1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/StringExtras.h" 18 #include "llvm/MC/MCInstrItineraries.h" 19 #include "llvm/Support/Debug.h" 20 #include "llvm/Support/Format.h" 21 #include "llvm/TableGen/Error.h" 22 #include "llvm/TableGen/Record.h" 23 #include "llvm/TableGen/TableGenBackend.h" 24 #include <algorithm> 25 #include <map> 26 #include <string> 27 #include <vector> 28 using namespace llvm; 29 30 #define DEBUG_TYPE "subtarget-emitter" 31 32 namespace { 33 class SubtargetEmitter { 34 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 35 // The SchedClassDesc table indexes into a global write resource table, write 36 // latency table, and read advance table. 37 struct SchedClassTables { 38 std::vector<std::vector<MCSchedClassDesc> > ProcSchedClasses; 39 std::vector<MCWriteProcResEntry> WriteProcResources; 40 std::vector<MCWriteLatencyEntry> WriteLatencies; 41 std::vector<std::string> WriterNames; 42 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 43 44 // Reserve an invalid entry at index 0 45 SchedClassTables() { 46 ProcSchedClasses.resize(1); 47 WriteProcResources.resize(1); 48 WriteLatencies.resize(1); 49 WriterNames.push_back("InvalidWrite"); 50 ReadAdvanceEntries.resize(1); 51 } 52 }; 53 54 struct LessWriteProcResources { 55 bool operator()(const MCWriteProcResEntry &LHS, 56 const MCWriteProcResEntry &RHS) { 57 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 58 } 59 }; 60 61 RecordKeeper &Records; 62 CodeGenSchedModels &SchedModels; 63 std::string Target; 64 65 void Enumeration(raw_ostream &OS, const char *ClassName, bool isBits); 66 unsigned FeatureKeyValues(raw_ostream &OS); 67 unsigned CPUKeyValues(raw_ostream &OS); 68 void FormItineraryStageString(const std::string &Names, 69 Record *ItinData, std::string &ItinString, 70 unsigned &NStages); 71 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 72 unsigned &NOperandCycles); 73 void FormItineraryBypassString(const std::string &Names, 74 Record *ItinData, 75 std::string &ItinString, unsigned NOperandCycles); 76 void EmitStageAndOperandCycleData(raw_ostream &OS, 77 std::vector<std::vector<InstrItinerary> > 78 &ProcItinLists); 79 void EmitItineraries(raw_ostream &OS, 80 std::vector<std::vector<InstrItinerary> > 81 &ProcItinLists); 82 void EmitProcessorProp(raw_ostream &OS, const Record *R, const char *Name, 83 char Separator); 84 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 85 raw_ostream &OS); 86 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 87 const CodeGenProcModel &ProcModel); 88 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 89 const CodeGenProcModel &ProcModel); 90 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 91 const CodeGenProcModel &ProcModel); 92 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 93 SchedClassTables &SchedTables); 94 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 95 void EmitProcessorModels(raw_ostream &OS); 96 void EmitProcessorLookup(raw_ostream &OS); 97 void EmitSchedModelHelpers(std::string ClassName, raw_ostream &OS); 98 void EmitSchedModel(raw_ostream &OS); 99 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 100 unsigned NumProcs); 101 102 public: 103 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): 104 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} 105 106 void run(raw_ostream &o); 107 108 }; 109 } // End anonymous namespace 110 111 // 112 // Enumeration - Emit the specified class as an enumeration. 113 // 114 void SubtargetEmitter::Enumeration(raw_ostream &OS, 115 const char *ClassName, 116 bool isBits) { 117 // Get all records of class and sort 118 std::vector<Record*> DefList = Records.getAllDerivedDefinitions(ClassName); 119 std::sort(DefList.begin(), DefList.end(), LessRecord()); 120 121 unsigned N = DefList.size(); 122 if (N == 0) 123 return; 124 if (N > 64) { 125 errs() << "Too many (> 64) subtarget features!\n"; 126 exit(1); 127 } 128 129 OS << "namespace " << Target << " {\n"; 130 131 // For bit flag enumerations with more than 32 items, emit constants. 132 // Emit an enum for everything else. 133 if (isBits && N > 32) { 134 // For each record 135 for (unsigned i = 0; i < N; i++) { 136 // Next record 137 Record *Def = DefList[i]; 138 139 // Get and emit name and expression (1 << i) 140 OS << " const uint64_t " << Def->getName() << " = 1ULL << " << i << ";\n"; 141 } 142 } else { 143 // Open enumeration 144 OS << "enum {\n"; 145 146 // For each record 147 for (unsigned i = 0; i < N;) { 148 // Next record 149 Record *Def = DefList[i]; 150 151 // Get and emit name 152 OS << " " << Def->getName(); 153 154 // If bit flags then emit expression (1 << i) 155 if (isBits) OS << " = " << " 1ULL << " << i; 156 157 // Depending on 'if more in the list' emit comma 158 if (++i < N) OS << ","; 159 160 OS << "\n"; 161 } 162 163 // Close enumeration 164 OS << "};\n"; 165 } 166 167 OS << "}\n"; 168 } 169 170 // 171 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 172 // command line. 173 // 174 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 175 // Gather and sort all the features 176 std::vector<Record*> FeatureList = 177 Records.getAllDerivedDefinitions("SubtargetFeature"); 178 179 if (FeatureList.empty()) 180 return 0; 181 182 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 183 184 // Begin feature table 185 OS << "// Sorted (by key) array of values for CPU features.\n" 186 << "extern const llvm::SubtargetFeatureKV " << Target 187 << "FeatureKV[] = {\n"; 188 189 // For each feature 190 unsigned NumFeatures = 0; 191 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 192 // Next feature 193 Record *Feature = FeatureList[i]; 194 195 const std::string &Name = Feature->getName(); 196 const std::string &CommandLineName = Feature->getValueAsString("Name"); 197 const std::string &Desc = Feature->getValueAsString("Desc"); 198 199 if (CommandLineName.empty()) continue; 200 201 // Emit as { "feature", "description", featureEnum, i1 | i2 | ... | in } 202 OS << " { " 203 << "\"" << CommandLineName << "\", " 204 << "\"" << Desc << "\", " 205 << Target << "::" << Name << ", "; 206 207 const std::vector<Record*> &ImpliesList = 208 Feature->getValueAsListOfDefs("Implies"); 209 210 if (ImpliesList.empty()) { 211 OS << "0ULL"; 212 } else { 213 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 214 OS << Target << "::" << ImpliesList[j]->getName(); 215 if (++j < M) OS << " | "; 216 } 217 } 218 219 OS << " }"; 220 ++NumFeatures; 221 222 // Depending on 'if more in the list' emit comma 223 if ((i + 1) < N) OS << ","; 224 225 OS << "\n"; 226 } 227 228 // End feature table 229 OS << "};\n"; 230 231 return NumFeatures; 232 } 233 234 // 235 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 236 // line. 237 // 238 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 239 // Gather and sort processor information 240 std::vector<Record*> ProcessorList = 241 Records.getAllDerivedDefinitions("Processor"); 242 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 243 244 // Begin processor table 245 OS << "// Sorted (by key) array of values for CPU subtype.\n" 246 << "extern const llvm::SubtargetFeatureKV " << Target 247 << "SubTypeKV[] = {\n"; 248 249 // For each processor 250 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 251 // Next processor 252 Record *Processor = ProcessorList[i]; 253 254 const std::string &Name = Processor->getValueAsString("Name"); 255 const std::vector<Record*> &FeatureList = 256 Processor->getValueAsListOfDefs("Features"); 257 258 // Emit as { "cpu", "description", f1 | f2 | ... fn }, 259 OS << " { " 260 << "\"" << Name << "\", " 261 << "\"Select the " << Name << " processor\", "; 262 263 if (FeatureList.empty()) { 264 OS << "0ULL"; 265 } else { 266 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 267 OS << Target << "::" << FeatureList[j]->getName(); 268 if (++j < M) OS << " | "; 269 } 270 } 271 272 // The "0" is for the "implies" section of this data structure. 273 OS << ", 0ULL }"; 274 275 // Depending on 'if more in the list' emit comma 276 if (++i < N) OS << ","; 277 278 OS << "\n"; 279 } 280 281 // End processor table 282 OS << "};\n"; 283 284 return ProcessorList.size(); 285 } 286 287 // 288 // FormItineraryStageString - Compose a string containing the stage 289 // data initialization for the specified itinerary. N is the number 290 // of stages. 291 // 292 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 293 Record *ItinData, 294 std::string &ItinString, 295 unsigned &NStages) { 296 // Get states list 297 const std::vector<Record*> &StageList = 298 ItinData->getValueAsListOfDefs("Stages"); 299 300 // For each stage 301 unsigned N = NStages = StageList.size(); 302 for (unsigned i = 0; i < N;) { 303 // Next stage 304 const Record *Stage = StageList[i]; 305 306 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 307 int Cycles = Stage->getValueAsInt("Cycles"); 308 ItinString += " { " + itostr(Cycles) + ", "; 309 310 // Get unit list 311 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 312 313 // For each unit 314 for (unsigned j = 0, M = UnitList.size(); j < M;) { 315 // Add name and bitwise or 316 ItinString += Name + "FU::" + UnitList[j]->getName(); 317 if (++j < M) ItinString += " | "; 318 } 319 320 int TimeInc = Stage->getValueAsInt("TimeInc"); 321 ItinString += ", " + itostr(TimeInc); 322 323 int Kind = Stage->getValueAsInt("Kind"); 324 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 325 326 // Close off stage 327 ItinString += " }"; 328 if (++i < N) ItinString += ", "; 329 } 330 } 331 332 // 333 // FormItineraryOperandCycleString - Compose a string containing the 334 // operand cycle initialization for the specified itinerary. N is the 335 // number of operands that has cycles specified. 336 // 337 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 338 std::string &ItinString, unsigned &NOperandCycles) { 339 // Get operand cycle list 340 const std::vector<int64_t> &OperandCycleList = 341 ItinData->getValueAsListOfInts("OperandCycles"); 342 343 // For each operand cycle 344 unsigned N = NOperandCycles = OperandCycleList.size(); 345 for (unsigned i = 0; i < N;) { 346 // Next operand cycle 347 const int OCycle = OperandCycleList[i]; 348 349 ItinString += " " + itostr(OCycle); 350 if (++i < N) ItinString += ", "; 351 } 352 } 353 354 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 355 Record *ItinData, 356 std::string &ItinString, 357 unsigned NOperandCycles) { 358 const std::vector<Record*> &BypassList = 359 ItinData->getValueAsListOfDefs("Bypasses"); 360 unsigned N = BypassList.size(); 361 unsigned i = 0; 362 for (; i < N;) { 363 ItinString += Name + "Bypass::" + BypassList[i]->getName(); 364 if (++i < NOperandCycles) ItinString += ", "; 365 } 366 for (; i < NOperandCycles;) { 367 ItinString += " 0"; 368 if (++i < NOperandCycles) ItinString += ", "; 369 } 370 } 371 372 // 373 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 374 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 375 // by CodeGenSchedClass::Index. 376 // 377 void SubtargetEmitter:: 378 EmitStageAndOperandCycleData(raw_ostream &OS, 379 std::vector<std::vector<InstrItinerary> > 380 &ProcItinLists) { 381 382 // Multiple processor models may share an itinerary record. Emit it once. 383 SmallPtrSet<Record*, 8> ItinsDefSet; 384 385 // Emit functional units for all the itineraries. 386 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 387 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 388 389 if (!ItinsDefSet.insert(PI->ItinsDef)) 390 continue; 391 392 std::vector<Record*> FUs = PI->ItinsDef->getValueAsListOfDefs("FU"); 393 if (FUs.empty()) 394 continue; 395 396 const std::string &Name = PI->ItinsDef->getName(); 397 OS << "\n// Functional units for \"" << Name << "\"\n" 398 << "namespace " << Name << "FU {\n"; 399 400 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 401 OS << " const unsigned " << FUs[j]->getName() 402 << " = 1 << " << j << ";\n"; 403 404 OS << "}\n"; 405 406 std::vector<Record*> BPs = PI->ItinsDef->getValueAsListOfDefs("BP"); 407 if (BPs.size()) { 408 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 409 << "\"\n" << "namespace " << Name << "Bypass {\n"; 410 411 OS << " const unsigned NoBypass = 0;\n"; 412 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 413 OS << " const unsigned " << BPs[j]->getName() 414 << " = 1 << " << j << ";\n"; 415 416 OS << "}\n"; 417 } 418 } 419 420 // Begin stages table 421 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 422 "Stages[] = {\n"; 423 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 424 425 // Begin operand cycle table 426 std::string OperandCycleTable = "extern const unsigned " + Target + 427 "OperandCycles[] = {\n"; 428 OperandCycleTable += " 0, // No itinerary\n"; 429 430 // Begin pipeline bypass table 431 std::string BypassTable = "extern const unsigned " + Target + 432 "ForwardingPaths[] = {\n"; 433 BypassTable += " 0, // No itinerary\n"; 434 435 // For each Itinerary across all processors, add a unique entry to the stages, 436 // operand cycles, and pipepine bypess tables. Then add the new Itinerary 437 // object with computed offsets to the ProcItinLists result. 438 unsigned StageCount = 1, OperandCycleCount = 1; 439 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 440 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 441 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 442 const CodeGenProcModel &ProcModel = *PI; 443 444 // Add process itinerary to the list. 445 ProcItinLists.resize(ProcItinLists.size()+1); 446 447 // If this processor defines no itineraries, then leave the itinerary list 448 // empty. 449 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 450 if (!ProcModel.hasItineraries()) 451 continue; 452 453 const std::string &Name = ProcModel.ItinsDef->getName(); 454 455 ItinList.resize(SchedModels.numInstrSchedClasses()); 456 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 457 458 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 459 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 460 461 // Next itinerary data 462 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 463 464 // Get string and stage count 465 std::string ItinStageString; 466 unsigned NStages = 0; 467 if (ItinData) 468 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 469 470 // Get string and operand cycle count 471 std::string ItinOperandCycleString; 472 unsigned NOperandCycles = 0; 473 std::string ItinBypassString; 474 if (ItinData) { 475 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 476 NOperandCycles); 477 478 FormItineraryBypassString(Name, ItinData, ItinBypassString, 479 NOperandCycles); 480 } 481 482 // Check to see if stage already exists and create if it doesn't 483 unsigned FindStage = 0; 484 if (NStages > 0) { 485 FindStage = ItinStageMap[ItinStageString]; 486 if (FindStage == 0) { 487 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 488 StageTable += ItinStageString + ", // " + itostr(StageCount); 489 if (NStages > 1) 490 StageTable += "-" + itostr(StageCount + NStages - 1); 491 StageTable += "\n"; 492 // Record Itin class number. 493 ItinStageMap[ItinStageString] = FindStage = StageCount; 494 StageCount += NStages; 495 } 496 } 497 498 // Check to see if operand cycle already exists and create if it doesn't 499 unsigned FindOperandCycle = 0; 500 if (NOperandCycles > 0) { 501 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 502 FindOperandCycle = ItinOperandMap[ItinOperandString]; 503 if (FindOperandCycle == 0) { 504 // Emit as cycle, // index 505 OperandCycleTable += ItinOperandCycleString + ", // "; 506 std::string OperandIdxComment = itostr(OperandCycleCount); 507 if (NOperandCycles > 1) 508 OperandIdxComment += "-" 509 + itostr(OperandCycleCount + NOperandCycles - 1); 510 OperandCycleTable += OperandIdxComment + "\n"; 511 // Record Itin class number. 512 ItinOperandMap[ItinOperandCycleString] = 513 FindOperandCycle = OperandCycleCount; 514 // Emit as bypass, // index 515 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 516 OperandCycleCount += NOperandCycles; 517 } 518 } 519 520 // Set up itinerary as location and location + stage count 521 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 522 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 523 FindOperandCycle, 524 FindOperandCycle + NOperandCycles}; 525 526 // Inject - empty slots will be 0, 0 527 ItinList[SchedClassIdx] = Intinerary; 528 } 529 } 530 531 // Closing stage 532 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 533 StageTable += "};\n"; 534 535 // Closing operand cycles 536 OperandCycleTable += " 0 // End operand cycles\n"; 537 OperandCycleTable += "};\n"; 538 539 BypassTable += " 0 // End bypass tables\n"; 540 BypassTable += "};\n"; 541 542 // Emit tables. 543 OS << StageTable; 544 OS << OperandCycleTable; 545 OS << BypassTable; 546 } 547 548 // 549 // EmitProcessorData - Generate data for processor itineraries that were 550 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 551 // Itineraries for each processor. The Itinerary lists are indexed on 552 // CodeGenSchedClass::Index. 553 // 554 void SubtargetEmitter:: 555 EmitItineraries(raw_ostream &OS, 556 std::vector<std::vector<InstrItinerary> > &ProcItinLists) { 557 558 // Multiple processor models may share an itinerary record. Emit it once. 559 SmallPtrSet<Record*, 8> ItinsDefSet; 560 561 // For each processor's machine model 562 std::vector<std::vector<InstrItinerary> >::iterator 563 ProcItinListsIter = ProcItinLists.begin(); 564 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 565 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 566 567 Record *ItinsDef = PI->ItinsDef; 568 if (!ItinsDefSet.insert(ItinsDef)) 569 continue; 570 571 // Get processor itinerary name 572 const std::string &Name = ItinsDef->getName(); 573 574 // Get the itinerary list for the processor. 575 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 576 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 577 578 // Empty itineraries aren't referenced anywhere in the tablegen output 579 // so don't emit them. 580 if (ItinList.empty()) 581 continue; 582 583 OS << "\n"; 584 OS << "static const llvm::InstrItinerary "; 585 586 // Begin processor itinerary table 587 OS << Name << "[] = {\n"; 588 589 // For each itinerary class in CodeGenSchedClass::Index order. 590 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 591 InstrItinerary &Intinerary = ItinList[j]; 592 593 // Emit Itinerary in the form of 594 // { firstStage, lastStage, firstCycle, lastCycle } // index 595 OS << " { " << 596 Intinerary.NumMicroOps << ", " << 597 Intinerary.FirstStage << ", " << 598 Intinerary.LastStage << ", " << 599 Intinerary.FirstOperandCycle << ", " << 600 Intinerary.LastOperandCycle << " }" << 601 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 602 } 603 // End processor itinerary table 604 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 605 OS << "};\n"; 606 } 607 } 608 609 // Emit either the value defined in the TableGen Record, or the default 610 // value defined in the C++ header. The Record is null if the processor does not 611 // define a model. 612 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 613 const char *Name, char Separator) { 614 OS << " "; 615 int V = R ? R->getValueAsInt(Name) : -1; 616 if (V >= 0) 617 OS << V << Separator << " // " << Name; 618 else 619 OS << "MCSchedModel::Default" << Name << Separator; 620 OS << '\n'; 621 } 622 623 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 624 raw_ostream &OS) { 625 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; 626 627 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 628 OS << "static const llvm::MCProcResourceDesc " 629 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 630 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; 631 632 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 633 Record *PRDef = ProcModel.ProcResourceDefs[i]; 634 635 Record *SuperDef = nullptr; 636 unsigned SuperIdx = 0; 637 unsigned NumUnits = 0; 638 int BufferSize = PRDef->getValueAsInt("BufferSize"); 639 if (PRDef->isSubClassOf("ProcResGroup")) { 640 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 641 for (RecIter RUI = ResUnits.begin(), RUE = ResUnits.end(); 642 RUI != RUE; ++RUI) { 643 NumUnits += (*RUI)->getValueAsInt("NumUnits"); 644 } 645 } 646 else { 647 // Find the SuperIdx 648 if (PRDef->getValueInit("Super")->isComplete()) { 649 SuperDef = SchedModels.findProcResUnits( 650 PRDef->getValueAsDef("Super"), ProcModel); 651 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 652 } 653 NumUnits = PRDef->getValueAsInt("NumUnits"); 654 } 655 // Emit the ProcResourceDesc 656 if (i+1 == e) 657 Sep = ' '; 658 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 659 if (PRDef->getName().size() < 15) 660 OS.indent(15 - PRDef->getName().size()); 661 OS << NumUnits << ", " << SuperIdx << ", " 662 << BufferSize << "}" << Sep << " // #" << i+1; 663 if (SuperDef) 664 OS << ", Super=" << SuperDef->getName(); 665 OS << "\n"; 666 } 667 OS << "};\n"; 668 } 669 670 // Find the WriteRes Record that defines processor resources for this 671 // SchedWrite. 672 Record *SubtargetEmitter::FindWriteResources( 673 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 674 675 // Check if the SchedWrite is already subtarget-specific and directly 676 // specifies a set of processor resources. 677 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 678 return SchedWrite.TheDef; 679 680 Record *AliasDef = nullptr; 681 for (RecIter AI = SchedWrite.Aliases.begin(), AE = SchedWrite.Aliases.end(); 682 AI != AE; ++AI) { 683 const CodeGenSchedRW &AliasRW = 684 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 685 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 686 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 687 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 688 continue; 689 } 690 if (AliasDef) 691 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 692 "defined for processor " + ProcModel.ModelName + 693 " Ensure only one SchedAlias exists per RW."); 694 AliasDef = AliasRW.TheDef; 695 } 696 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 697 return AliasDef; 698 699 // Check this processor's list of write resources. 700 Record *ResDef = nullptr; 701 for (RecIter WRI = ProcModel.WriteResDefs.begin(), 702 WRE = ProcModel.WriteResDefs.end(); WRI != WRE; ++WRI) { 703 if (!(*WRI)->isSubClassOf("WriteRes")) 704 continue; 705 if (AliasDef == (*WRI)->getValueAsDef("WriteType") 706 || SchedWrite.TheDef == (*WRI)->getValueAsDef("WriteType")) { 707 if (ResDef) { 708 PrintFatalError((*WRI)->getLoc(), "Resources are defined for both " 709 "SchedWrite and its alias on processor " + 710 ProcModel.ModelName); 711 } 712 ResDef = *WRI; 713 } 714 } 715 // TODO: If ProcModel has a base model (previous generation processor), 716 // then call FindWriteResources recursively with that model here. 717 if (!ResDef) { 718 PrintFatalError(ProcModel.ModelDef->getLoc(), 719 std::string("Processor does not define resources for ") 720 + SchedWrite.TheDef->getName()); 721 } 722 return ResDef; 723 } 724 725 /// Find the ReadAdvance record for the given SchedRead on this processor or 726 /// return NULL. 727 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 728 const CodeGenProcModel &ProcModel) { 729 // Check for SchedReads that directly specify a ReadAdvance. 730 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 731 return SchedRead.TheDef; 732 733 // Check this processor's list of aliases for SchedRead. 734 Record *AliasDef = nullptr; 735 for (RecIter AI = SchedRead.Aliases.begin(), AE = SchedRead.Aliases.end(); 736 AI != AE; ++AI) { 737 const CodeGenSchedRW &AliasRW = 738 SchedModels.getSchedRW((*AI)->getValueAsDef("AliasRW")); 739 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 740 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 741 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 742 continue; 743 } 744 if (AliasDef) 745 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 746 "defined for processor " + ProcModel.ModelName + 747 " Ensure only one SchedAlias exists per RW."); 748 AliasDef = AliasRW.TheDef; 749 } 750 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 751 return AliasDef; 752 753 // Check this processor's ReadAdvanceList. 754 Record *ResDef = nullptr; 755 for (RecIter RAI = ProcModel.ReadAdvanceDefs.begin(), 756 RAE = ProcModel.ReadAdvanceDefs.end(); RAI != RAE; ++RAI) { 757 if (!(*RAI)->isSubClassOf("ReadAdvance")) 758 continue; 759 if (AliasDef == (*RAI)->getValueAsDef("ReadType") 760 || SchedRead.TheDef == (*RAI)->getValueAsDef("ReadType")) { 761 if (ResDef) { 762 PrintFatalError((*RAI)->getLoc(), "Resources are defined for both " 763 "SchedRead and its alias on processor " + 764 ProcModel.ModelName); 765 } 766 ResDef = *RAI; 767 } 768 } 769 // TODO: If ProcModel has a base model (previous generation processor), 770 // then call FindReadAdvance recursively with that model here. 771 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 772 PrintFatalError(ProcModel.ModelDef->getLoc(), 773 std::string("Processor does not define resources for ") 774 + SchedRead.TheDef->getName()); 775 } 776 return ResDef; 777 } 778 779 // Expand an explicit list of processor resources into a full list of implied 780 // resource groups and super resources that cover them. 781 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 782 std::vector<int64_t> &Cycles, 783 const CodeGenProcModel &PM) { 784 // Default to 1 resource cycle. 785 Cycles.resize(PRVec.size(), 1); 786 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 787 Record *PRDef = PRVec[i]; 788 RecVec SubResources; 789 if (PRDef->isSubClassOf("ProcResGroup")) 790 SubResources = PRDef->getValueAsListOfDefs("Resources"); 791 else { 792 SubResources.push_back(PRDef); 793 PRDef = SchedModels.findProcResUnits(PRVec[i], PM); 794 for (Record *SubDef = PRDef; 795 SubDef->getValueInit("Super")->isComplete();) { 796 if (SubDef->isSubClassOf("ProcResGroup")) { 797 // Disallow this for simplicitly. 798 PrintFatalError(SubDef->getLoc(), "Processor resource group " 799 " cannot be a super resources."); 800 } 801 Record *SuperDef = 802 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); 803 PRVec.push_back(SuperDef); 804 Cycles.push_back(Cycles[i]); 805 SubDef = SuperDef; 806 } 807 } 808 for (RecIter PRI = PM.ProcResourceDefs.begin(), 809 PRE = PM.ProcResourceDefs.end(); 810 PRI != PRE; ++PRI) { 811 if (*PRI == PRDef || !(*PRI)->isSubClassOf("ProcResGroup")) 812 continue; 813 RecVec SuperResources = (*PRI)->getValueAsListOfDefs("Resources"); 814 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 815 for( ; SubI != SubE; ++SubI) { 816 if (std::find(SuperResources.begin(), SuperResources.end(), *SubI) 817 == SuperResources.end()) { 818 break; 819 } 820 } 821 if (SubI == SubE) { 822 PRVec.push_back(*PRI); 823 Cycles.push_back(Cycles[i]); 824 } 825 } 826 } 827 } 828 829 // Generate the SchedClass table for this processor and update global 830 // tables. Must be called for each processor in order. 831 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 832 SchedClassTables &SchedTables) { 833 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 834 if (!ProcModel.hasInstrSchedModel()) 835 return; 836 837 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 838 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), 839 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { 840 DEBUG(SCI->dump(&SchedModels)); 841 842 SCTab.resize(SCTab.size() + 1); 843 MCSchedClassDesc &SCDesc = SCTab.back(); 844 // SCDesc.Name is guarded by NDEBUG 845 SCDesc.NumMicroOps = 0; 846 SCDesc.BeginGroup = false; 847 SCDesc.EndGroup = false; 848 SCDesc.WriteProcResIdx = 0; 849 SCDesc.WriteLatencyIdx = 0; 850 SCDesc.ReadAdvanceIdx = 0; 851 852 // A Variant SchedClass has no resources of its own. 853 bool HasVariants = false; 854 for (std::vector<CodeGenSchedTransition>::const_iterator 855 TI = SCI->Transitions.begin(), TE = SCI->Transitions.end(); 856 TI != TE; ++TI) { 857 if (TI->ProcIndices[0] == 0) { 858 HasVariants = true; 859 break; 860 } 861 IdxIter PIPos = std::find(TI->ProcIndices.begin(), 862 TI->ProcIndices.end(), ProcModel.Index); 863 if (PIPos != TI->ProcIndices.end()) { 864 HasVariants = true; 865 break; 866 } 867 } 868 if (HasVariants) { 869 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 870 continue; 871 } 872 873 // Determine if the SchedClass is actually reachable on this processor. If 874 // not don't try to locate the processor resources, it will fail. 875 // If ProcIndices contains 0, this class applies to all processors. 876 assert(!SCI->ProcIndices.empty() && "expect at least one procidx"); 877 if (SCI->ProcIndices[0] != 0) { 878 IdxIter PIPos = std::find(SCI->ProcIndices.begin(), 879 SCI->ProcIndices.end(), ProcModel.Index); 880 if (PIPos == SCI->ProcIndices.end()) 881 continue; 882 } 883 IdxVec Writes = SCI->Writes; 884 IdxVec Reads = SCI->Reads; 885 if (!SCI->InstRWs.empty()) { 886 // This class has a default ReadWrite list which can be overriden by 887 // InstRW definitions. 888 Record *RWDef = nullptr; 889 for (RecIter RWI = SCI->InstRWs.begin(), RWE = SCI->InstRWs.end(); 890 RWI != RWE; ++RWI) { 891 Record *RWModelDef = (*RWI)->getValueAsDef("SchedModel"); 892 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 893 RWDef = *RWI; 894 break; 895 } 896 } 897 if (RWDef) { 898 Writes.clear(); 899 Reads.clear(); 900 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 901 Writes, Reads); 902 } 903 } 904 if (Writes.empty()) { 905 // Check this processor's itinerary class resources. 906 for (RecIter II = ProcModel.ItinRWDefs.begin(), 907 IE = ProcModel.ItinRWDefs.end(); II != IE; ++II) { 908 RecVec Matched = (*II)->getValueAsListOfDefs("MatchedItinClasses"); 909 if (std::find(Matched.begin(), Matched.end(), SCI->ItinClassDef) 910 != Matched.end()) { 911 SchedModels.findRWs((*II)->getValueAsListOfDefs("OperandReadWrites"), 912 Writes, Reads); 913 break; 914 } 915 } 916 if (Writes.empty()) { 917 DEBUG(dbgs() << ProcModel.ModelName 918 << " does not have resources for class " << SCI->Name << '\n'); 919 } 920 } 921 // Sum resources across all operand writes. 922 std::vector<MCWriteProcResEntry> WriteProcResources; 923 std::vector<MCWriteLatencyEntry> WriteLatencies; 924 std::vector<std::string> WriterNames; 925 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 926 for (IdxIter WI = Writes.begin(), WE = Writes.end(); WI != WE; ++WI) { 927 IdxVec WriteSeq; 928 SchedModels.expandRWSeqForProc(*WI, WriteSeq, /*IsRead=*/false, 929 ProcModel); 930 931 // For each operand, create a latency entry. 932 MCWriteLatencyEntry WLEntry; 933 WLEntry.Cycles = 0; 934 unsigned WriteID = WriteSeq.back(); 935 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 936 // If this Write is not referenced by a ReadAdvance, don't distinguish it 937 // from other WriteLatency entries. 938 if (!SchedModels.hasReadOfWrite( 939 SchedModels.getSchedWrite(WriteID).TheDef)) { 940 WriteID = 0; 941 } 942 WLEntry.WriteResourceID = WriteID; 943 944 for (IdxIter WSI = WriteSeq.begin(), WSE = WriteSeq.end(); 945 WSI != WSE; ++WSI) { 946 947 Record *WriteRes = 948 FindWriteResources(SchedModels.getSchedWrite(*WSI), ProcModel); 949 950 // Mark the parent class as invalid for unsupported write types. 951 if (WriteRes->getValueAsBit("Unsupported")) { 952 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 953 break; 954 } 955 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 956 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 957 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 958 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 959 960 // Create an entry for each ProcResource listed in WriteRes. 961 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 962 std::vector<int64_t> Cycles = 963 WriteRes->getValueAsListOfInts("ResourceCycles"); 964 965 ExpandProcResources(PRVec, Cycles, ProcModel); 966 967 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 968 PRIdx != PREnd; ++PRIdx) { 969 MCWriteProcResEntry WPREntry; 970 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 971 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 972 WPREntry.Cycles = Cycles[PRIdx]; 973 // If this resource is already used in this sequence, add the current 974 // entry's cycles so that the same resource appears to be used 975 // serially, rather than multiple parallel uses. This is important for 976 // in-order machine where the resource consumption is a hazard. 977 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 978 for( ; WPRIdx != WPREnd; ++WPRIdx) { 979 if (WriteProcResources[WPRIdx].ProcResourceIdx 980 == WPREntry.ProcResourceIdx) { 981 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 982 break; 983 } 984 } 985 if (WPRIdx == WPREnd) 986 WriteProcResources.push_back(WPREntry); 987 } 988 } 989 WriteLatencies.push_back(WLEntry); 990 } 991 // Create an entry for each operand Read in this SchedClass. 992 // Entries must be sorted first by UseIdx then by WriteResourceID. 993 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 994 UseIdx != EndIdx; ++UseIdx) { 995 Record *ReadAdvance = 996 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 997 if (!ReadAdvance) 998 continue; 999 1000 // Mark the parent class as invalid for unsupported write types. 1001 if (ReadAdvance->getValueAsBit("Unsupported")) { 1002 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1003 break; 1004 } 1005 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1006 IdxVec WriteIDs; 1007 if (ValidWrites.empty()) 1008 WriteIDs.push_back(0); 1009 else { 1010 for (RecIter VWI = ValidWrites.begin(), VWE = ValidWrites.end(); 1011 VWI != VWE; ++VWI) { 1012 WriteIDs.push_back(SchedModels.getSchedRWIdx(*VWI, /*IsRead=*/false)); 1013 } 1014 } 1015 std::sort(WriteIDs.begin(), WriteIDs.end()); 1016 for(IdxIter WI = WriteIDs.begin(), WE = WriteIDs.end(); WI != WE; ++WI) { 1017 MCReadAdvanceEntry RAEntry; 1018 RAEntry.UseIdx = UseIdx; 1019 RAEntry.WriteResourceID = *WI; 1020 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1021 ReadAdvanceEntries.push_back(RAEntry); 1022 } 1023 } 1024 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1025 WriteProcResources.clear(); 1026 WriteLatencies.clear(); 1027 ReadAdvanceEntries.clear(); 1028 } 1029 // Add the information for this SchedClass to the global tables using basic 1030 // compression. 1031 // 1032 // WritePrecRes entries are sorted by ProcResIdx. 1033 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 1034 LessWriteProcResources()); 1035 1036 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1037 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1038 std::search(SchedTables.WriteProcResources.begin(), 1039 SchedTables.WriteProcResources.end(), 1040 WriteProcResources.begin(), WriteProcResources.end()); 1041 if (WPRPos != SchedTables.WriteProcResources.end()) 1042 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1043 else { 1044 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1045 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1046 WriteProcResources.end()); 1047 } 1048 // Latency entries must remain in operand order. 1049 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1050 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1051 std::search(SchedTables.WriteLatencies.begin(), 1052 SchedTables.WriteLatencies.end(), 1053 WriteLatencies.begin(), WriteLatencies.end()); 1054 if (WLPos != SchedTables.WriteLatencies.end()) { 1055 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1056 SCDesc.WriteLatencyIdx = idx; 1057 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1058 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1059 std::string::npos) { 1060 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1061 } 1062 } 1063 else { 1064 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1065 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1066 WriteLatencies.begin(), 1067 WriteLatencies.end()); 1068 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1069 WriterNames.begin(), WriterNames.end()); 1070 } 1071 // ReadAdvanceEntries must remain in operand order. 1072 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1073 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1074 std::search(SchedTables.ReadAdvanceEntries.begin(), 1075 SchedTables.ReadAdvanceEntries.end(), 1076 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1077 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1078 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1079 else { 1080 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1081 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1082 ReadAdvanceEntries.end()); 1083 } 1084 } 1085 } 1086 1087 // Emit SchedClass tables for all processors and associated global tables. 1088 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1089 raw_ostream &OS) { 1090 // Emit global WriteProcResTable. 1091 OS << "\n// {ProcResourceIdx, Cycles}\n" 1092 << "extern const llvm::MCWriteProcResEntry " 1093 << Target << "WriteProcResTable[] = {\n" 1094 << " { 0, 0}, // Invalid\n"; 1095 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1096 WPRIdx != WPREnd; ++WPRIdx) { 1097 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1098 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1099 << format("%2d", WPREntry.Cycles) << "}"; 1100 if (WPRIdx + 1 < WPREnd) 1101 OS << ','; 1102 OS << " // #" << WPRIdx << '\n'; 1103 } 1104 OS << "}; // " << Target << "WriteProcResTable\n"; 1105 1106 // Emit global WriteLatencyTable. 1107 OS << "\n// {Cycles, WriteResourceID}\n" 1108 << "extern const llvm::MCWriteLatencyEntry " 1109 << Target << "WriteLatencyTable[] = {\n" 1110 << " { 0, 0}, // Invalid\n"; 1111 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1112 WLIdx != WLEnd; ++WLIdx) { 1113 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1114 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1115 << format("%2d", WLEntry.WriteResourceID) << "}"; 1116 if (WLIdx + 1 < WLEnd) 1117 OS << ','; 1118 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1119 } 1120 OS << "}; // " << Target << "WriteLatencyTable\n"; 1121 1122 // Emit global ReadAdvanceTable. 1123 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1124 << "extern const llvm::MCReadAdvanceEntry " 1125 << Target << "ReadAdvanceTable[] = {\n" 1126 << " {0, 0, 0}, // Invalid\n"; 1127 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1128 RAIdx != RAEnd; ++RAIdx) { 1129 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1130 OS << " {" << RAEntry.UseIdx << ", " 1131 << format("%2d", RAEntry.WriteResourceID) << ", " 1132 << format("%2d", RAEntry.Cycles) << "}"; 1133 if (RAIdx + 1 < RAEnd) 1134 OS << ','; 1135 OS << " // #" << RAIdx << '\n'; 1136 } 1137 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1138 1139 // Emit a SchedClass table for each processor. 1140 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1141 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1142 if (!PI->hasInstrSchedModel()) 1143 continue; 1144 1145 std::vector<MCSchedClassDesc> &SCTab = 1146 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1147 1148 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1149 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1150 OS << "static const llvm::MCSchedClassDesc " 1151 << PI->ModelName << "SchedClasses[] = {\n"; 1152 1153 // The first class is always invalid. We no way to distinguish it except by 1154 // name and position. 1155 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1156 && "invalid class not first"); 1157 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1158 << MCSchedClassDesc::InvalidNumMicroOps 1159 << ", 0, 0, 0, 0, 0, 0, 0, 0},\n"; 1160 1161 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1162 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1163 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1164 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1165 if (SchedClass.Name.size() < 18) 1166 OS.indent(18 - SchedClass.Name.size()); 1167 OS << MCDesc.NumMicroOps 1168 << ", " << MCDesc.BeginGroup << ", " << MCDesc.EndGroup 1169 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1170 << ", " << MCDesc.NumWriteProcResEntries 1171 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1172 << ", " << MCDesc.NumWriteLatencyEntries 1173 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1174 << ", " << MCDesc.NumReadAdvanceEntries << "}"; 1175 if (SCIdx + 1 < SCEnd) 1176 OS << ','; 1177 OS << " // #" << SCIdx << '\n'; 1178 } 1179 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1180 } 1181 } 1182 1183 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1184 // For each processor model. 1185 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1186 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1187 // Emit processor resource table. 1188 if (PI->hasInstrSchedModel()) 1189 EmitProcessorResources(*PI, OS); 1190 else if(!PI->ProcResourceDefs.empty()) 1191 PrintFatalError(PI->ModelDef->getLoc(), "SchedMachineModel defines " 1192 "ProcResources without defining WriteRes SchedWriteRes"); 1193 1194 // Begin processor itinerary properties 1195 OS << "\n"; 1196 OS << "static const llvm::MCSchedModel " << PI->ModelName << " = {\n"; 1197 EmitProcessorProp(OS, PI->ModelDef, "IssueWidth", ','); 1198 EmitProcessorProp(OS, PI->ModelDef, "MicroOpBufferSize", ','); 1199 EmitProcessorProp(OS, PI->ModelDef, "LoopMicroOpBufferSize", ','); 1200 EmitProcessorProp(OS, PI->ModelDef, "LoadLatency", ','); 1201 EmitProcessorProp(OS, PI->ModelDef, "HighLatency", ','); 1202 EmitProcessorProp(OS, PI->ModelDef, "MispredictPenalty", ','); 1203 1204 OS << " " << (bool)(PI->ModelDef ? 1205 PI->ModelDef->getValueAsBit("PostRAScheduler") : 0) 1206 << ", // " << "PostRAScheduler\n"; 1207 1208 OS << " " << (bool)(PI->ModelDef ? 1209 PI->ModelDef->getValueAsBit("CompleteModel") : 0) 1210 << ", // " << "CompleteModel\n"; 1211 1212 OS << " " << PI->Index << ", // Processor ID\n"; 1213 if (PI->hasInstrSchedModel()) 1214 OS << " " << PI->ModelName << "ProcResources" << ",\n" 1215 << " " << PI->ModelName << "SchedClasses" << ",\n" 1216 << " " << PI->ProcResourceDefs.size()+1 << ",\n" 1217 << " " << (SchedModels.schedClassEnd() 1218 - SchedModels.schedClassBegin()) << ",\n"; 1219 else 1220 OS << " 0, 0, 0, 0, // No instruction-level machine model.\n"; 1221 if (PI->hasItineraries()) 1222 OS << " " << PI->ItinsDef->getName() << "};\n"; 1223 else 1224 OS << " nullptr}; // No Itinerary\n"; 1225 } 1226 } 1227 1228 // 1229 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1230 // 1231 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1232 // Gather and sort processor information 1233 std::vector<Record*> ProcessorList = 1234 Records.getAllDerivedDefinitions("Processor"); 1235 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1236 1237 // Begin processor table 1238 OS << "\n"; 1239 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1240 << "extern const llvm::SubtargetInfoKV " 1241 << Target << "ProcSchedKV[] = {\n"; 1242 1243 // For each processor 1244 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 1245 // Next processor 1246 Record *Processor = ProcessorList[i]; 1247 1248 const std::string &Name = Processor->getValueAsString("Name"); 1249 const std::string &ProcModelName = 1250 SchedModels.getModelForProc(Processor).ModelName; 1251 1252 // Emit as { "cpu", procinit }, 1253 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; 1254 1255 // Depending on ''if more in the list'' emit comma 1256 if (++i < N) OS << ","; 1257 1258 OS << "\n"; 1259 } 1260 1261 // End processor table 1262 OS << "};\n"; 1263 } 1264 1265 // 1266 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1267 // 1268 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1269 OS << "#ifdef DBGFIELD\n" 1270 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1271 << "#endif\n" 1272 << "#ifndef NDEBUG\n" 1273 << "#define DBGFIELD(x) x,\n" 1274 << "#else\n" 1275 << "#define DBGFIELD(x)\n" 1276 << "#endif\n"; 1277 1278 if (SchedModels.hasItineraries()) { 1279 std::vector<std::vector<InstrItinerary> > ProcItinLists; 1280 // Emit the stage data 1281 EmitStageAndOperandCycleData(OS, ProcItinLists); 1282 EmitItineraries(OS, ProcItinLists); 1283 } 1284 OS << "\n// ===============================================================\n" 1285 << "// Data tables for the new per-operand machine model.\n"; 1286 1287 SchedClassTables SchedTables; 1288 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1289 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1290 GenSchedClassTables(*PI, SchedTables); 1291 } 1292 EmitSchedClassTables(SchedTables, OS); 1293 1294 // Emit the processor machine model 1295 EmitProcessorModels(OS); 1296 // Emit the processor lookup data 1297 EmitProcessorLookup(OS); 1298 1299 OS << "#undef DBGFIELD"; 1300 } 1301 1302 void SubtargetEmitter::EmitSchedModelHelpers(std::string ClassName, 1303 raw_ostream &OS) { 1304 OS << "unsigned " << ClassName 1305 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1306 << " const TargetSchedModel *SchedModel) const {\n"; 1307 1308 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1309 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1310 for (std::vector<Record*>::const_iterator 1311 PI = Prologs.begin(), PE = Prologs.end(); PI != PE; ++PI) { 1312 OS << (*PI)->getValueAsString("Code") << '\n'; 1313 } 1314 IdxVec VariantClasses; 1315 for (CodeGenSchedModels::SchedClassIter SCI = SchedModels.schedClassBegin(), 1316 SCE = SchedModels.schedClassEnd(); SCI != SCE; ++SCI) { 1317 if (SCI->Transitions.empty()) 1318 continue; 1319 VariantClasses.push_back(SCI->Index); 1320 } 1321 if (!VariantClasses.empty()) { 1322 OS << " switch (SchedClass) {\n"; 1323 for (IdxIter VCI = VariantClasses.begin(), VCE = VariantClasses.end(); 1324 VCI != VCE; ++VCI) { 1325 const CodeGenSchedClass &SC = SchedModels.getSchedClass(*VCI); 1326 OS << " case " << *VCI << ": // " << SC.Name << '\n'; 1327 IdxVec ProcIndices; 1328 for (std::vector<CodeGenSchedTransition>::const_iterator 1329 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 1330 TI != TE; ++TI) { 1331 IdxVec PI; 1332 std::set_union(TI->ProcIndices.begin(), TI->ProcIndices.end(), 1333 ProcIndices.begin(), ProcIndices.end(), 1334 std::back_inserter(PI)); 1335 ProcIndices.swap(PI); 1336 } 1337 for (IdxIter PI = ProcIndices.begin(), PE = ProcIndices.end(); 1338 PI != PE; ++PI) { 1339 OS << " "; 1340 if (*PI != 0) 1341 OS << "if (SchedModel->getProcessorID() == " << *PI << ") "; 1342 OS << "{ // " << (SchedModels.procModelBegin() + *PI)->ModelName 1343 << '\n'; 1344 for (std::vector<CodeGenSchedTransition>::const_iterator 1345 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 1346 TI != TE; ++TI) { 1347 if (*PI != 0 && !std::count(TI->ProcIndices.begin(), 1348 TI->ProcIndices.end(), *PI)) { 1349 continue; 1350 } 1351 OS << " if ("; 1352 for (RecIter RI = TI->PredTerm.begin(), RE = TI->PredTerm.end(); 1353 RI != RE; ++RI) { 1354 if (RI != TI->PredTerm.begin()) 1355 OS << "\n && "; 1356 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1357 } 1358 OS << ")\n" 1359 << " return " << TI->ToClassIdx << "; // " 1360 << SchedModels.getSchedClass(TI->ToClassIdx).Name << '\n'; 1361 } 1362 OS << " }\n"; 1363 if (*PI == 0) 1364 break; 1365 } 1366 if (SC.isInferred()) 1367 OS << " return " << SC.Index << ";\n"; 1368 OS << " break;\n"; 1369 } 1370 OS << " };\n"; 1371 } 1372 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1373 << "} // " << ClassName << "::resolveSchedClass\n"; 1374 } 1375 1376 // 1377 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1378 // the subtarget features string. 1379 // 1380 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1381 unsigned NumFeatures, 1382 unsigned NumProcs) { 1383 std::vector<Record*> Features = 1384 Records.getAllDerivedDefinitions("SubtargetFeature"); 1385 std::sort(Features.begin(), Features.end(), LessRecord()); 1386 1387 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1388 << "// subtarget options.\n" 1389 << "void llvm::"; 1390 OS << Target; 1391 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1392 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1393 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1394 1395 if (Features.empty()) { 1396 OS << "}\n"; 1397 return; 1398 } 1399 1400 OS << " InitMCProcessorInfo(CPU, FS);\n" 1401 << " uint64_t Bits = getFeatureBits();\n"; 1402 1403 for (unsigned i = 0; i < Features.size(); i++) { 1404 // Next record 1405 Record *R = Features[i]; 1406 const std::string &Instance = R->getName(); 1407 const std::string &Value = R->getValueAsString("Value"); 1408 const std::string &Attribute = R->getValueAsString("Attribute"); 1409 1410 if (Value=="true" || Value=="false") 1411 OS << " if ((Bits & " << Target << "::" 1412 << Instance << ") != 0) " 1413 << Attribute << " = " << Value << ";\n"; 1414 else 1415 OS << " if ((Bits & " << Target << "::" 1416 << Instance << ") != 0 && " 1417 << Attribute << " < " << Value << ") " 1418 << Attribute << " = " << Value << ";\n"; 1419 } 1420 1421 OS << "}\n"; 1422 } 1423 1424 // 1425 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1426 // 1427 void SubtargetEmitter::run(raw_ostream &OS) { 1428 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1429 1430 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1431 OS << "#undef GET_SUBTARGETINFO_ENUM\n"; 1432 1433 OS << "namespace llvm {\n"; 1434 Enumeration(OS, "SubtargetFeature", true); 1435 OS << "} // End llvm namespace \n"; 1436 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1437 1438 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1439 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n"; 1440 1441 OS << "namespace llvm {\n"; 1442 #if 0 1443 OS << "namespace {\n"; 1444 #endif 1445 unsigned NumFeatures = FeatureKeyValues(OS); 1446 OS << "\n"; 1447 unsigned NumProcs = CPUKeyValues(OS); 1448 OS << "\n"; 1449 EmitSchedModel(OS); 1450 OS << "\n"; 1451 #if 0 1452 OS << "}\n"; 1453 #endif 1454 1455 // MCInstrInfo initialization routine. 1456 OS << "static inline void Init" << Target 1457 << "MCSubtargetInfo(MCSubtargetInfo *II, " 1458 << "StringRef TT, StringRef CPU, StringRef FS) {\n"; 1459 OS << " II->InitMCSubtargetInfo(TT, CPU, FS, "; 1460 if (NumFeatures) 1461 OS << Target << "FeatureKV, "; 1462 else 1463 OS << "None, "; 1464 if (NumProcs) 1465 OS << Target << "SubTypeKV, "; 1466 else 1467 OS << "None, "; 1468 OS << '\n'; OS.indent(22); 1469 OS << Target << "ProcSchedKV, " 1470 << Target << "WriteProcResTable, " 1471 << Target << "WriteLatencyTable, " 1472 << Target << "ReadAdvanceTable, "; 1473 if (SchedModels.hasItineraries()) { 1474 OS << '\n'; OS.indent(22); 1475 OS << Target << "Stages, " 1476 << Target << "OperandCycles, " 1477 << Target << "ForwardingPaths"; 1478 } else 1479 OS << "0, 0, 0"; 1480 OS << ");\n}\n\n"; 1481 1482 OS << "} // End llvm namespace \n"; 1483 1484 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1485 1486 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1487 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n"; 1488 1489 OS << "#include \"llvm/Support/Debug.h\"\n"; 1490 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1491 1492 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1493 1494 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1495 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1496 OS << "#undef GET_SUBTARGETINFO_HEADER\n"; 1497 1498 std::string ClassName = Target + "GenSubtargetInfo"; 1499 OS << "namespace llvm {\n"; 1500 OS << "class DFAPacketizer;\n"; 1501 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1502 << " explicit " << ClassName << "(StringRef TT, StringRef CPU, " 1503 << "StringRef FS);\n" 1504 << "public:\n" 1505 << " unsigned resolveSchedClass(unsigned SchedClass, const MachineInstr *DefMI," 1506 << " const TargetSchedModel *SchedModel) const override;\n" 1507 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1508 << " const;\n" 1509 << "};\n"; 1510 OS << "} // End llvm namespace \n"; 1511 1512 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1513 1514 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1515 OS << "#undef GET_SUBTARGETINFO_CTOR\n"; 1516 1517 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n"; 1518 OS << "namespace llvm {\n"; 1519 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1520 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1521 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1522 OS << "extern const llvm::MCWriteProcResEntry " 1523 << Target << "WriteProcResTable[];\n"; 1524 OS << "extern const llvm::MCWriteLatencyEntry " 1525 << Target << "WriteLatencyTable[];\n"; 1526 OS << "extern const llvm::MCReadAdvanceEntry " 1527 << Target << "ReadAdvanceTable[];\n"; 1528 1529 if (SchedModels.hasItineraries()) { 1530 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1531 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1532 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1533 } 1534 1535 OS << ClassName << "::" << ClassName << "(StringRef TT, StringRef CPU, " 1536 << "StringRef FS)\n" 1537 << " : TargetSubtargetInfo() {\n" 1538 << " InitMCSubtargetInfo(TT, CPU, FS, "; 1539 if (NumFeatures) 1540 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1541 else 1542 OS << "None, "; 1543 if (NumProcs) 1544 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1545 else 1546 OS << "None, "; 1547 OS << '\n'; OS.indent(22); 1548 OS << Target << "ProcSchedKV, " 1549 << Target << "WriteProcResTable, " 1550 << Target << "WriteLatencyTable, " 1551 << Target << "ReadAdvanceTable, "; 1552 OS << '\n'; OS.indent(22); 1553 if (SchedModels.hasItineraries()) { 1554 OS << Target << "Stages, " 1555 << Target << "OperandCycles, " 1556 << Target << "ForwardingPaths"; 1557 } else 1558 OS << "0, 0, 0"; 1559 OS << ");\n}\n\n"; 1560 1561 EmitSchedModelHelpers(ClassName, OS); 1562 1563 OS << "} // End llvm namespace \n"; 1564 1565 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1566 } 1567 1568 namespace llvm { 1569 1570 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1571 CodeGenTarget CGTarget(RK); 1572 SubtargetEmitter(RK, CGTarget).run(OS); 1573 } 1574 1575 } // End llvm namespace 1576