241 // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, 242 OS << " { " 243 << "\"" << Name << "\", " 244 << "\"Select the " << Name << " processor\", "; 245 246 OS << "{"; 247 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 248 OS << " " << Target << "::" << FeatureList[j]->getName(); 249 if (++j < M) OS << ","; 250 } 251 OS << " }"; 252 253 // The { } is for the "implies" section of this data structure. 254 OS << ", { } }"; 255 256 // Depending on 'if more in the list' emit comma 257 if (++i < N) OS << ","; 258 259 OS << "\n"; 260 } 261 262 // End processor table 263 OS << "};\n"; 264 265 return ProcessorList.size(); 266 } 267 268 // 269 // FormItineraryStageString - Compose a string containing the stage 270 // data initialization for the specified itinerary. N is the number 271 // of stages. 272 // 273 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 274 Record *ItinData, 275 std::string &ItinString, 276 unsigned &NStages) { 277 // Get states list 278 const std::vector<Record*> &StageList = 279 ItinData->getValueAsListOfDefs("Stages"); 280 281 // For each stage 282 unsigned N = NStages = StageList.size(); 283 for (unsigned i = 0; i < N;) { 284 // Next stage 285 const Record *Stage = StageList[i]; 286 287 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 288 int Cycles = Stage->getValueAsInt("Cycles"); 289 ItinString += " { " + itostr(Cycles) + ", "; 290 291 // Get unit list 292 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 293 294 // For each unit 295 for (unsigned j = 0, M = UnitList.size(); j < M;) { 296 // Add name and bitwise or 297 ItinString += Name + "FU::" + UnitList[j]->getName(); 298 if (++j < M) ItinString += " | "; 299 } 300 301 int TimeInc = Stage->getValueAsInt("TimeInc"); 302 ItinString += ", " + itostr(TimeInc); 303 304 int Kind = Stage->getValueAsInt("Kind"); 305 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 306 307 // Close off stage 308 ItinString += " }"; 309 if (++i < N) ItinString += ", "; 310 } 311 } 312 313 // 314 // FormItineraryOperandCycleString - Compose a string containing the 315 // operand cycle initialization for the specified itinerary. N is the 316 // number of operands that has cycles specified. 317 // 318 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 319 std::string &ItinString, unsigned &NOperandCycles) { 320 // Get operand cycle list 321 const std::vector<int64_t> &OperandCycleList = 322 ItinData->getValueAsListOfInts("OperandCycles"); 323 324 // For each operand cycle 325 unsigned N = NOperandCycles = OperandCycleList.size(); 326 for (unsigned i = 0; i < N;) { 327 // Next operand cycle 328 const int OCycle = OperandCycleList[i]; 329 330 ItinString += " " + itostr(OCycle); 331 if (++i < N) ItinString += ", "; 332 } 333 } 334 335 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 336 Record *ItinData, 337 std::string &ItinString, 338 unsigned NOperandCycles) { 339 const std::vector<Record*> &BypassList = 340 ItinData->getValueAsListOfDefs("Bypasses"); 341 unsigned N = BypassList.size(); 342 unsigned i = 0; 343 for (; i < N;) { 344 ItinString += Name + "Bypass::" + BypassList[i]->getName(); 345 if (++i < NOperandCycles) ItinString += ", "; 346 } 347 for (; i < NOperandCycles;) { 348 ItinString += " 0"; 349 if (++i < NOperandCycles) ItinString += ", "; 350 } 351 } 352 353 // 354 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 355 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 356 // by CodeGenSchedClass::Index. 357 // 358 void SubtargetEmitter:: 359 EmitStageAndOperandCycleData(raw_ostream &OS, 360 std::vector<std::vector<InstrItinerary> > 361 &ProcItinLists) { 362 363 // Multiple processor models may share an itinerary record. Emit it once. 364 SmallPtrSet<Record*, 8> ItinsDefSet; 365 366 // Emit functional units for all the itineraries. 367 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 368 369 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 370 continue; 371 372 std::vector<Record*> FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 373 if (FUs.empty()) 374 continue; 375 376 const std::string &Name = ProcModel.ItinsDef->getName(); 377 OS << "\n// Functional units for \"" << Name << "\"\n" 378 << "namespace " << Name << "FU {\n"; 379 380 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 381 OS << " const unsigned " << FUs[j]->getName() 382 << " = 1 << " << j << ";\n"; 383 384 OS << "} // end namespace " << Name << "FU\n"; 385 386 std::vector<Record*> BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 387 if (!BPs.empty()) { 388 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 389 << "\"\n" << "namespace " << Name << "Bypass {\n"; 390 391 OS << " const unsigned NoBypass = 0;\n"; 392 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 393 OS << " const unsigned " << BPs[j]->getName() 394 << " = 1 << " << j << ";\n"; 395 396 OS << "} // end namespace " << Name << "Bypass\n"; 397 } 398 } 399 400 // Begin stages table 401 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 402 "Stages[] = {\n"; 403 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 404 405 // Begin operand cycle table 406 std::string OperandCycleTable = "extern const unsigned " + Target + 407 "OperandCycles[] = {\n"; 408 OperandCycleTable += " 0, // No itinerary\n"; 409 410 // Begin pipeline bypass table 411 std::string BypassTable = "extern const unsigned " + Target + 412 "ForwardingPaths[] = {\n"; 413 BypassTable += " 0, // No itinerary\n"; 414 415 // For each Itinerary across all processors, add a unique entry to the stages, 416 // operand cycles, and pipepine bypess tables. Then add the new Itinerary 417 // object with computed offsets to the ProcItinLists result. 418 unsigned StageCount = 1, OperandCycleCount = 1; 419 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 420 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 421 // Add process itinerary to the list. 422 ProcItinLists.resize(ProcItinLists.size()+1); 423 424 // If this processor defines no itineraries, then leave the itinerary list 425 // empty. 426 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 427 if (!ProcModel.hasItineraries()) 428 continue; 429 430 const std::string &Name = ProcModel.ItinsDef->getName(); 431 432 ItinList.resize(SchedModels.numInstrSchedClasses()); 433 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 434 435 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 436 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 437 438 // Next itinerary data 439 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 440 441 // Get string and stage count 442 std::string ItinStageString; 443 unsigned NStages = 0; 444 if (ItinData) 445 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 446 447 // Get string and operand cycle count 448 std::string ItinOperandCycleString; 449 unsigned NOperandCycles = 0; 450 std::string ItinBypassString; 451 if (ItinData) { 452 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 453 NOperandCycles); 454 455 FormItineraryBypassString(Name, ItinData, ItinBypassString, 456 NOperandCycles); 457 } 458 459 // Check to see if stage already exists and create if it doesn't 460 unsigned FindStage = 0; 461 if (NStages > 0) { 462 FindStage = ItinStageMap[ItinStageString]; 463 if (FindStage == 0) { 464 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 465 StageTable += ItinStageString + ", // " + itostr(StageCount); 466 if (NStages > 1) 467 StageTable += "-" + itostr(StageCount + NStages - 1); 468 StageTable += "\n"; 469 // Record Itin class number. 470 ItinStageMap[ItinStageString] = FindStage = StageCount; 471 StageCount += NStages; 472 } 473 } 474 475 // Check to see if operand cycle already exists and create if it doesn't 476 unsigned FindOperandCycle = 0; 477 if (NOperandCycles > 0) { 478 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 479 FindOperandCycle = ItinOperandMap[ItinOperandString]; 480 if (FindOperandCycle == 0) { 481 // Emit as cycle, // index 482 OperandCycleTable += ItinOperandCycleString + ", // "; 483 std::string OperandIdxComment = itostr(OperandCycleCount); 484 if (NOperandCycles > 1) 485 OperandIdxComment += "-" 486 + itostr(OperandCycleCount + NOperandCycles - 1); 487 OperandCycleTable += OperandIdxComment + "\n"; 488 // Record Itin class number. 489 ItinOperandMap[ItinOperandCycleString] = 490 FindOperandCycle = OperandCycleCount; 491 // Emit as bypass, // index 492 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 493 OperandCycleCount += NOperandCycles; 494 } 495 } 496 497 // Set up itinerary as location and location + stage count 498 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 499 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 500 FindOperandCycle, 501 FindOperandCycle + NOperandCycles}; 502 503 // Inject - empty slots will be 0, 0 504 ItinList[SchedClassIdx] = Intinerary; 505 } 506 } 507 508 // Closing stage 509 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 510 StageTable += "};\n"; 511 512 // Closing operand cycles 513 OperandCycleTable += " 0 // End operand cycles\n"; 514 OperandCycleTable += "};\n"; 515 516 BypassTable += " 0 // End bypass tables\n"; 517 BypassTable += "};\n"; 518 519 // Emit tables. 520 OS << StageTable; 521 OS << OperandCycleTable; 522 OS << BypassTable; 523 } 524 525 // 526 // EmitProcessorData - Generate data for processor itineraries that were 527 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 528 // Itineraries for each processor. The Itinerary lists are indexed on 529 // CodeGenSchedClass::Index. 530 // 531 void SubtargetEmitter:: 532 EmitItineraries(raw_ostream &OS, 533 std::vector<std::vector<InstrItinerary> > &ProcItinLists) { 534 535 // Multiple processor models may share an itinerary record. Emit it once. 536 SmallPtrSet<Record*, 8> ItinsDefSet; 537 538 // For each processor's machine model 539 std::vector<std::vector<InstrItinerary> >::iterator 540 ProcItinListsIter = ProcItinLists.begin(); 541 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 542 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 543 544 Record *ItinsDef = PI->ItinsDef; 545 if (!ItinsDefSet.insert(ItinsDef).second) 546 continue; 547 548 // Get processor itinerary name 549 const std::string &Name = ItinsDef->getName(); 550 551 // Get the itinerary list for the processor. 552 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 553 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 554 555 // Empty itineraries aren't referenced anywhere in the tablegen output 556 // so don't emit them. 557 if (ItinList.empty()) 558 continue; 559 560 OS << "\n"; 561 OS << "static const llvm::InstrItinerary "; 562 563 // Begin processor itinerary table 564 OS << Name << "[] = {\n"; 565 566 // For each itinerary class in CodeGenSchedClass::Index order. 567 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 568 InstrItinerary &Intinerary = ItinList[j]; 569 570 // Emit Itinerary in the form of 571 // { firstStage, lastStage, firstCycle, lastCycle } // index 572 OS << " { " << 573 Intinerary.NumMicroOps << ", " << 574 Intinerary.FirstStage << ", " << 575 Intinerary.LastStage << ", " << 576 Intinerary.FirstOperandCycle << ", " << 577 Intinerary.LastOperandCycle << " }" << 578 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 579 } 580 // End processor itinerary table 581 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 582 OS << "};\n"; 583 } 584 } 585 586 // Emit either the value defined in the TableGen Record, or the default 587 // value defined in the C++ header. The Record is null if the processor does not 588 // define a model. 589 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 590 const char *Name, char Separator) { 591 OS << " "; 592 int V = R ? R->getValueAsInt(Name) : -1; 593 if (V >= 0) 594 OS << V << Separator << " // " << Name; 595 else 596 OS << "MCSchedModel::Default" << Name << Separator; 597 OS << '\n'; 598 } 599 600 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 601 raw_ostream &OS) { 602 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; 603 604 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 605 OS << "static const llvm::MCProcResourceDesc " 606 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 607 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; 608 609 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 610 Record *PRDef = ProcModel.ProcResourceDefs[i]; 611 612 Record *SuperDef = nullptr; 613 unsigned SuperIdx = 0; 614 unsigned NumUnits = 0; 615 int BufferSize = PRDef->getValueAsInt("BufferSize"); 616 if (PRDef->isSubClassOf("ProcResGroup")) { 617 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 618 for (Record *RU : ResUnits) { 619 NumUnits += RU->getValueAsInt("NumUnits"); 620 } 621 } 622 else { 623 // Find the SuperIdx 624 if (PRDef->getValueInit("Super")->isComplete()) { 625 SuperDef = SchedModels.findProcResUnits( 626 PRDef->getValueAsDef("Super"), ProcModel); 627 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 628 } 629 NumUnits = PRDef->getValueAsInt("NumUnits"); 630 } 631 // Emit the ProcResourceDesc 632 if (i+1 == e) 633 Sep = ' '; 634 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 635 if (PRDef->getName().size() < 15) 636 OS.indent(15 - PRDef->getName().size()); 637 OS << NumUnits << ", " << SuperIdx << ", " 638 << BufferSize << "}" << Sep << " // #" << i+1; 639 if (SuperDef) 640 OS << ", Super=" << SuperDef->getName(); 641 OS << "\n"; 642 } 643 OS << "};\n"; 644 } 645 646 // Find the WriteRes Record that defines processor resources for this 647 // SchedWrite. 648 Record *SubtargetEmitter::FindWriteResources( 649 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 650 651 // Check if the SchedWrite is already subtarget-specific and directly 652 // specifies a set of processor resources. 653 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 654 return SchedWrite.TheDef; 655 656 Record *AliasDef = nullptr; 657 for (Record *A : SchedWrite.Aliases) { 658 const CodeGenSchedRW &AliasRW = 659 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 660 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 661 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 662 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 663 continue; 664 } 665 if (AliasDef) 666 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 667 "defined for processor " + ProcModel.ModelName + 668 " Ensure only one SchedAlias exists per RW."); 669 AliasDef = AliasRW.TheDef; 670 } 671 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 672 return AliasDef; 673 674 // Check this processor's list of write resources. 675 Record *ResDef = nullptr; 676 for (Record *WR : ProcModel.WriteResDefs) { 677 if (!WR->isSubClassOf("WriteRes")) 678 continue; 679 if (AliasDef == WR->getValueAsDef("WriteType") 680 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 681 if (ResDef) { 682 PrintFatalError(WR->getLoc(), "Resources are defined for both " 683 "SchedWrite and its alias on processor " + 684 ProcModel.ModelName); 685 } 686 ResDef = WR; 687 } 688 } 689 // TODO: If ProcModel has a base model (previous generation processor), 690 // then call FindWriteResources recursively with that model here. 691 if (!ResDef) { 692 PrintFatalError(ProcModel.ModelDef->getLoc(), 693 std::string("Processor does not define resources for ") 694 + SchedWrite.TheDef->getName()); 695 } 696 return ResDef; 697 } 698 699 /// Find the ReadAdvance record for the given SchedRead on this processor or 700 /// return NULL. 701 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 702 const CodeGenProcModel &ProcModel) { 703 // Check for SchedReads that directly specify a ReadAdvance. 704 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 705 return SchedRead.TheDef; 706 707 // Check this processor's list of aliases for SchedRead. 708 Record *AliasDef = nullptr; 709 for (Record *A : SchedRead.Aliases) { 710 const CodeGenSchedRW &AliasRW = 711 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 712 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 713 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 714 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 715 continue; 716 } 717 if (AliasDef) 718 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 719 "defined for processor " + ProcModel.ModelName + 720 " Ensure only one SchedAlias exists per RW."); 721 AliasDef = AliasRW.TheDef; 722 } 723 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 724 return AliasDef; 725 726 // Check this processor's ReadAdvanceList. 727 Record *ResDef = nullptr; 728 for (Record *RA : ProcModel.ReadAdvanceDefs) { 729 if (!RA->isSubClassOf("ReadAdvance")) 730 continue; 731 if (AliasDef == RA->getValueAsDef("ReadType") 732 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 733 if (ResDef) { 734 PrintFatalError(RA->getLoc(), "Resources are defined for both " 735 "SchedRead and its alias on processor " + 736 ProcModel.ModelName); 737 } 738 ResDef = RA; 739 } 740 } 741 // TODO: If ProcModel has a base model (previous generation processor), 742 // then call FindReadAdvance recursively with that model here. 743 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 744 PrintFatalError(ProcModel.ModelDef->getLoc(), 745 std::string("Processor does not define resources for ") 746 + SchedRead.TheDef->getName()); 747 } 748 return ResDef; 749 } 750 751 // Expand an explicit list of processor resources into a full list of implied 752 // resource groups and super resources that cover them. 753 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 754 std::vector<int64_t> &Cycles, 755 const CodeGenProcModel &PM) { 756 // Default to 1 resource cycle. 757 Cycles.resize(PRVec.size(), 1); 758 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 759 Record *PRDef = PRVec[i]; 760 RecVec SubResources; 761 if (PRDef->isSubClassOf("ProcResGroup")) 762 SubResources = PRDef->getValueAsListOfDefs("Resources"); 763 else { 764 SubResources.push_back(PRDef); 765 PRDef = SchedModels.findProcResUnits(PRVec[i], PM); 766 for (Record *SubDef = PRDef; 767 SubDef->getValueInit("Super")->isComplete();) { 768 if (SubDef->isSubClassOf("ProcResGroup")) { 769 // Disallow this for simplicitly. 770 PrintFatalError(SubDef->getLoc(), "Processor resource group " 771 " cannot be a super resources."); 772 } 773 Record *SuperDef = 774 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); 775 PRVec.push_back(SuperDef); 776 Cycles.push_back(Cycles[i]); 777 SubDef = SuperDef; 778 } 779 } 780 for (Record *PR : PM.ProcResourceDefs) { 781 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 782 continue; 783 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 784 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 785 for( ; SubI != SubE; ++SubI) { 786 if (!is_contained(SuperResources, *SubI)) { 787 break; 788 } 789 } 790 if (SubI == SubE) { 791 PRVec.push_back(PR); 792 Cycles.push_back(Cycles[i]); 793 } 794 } 795 } 796 } 797 798 // Generate the SchedClass table for this processor and update global 799 // tables. Must be called for each processor in order. 800 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 801 SchedClassTables &SchedTables) { 802 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 803 if (!ProcModel.hasInstrSchedModel()) 804 return; 805 806 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 807 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 808 DEBUG(SC.dump(&SchedModels)); 809 810 SCTab.resize(SCTab.size() + 1); 811 MCSchedClassDesc &SCDesc = SCTab.back(); 812 // SCDesc.Name is guarded by NDEBUG 813 SCDesc.NumMicroOps = 0; 814 SCDesc.BeginGroup = false; 815 SCDesc.EndGroup = false; 816 SCDesc.WriteProcResIdx = 0; 817 SCDesc.WriteLatencyIdx = 0; 818 SCDesc.ReadAdvanceIdx = 0; 819 820 // A Variant SchedClass has no resources of its own. 821 bool HasVariants = false; 822 for (std::vector<CodeGenSchedTransition>::const_iterator 823 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 824 TI != TE; ++TI) { 825 if (TI->ProcIndices[0] == 0) { 826 HasVariants = true; 827 break; 828 } 829 if (is_contained(TI->ProcIndices, ProcModel.Index)) { 830 HasVariants = true; 831 break; 832 } 833 } 834 if (HasVariants) { 835 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 836 continue; 837 } 838 839 // Determine if the SchedClass is actually reachable on this processor. If 840 // not don't try to locate the processor resources, it will fail. 841 // If ProcIndices contains 0, this class applies to all processors. 842 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 843 if (SC.ProcIndices[0] != 0) { 844 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 845 continue; 846 } 847 IdxVec Writes = SC.Writes; 848 IdxVec Reads = SC.Reads; 849 if (!SC.InstRWs.empty()) { 850 // This class has a default ReadWrite list which can be overriden by 851 // InstRW definitions. 852 Record *RWDef = nullptr; 853 for (Record *RW : SC.InstRWs) { 854 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 855 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 856 RWDef = RW; 857 break; 858 } 859 } 860 if (RWDef) { 861 Writes.clear(); 862 Reads.clear(); 863 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 864 Writes, Reads); 865 } 866 } 867 if (Writes.empty()) { 868 // Check this processor's itinerary class resources. 869 for (Record *I : ProcModel.ItinRWDefs) { 870 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 871 if (is_contained(Matched, SC.ItinClassDef)) { 872 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 873 Writes, Reads); 874 break; 875 } 876 } 877 if (Writes.empty()) { 878 DEBUG(dbgs() << ProcModel.ModelName 879 << " does not have resources for class " << SC.Name << '\n'); 880 } 881 } 882 // Sum resources across all operand writes. 883 std::vector<MCWriteProcResEntry> WriteProcResources; 884 std::vector<MCWriteLatencyEntry> WriteLatencies; 885 std::vector<std::string> WriterNames; 886 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 887 for (unsigned W : Writes) { 888 IdxVec WriteSeq; 889 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 890 ProcModel); 891 892 // For each operand, create a latency entry. 893 MCWriteLatencyEntry WLEntry; 894 WLEntry.Cycles = 0; 895 unsigned WriteID = WriteSeq.back(); 896 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 897 // If this Write is not referenced by a ReadAdvance, don't distinguish it 898 // from other WriteLatency entries. 899 if (!SchedModels.hasReadOfWrite( 900 SchedModels.getSchedWrite(WriteID).TheDef)) { 901 WriteID = 0; 902 } 903 WLEntry.WriteResourceID = WriteID; 904 905 for (unsigned WS : WriteSeq) { 906 907 Record *WriteRes = 908 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 909 910 // Mark the parent class as invalid for unsupported write types. 911 if (WriteRes->getValueAsBit("Unsupported")) { 912 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 913 break; 914 } 915 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 916 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 917 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 918 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 919 920 // Create an entry for each ProcResource listed in WriteRes. 921 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 922 std::vector<int64_t> Cycles = 923 WriteRes->getValueAsListOfInts("ResourceCycles"); 924 925 ExpandProcResources(PRVec, Cycles, ProcModel); 926 927 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 928 PRIdx != PREnd; ++PRIdx) { 929 MCWriteProcResEntry WPREntry; 930 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 931 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 932 WPREntry.Cycles = Cycles[PRIdx]; 933 // If this resource is already used in this sequence, add the current 934 // entry's cycles so that the same resource appears to be used 935 // serially, rather than multiple parallel uses. This is important for 936 // in-order machine where the resource consumption is a hazard. 937 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 938 for( ; WPRIdx != WPREnd; ++WPRIdx) { 939 if (WriteProcResources[WPRIdx].ProcResourceIdx 940 == WPREntry.ProcResourceIdx) { 941 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 942 break; 943 } 944 } 945 if (WPRIdx == WPREnd) 946 WriteProcResources.push_back(WPREntry); 947 } 948 } 949 WriteLatencies.push_back(WLEntry); 950 } 951 // Create an entry for each operand Read in this SchedClass. 952 // Entries must be sorted first by UseIdx then by WriteResourceID. 953 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 954 UseIdx != EndIdx; ++UseIdx) { 955 Record *ReadAdvance = 956 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 957 if (!ReadAdvance) 958 continue; 959 960 // Mark the parent class as invalid for unsupported write types. 961 if (ReadAdvance->getValueAsBit("Unsupported")) { 962 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 963 break; 964 } 965 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 966 IdxVec WriteIDs; 967 if (ValidWrites.empty()) 968 WriteIDs.push_back(0); 969 else { 970 for (Record *VW : ValidWrites) { 971 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 972 } 973 } 974 std::sort(WriteIDs.begin(), WriteIDs.end()); 975 for(unsigned W : WriteIDs) { 976 MCReadAdvanceEntry RAEntry; 977 RAEntry.UseIdx = UseIdx; 978 RAEntry.WriteResourceID = W; 979 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 980 ReadAdvanceEntries.push_back(RAEntry); 981 } 982 } 983 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 984 WriteProcResources.clear(); 985 WriteLatencies.clear(); 986 ReadAdvanceEntries.clear(); 987 } 988 // Add the information for this SchedClass to the global tables using basic 989 // compression. 990 // 991 // WritePrecRes entries are sorted by ProcResIdx. 992 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 993 LessWriteProcResources()); 994 995 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 996 std::vector<MCWriteProcResEntry>::iterator WPRPos = 997 std::search(SchedTables.WriteProcResources.begin(), 998 SchedTables.WriteProcResources.end(), 999 WriteProcResources.begin(), WriteProcResources.end()); 1000 if (WPRPos != SchedTables.WriteProcResources.end()) 1001 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1002 else { 1003 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1004 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1005 WriteProcResources.end()); 1006 } 1007 // Latency entries must remain in operand order. 1008 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1009 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1010 std::search(SchedTables.WriteLatencies.begin(), 1011 SchedTables.WriteLatencies.end(), 1012 WriteLatencies.begin(), WriteLatencies.end()); 1013 if (WLPos != SchedTables.WriteLatencies.end()) { 1014 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1015 SCDesc.WriteLatencyIdx = idx; 1016 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1017 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1018 std::string::npos) { 1019 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1020 } 1021 } 1022 else { 1023 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1024 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1025 WriteLatencies.begin(), 1026 WriteLatencies.end()); 1027 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1028 WriterNames.begin(), WriterNames.end()); 1029 } 1030 // ReadAdvanceEntries must remain in operand order. 1031 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1032 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1033 std::search(SchedTables.ReadAdvanceEntries.begin(), 1034 SchedTables.ReadAdvanceEntries.end(), 1035 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1036 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1037 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1038 else { 1039 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1040 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1041 ReadAdvanceEntries.end()); 1042 } 1043 } 1044 } 1045 1046 // Emit SchedClass tables for all processors and associated global tables. 1047 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1048 raw_ostream &OS) { 1049 // Emit global WriteProcResTable. 1050 OS << "\n// {ProcResourceIdx, Cycles}\n" 1051 << "extern const llvm::MCWriteProcResEntry " 1052 << Target << "WriteProcResTable[] = {\n" 1053 << " { 0, 0}, // Invalid\n"; 1054 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1055 WPRIdx != WPREnd; ++WPRIdx) { 1056 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1057 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1058 << format("%2d", WPREntry.Cycles) << "}"; 1059 if (WPRIdx + 1 < WPREnd) 1060 OS << ','; 1061 OS << " // #" << WPRIdx << '\n'; 1062 } 1063 OS << "}; // " << Target << "WriteProcResTable\n"; 1064 1065 // Emit global WriteLatencyTable. 1066 OS << "\n// {Cycles, WriteResourceID}\n" 1067 << "extern const llvm::MCWriteLatencyEntry " 1068 << Target << "WriteLatencyTable[] = {\n" 1069 << " { 0, 0}, // Invalid\n"; 1070 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1071 WLIdx != WLEnd; ++WLIdx) { 1072 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1073 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1074 << format("%2d", WLEntry.WriteResourceID) << "}"; 1075 if (WLIdx + 1 < WLEnd) 1076 OS << ','; 1077 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1078 } 1079 OS << "}; // " << Target << "WriteLatencyTable\n"; 1080 1081 // Emit global ReadAdvanceTable. 1082 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1083 << "extern const llvm::MCReadAdvanceEntry " 1084 << Target << "ReadAdvanceTable[] = {\n" 1085 << " {0, 0, 0}, // Invalid\n"; 1086 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1087 RAIdx != RAEnd; ++RAIdx) { 1088 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1089 OS << " {" << RAEntry.UseIdx << ", " 1090 << format("%2d", RAEntry.WriteResourceID) << ", " 1091 << format("%2d", RAEntry.Cycles) << "}"; 1092 if (RAIdx + 1 < RAEnd) 1093 OS << ','; 1094 OS << " // #" << RAIdx << '\n'; 1095 } 1096 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1097 1098 // Emit a SchedClass table for each processor. 1099 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1100 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1101 if (!PI->hasInstrSchedModel()) 1102 continue; 1103 1104 std::vector<MCSchedClassDesc> &SCTab = 1105 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1106 1107 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1108 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1109 OS << "static const llvm::MCSchedClassDesc " 1110 << PI->ModelName << "SchedClasses[] = {\n"; 1111 1112 // The first class is always invalid. We no way to distinguish it except by 1113 // name and position. 1114 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1115 && "invalid class not first"); 1116 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1117 << MCSchedClassDesc::InvalidNumMicroOps 1118 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1119 1120 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1121 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1122 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1123 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1124 if (SchedClass.Name.size() < 18) 1125 OS.indent(18 - SchedClass.Name.size()); 1126 OS << MCDesc.NumMicroOps 1127 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1128 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1129 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1130 << ", " << MCDesc.NumWriteProcResEntries 1131 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1132 << ", " << MCDesc.NumWriteLatencyEntries 1133 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1134 << ", " << MCDesc.NumReadAdvanceEntries << "}"; 1135 if (SCIdx + 1 < SCEnd) 1136 OS << ','; 1137 OS << " // #" << SCIdx << '\n'; 1138 } 1139 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1140 } 1141 } 1142 1143 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1144 // For each processor model. 1145 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1146 // Emit processor resource table. 1147 if (PM.hasInstrSchedModel()) 1148 EmitProcessorResources(PM, OS); 1149 else if(!PM.ProcResourceDefs.empty()) 1150 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1151 "ProcResources without defining WriteRes SchedWriteRes"); 1152 1153 // Begin processor itinerary properties 1154 OS << "\n"; 1155 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1156 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1157 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1158 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1159 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1160 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1161 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1162 1163 bool PostRAScheduler = 1164 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1165 1166 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1167 << "PostRAScheduler\n"; 1168 1169 bool CompleteModel = 1170 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1171 1172 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1173 << "CompleteModel\n"; 1174 1175 OS << " " << PM.Index << ", // Processor ID\n"; 1176 if (PM.hasInstrSchedModel()) 1177 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1178 << " " << PM.ModelName << "SchedClasses" << ",\n" 1179 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1180 << " " << (SchedModels.schedClassEnd() 1181 - SchedModels.schedClassBegin()) << ",\n"; 1182 else 1183 OS << " nullptr, nullptr, 0, 0," 1184 << " // No instruction-level machine model.\n"; 1185 if (PM.hasItineraries()) 1186 OS << " " << PM.ItinsDef->getName() << "};\n"; 1187 else 1188 OS << " nullptr}; // No Itinerary\n"; 1189 } 1190 } 1191 1192 // 1193 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1194 // 1195 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1196 // Gather and sort processor information 1197 std::vector<Record*> ProcessorList = 1198 Records.getAllDerivedDefinitions("Processor"); 1199 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1200 1201 // Begin processor table 1202 OS << "\n"; 1203 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1204 << "extern const llvm::SubtargetInfoKV " 1205 << Target << "ProcSchedKV[] = {\n"; 1206 1207 // For each processor 1208 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 1209 // Next processor 1210 Record *Processor = ProcessorList[i]; 1211 1212 const std::string &Name = Processor->getValueAsString("Name"); 1213 const std::string &ProcModelName = 1214 SchedModels.getModelForProc(Processor).ModelName; 1215 1216 // Emit as { "cpu", procinit }, 1217 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; 1218 1219 // Depending on ''if more in the list'' emit comma 1220 if (++i < N) OS << ","; 1221 1222 OS << "\n"; 1223 } 1224 1225 // End processor table 1226 OS << "};\n"; 1227 } 1228 1229 // 1230 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1231 // 1232 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1233 OS << "#ifdef DBGFIELD\n" 1234 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1235 << "#endif\n" 1236 << "#ifndef NDEBUG\n" 1237 << "#define DBGFIELD(x) x,\n" 1238 << "#else\n" 1239 << "#define DBGFIELD(x)\n" 1240 << "#endif\n"; 1241 1242 if (SchedModels.hasItineraries()) { 1243 std::vector<std::vector<InstrItinerary> > ProcItinLists; 1244 // Emit the stage data 1245 EmitStageAndOperandCycleData(OS, ProcItinLists); 1246 EmitItineraries(OS, ProcItinLists); 1247 } 1248 OS << "\n// ===============================================================\n" 1249 << "// Data tables for the new per-operand machine model.\n"; 1250 1251 SchedClassTables SchedTables; 1252 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1253 GenSchedClassTables(ProcModel, SchedTables); 1254 } 1255 EmitSchedClassTables(SchedTables, OS); 1256 1257 // Emit the processor machine model 1258 EmitProcessorModels(OS); 1259 // Emit the processor lookup data 1260 EmitProcessorLookup(OS); 1261 1262 OS << "#undef DBGFIELD"; 1263 } 1264 1265 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1266 raw_ostream &OS) { 1267 OS << "unsigned " << ClassName 1268 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1269 << " const TargetSchedModel *SchedModel) const {\n"; 1270 1271 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1272 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1273 for (Record *P : Prologs) { 1274 OS << P->getValueAsString("Code") << '\n'; 1275 } 1276 IdxVec VariantClasses; 1277 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1278 if (SC.Transitions.empty()) 1279 continue; 1280 VariantClasses.push_back(SC.Index); 1281 } 1282 if (!VariantClasses.empty()) { 1283 OS << " switch (SchedClass) {\n"; 1284 for (unsigned VC : VariantClasses) { 1285 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1286 OS << " case " << VC << ": // " << SC.Name << '\n'; 1287 IdxVec ProcIndices; 1288 for (const CodeGenSchedTransition &T : SC.Transitions) { 1289 IdxVec PI; 1290 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1291 ProcIndices.begin(), ProcIndices.end(), 1292 std::back_inserter(PI)); 1293 ProcIndices.swap(PI); 1294 } 1295 for (unsigned PI : ProcIndices) { 1296 OS << " "; 1297 if (PI != 0) 1298 OS << "if (SchedModel->getProcessorID() == " << PI << ") "; 1299 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName 1300 << '\n'; 1301 for (const CodeGenSchedTransition &T : SC.Transitions) { 1302 if (PI != 0 && !std::count(T.ProcIndices.begin(), 1303 T.ProcIndices.end(), PI)) { 1304 continue; 1305 } 1306 OS << " if ("; 1307 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end(); 1308 RI != RE; ++RI) { 1309 if (RI != T.PredTerm.begin()) 1310 OS << "\n && "; 1311 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1312 } 1313 OS << ")\n" 1314 << " return " << T.ToClassIdx << "; // " 1315 << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n'; 1316 } 1317 OS << " }\n"; 1318 if (PI == 0) 1319 break; 1320 } 1321 if (SC.isInferred()) 1322 OS << " return " << SC.Index << ";\n"; 1323 OS << " break;\n"; 1324 } 1325 OS << " };\n"; 1326 } 1327 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1328 << "} // " << ClassName << "::resolveSchedClass\n"; 1329 } 1330 1331 // 1332 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1333 // the subtarget features string. 1334 // 1335 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1336 unsigned NumFeatures, 1337 unsigned NumProcs) { 1338 std::vector<Record*> Features = 1339 Records.getAllDerivedDefinitions("SubtargetFeature"); 1340 std::sort(Features.begin(), Features.end(), LessRecord()); 1341 1342 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1343 << "// subtarget options.\n" 1344 << "void llvm::"; 1345 OS << Target; 1346 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1347 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1348 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1349 1350 if (Features.empty()) { 1351 OS << "}\n"; 1352 return; 1353 } 1354 1355 OS << " InitMCProcessorInfo(CPU, FS);\n" 1356 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1357 1358 for (Record *R : Features) { 1359 // Next record 1360 const std::string &Instance = R->getName(); 1361 const std::string &Value = R->getValueAsString("Value"); 1362 const std::string &Attribute = R->getValueAsString("Attribute"); 1363 1364 if (Value=="true" || Value=="false") 1365 OS << " if (Bits[" << Target << "::" 1366 << Instance << "]) " 1367 << Attribute << " = " << Value << ";\n"; 1368 else 1369 OS << " if (Bits[" << Target << "::" 1370 << Instance << "] && " 1371 << Attribute << " < " << Value << ") " 1372 << Attribute << " = " << Value << ";\n"; 1373 } 1374 1375 OS << "}\n"; 1376 } 1377 1378 // 1379 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1380 // 1381 void SubtargetEmitter::run(raw_ostream &OS) { 1382 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1383 1384 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1385 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1386 1387 OS << "namespace llvm {\n"; 1388 Enumeration(OS); 1389 OS << "} // end namespace llvm\n\n"; 1390 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1391 1392 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1393 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1394 1395 OS << "namespace llvm {\n"; 1396 #if 0 1397 OS << "namespace {\n"; 1398 #endif 1399 unsigned NumFeatures = FeatureKeyValues(OS); 1400 OS << "\n"; 1401 unsigned NumProcs = CPUKeyValues(OS); 1402 OS << "\n"; 1403 EmitSchedModel(OS); 1404 OS << "\n"; 1405 #if 0 1406 OS << "} // end anonymous namespace\n\n"; 1407 #endif 1408 1409 // MCInstrInfo initialization routine. 1410 OS << "static inline MCSubtargetInfo *create" << Target 1411 << "MCSubtargetInfoImpl(" 1412 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1413 OS << " return new MCSubtargetInfo(TT, CPU, FS, "; 1414 if (NumFeatures) 1415 OS << Target << "FeatureKV, "; 1416 else 1417 OS << "None, "; 1418 if (NumProcs) 1419 OS << Target << "SubTypeKV, "; 1420 else 1421 OS << "None, "; 1422 OS << '\n'; OS.indent(22); 1423 OS << Target << "ProcSchedKV, " 1424 << Target << "WriteProcResTable, " 1425 << Target << "WriteLatencyTable, " 1426 << Target << "ReadAdvanceTable, "; 1427 if (SchedModels.hasItineraries()) { 1428 OS << '\n'; OS.indent(22); 1429 OS << Target << "Stages, " 1430 << Target << "OperandCycles, " 1431 << Target << "ForwardingPaths"; 1432 } else 1433 OS << "0, 0, 0"; 1434 OS << ");\n}\n\n"; 1435 1436 OS << "} // end namespace llvm\n\n"; 1437 1438 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1439 1440 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1441 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1442 1443 OS << "#include \"llvm/Support/Debug.h\"\n"; 1444 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1445 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1446 1447 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1448 1449 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1450 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1451 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1452 1453 std::string ClassName = Target + "GenSubtargetInfo"; 1454 OS << "namespace llvm {\n"; 1455 OS << "class DFAPacketizer;\n"; 1456 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1457 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1458 << "StringRef FS);\n" 1459 << "public:\n" 1460 << " unsigned resolveSchedClass(unsigned SchedClass, " 1461 << " const MachineInstr *DefMI," 1462 << " const TargetSchedModel *SchedModel) const override;\n" 1463 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1464 << " const;\n" 1465 << "};\n"; 1466 OS << "} // end namespace llvm\n\n"; 1467 1468 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1469 1470 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1471 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1472 1473 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1474 OS << "namespace llvm {\n"; 1475 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1476 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1477 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1478 OS << "extern const llvm::MCWriteProcResEntry " 1479 << Target << "WriteProcResTable[];\n"; 1480 OS << "extern const llvm::MCWriteLatencyEntry " 1481 << Target << "WriteLatencyTable[];\n"; 1482 OS << "extern const llvm::MCReadAdvanceEntry " 1483 << Target << "ReadAdvanceTable[];\n"; 1484 1485 if (SchedModels.hasItineraries()) { 1486 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1487 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1488 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1489 } 1490 1491 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1492 << "StringRef FS)\n" 1493 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1494 if (NumFeatures) 1495 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1496 else 1497 OS << "None, "; 1498 if (NumProcs) 1499 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1500 else 1501 OS << "None, "; 1502 OS << '\n'; OS.indent(24); 1503 OS << Target << "ProcSchedKV, " 1504 << Target << "WriteProcResTable, " 1505 << Target << "WriteLatencyTable, " 1506 << Target << "ReadAdvanceTable, "; 1507 OS << '\n'; OS.indent(24); 1508 if (SchedModels.hasItineraries()) { 1509 OS << Target << "Stages, " 1510 << Target << "OperandCycles, " 1511 << Target << "ForwardingPaths"; 1512 } else 1513 OS << "0, 0, 0"; 1514 OS << ") {}\n\n"; 1515 1516 EmitSchedModelHelpers(ClassName, OS); 1517 1518 OS << "} // end namespace llvm\n\n"; 1519 1520 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1521 } 1522 1523 namespace llvm { 1524 1525 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1526 CodeGenTarget CGTarget(RK); 1527 SubtargetEmitter(RK, CGTarget).run(OS); 1528 } 1529 1530 } // end namespace llvm 1531