1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits subtarget enumerations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTarget.h" 14 #include "CodeGenSchedule.h" 15 #include "PredicateExpander.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap); 77 unsigned FeatureKeyValues(raw_ostream &OS, 78 const DenseMap<Record *, unsigned> &FeatureMap); 79 unsigned CPUKeyValues(raw_ostream &OS, 80 const DenseMap<Record *, unsigned> &FeatureMap); 81 void FormItineraryStageString(const std::string &Names, 82 Record *ItinData, std::string &ItinString, 83 unsigned &NStages); 84 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 85 unsigned &NOperandCycles); 86 void FormItineraryBypassString(const std::string &Names, 87 Record *ItinData, 88 std::string &ItinString, unsigned NOperandCycles); 89 void EmitStageAndOperandCycleData(raw_ostream &OS, 90 std::vector<std::vector<InstrItinerary>> 91 &ProcItinLists); 92 void EmitItineraries(raw_ostream &OS, 93 std::vector<std::vector<InstrItinerary>> 94 &ProcItinLists); 95 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 98 raw_ostream &OS); 99 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 100 raw_ostream &OS); 101 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 102 char Separator); 103 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, 104 raw_ostream &OS); 105 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 106 raw_ostream &OS); 107 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 108 const CodeGenProcModel &ProcModel); 109 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 110 const CodeGenProcModel &ProcModel); 111 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 112 const CodeGenProcModel &ProcModel); 113 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 114 SchedClassTables &SchedTables); 115 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 116 void EmitProcessorModels(raw_ostream &OS); 117 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 118 void emitSchedModelHelpersImpl(raw_ostream &OS, 119 bool OnlyExpandMCInstPredicates = false); 120 void emitGenMCSubtargetInfo(raw_ostream &OS); 121 void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS); 122 123 void EmitSchedModel(raw_ostream &OS); 124 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 125 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 126 unsigned NumProcs); 127 128 public: 129 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 130 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 131 Target(TGT.getName()) {} 132 133 void run(raw_ostream &o); 134 }; 135 136 } // end anonymous namespace 137 138 // 139 // Enumeration - Emit the specified class as an enumeration. 140 // 141 void SubtargetEmitter::Enumeration(raw_ostream &OS, 142 DenseMap<Record *, unsigned> &FeatureMap) { 143 // Get all records of class and sort 144 std::vector<Record*> DefList = 145 Records.getAllDerivedDefinitions("SubtargetFeature"); 146 llvm::sort(DefList, LessRecord()); 147 148 unsigned N = DefList.size(); 149 if (N == 0) 150 return; 151 if (N + 1 > MAX_SUBTARGET_FEATURES) 152 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 153 154 OS << "namespace " << Target << " {\n"; 155 156 // Open enumeration. 157 OS << "enum {\n"; 158 159 // For each record 160 for (unsigned i = 0; i < N; ++i) { 161 // Next record 162 Record *Def = DefList[i]; 163 164 // Get and emit name 165 OS << " " << Def->getName() << " = " << i << ",\n"; 166 167 // Save the index for this feature. 168 FeatureMap[Def] = i; 169 } 170 171 OS << " " 172 << "NumSubtargetFeatures = " << N << "\n"; 173 174 // Close enumeration and namespace 175 OS << "};\n"; 176 OS << "} // end namespace " << Target << "\n"; 177 } 178 179 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList, 180 const DenseMap<Record *, unsigned> &FeatureMap) { 181 std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {}; 182 for (const Record *Feature : FeatureList) { 183 unsigned Bit = FeatureMap.lookup(Feature); 184 Mask[Bit / 64] |= 1ULL << (Bit % 64); 185 } 186 187 OS << "{ { { "; 188 for (unsigned i = 0; i != Mask.size(); ++i) { 189 OS << "0x"; 190 OS.write_hex(Mask[i]); 191 OS << "ULL, "; 192 } 193 OS << "} } }"; 194 } 195 196 // 197 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 198 // command line. 199 // 200 unsigned SubtargetEmitter::FeatureKeyValues( 201 raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) { 202 // Gather and sort all the features 203 std::vector<Record*> FeatureList = 204 Records.getAllDerivedDefinitions("SubtargetFeature"); 205 206 if (FeatureList.empty()) 207 return 0; 208 209 llvm::sort(FeatureList, LessRecordFieldName()); 210 211 // Begin feature table 212 OS << "// Sorted (by key) array of values for CPU features.\n" 213 << "extern const llvm::SubtargetFeatureKV " << Target 214 << "FeatureKV[] = {\n"; 215 216 // For each feature 217 unsigned NumFeatures = 0; 218 for (const Record *Feature : FeatureList) { 219 // Next feature 220 StringRef Name = Feature->getName(); 221 StringRef CommandLineName = Feature->getValueAsString("Name"); 222 StringRef Desc = Feature->getValueAsString("Desc"); 223 224 if (CommandLineName.empty()) continue; 225 226 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 227 OS << " { " 228 << "\"" << CommandLineName << "\", " 229 << "\"" << Desc << "\", " 230 << Target << "::" << Name << ", "; 231 232 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); 233 234 printFeatureMask(OS, ImpliesList, FeatureMap); 235 236 OS << " },\n"; 237 ++NumFeatures; 238 } 239 240 // End feature table 241 OS << "};\n"; 242 243 return NumFeatures; 244 } 245 246 // 247 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 248 // line. 249 // 250 unsigned 251 SubtargetEmitter::CPUKeyValues(raw_ostream &OS, 252 const DenseMap<Record *, unsigned> &FeatureMap) { 253 // Gather and sort processor information 254 std::vector<Record*> ProcessorList = 255 Records.getAllDerivedDefinitions("Processor"); 256 llvm::sort(ProcessorList, LessRecordFieldName()); 257 258 // Begin processor table 259 OS << "// Sorted (by key) array of values for CPU subtype.\n" 260 << "extern const llvm::SubtargetSubTypeKV " << Target 261 << "SubTypeKV[] = {\n"; 262 263 // For each processor 264 for (Record *Processor : ProcessorList) { 265 StringRef Name = Processor->getValueAsString("Name"); 266 RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); 267 RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures"); 268 269 // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } }, 270 OS << " { " 271 << "\"" << Name << "\", "; 272 273 printFeatureMask(OS, FeatureList, FeatureMap); 274 OS << ", "; 275 printFeatureMask(OS, TuneFeatureList, FeatureMap); 276 277 // Emit the scheduler model pointer. 278 const std::string &ProcModelName = 279 SchedModels.getModelForProc(Processor).ModelName; 280 OS << ", &" << ProcModelName << " },\n"; 281 } 282 283 // End processor table 284 OS << "};\n"; 285 286 return ProcessorList.size(); 287 } 288 289 // 290 // FormItineraryStageString - Compose a string containing the stage 291 // data initialization for the specified itinerary. N is the number 292 // of stages. 293 // 294 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 295 Record *ItinData, 296 std::string &ItinString, 297 unsigned &NStages) { 298 // Get states list 299 RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); 300 301 // For each stage 302 unsigned N = NStages = StageList.size(); 303 for (unsigned i = 0; i < N;) { 304 // Next stage 305 const Record *Stage = StageList[i]; 306 307 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 308 int Cycles = Stage->getValueAsInt("Cycles"); 309 ItinString += " { " + itostr(Cycles) + ", "; 310 311 // Get unit list 312 RecVec UnitList = Stage->getValueAsListOfDefs("Units"); 313 314 // For each unit 315 for (unsigned j = 0, M = UnitList.size(); j < M;) { 316 // Add name and bitwise or 317 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 318 if (++j < M) ItinString += " | "; 319 } 320 321 int TimeInc = Stage->getValueAsInt("TimeInc"); 322 ItinString += ", " + itostr(TimeInc); 323 324 int Kind = Stage->getValueAsInt("Kind"); 325 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 326 327 // Close off stage 328 ItinString += " }"; 329 if (++i < N) ItinString += ", "; 330 } 331 } 332 333 // 334 // FormItineraryOperandCycleString - Compose a string containing the 335 // operand cycle initialization for the specified itinerary. N is the 336 // number of operands that has cycles specified. 337 // 338 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 339 std::string &ItinString, unsigned &NOperandCycles) { 340 // Get operand cycle list 341 std::vector<int64_t> OperandCycleList = 342 ItinData->getValueAsListOfInts("OperandCycles"); 343 344 // For each operand cycle 345 unsigned N = NOperandCycles = OperandCycleList.size(); 346 for (unsigned i = 0; i < N;) { 347 // Next operand cycle 348 const int OCycle = OperandCycleList[i]; 349 350 ItinString += " " + itostr(OCycle); 351 if (++i < N) ItinString += ", "; 352 } 353 } 354 355 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 356 Record *ItinData, 357 std::string &ItinString, 358 unsigned NOperandCycles) { 359 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); 360 unsigned N = BypassList.size(); 361 unsigned i = 0; 362 for (; i < N;) { 363 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 364 if (++i < NOperandCycles) ItinString += ", "; 365 } 366 for (; i < NOperandCycles;) { 367 ItinString += " 0"; 368 if (++i < NOperandCycles) ItinString += ", "; 369 } 370 } 371 372 // 373 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 374 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 375 // by CodeGenSchedClass::Index. 376 // 377 void SubtargetEmitter:: 378 EmitStageAndOperandCycleData(raw_ostream &OS, 379 std::vector<std::vector<InstrItinerary>> 380 &ProcItinLists) { 381 // Multiple processor models may share an itinerary record. Emit it once. 382 SmallPtrSet<Record*, 8> ItinsDefSet; 383 384 // Emit functional units for all the itineraries. 385 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 386 387 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 388 continue; 389 390 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 391 if (FUs.empty()) 392 continue; 393 394 StringRef Name = ProcModel.ItinsDef->getName(); 395 OS << "\n// Functional units for \"" << Name << "\"\n" 396 << "namespace " << Name << "FU {\n"; 397 398 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 399 OS << " const InstrStage::FuncUnits " << FUs[j]->getName() 400 << " = 1ULL << " << j << ";\n"; 401 402 OS << "} // end namespace " << Name << "FU\n"; 403 404 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 405 if (!BPs.empty()) { 406 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name 407 << "\"\n" << "namespace " << Name << "Bypass {\n"; 408 409 OS << " const unsigned NoBypass = 0;\n"; 410 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 411 OS << " const unsigned " << BPs[j]->getName() 412 << " = 1 << " << j << ";\n"; 413 414 OS << "} // end namespace " << Name << "Bypass\n"; 415 } 416 } 417 418 // Begin stages table 419 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 420 "Stages[] = {\n"; 421 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 422 423 // Begin operand cycle table 424 std::string OperandCycleTable = "extern const unsigned " + Target + 425 "OperandCycles[] = {\n"; 426 OperandCycleTable += " 0, // No itinerary\n"; 427 428 // Begin pipeline bypass table 429 std::string BypassTable = "extern const unsigned " + Target + 430 "ForwardingPaths[] = {\n"; 431 BypassTable += " 0, // No itinerary\n"; 432 433 // For each Itinerary across all processors, add a unique entry to the stages, 434 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 435 // object with computed offsets to the ProcItinLists result. 436 unsigned StageCount = 1, OperandCycleCount = 1; 437 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 438 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 439 // Add process itinerary to the list. 440 ProcItinLists.resize(ProcItinLists.size()+1); 441 442 // If this processor defines no itineraries, then leave the itinerary list 443 // empty. 444 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 445 if (!ProcModel.hasItineraries()) 446 continue; 447 448 StringRef Name = ProcModel.ItinsDef->getName(); 449 450 ItinList.resize(SchedModels.numInstrSchedClasses()); 451 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 452 453 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 454 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 455 456 // Next itinerary data 457 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 458 459 // Get string and stage count 460 std::string ItinStageString; 461 unsigned NStages = 0; 462 if (ItinData) 463 FormItineraryStageString(std::string(Name), ItinData, ItinStageString, 464 NStages); 465 466 // Get string and operand cycle count 467 std::string ItinOperandCycleString; 468 unsigned NOperandCycles = 0; 469 std::string ItinBypassString; 470 if (ItinData) { 471 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 472 NOperandCycles); 473 474 FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString, 475 NOperandCycles); 476 } 477 478 // Check to see if stage already exists and create if it doesn't 479 uint16_t FindStage = 0; 480 if (NStages > 0) { 481 FindStage = ItinStageMap[ItinStageString]; 482 if (FindStage == 0) { 483 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 484 StageTable += ItinStageString + ", // " + itostr(StageCount); 485 if (NStages > 1) 486 StageTable += "-" + itostr(StageCount + NStages - 1); 487 StageTable += "\n"; 488 // Record Itin class number. 489 ItinStageMap[ItinStageString] = FindStage = StageCount; 490 StageCount += NStages; 491 } 492 } 493 494 // Check to see if operand cycle already exists and create if it doesn't 495 uint16_t FindOperandCycle = 0; 496 if (NOperandCycles > 0) { 497 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 498 FindOperandCycle = ItinOperandMap[ItinOperandString]; 499 if (FindOperandCycle == 0) { 500 // Emit as cycle, // index 501 OperandCycleTable += ItinOperandCycleString + ", // "; 502 std::string OperandIdxComment = itostr(OperandCycleCount); 503 if (NOperandCycles > 1) 504 OperandIdxComment += "-" 505 + itostr(OperandCycleCount + NOperandCycles - 1); 506 OperandCycleTable += OperandIdxComment + "\n"; 507 // Record Itin class number. 508 ItinOperandMap[ItinOperandCycleString] = 509 FindOperandCycle = OperandCycleCount; 510 // Emit as bypass, // index 511 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 512 OperandCycleCount += NOperandCycles; 513 } 514 } 515 516 // Set up itinerary as location and location + stage count 517 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 518 InstrItinerary Intinerary = { 519 NumUOps, 520 FindStage, 521 uint16_t(FindStage + NStages), 522 FindOperandCycle, 523 uint16_t(FindOperandCycle + NOperandCycles), 524 }; 525 526 // Inject - empty slots will be 0, 0 527 ItinList[SchedClassIdx] = Intinerary; 528 } 529 } 530 531 // Closing stage 532 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 533 StageTable += "};\n"; 534 535 // Closing operand cycles 536 OperandCycleTable += " 0 // End operand cycles\n"; 537 OperandCycleTable += "};\n"; 538 539 BypassTable += " 0 // End bypass tables\n"; 540 BypassTable += "};\n"; 541 542 // Emit tables. 543 OS << StageTable; 544 OS << OperandCycleTable; 545 OS << BypassTable; 546 } 547 548 // 549 // EmitProcessorData - Generate data for processor itineraries that were 550 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 551 // Itineraries for each processor. The Itinerary lists are indexed on 552 // CodeGenSchedClass::Index. 553 // 554 void SubtargetEmitter:: 555 EmitItineraries(raw_ostream &OS, 556 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 557 // Multiple processor models may share an itinerary record. Emit it once. 558 SmallPtrSet<Record*, 8> ItinsDefSet; 559 560 // For each processor's machine model 561 std::vector<std::vector<InstrItinerary>>::iterator 562 ProcItinListsIter = ProcItinLists.begin(); 563 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 564 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 565 566 Record *ItinsDef = PI->ItinsDef; 567 if (!ItinsDefSet.insert(ItinsDef).second) 568 continue; 569 570 // Get the itinerary list for the processor. 571 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 572 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 573 574 // Empty itineraries aren't referenced anywhere in the tablegen output 575 // so don't emit them. 576 if (ItinList.empty()) 577 continue; 578 579 OS << "\n"; 580 OS << "static const llvm::InstrItinerary "; 581 582 // Begin processor itinerary table 583 OS << ItinsDef->getName() << "[] = {\n"; 584 585 // For each itinerary class in CodeGenSchedClass::Index order. 586 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 587 InstrItinerary &Intinerary = ItinList[j]; 588 589 // Emit Itinerary in the form of 590 // { firstStage, lastStage, firstCycle, lastCycle } // index 591 OS << " { " << 592 Intinerary.NumMicroOps << ", " << 593 Intinerary.FirstStage << ", " << 594 Intinerary.LastStage << ", " << 595 Intinerary.FirstOperandCycle << ", " << 596 Intinerary.LastOperandCycle << " }" << 597 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 598 } 599 // End processor itinerary table 600 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" 601 "// end marker\n"; 602 OS << "};\n"; 603 } 604 } 605 606 // Emit either the value defined in the TableGen Record, or the default 607 // value defined in the C++ header. The Record is null if the processor does not 608 // define a model. 609 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 610 StringRef Name, char Separator) { 611 OS << " "; 612 int V = R ? R->getValueAsInt(Name) : -1; 613 if (V >= 0) 614 OS << V << Separator << " // " << Name; 615 else 616 OS << "MCSchedModel::Default" << Name << Separator; 617 OS << '\n'; 618 } 619 620 void SubtargetEmitter::EmitProcessorResourceSubUnits( 621 const CodeGenProcModel &ProcModel, raw_ostream &OS) { 622 OS << "\nstatic const unsigned " << ProcModel.ModelName 623 << "ProcResourceSubUnits[] = {\n" 624 << " 0, // Invalid\n"; 625 626 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 627 Record *PRDef = ProcModel.ProcResourceDefs[i]; 628 if (!PRDef->isSubClassOf("ProcResGroup")) 629 continue; 630 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 631 for (Record *RUDef : ResUnits) { 632 Record *const RU = 633 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); 634 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { 635 OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; 636 } 637 } 638 OS << " // " << PRDef->getName() << "\n"; 639 } 640 OS << "};\n"; 641 } 642 643 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, 644 raw_ostream &OS) { 645 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; 646 if (Record *RCU = ProcModel.RetireControlUnit) { 647 ReorderBufferSize = 648 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); 649 MaxRetirePerCycle = 650 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); 651 } 652 653 OS << ReorderBufferSize << ", // ReorderBufferSize\n "; 654 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; 655 } 656 657 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, 658 unsigned NumRegisterFiles, 659 unsigned NumCostEntries, raw_ostream &OS) { 660 if (NumRegisterFiles) 661 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); 662 else 663 OS << "nullptr,\n 0"; 664 665 OS << ", // Number of register files.\n "; 666 if (NumCostEntries) 667 OS << ProcModel.ModelName << "RegisterCosts,\n "; 668 else 669 OS << "nullptr,\n "; 670 OS << NumCostEntries << ", // Number of register cost entries.\n"; 671 } 672 673 unsigned 674 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 675 raw_ostream &OS) { 676 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { 677 return RF.hasDefaultCosts(); 678 })) 679 return 0; 680 681 // Print the RegisterCost table first. 682 OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n"; 683 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName 684 << "RegisterCosts" 685 << "[] = {\n"; 686 687 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { 688 // Skip register files with a default cost table. 689 if (RF.hasDefaultCosts()) 690 continue; 691 // Add entries to the cost table. 692 for (const CodeGenRegisterCost &RC : RF.Costs) { 693 OS << " { "; 694 Record *Rec = RC.RCDef; 695 if (Rec->getValue("Namespace")) 696 OS << Rec->getValueAsString("Namespace") << "::"; 697 OS << Rec->getName() << "RegClassID, " << RC.Cost << ", " 698 << RC.AllowMoveElimination << "},\n"; 699 } 700 } 701 OS << "};\n"; 702 703 // Now generate a table with register file info. 704 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, " 705 << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n"; 706 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName 707 << "RegisterFiles" 708 << "[] = {\n" 709 << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n"; 710 unsigned CostTblIndex = 0; 711 712 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { 713 OS << " { "; 714 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; 715 unsigned NumCostEntries = RD.Costs.size(); 716 OS << NumCostEntries << ", " << CostTblIndex << ", " 717 << RD.MaxMovesEliminatedPerCycle << ", " 718 << RD.AllowZeroMoveEliminationOnly << "},\n"; 719 CostTblIndex += NumCostEntries; 720 } 721 OS << "};\n"; 722 723 return CostTblIndex; 724 } 725 726 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 727 raw_ostream &OS) { 728 unsigned QueueID = 0; 729 if (ProcModel.LoadQueue) { 730 const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor"); 731 QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 732 find(ProcModel.ProcResourceDefs, Queue)); 733 } 734 OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n"; 735 736 QueueID = 0; 737 if (ProcModel.StoreQueue) { 738 const Record *Queue = 739 ProcModel.StoreQueue->getValueAsDef("QueueDescriptor"); 740 QueueID = 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 741 find(ProcModel.ProcResourceDefs, Queue)); 742 } 743 OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n"; 744 } 745 746 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 747 raw_ostream &OS) { 748 // Generate a table of register file descriptors (one entry per each user 749 // defined register file), and a table of register costs. 750 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); 751 752 // Now generate a table for the extra processor info. 753 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName 754 << "ExtraInfo = {\n "; 755 756 // Add information related to the retire control unit. 757 EmitRetireControlUnitInfo(ProcModel, OS); 758 759 // Add information related to the register files (i.e. where to find register 760 // file descriptors and register costs). 761 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), 762 NumCostEntries, OS); 763 764 // Add information about load/store queues. 765 EmitLoadStoreQueueInfo(ProcModel, OS); 766 767 OS << "};\n"; 768 } 769 770 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 771 raw_ostream &OS) { 772 EmitProcessorResourceSubUnits(ProcModel, OS); 773 774 OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n"; 775 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName 776 << "ProcResources" 777 << "[] = {\n" 778 << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; 779 780 unsigned SubUnitsOffset = 1; 781 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 782 Record *PRDef = ProcModel.ProcResourceDefs[i]; 783 784 Record *SuperDef = nullptr; 785 unsigned SuperIdx = 0; 786 unsigned NumUnits = 0; 787 const unsigned SubUnitsBeginOffset = SubUnitsOffset; 788 int BufferSize = PRDef->getValueAsInt("BufferSize"); 789 if (PRDef->isSubClassOf("ProcResGroup")) { 790 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 791 for (Record *RU : ResUnits) { 792 NumUnits += RU->getValueAsInt("NumUnits"); 793 SubUnitsOffset += RU->getValueAsInt("NumUnits"); 794 } 795 } 796 else { 797 // Find the SuperIdx 798 if (PRDef->getValueInit("Super")->isComplete()) { 799 SuperDef = 800 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 801 ProcModel, PRDef->getLoc()); 802 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 803 } 804 NumUnits = PRDef->getValueAsInt("NumUnits"); 805 } 806 // Emit the ProcResourceDesc 807 OS << " {\"" << PRDef->getName() << "\", "; 808 if (PRDef->getName().size() < 15) 809 OS.indent(15 - PRDef->getName().size()); 810 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; 811 if (SubUnitsBeginOffset != SubUnitsOffset) { 812 OS << ProcModel.ModelName << "ProcResourceSubUnits + " 813 << SubUnitsBeginOffset; 814 } else { 815 OS << "nullptr"; 816 } 817 OS << "}, // #" << i+1; 818 if (SuperDef) 819 OS << ", Super=" << SuperDef->getName(); 820 OS << "\n"; 821 } 822 OS << "};\n"; 823 } 824 825 // Find the WriteRes Record that defines processor resources for this 826 // SchedWrite. 827 Record *SubtargetEmitter::FindWriteResources( 828 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 829 830 // Check if the SchedWrite is already subtarget-specific and directly 831 // specifies a set of processor resources. 832 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 833 return SchedWrite.TheDef; 834 835 Record *AliasDef = nullptr; 836 for (Record *A : SchedWrite.Aliases) { 837 const CodeGenSchedRW &AliasRW = 838 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 839 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 840 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 841 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 842 continue; 843 } 844 if (AliasDef) 845 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 846 "defined for processor " + ProcModel.ModelName + 847 " Ensure only one SchedAlias exists per RW."); 848 AliasDef = AliasRW.TheDef; 849 } 850 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 851 return AliasDef; 852 853 // Check this processor's list of write resources. 854 Record *ResDef = nullptr; 855 for (Record *WR : ProcModel.WriteResDefs) { 856 if (!WR->isSubClassOf("WriteRes")) 857 continue; 858 if (AliasDef == WR->getValueAsDef("WriteType") 859 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 860 if (ResDef) { 861 PrintFatalError(WR->getLoc(), "Resources are defined for both " 862 "SchedWrite and its alias on processor " + 863 ProcModel.ModelName); 864 } 865 ResDef = WR; 866 } 867 } 868 // TODO: If ProcModel has a base model (previous generation processor), 869 // then call FindWriteResources recursively with that model here. 870 if (!ResDef) { 871 PrintFatalError(ProcModel.ModelDef->getLoc(), 872 Twine("Processor does not define resources for ") + 873 SchedWrite.TheDef->getName()); 874 } 875 return ResDef; 876 } 877 878 /// Find the ReadAdvance record for the given SchedRead on this processor or 879 /// return NULL. 880 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 881 const CodeGenProcModel &ProcModel) { 882 // Check for SchedReads that directly specify a ReadAdvance. 883 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 884 return SchedRead.TheDef; 885 886 // Check this processor's list of aliases for SchedRead. 887 Record *AliasDef = nullptr; 888 for (Record *A : SchedRead.Aliases) { 889 const CodeGenSchedRW &AliasRW = 890 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 891 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 892 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 893 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 894 continue; 895 } 896 if (AliasDef) 897 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 898 "defined for processor " + ProcModel.ModelName + 899 " Ensure only one SchedAlias exists per RW."); 900 AliasDef = AliasRW.TheDef; 901 } 902 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 903 return AliasDef; 904 905 // Check this processor's ReadAdvanceList. 906 Record *ResDef = nullptr; 907 for (Record *RA : ProcModel.ReadAdvanceDefs) { 908 if (!RA->isSubClassOf("ReadAdvance")) 909 continue; 910 if (AliasDef == RA->getValueAsDef("ReadType") 911 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 912 if (ResDef) { 913 PrintFatalError(RA->getLoc(), "Resources are defined for both " 914 "SchedRead and its alias on processor " + 915 ProcModel.ModelName); 916 } 917 ResDef = RA; 918 } 919 } 920 // TODO: If ProcModel has a base model (previous generation processor), 921 // then call FindReadAdvance recursively with that model here. 922 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 923 PrintFatalError(ProcModel.ModelDef->getLoc(), 924 Twine("Processor does not define resources for ") + 925 SchedRead.TheDef->getName()); 926 } 927 return ResDef; 928 } 929 930 // Expand an explicit list of processor resources into a full list of implied 931 // resource groups and super resources that cover them. 932 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 933 std::vector<int64_t> &Cycles, 934 const CodeGenProcModel &PM) { 935 assert(PRVec.size() == Cycles.size() && "failed precondition"); 936 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 937 Record *PRDef = PRVec[i]; 938 RecVec SubResources; 939 if (PRDef->isSubClassOf("ProcResGroup")) 940 SubResources = PRDef->getValueAsListOfDefs("Resources"); 941 else { 942 SubResources.push_back(PRDef); 943 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 944 for (Record *SubDef = PRDef; 945 SubDef->getValueInit("Super")->isComplete();) { 946 if (SubDef->isSubClassOf("ProcResGroup")) { 947 // Disallow this for simplicitly. 948 PrintFatalError(SubDef->getLoc(), "Processor resource group " 949 " cannot be a super resources."); 950 } 951 Record *SuperDef = 952 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 953 SubDef->getLoc()); 954 PRVec.push_back(SuperDef); 955 Cycles.push_back(Cycles[i]); 956 SubDef = SuperDef; 957 } 958 } 959 for (Record *PR : PM.ProcResourceDefs) { 960 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 961 continue; 962 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 963 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 964 for( ; SubI != SubE; ++SubI) { 965 if (!is_contained(SuperResources, *SubI)) { 966 break; 967 } 968 } 969 if (SubI == SubE) { 970 PRVec.push_back(PR); 971 Cycles.push_back(Cycles[i]); 972 } 973 } 974 } 975 } 976 977 // Generate the SchedClass table for this processor and update global 978 // tables. Must be called for each processor in order. 979 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 980 SchedClassTables &SchedTables) { 981 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 982 if (!ProcModel.hasInstrSchedModel()) 983 return; 984 985 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 986 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 987 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 988 LLVM_DEBUG(SC.dump(&SchedModels)); 989 990 SCTab.resize(SCTab.size() + 1); 991 MCSchedClassDesc &SCDesc = SCTab.back(); 992 // SCDesc.Name is guarded by NDEBUG 993 SCDesc.NumMicroOps = 0; 994 SCDesc.BeginGroup = false; 995 SCDesc.EndGroup = false; 996 SCDesc.WriteProcResIdx = 0; 997 SCDesc.WriteLatencyIdx = 0; 998 SCDesc.ReadAdvanceIdx = 0; 999 1000 // A Variant SchedClass has no resources of its own. 1001 bool HasVariants = false; 1002 for (const CodeGenSchedTransition &CGT : 1003 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 1004 if (CGT.ProcIndex == ProcModel.Index) { 1005 HasVariants = true; 1006 break; 1007 } 1008 } 1009 if (HasVariants) { 1010 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 1011 continue; 1012 } 1013 1014 // Determine if the SchedClass is actually reachable on this processor. If 1015 // not don't try to locate the processor resources, it will fail. 1016 // If ProcIndices contains 0, this class applies to all processors. 1017 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 1018 if (SC.ProcIndices[0] != 0) { 1019 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 1020 continue; 1021 } 1022 IdxVec Writes = SC.Writes; 1023 IdxVec Reads = SC.Reads; 1024 if (!SC.InstRWs.empty()) { 1025 // This class has a default ReadWrite list which can be overridden by 1026 // InstRW definitions. 1027 Record *RWDef = nullptr; 1028 for (Record *RW : SC.InstRWs) { 1029 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1030 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 1031 RWDef = RW; 1032 break; 1033 } 1034 } 1035 if (RWDef) { 1036 Writes.clear(); 1037 Reads.clear(); 1038 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 1039 Writes, Reads); 1040 } 1041 } 1042 if (Writes.empty()) { 1043 // Check this processor's itinerary class resources. 1044 for (Record *I : ProcModel.ItinRWDefs) { 1045 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 1046 if (is_contained(Matched, SC.ItinClassDef)) { 1047 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 1048 Writes, Reads); 1049 break; 1050 } 1051 } 1052 if (Writes.empty()) { 1053 LLVM_DEBUG(dbgs() << ProcModel.ModelName 1054 << " does not have resources for class " << SC.Name 1055 << '\n'); 1056 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1057 } 1058 } 1059 // Sum resources across all operand writes. 1060 std::vector<MCWriteProcResEntry> WriteProcResources; 1061 std::vector<MCWriteLatencyEntry> WriteLatencies; 1062 std::vector<std::string> WriterNames; 1063 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 1064 for (unsigned W : Writes) { 1065 IdxVec WriteSeq; 1066 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 1067 ProcModel); 1068 1069 // For each operand, create a latency entry. 1070 MCWriteLatencyEntry WLEntry; 1071 WLEntry.Cycles = 0; 1072 unsigned WriteID = WriteSeq.back(); 1073 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 1074 // If this Write is not referenced by a ReadAdvance, don't distinguish it 1075 // from other WriteLatency entries. 1076 if (!SchedModels.hasReadOfWrite( 1077 SchedModels.getSchedWrite(WriteID).TheDef)) { 1078 WriteID = 0; 1079 } 1080 WLEntry.WriteResourceID = WriteID; 1081 1082 for (unsigned WS : WriteSeq) { 1083 1084 Record *WriteRes = 1085 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 1086 1087 // Mark the parent class as invalid for unsupported write types. 1088 if (WriteRes->getValueAsBit("Unsupported")) { 1089 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1090 break; 1091 } 1092 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 1093 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 1094 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 1095 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 1096 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 1097 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 1098 1099 // Create an entry for each ProcResource listed in WriteRes. 1100 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 1101 std::vector<int64_t> Cycles = 1102 WriteRes->getValueAsListOfInts("ResourceCycles"); 1103 1104 if (Cycles.empty()) { 1105 // If ResourceCycles is not provided, default to one cycle per 1106 // resource. 1107 Cycles.resize(PRVec.size(), 1); 1108 } else if (Cycles.size() != PRVec.size()) { 1109 // If ResourceCycles is provided, check consistency. 1110 PrintFatalError( 1111 WriteRes->getLoc(), 1112 Twine("Inconsistent resource cycles: !size(ResourceCycles) != " 1113 "!size(ProcResources): ") 1114 .concat(Twine(PRVec.size())) 1115 .concat(" vs ") 1116 .concat(Twine(Cycles.size()))); 1117 } 1118 1119 ExpandProcResources(PRVec, Cycles, ProcModel); 1120 1121 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 1122 PRIdx != PREnd; ++PRIdx) { 1123 MCWriteProcResEntry WPREntry; 1124 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 1125 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 1126 WPREntry.Cycles = Cycles[PRIdx]; 1127 // If this resource is already used in this sequence, add the current 1128 // entry's cycles so that the same resource appears to be used 1129 // serially, rather than multiple parallel uses. This is important for 1130 // in-order machine where the resource consumption is a hazard. 1131 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 1132 for( ; WPRIdx != WPREnd; ++WPRIdx) { 1133 if (WriteProcResources[WPRIdx].ProcResourceIdx 1134 == WPREntry.ProcResourceIdx) { 1135 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 1136 break; 1137 } 1138 } 1139 if (WPRIdx == WPREnd) 1140 WriteProcResources.push_back(WPREntry); 1141 } 1142 } 1143 WriteLatencies.push_back(WLEntry); 1144 } 1145 // Create an entry for each operand Read in this SchedClass. 1146 // Entries must be sorted first by UseIdx then by WriteResourceID. 1147 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 1148 UseIdx != EndIdx; ++UseIdx) { 1149 Record *ReadAdvance = 1150 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1151 if (!ReadAdvance) 1152 continue; 1153 1154 // Mark the parent class as invalid for unsupported write types. 1155 if (ReadAdvance->getValueAsBit("Unsupported")) { 1156 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1157 break; 1158 } 1159 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1160 IdxVec WriteIDs; 1161 if (ValidWrites.empty()) 1162 WriteIDs.push_back(0); 1163 else { 1164 for (Record *VW : ValidWrites) { 1165 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 1166 } 1167 } 1168 llvm::sort(WriteIDs); 1169 for(unsigned W : WriteIDs) { 1170 MCReadAdvanceEntry RAEntry; 1171 RAEntry.UseIdx = UseIdx; 1172 RAEntry.WriteResourceID = W; 1173 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1174 ReadAdvanceEntries.push_back(RAEntry); 1175 } 1176 } 1177 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1178 WriteProcResources.clear(); 1179 WriteLatencies.clear(); 1180 ReadAdvanceEntries.clear(); 1181 } 1182 // Add the information for this SchedClass to the global tables using basic 1183 // compression. 1184 // 1185 // WritePrecRes entries are sorted by ProcResIdx. 1186 llvm::sort(WriteProcResources, LessWriteProcResources()); 1187 1188 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1189 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1190 std::search(SchedTables.WriteProcResources.begin(), 1191 SchedTables.WriteProcResources.end(), 1192 WriteProcResources.begin(), WriteProcResources.end()); 1193 if (WPRPos != SchedTables.WriteProcResources.end()) 1194 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1195 else { 1196 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1197 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1198 WriteProcResources.end()); 1199 } 1200 // Latency entries must remain in operand order. 1201 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1202 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1203 std::search(SchedTables.WriteLatencies.begin(), 1204 SchedTables.WriteLatencies.end(), 1205 WriteLatencies.begin(), WriteLatencies.end()); 1206 if (WLPos != SchedTables.WriteLatencies.end()) { 1207 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1208 SCDesc.WriteLatencyIdx = idx; 1209 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1210 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1211 std::string::npos) { 1212 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1213 } 1214 } 1215 else { 1216 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1217 llvm::append_range(SchedTables.WriteLatencies, WriteLatencies); 1218 llvm::append_range(SchedTables.WriterNames, WriterNames); 1219 } 1220 // ReadAdvanceEntries must remain in operand order. 1221 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1222 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1223 std::search(SchedTables.ReadAdvanceEntries.begin(), 1224 SchedTables.ReadAdvanceEntries.end(), 1225 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1226 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1227 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1228 else { 1229 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1230 llvm::append_range(SchedTables.ReadAdvanceEntries, ReadAdvanceEntries); 1231 } 1232 } 1233 } 1234 1235 // Emit SchedClass tables for all processors and associated global tables. 1236 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1237 raw_ostream &OS) { 1238 // Emit global WriteProcResTable. 1239 OS << "\n// {ProcResourceIdx, Cycles}\n" 1240 << "extern const llvm::MCWriteProcResEntry " 1241 << Target << "WriteProcResTable[] = {\n" 1242 << " { 0, 0}, // Invalid\n"; 1243 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1244 WPRIdx != WPREnd; ++WPRIdx) { 1245 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1246 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1247 << format("%2d", WPREntry.Cycles) << "}"; 1248 if (WPRIdx + 1 < WPREnd) 1249 OS << ','; 1250 OS << " // #" << WPRIdx << '\n'; 1251 } 1252 OS << "}; // " << Target << "WriteProcResTable\n"; 1253 1254 // Emit global WriteLatencyTable. 1255 OS << "\n// {Cycles, WriteResourceID}\n" 1256 << "extern const llvm::MCWriteLatencyEntry " 1257 << Target << "WriteLatencyTable[] = {\n" 1258 << " { 0, 0}, // Invalid\n"; 1259 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1260 WLIdx != WLEnd; ++WLIdx) { 1261 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1262 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1263 << format("%2d", WLEntry.WriteResourceID) << "}"; 1264 if (WLIdx + 1 < WLEnd) 1265 OS << ','; 1266 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1267 } 1268 OS << "}; // " << Target << "WriteLatencyTable\n"; 1269 1270 // Emit global ReadAdvanceTable. 1271 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1272 << "extern const llvm::MCReadAdvanceEntry " 1273 << Target << "ReadAdvanceTable[] = {\n" 1274 << " {0, 0, 0}, // Invalid\n"; 1275 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1276 RAIdx != RAEnd; ++RAIdx) { 1277 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1278 OS << " {" << RAEntry.UseIdx << ", " 1279 << format("%2d", RAEntry.WriteResourceID) << ", " 1280 << format("%2d", RAEntry.Cycles) << "}"; 1281 if (RAIdx + 1 < RAEnd) 1282 OS << ','; 1283 OS << " // #" << RAIdx << '\n'; 1284 } 1285 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1286 1287 // Emit a SchedClass table for each processor. 1288 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1289 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1290 if (!PI->hasInstrSchedModel()) 1291 continue; 1292 1293 std::vector<MCSchedClassDesc> &SCTab = 1294 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1295 1296 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1297 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1298 OS << "static const llvm::MCSchedClassDesc " 1299 << PI->ModelName << "SchedClasses[] = {\n"; 1300 1301 // The first class is always invalid. We no way to distinguish it except by 1302 // name and position. 1303 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1304 && "invalid class not first"); 1305 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1306 << MCSchedClassDesc::InvalidNumMicroOps 1307 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1308 1309 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1310 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1311 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1312 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1313 if (SchedClass.Name.size() < 18) 1314 OS.indent(18 - SchedClass.Name.size()); 1315 OS << MCDesc.NumMicroOps 1316 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1317 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1318 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1319 << ", " << MCDesc.NumWriteProcResEntries 1320 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1321 << ", " << MCDesc.NumWriteLatencyEntries 1322 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1323 << ", " << MCDesc.NumReadAdvanceEntries 1324 << "}, // #" << SCIdx << '\n'; 1325 } 1326 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1327 } 1328 } 1329 1330 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1331 // For each processor model. 1332 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1333 // Emit extra processor info if available. 1334 if (PM.hasExtraProcessorInfo()) 1335 EmitExtraProcessorInfo(PM, OS); 1336 // Emit processor resource table. 1337 if (PM.hasInstrSchedModel()) 1338 EmitProcessorResources(PM, OS); 1339 else if(!PM.ProcResourceDefs.empty()) 1340 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1341 "ProcResources without defining WriteRes SchedWriteRes"); 1342 1343 // Begin processor itinerary properties 1344 OS << "\n"; 1345 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1346 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1347 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1348 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1349 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1350 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1351 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1352 1353 bool PostRAScheduler = 1354 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1355 1356 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1357 << "PostRAScheduler\n"; 1358 1359 bool CompleteModel = 1360 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1361 1362 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1363 << "CompleteModel\n"; 1364 1365 OS << " " << PM.Index << ", // Processor ID\n"; 1366 if (PM.hasInstrSchedModel()) 1367 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1368 << " " << PM.ModelName << "SchedClasses" << ",\n" 1369 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1370 << " " << (SchedModels.schedClassEnd() 1371 - SchedModels.schedClassBegin()) << ",\n"; 1372 else 1373 OS << " nullptr, nullptr, 0, 0," 1374 << " // No instruction-level machine model.\n"; 1375 if (PM.hasItineraries()) 1376 OS << " " << PM.ItinsDef->getName() << ",\n"; 1377 else 1378 OS << " nullptr, // No Itinerary\n"; 1379 if (PM.hasExtraProcessorInfo()) 1380 OS << " &" << PM.ModelName << "ExtraInfo,\n"; 1381 else 1382 OS << " nullptr // No extra processor descriptor\n"; 1383 OS << "};\n"; 1384 } 1385 } 1386 1387 // 1388 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1389 // 1390 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1391 OS << "#ifdef DBGFIELD\n" 1392 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1393 << "#endif\n" 1394 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1395 << "#define DBGFIELD(x) x,\n" 1396 << "#else\n" 1397 << "#define DBGFIELD(x)\n" 1398 << "#endif\n"; 1399 1400 if (SchedModels.hasItineraries()) { 1401 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1402 // Emit the stage data 1403 EmitStageAndOperandCycleData(OS, ProcItinLists); 1404 EmitItineraries(OS, ProcItinLists); 1405 } 1406 OS << "\n// ===============================================================\n" 1407 << "// Data tables for the new per-operand machine model.\n"; 1408 1409 SchedClassTables SchedTables; 1410 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1411 GenSchedClassTables(ProcModel, SchedTables); 1412 } 1413 EmitSchedClassTables(SchedTables, OS); 1414 1415 OS << "\n#undef DBGFIELD\n"; 1416 1417 // Emit the processor machine model 1418 EmitProcessorModels(OS); 1419 } 1420 1421 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) { 1422 std::string Buffer; 1423 raw_string_ostream Stream(Buffer); 1424 1425 // Collect all the PredicateProlog records and print them to the output 1426 // stream. 1427 std::vector<Record *> Prologs = 1428 Records.getAllDerivedDefinitions("PredicateProlog"); 1429 llvm::sort(Prologs, LessRecord()); 1430 for (Record *P : Prologs) 1431 Stream << P->getValueAsString("Code") << '\n'; 1432 1433 Stream.flush(); 1434 OS << Buffer; 1435 } 1436 1437 static bool isTruePredicate(const Record *Rec) { 1438 return Rec->isSubClassOf("MCSchedPredicate") && 1439 Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue"); 1440 } 1441 1442 static void emitPredicates(const CodeGenSchedTransition &T, 1443 const CodeGenSchedClass &SC, PredicateExpander &PE, 1444 raw_ostream &OS) { 1445 std::string Buffer; 1446 raw_string_ostream SS(Buffer); 1447 1448 // If not all predicates are MCTrue, then we need an if-stmt. 1449 unsigned NumNonTruePreds = 1450 T.PredTerm.size() - count_if(T.PredTerm, isTruePredicate); 1451 1452 SS.indent(PE.getIndentLevel() * 2); 1453 1454 if (NumNonTruePreds) { 1455 bool FirstNonTruePredicate = true; 1456 SS << "if ("; 1457 1458 PE.setIndentLevel(PE.getIndentLevel() + 2); 1459 1460 for (const Record *Rec : T.PredTerm) { 1461 // Skip predicates that evaluate to "true". 1462 if (isTruePredicate(Rec)) 1463 continue; 1464 1465 if (FirstNonTruePredicate) { 1466 FirstNonTruePredicate = false; 1467 } else { 1468 SS << "\n"; 1469 SS.indent(PE.getIndentLevel() * 2); 1470 SS << "&& "; 1471 } 1472 1473 if (Rec->isSubClassOf("MCSchedPredicate")) { 1474 PE.expandPredicate(SS, Rec->getValueAsDef("Pred")); 1475 continue; 1476 } 1477 1478 // Expand this legacy predicate and wrap it around braces if there is more 1479 // than one predicate to expand. 1480 SS << ((NumNonTruePreds > 1) ? "(" : "") 1481 << Rec->getValueAsString("Predicate") 1482 << ((NumNonTruePreds > 1) ? ")" : ""); 1483 } 1484 1485 SS << ")\n"; // end of if-stmt 1486 PE.decreaseIndentLevel(); 1487 SS.indent(PE.getIndentLevel() * 2); 1488 PE.decreaseIndentLevel(); 1489 } 1490 1491 SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n'; 1492 SS.flush(); 1493 OS << Buffer; 1494 } 1495 1496 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate 1497 // epilogue code for the auto-generated helper. 1498 static void emitSchedModelHelperEpilogue(raw_ostream &OS, 1499 bool ShouldReturnZero) { 1500 if (ShouldReturnZero) { 1501 OS << " // Don't know how to resolve this scheduling class.\n" 1502 << " return 0;\n"; 1503 return; 1504 } 1505 1506 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"; 1507 } 1508 1509 static bool hasMCSchedPredicates(const CodeGenSchedTransition &T) { 1510 return all_of(T.PredTerm, [](const Record *Rec) { 1511 return Rec->isSubClassOf("MCSchedPredicate"); 1512 }); 1513 } 1514 1515 static void collectVariantClasses(const CodeGenSchedModels &SchedModels, 1516 IdxVec &VariantClasses, 1517 bool OnlyExpandMCInstPredicates) { 1518 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1519 // Ignore non-variant scheduling classes. 1520 if (SC.Transitions.empty()) 1521 continue; 1522 1523 if (OnlyExpandMCInstPredicates) { 1524 // Ignore this variant scheduling class no transitions use any meaningful 1525 // MCSchedPredicate definitions. 1526 if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) { 1527 return hasMCSchedPredicates(T); 1528 })) 1529 continue; 1530 } 1531 1532 VariantClasses.push_back(SC.Index); 1533 } 1534 } 1535 1536 static void collectProcessorIndices(const CodeGenSchedClass &SC, 1537 IdxVec &ProcIndices) { 1538 // A variant scheduling class may define transitions for multiple 1539 // processors. This function identifies wich processors are associated with 1540 // transition rules specified by variant class `SC`. 1541 for (const CodeGenSchedTransition &T : SC.Transitions) { 1542 IdxVec PI; 1543 std::set_union(&T.ProcIndex, &T.ProcIndex + 1, ProcIndices.begin(), 1544 ProcIndices.end(), std::back_inserter(PI)); 1545 ProcIndices.swap(PI); 1546 } 1547 } 1548 1549 static bool isAlwaysTrue(const CodeGenSchedTransition &T) { 1550 return llvm::all_of(T.PredTerm, 1551 [](const Record *R) { return isTruePredicate(R); }); 1552 } 1553 1554 void SubtargetEmitter::emitSchedModelHelpersImpl( 1555 raw_ostream &OS, bool OnlyExpandMCInstPredicates) { 1556 IdxVec VariantClasses; 1557 collectVariantClasses(SchedModels, VariantClasses, 1558 OnlyExpandMCInstPredicates); 1559 1560 if (VariantClasses.empty()) { 1561 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1562 return; 1563 } 1564 1565 // Construct a switch statement where the condition is a check on the 1566 // scheduling class identifier. There is a `case` for every variant class 1567 // defined by the processor models of this target. 1568 // Each `case` implements a number of rules to resolve (i.e. to transition from) 1569 // a variant scheduling class to another scheduling class. Rules are 1570 // described by instances of CodeGenSchedTransition. Note that transitions may 1571 // not be valid for all processors. 1572 OS << " switch (SchedClass) {\n"; 1573 for (unsigned VC : VariantClasses) { 1574 IdxVec ProcIndices; 1575 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1576 collectProcessorIndices(SC, ProcIndices); 1577 1578 OS << " case " << VC << ": // " << SC.Name << '\n'; 1579 1580 PredicateExpander PE(Target); 1581 PE.setByRef(false); 1582 PE.setExpandForMC(OnlyExpandMCInstPredicates); 1583 for (unsigned PI : ProcIndices) { 1584 OS << " "; 1585 1586 // Emit a guard on the processor ID. 1587 if (PI != 0) { 1588 OS << (OnlyExpandMCInstPredicates 1589 ? "if (CPUID == " 1590 : "if (SchedModel->getProcessorID() == "); 1591 OS << PI << ") "; 1592 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n'; 1593 } 1594 1595 // Now emit transitions associated with processor PI. 1596 const CodeGenSchedTransition *FinalT = nullptr; 1597 for (const CodeGenSchedTransition &T : SC.Transitions) { 1598 if (PI != 0 && T.ProcIndex != PI) 1599 continue; 1600 1601 // Emit only transitions based on MCSchedPredicate, if it's the case. 1602 // At least the transition specified by NoSchedPred is emitted, 1603 // which becomes the default transition for those variants otherwise 1604 // not based on MCSchedPredicate. 1605 // FIXME: preferably, llvm-mca should instead assume a reasonable 1606 // default when a variant transition is not based on MCSchedPredicate 1607 // for a given processor. 1608 if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T)) 1609 continue; 1610 1611 // If transition is folded to 'return X' it should be the last one. 1612 if (isAlwaysTrue(T)) { 1613 FinalT = &T; 1614 continue; 1615 } 1616 PE.setIndentLevel(3); 1617 emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS); 1618 } 1619 if (FinalT) 1620 emitPredicates(*FinalT, SchedModels.getSchedClass(FinalT->ToClassIdx), 1621 PE, OS); 1622 1623 OS << " }\n"; 1624 1625 if (PI == 0) 1626 break; 1627 } 1628 1629 if (SC.isInferred()) 1630 OS << " return " << SC.Index << ";\n"; 1631 OS << " break;\n"; 1632 } 1633 1634 OS << " };\n"; 1635 1636 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1637 } 1638 1639 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1640 raw_ostream &OS) { 1641 OS << "unsigned " << ClassName 1642 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1643 << " const TargetSchedModel *SchedModel) const {\n"; 1644 1645 // Emit the predicate prolog code. 1646 emitPredicateProlog(Records, OS); 1647 1648 // Emit target predicates. 1649 emitSchedModelHelpersImpl(OS); 1650 1651 OS << "} // " << ClassName << "::resolveSchedClass\n\n"; 1652 1653 OS << "unsigned " << ClassName 1654 << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI," 1655 << " const MCInstrInfo *MCII, unsigned CPUID) const {\n" 1656 << " return " << Target << "_MC" 1657 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n" 1658 << "} // " << ClassName << "::resolveVariantSchedClass\n\n"; 1659 1660 STIPredicateExpander PE(Target); 1661 PE.setClassPrefix(ClassName); 1662 PE.setExpandDefinition(true); 1663 PE.setByRef(false); 1664 PE.setIndentLevel(0); 1665 1666 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1667 PE.expandSTIPredicate(OS, Fn); 1668 } 1669 1670 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1671 raw_ostream &OS) { 1672 const CodeGenHwModes &CGH = TGT.getHwModes(); 1673 assert(CGH.getNumModeIds() > 0); 1674 if (CGH.getNumModeIds() == 1) 1675 return; 1676 1677 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1678 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1679 const HwMode &HM = CGH.getMode(M); 1680 OS << " if (checkFeatures(\"" << HM.Features 1681 << "\")) return " << M << ";\n"; 1682 } 1683 OS << " return 0;\n}\n"; 1684 } 1685 1686 // 1687 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1688 // the subtarget features string. 1689 // 1690 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1691 unsigned NumFeatures, 1692 unsigned NumProcs) { 1693 std::vector<Record*> Features = 1694 Records.getAllDerivedDefinitions("SubtargetFeature"); 1695 llvm::sort(Features, LessRecord()); 1696 1697 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1698 << "// subtarget options.\n" 1699 << "void llvm::"; 1700 OS << Target; 1701 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, " 1702 << "StringRef FS) {\n" 1703 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1704 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU);\n" 1705 << " LLVM_DEBUG(dbgs() << \"\\nTuneCPU:\" << TuneCPU << \"\\n\\n\");\n"; 1706 1707 if (Features.empty()) { 1708 OS << "}\n"; 1709 return; 1710 } 1711 1712 OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n" 1713 << " const FeatureBitset &Bits = getFeatureBits();\n"; 1714 1715 for (Record *R : Features) { 1716 // Next record 1717 StringRef Instance = R->getName(); 1718 StringRef Value = R->getValueAsString("Value"); 1719 StringRef Attribute = R->getValueAsString("Attribute"); 1720 1721 if (Value=="true" || Value=="false") 1722 OS << " if (Bits[" << Target << "::" 1723 << Instance << "]) " 1724 << Attribute << " = " << Value << ";\n"; 1725 else 1726 OS << " if (Bits[" << Target << "::" 1727 << Instance << "] && " 1728 << Attribute << " < " << Value << ") " 1729 << Attribute << " = " << Value << ";\n"; 1730 } 1731 1732 OS << "}\n"; 1733 } 1734 1735 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) { 1736 OS << "namespace " << Target << "_MC {\n" 1737 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n" 1738 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID) {\n"; 1739 emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true); 1740 OS << "}\n"; 1741 OS << "} // end namespace " << Target << "_MC\n\n"; 1742 1743 OS << "struct " << Target 1744 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n"; 1745 OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n" 1746 << " StringRef CPU, StringRef TuneCPU, StringRef FS,\n" 1747 << " ArrayRef<SubtargetFeatureKV> PF,\n" 1748 << " ArrayRef<SubtargetSubTypeKV> PD,\n" 1749 << " const MCWriteProcResEntry *WPR,\n" 1750 << " const MCWriteLatencyEntry *WL,\n" 1751 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n" 1752 << " const unsigned *OC, const unsigned *FP) :\n" 1753 << " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n" 1754 << " WPR, WL, RA, IS, OC, FP) { }\n\n" 1755 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n" 1756 << " const MCInst *MI, const MCInstrInfo *MCII,\n" 1757 << " unsigned CPUID) const override {\n" 1758 << " return " << Target << "_MC" 1759 << "::resolveVariantSchedClassImpl(SchedClass, MI, MCII, CPUID);\n"; 1760 OS << " }\n"; 1761 if (TGT.getHwModes().getNumModeIds() > 1) 1762 OS << " unsigned getHwMode() const override;\n"; 1763 OS << "};\n"; 1764 EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS); 1765 } 1766 1767 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) { 1768 OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n"; 1769 OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1770 1771 STIPredicateExpander PE(Target); 1772 PE.setExpandForMC(true); 1773 PE.setByRef(true); 1774 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1775 PE.expandSTIPredicate(OS, Fn); 1776 1777 OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1778 1779 OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n"; 1780 OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1781 1782 std::string ClassPrefix = Target + "MCInstrAnalysis"; 1783 PE.setExpandDefinition(true); 1784 PE.setClassPrefix(ClassPrefix); 1785 PE.setIndentLevel(0); 1786 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1787 PE.expandSTIPredicate(OS, Fn); 1788 1789 OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1790 } 1791 1792 // 1793 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1794 // 1795 void SubtargetEmitter::run(raw_ostream &OS) { 1796 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1797 1798 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1799 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1800 1801 DenseMap<Record *, unsigned> FeatureMap; 1802 1803 OS << "namespace llvm {\n"; 1804 Enumeration(OS, FeatureMap); 1805 OS << "} // end namespace llvm\n\n"; 1806 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1807 1808 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1809 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1810 1811 OS << "namespace llvm {\n"; 1812 #if 0 1813 OS << "namespace {\n"; 1814 #endif 1815 unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap); 1816 OS << "\n"; 1817 EmitSchedModel(OS); 1818 OS << "\n"; 1819 unsigned NumProcs = CPUKeyValues(OS, FeatureMap); 1820 OS << "\n"; 1821 #if 0 1822 OS << "} // end anonymous namespace\n\n"; 1823 #endif 1824 1825 // MCInstrInfo initialization routine. 1826 emitGenMCSubtargetInfo(OS); 1827 1828 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1829 << "MCSubtargetInfoImpl(" 1830 << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n"; 1831 OS << " return new " << Target 1832 << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, "; 1833 if (NumFeatures) 1834 OS << Target << "FeatureKV, "; 1835 else 1836 OS << "None, "; 1837 if (NumProcs) 1838 OS << Target << "SubTypeKV, "; 1839 else 1840 OS << "None, "; 1841 OS << '\n'; OS.indent(22); 1842 OS << Target << "WriteProcResTable, " 1843 << Target << "WriteLatencyTable, " 1844 << Target << "ReadAdvanceTable, "; 1845 OS << '\n'; OS.indent(22); 1846 if (SchedModels.hasItineraries()) { 1847 OS << Target << "Stages, " 1848 << Target << "OperandCycles, " 1849 << Target << "ForwardingPaths"; 1850 } else 1851 OS << "nullptr, nullptr, nullptr"; 1852 OS << ");\n}\n\n"; 1853 1854 OS << "} // end namespace llvm\n\n"; 1855 1856 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1857 1858 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1859 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1860 1861 OS << "#include \"llvm/Support/Debug.h\"\n"; 1862 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1863 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1864 1865 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1866 1867 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1868 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1869 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1870 1871 std::string ClassName = Target + "GenSubtargetInfo"; 1872 OS << "namespace llvm {\n"; 1873 OS << "class DFAPacketizer;\n"; 1874 OS << "namespace " << Target << "_MC {\n" 1875 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass," 1876 << " const MCInst *MI, const MCInstrInfo *MCII, unsigned CPUID);\n" 1877 << "} // end namespace " << Target << "_MC\n\n"; 1878 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1879 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1880 << "StringRef TuneCPU, StringRef FS);\n" 1881 << "public:\n" 1882 << " unsigned resolveSchedClass(unsigned SchedClass, " 1883 << " const MachineInstr *DefMI," 1884 << " const TargetSchedModel *SchedModel) const override;\n" 1885 << " unsigned resolveVariantSchedClass(unsigned SchedClass," 1886 << " const MCInst *MI, const MCInstrInfo *MCII," 1887 << " unsigned CPUID) const override;\n" 1888 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1889 << " const;\n"; 1890 if (TGT.getHwModes().getNumModeIds() > 1) 1891 OS << " unsigned getHwMode() const override;\n"; 1892 1893 STIPredicateExpander PE(Target); 1894 PE.setByRef(false); 1895 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1896 PE.expandSTIPredicate(OS, Fn); 1897 1898 OS << "};\n" 1899 << "} // end namespace llvm\n\n"; 1900 1901 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1902 1903 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1904 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1905 1906 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1907 OS << "namespace llvm {\n"; 1908 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1909 OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n"; 1910 OS << "extern const llvm::MCWriteProcResEntry " 1911 << Target << "WriteProcResTable[];\n"; 1912 OS << "extern const llvm::MCWriteLatencyEntry " 1913 << Target << "WriteLatencyTable[];\n"; 1914 OS << "extern const llvm::MCReadAdvanceEntry " 1915 << Target << "ReadAdvanceTable[];\n"; 1916 1917 if (SchedModels.hasItineraries()) { 1918 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1919 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1920 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1921 } 1922 1923 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1924 << "StringRef TuneCPU, StringRef FS)\n" 1925 << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, "; 1926 if (NumFeatures) 1927 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1928 else 1929 OS << "None, "; 1930 if (NumProcs) 1931 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1932 else 1933 OS << "None, "; 1934 OS << '\n'; OS.indent(24); 1935 OS << Target << "WriteProcResTable, " 1936 << Target << "WriteLatencyTable, " 1937 << Target << "ReadAdvanceTable, "; 1938 OS << '\n'; OS.indent(24); 1939 if (SchedModels.hasItineraries()) { 1940 OS << Target << "Stages, " 1941 << Target << "OperandCycles, " 1942 << Target << "ForwardingPaths"; 1943 } else 1944 OS << "nullptr, nullptr, nullptr"; 1945 OS << ") {}\n\n"; 1946 1947 EmitSchedModelHelpers(ClassName, OS); 1948 EmitHwModeCheck(ClassName, OS); 1949 1950 OS << "} // end namespace llvm\n\n"; 1951 1952 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1953 1954 EmitMCInstrAnalysisPredicateFunctions(OS); 1955 } 1956 1957 namespace llvm { 1958 1959 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1960 CodeGenTarget CGTarget(RK); 1961 SubtargetEmitter(RK, CGTarget).run(OS); 1962 } 1963 1964 } // end namespace llvm 1965