1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This tablegen backend emits subtarget enumerations.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenTarget.h"
15 #include "CodeGenSchedule.h"
16 #include "PredicateExpander.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/StringExtras.h"
20 #include "llvm/ADT/StringRef.h"
21 #include "llvm/MC/MCInstrItineraries.h"
22 #include "llvm/MC/MCSchedule.h"
23 #include "llvm/MC/SubtargetFeature.h"
24 #include "llvm/Support/Debug.h"
25 #include "llvm/Support/Format.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/TableGen/Error.h"
28 #include "llvm/TableGen/Record.h"
29 #include "llvm/TableGen/TableGenBackend.h"
30 #include <algorithm>
31 #include <cassert>
32 #include <cstdint>
33 #include <iterator>
34 #include <map>
35 #include <string>
36 #include <vector>
37 
38 using namespace llvm;
39 
40 #define DEBUG_TYPE "subtarget-emitter"
41 
42 namespace {
43 
44 class SubtargetEmitter {
45   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
46   // The SchedClassDesc table indexes into a global write resource table, write
47   // latency table, and read advance table.
48   struct SchedClassTables {
49     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
50     std::vector<MCWriteProcResEntry> WriteProcResources;
51     std::vector<MCWriteLatencyEntry> WriteLatencies;
52     std::vector<std::string> WriterNames;
53     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
54 
55     // Reserve an invalid entry at index 0
56     SchedClassTables() {
57       ProcSchedClasses.resize(1);
58       WriteProcResources.resize(1);
59       WriteLatencies.resize(1);
60       WriterNames.push_back("InvalidWrite");
61       ReadAdvanceEntries.resize(1);
62     }
63   };
64 
65   struct LessWriteProcResources {
66     bool operator()(const MCWriteProcResEntry &LHS,
67                     const MCWriteProcResEntry &RHS) {
68       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
69     }
70   };
71 
72   const CodeGenTarget &TGT;
73   RecordKeeper &Records;
74   CodeGenSchedModels &SchedModels;
75   std::string Target;
76 
77   void Enumeration(raw_ostream &OS);
78   unsigned FeatureKeyValues(raw_ostream &OS);
79   unsigned CPUKeyValues(raw_ostream &OS);
80   void FormItineraryStageString(const std::string &Names,
81                                 Record *ItinData, std::string &ItinString,
82                                 unsigned &NStages);
83   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
84                                        unsigned &NOperandCycles);
85   void FormItineraryBypassString(const std::string &Names,
86                                  Record *ItinData,
87                                  std::string &ItinString, unsigned NOperandCycles);
88   void EmitStageAndOperandCycleData(raw_ostream &OS,
89                                     std::vector<std::vector<InstrItinerary>>
90                                       &ProcItinLists);
91   void EmitItineraries(raw_ostream &OS,
92                        std::vector<std::vector<InstrItinerary>>
93                          &ProcItinLists);
94   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
95                                   raw_ostream &OS);
96   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
97                               raw_ostream &OS);
98   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
99                          char Separator);
100   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
101                                      raw_ostream &OS);
102   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
103                               raw_ostream &OS);
104   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
105                              const CodeGenProcModel &ProcModel);
106   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
107                           const CodeGenProcModel &ProcModel);
108   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
109                            const CodeGenProcModel &ProcModel);
110   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
111                            SchedClassTables &SchedTables);
112   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
113   void EmitProcessorModels(raw_ostream &OS);
114   void EmitProcessorLookup(raw_ostream &OS);
115   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
116   void emitSchedModelHelpersImpl(raw_ostream &OS,
117                                  bool OnlyExpandMCInstPredicates = false);
118   void emitGenMCSubtargetInfo(raw_ostream &OS);
119   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
120 
121   void EmitSchedModel(raw_ostream &OS);
122   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
123   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
124                              unsigned NumProcs);
125 
126 public:
127   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
128     : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
129       Target(TGT.getName()) {}
130 
131   void run(raw_ostream &o);
132 };
133 
134 } // end anonymous namespace
135 
136 //
137 // Enumeration - Emit the specified class as an enumeration.
138 //
139 void SubtargetEmitter::Enumeration(raw_ostream &OS) {
140   // Get all records of class and sort
141   std::vector<Record*> DefList =
142     Records.getAllDerivedDefinitions("SubtargetFeature");
143   llvm::sort(DefList.begin(), DefList.end(), LessRecord());
144 
145   unsigned N = DefList.size();
146   if (N == 0)
147     return;
148   if (N > MAX_SUBTARGET_FEATURES)
149     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
150 
151   OS << "namespace " << Target << " {\n";
152 
153   // Open enumeration.
154   OS << "enum {\n";
155 
156   // For each record
157   for (unsigned i = 0; i < N; ++i) {
158     // Next record
159     Record *Def = DefList[i];
160 
161     // Get and emit name
162     OS << "  " << Def->getName() << " = " << i << ",\n";
163   }
164 
165   // Close enumeration and namespace
166   OS << "};\n";
167   OS << "} // end namespace " << Target << "\n";
168 }
169 
170 //
171 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
172 // command line.
173 //
174 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
175   // Gather and sort all the features
176   std::vector<Record*> FeatureList =
177                            Records.getAllDerivedDefinitions("SubtargetFeature");
178 
179   if (FeatureList.empty())
180     return 0;
181 
182   llvm::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName());
183 
184   // Begin feature table
185   OS << "// Sorted (by key) array of values for CPU features.\n"
186      << "extern const llvm::SubtargetFeatureKV " << Target
187      << "FeatureKV[] = {\n";
188 
189   // For each feature
190   unsigned NumFeatures = 0;
191   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
192     // Next feature
193     Record *Feature = FeatureList[i];
194 
195     StringRef Name = Feature->getName();
196     StringRef CommandLineName = Feature->getValueAsString("Name");
197     StringRef Desc = Feature->getValueAsString("Desc");
198 
199     if (CommandLineName.empty()) continue;
200 
201     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
202     OS << "  { "
203        << "\"" << CommandLineName << "\", "
204        << "\"" << Desc << "\", "
205        << "{ " << Target << "::" << Name << " }, ";
206 
207     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
208 
209     OS << "{";
210     for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
211       OS << " " << Target << "::" << ImpliesList[j]->getName();
212       if (++j < M) OS << ",";
213     }
214     OS << " } },\n";
215     ++NumFeatures;
216   }
217 
218   // End feature table
219   OS << "};\n";
220 
221   return NumFeatures;
222 }
223 
224 //
225 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
226 // line.
227 //
228 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
229   // Gather and sort processor information
230   std::vector<Record*> ProcessorList =
231                           Records.getAllDerivedDefinitions("Processor");
232   llvm::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
233 
234   // Begin processor table
235   OS << "// Sorted (by key) array of values for CPU subtype.\n"
236      << "extern const llvm::SubtargetFeatureKV " << Target
237      << "SubTypeKV[] = {\n";
238 
239   // For each processor
240   for (Record *Processor : ProcessorList) {
241     StringRef Name = Processor->getValueAsString("Name");
242     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
243 
244     // Emit as { "cpu", "description", { f1 , f2 , ... fn } },
245     OS << "  { "
246        << "\"" << Name << "\", "
247        << "\"Select the " << Name << " processor\", ";
248 
249     OS << "{";
250     for (unsigned j = 0, M = FeatureList.size(); j < M;) {
251       OS << " " << Target << "::" << FeatureList[j]->getName();
252       if (++j < M) OS << ",";
253     }
254     // The { } is for the "implies" section of this data structure.
255     OS << " }, { } },\n";
256   }
257 
258   // End processor table
259   OS << "};\n";
260 
261   return ProcessorList.size();
262 }
263 
264 //
265 // FormItineraryStageString - Compose a string containing the stage
266 // data initialization for the specified itinerary.  N is the number
267 // of stages.
268 //
269 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
270                                                 Record *ItinData,
271                                                 std::string &ItinString,
272                                                 unsigned &NStages) {
273   // Get states list
274   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
275 
276   // For each stage
277   unsigned N = NStages = StageList.size();
278   for (unsigned i = 0; i < N;) {
279     // Next stage
280     const Record *Stage = StageList[i];
281 
282     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
283     int Cycles = Stage->getValueAsInt("Cycles");
284     ItinString += "  { " + itostr(Cycles) + ", ";
285 
286     // Get unit list
287     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
288 
289     // For each unit
290     for (unsigned j = 0, M = UnitList.size(); j < M;) {
291       // Add name and bitwise or
292       ItinString += Name + "FU::" + UnitList[j]->getName().str();
293       if (++j < M) ItinString += " | ";
294     }
295 
296     int TimeInc = Stage->getValueAsInt("TimeInc");
297     ItinString += ", " + itostr(TimeInc);
298 
299     int Kind = Stage->getValueAsInt("Kind");
300     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
301 
302     // Close off stage
303     ItinString += " }";
304     if (++i < N) ItinString += ", ";
305   }
306 }
307 
308 //
309 // FormItineraryOperandCycleString - Compose a string containing the
310 // operand cycle initialization for the specified itinerary.  N is the
311 // number of operands that has cycles specified.
312 //
313 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
314                          std::string &ItinString, unsigned &NOperandCycles) {
315   // Get operand cycle list
316   std::vector<int64_t> OperandCycleList =
317     ItinData->getValueAsListOfInts("OperandCycles");
318 
319   // For each operand cycle
320   unsigned N = NOperandCycles = OperandCycleList.size();
321   for (unsigned i = 0; i < N;) {
322     // Next operand cycle
323     const int OCycle = OperandCycleList[i];
324 
325     ItinString += "  " + itostr(OCycle);
326     if (++i < N) ItinString += ", ";
327   }
328 }
329 
330 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
331                                                  Record *ItinData,
332                                                  std::string &ItinString,
333                                                  unsigned NOperandCycles) {
334   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
335   unsigned N = BypassList.size();
336   unsigned i = 0;
337   for (; i < N;) {
338     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
339     if (++i < NOperandCycles) ItinString += ", ";
340   }
341   for (; i < NOperandCycles;) {
342     ItinString += " 0";
343     if (++i < NOperandCycles) ItinString += ", ";
344   }
345 }
346 
347 //
348 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
349 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
350 // by CodeGenSchedClass::Index.
351 //
352 void SubtargetEmitter::
353 EmitStageAndOperandCycleData(raw_ostream &OS,
354                              std::vector<std::vector<InstrItinerary>>
355                                &ProcItinLists) {
356   // Multiple processor models may share an itinerary record. Emit it once.
357   SmallPtrSet<Record*, 8> ItinsDefSet;
358 
359   // Emit functional units for all the itineraries.
360   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
361 
362     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
363       continue;
364 
365     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
366     if (FUs.empty())
367       continue;
368 
369     StringRef Name = ProcModel.ItinsDef->getName();
370     OS << "\n// Functional units for \"" << Name << "\"\n"
371        << "namespace " << Name << "FU {\n";
372 
373     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
374       OS << "  const unsigned " << FUs[j]->getName()
375          << " = 1 << " << j << ";\n";
376 
377     OS << "} // end namespace " << Name << "FU\n";
378 
379     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
380     if (!BPs.empty()) {
381       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
382          << "\"\n" << "namespace " << Name << "Bypass {\n";
383 
384       OS << "  const unsigned NoBypass = 0;\n";
385       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
386         OS << "  const unsigned " << BPs[j]->getName()
387            << " = 1 << " << j << ";\n";
388 
389       OS << "} // end namespace " << Name << "Bypass\n";
390     }
391   }
392 
393   // Begin stages table
394   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
395                            "Stages[] = {\n";
396   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
397 
398   // Begin operand cycle table
399   std::string OperandCycleTable = "extern const unsigned " + Target +
400     "OperandCycles[] = {\n";
401   OperandCycleTable += "  0, // No itinerary\n";
402 
403   // Begin pipeline bypass table
404   std::string BypassTable = "extern const unsigned " + Target +
405     "ForwardingPaths[] = {\n";
406   BypassTable += " 0, // No itinerary\n";
407 
408   // For each Itinerary across all processors, add a unique entry to the stages,
409   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
410   // object with computed offsets to the ProcItinLists result.
411   unsigned StageCount = 1, OperandCycleCount = 1;
412   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
413   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
414     // Add process itinerary to the list.
415     ProcItinLists.resize(ProcItinLists.size()+1);
416 
417     // If this processor defines no itineraries, then leave the itinerary list
418     // empty.
419     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
420     if (!ProcModel.hasItineraries())
421       continue;
422 
423     StringRef Name = ProcModel.ItinsDef->getName();
424 
425     ItinList.resize(SchedModels.numInstrSchedClasses());
426     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
427 
428     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
429          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
430 
431       // Next itinerary data
432       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
433 
434       // Get string and stage count
435       std::string ItinStageString;
436       unsigned NStages = 0;
437       if (ItinData)
438         FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
439 
440       // Get string and operand cycle count
441       std::string ItinOperandCycleString;
442       unsigned NOperandCycles = 0;
443       std::string ItinBypassString;
444       if (ItinData) {
445         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
446                                         NOperandCycles);
447 
448         FormItineraryBypassString(Name, ItinData, ItinBypassString,
449                                   NOperandCycles);
450       }
451 
452       // Check to see if stage already exists and create if it doesn't
453       uint16_t FindStage = 0;
454       if (NStages > 0) {
455         FindStage = ItinStageMap[ItinStageString];
456         if (FindStage == 0) {
457           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
458           StageTable += ItinStageString + ", // " + itostr(StageCount);
459           if (NStages > 1)
460             StageTable += "-" + itostr(StageCount + NStages - 1);
461           StageTable += "\n";
462           // Record Itin class number.
463           ItinStageMap[ItinStageString] = FindStage = StageCount;
464           StageCount += NStages;
465         }
466       }
467 
468       // Check to see if operand cycle already exists and create if it doesn't
469       uint16_t FindOperandCycle = 0;
470       if (NOperandCycles > 0) {
471         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
472         FindOperandCycle = ItinOperandMap[ItinOperandString];
473         if (FindOperandCycle == 0) {
474           // Emit as  cycle, // index
475           OperandCycleTable += ItinOperandCycleString + ", // ";
476           std::string OperandIdxComment = itostr(OperandCycleCount);
477           if (NOperandCycles > 1)
478             OperandIdxComment += "-"
479               + itostr(OperandCycleCount + NOperandCycles - 1);
480           OperandCycleTable += OperandIdxComment + "\n";
481           // Record Itin class number.
482           ItinOperandMap[ItinOperandCycleString] =
483             FindOperandCycle = OperandCycleCount;
484           // Emit as bypass, // index
485           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
486           OperandCycleCount += NOperandCycles;
487         }
488       }
489 
490       // Set up itinerary as location and location + stage count
491       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
492       InstrItinerary Intinerary = {
493           NumUOps,
494           FindStage,
495           uint16_t(FindStage + NStages),
496           FindOperandCycle,
497           uint16_t(FindOperandCycle + NOperandCycles),
498       };
499 
500       // Inject - empty slots will be 0, 0
501       ItinList[SchedClassIdx] = Intinerary;
502     }
503   }
504 
505   // Closing stage
506   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
507   StageTable += "};\n";
508 
509   // Closing operand cycles
510   OperandCycleTable += "  0 // End operand cycles\n";
511   OperandCycleTable += "};\n";
512 
513   BypassTable += " 0 // End bypass tables\n";
514   BypassTable += "};\n";
515 
516   // Emit tables.
517   OS << StageTable;
518   OS << OperandCycleTable;
519   OS << BypassTable;
520 }
521 
522 //
523 // EmitProcessorData - Generate data for processor itineraries that were
524 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
525 // Itineraries for each processor. The Itinerary lists are indexed on
526 // CodeGenSchedClass::Index.
527 //
528 void SubtargetEmitter::
529 EmitItineraries(raw_ostream &OS,
530                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
531   // Multiple processor models may share an itinerary record. Emit it once.
532   SmallPtrSet<Record*, 8> ItinsDefSet;
533 
534   // For each processor's machine model
535   std::vector<std::vector<InstrItinerary>>::iterator
536       ProcItinListsIter = ProcItinLists.begin();
537   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
538          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
539 
540     Record *ItinsDef = PI->ItinsDef;
541     if (!ItinsDefSet.insert(ItinsDef).second)
542       continue;
543 
544     // Get the itinerary list for the processor.
545     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
546     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
547 
548     // Empty itineraries aren't referenced anywhere in the tablegen output
549     // so don't emit them.
550     if (ItinList.empty())
551       continue;
552 
553     OS << "\n";
554     OS << "static const llvm::InstrItinerary ";
555 
556     // Begin processor itinerary table
557     OS << ItinsDef->getName() << "[] = {\n";
558 
559     // For each itinerary class in CodeGenSchedClass::Index order.
560     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
561       InstrItinerary &Intinerary = ItinList[j];
562 
563       // Emit Itinerary in the form of
564       // { firstStage, lastStage, firstCycle, lastCycle } // index
565       OS << "  { " <<
566         Intinerary.NumMicroOps << ", " <<
567         Intinerary.FirstStage << ", " <<
568         Intinerary.LastStage << ", " <<
569         Intinerary.FirstOperandCycle << ", " <<
570         Intinerary.LastOperandCycle << " }" <<
571         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
572     }
573     // End processor itinerary table
574     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
575           "// end marker\n";
576     OS << "};\n";
577   }
578 }
579 
580 // Emit either the value defined in the TableGen Record, or the default
581 // value defined in the C++ header. The Record is null if the processor does not
582 // define a model.
583 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
584                                          StringRef Name, char Separator) {
585   OS << "  ";
586   int V = R ? R->getValueAsInt(Name) : -1;
587   if (V >= 0)
588     OS << V << Separator << " // " << Name;
589   else
590     OS << "MCSchedModel::Default" << Name << Separator;
591   OS << '\n';
592 }
593 
594 void SubtargetEmitter::EmitProcessorResourceSubUnits(
595     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
596   OS << "\nstatic const unsigned " << ProcModel.ModelName
597      << "ProcResourceSubUnits[] = {\n"
598      << "  0,  // Invalid\n";
599 
600   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
601     Record *PRDef = ProcModel.ProcResourceDefs[i];
602     if (!PRDef->isSubClassOf("ProcResGroup"))
603       continue;
604     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
605     for (Record *RUDef : ResUnits) {
606       Record *const RU =
607           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
608       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
609         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
610       }
611     }
612     OS << "  // " << PRDef->getName() << "\n";
613   }
614   OS << "};\n";
615 }
616 
617 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
618                                       raw_ostream &OS) {
619   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
620   if (Record *RCU = ProcModel.RetireControlUnit) {
621     ReorderBufferSize =
622         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
623     MaxRetirePerCycle =
624         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
625   }
626 
627   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
628   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
629 }
630 
631 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
632                                  unsigned NumRegisterFiles,
633                                  unsigned NumCostEntries, raw_ostream &OS) {
634   if (NumRegisterFiles)
635     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
636   else
637     OS << "nullptr,\n  0";
638 
639   OS << ", // Number of register files.\n  ";
640   if (NumCostEntries)
641     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
642   else
643     OS << "nullptr,\n  ";
644   OS << NumCostEntries << ", // Number of register cost entries.\n";
645 }
646 
647 unsigned
648 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
649                                          raw_ostream &OS) {
650   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
651         return RF.hasDefaultCosts();
652       }))
653     return 0;
654 
655   // Print the RegisterCost table first.
656   OS << "\n// {RegisterClassID, Register Cost}\n";
657   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
658      << "RegisterCosts"
659      << "[] = {\n";
660 
661   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
662     // Skip register files with a default cost table.
663     if (RF.hasDefaultCosts())
664       continue;
665     // Add entries to the cost table.
666     for (const CodeGenRegisterCost &RC : RF.Costs) {
667       OS << "  { ";
668       Record *Rec = RC.RCDef;
669       if (Rec->getValue("Namespace"))
670         OS << Rec->getValueAsString("Namespace") << "::";
671       OS << Rec->getName() << "RegClassID, " << RC.Cost << "},\n";
672     }
673   }
674   OS << "};\n";
675 
676   // Now generate a table with register file info.
677   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl}\n";
678   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
679      << "RegisterFiles"
680      << "[] = {\n"
681      << "  { \"InvalidRegisterFile\", 0, 0, 0 },\n";
682   unsigned CostTblIndex = 0;
683 
684   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
685     OS << "  { ";
686     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
687     unsigned NumCostEntries = RD.Costs.size();
688     OS << NumCostEntries << ", " << CostTblIndex << "},\n";
689     CostTblIndex += NumCostEntries;
690   }
691   OS << "};\n";
692 
693   return CostTblIndex;
694 }
695 
696 static bool EmitPfmIssueCountersTable(const CodeGenProcModel &ProcModel,
697                                       raw_ostream &OS) {
698   unsigned NumCounterDefs = 1 + ProcModel.ProcResourceDefs.size();
699   std::vector<const Record *> CounterDefs(NumCounterDefs);
700   bool HasCounters = false;
701   for (const Record *CounterDef : ProcModel.PfmIssueCounterDefs) {
702     const Record *&CD = CounterDefs[ProcModel.getProcResourceIdx(
703         CounterDef->getValueAsDef("Resource"))];
704     if (CD) {
705       PrintFatalError(CounterDef->getLoc(),
706                       "multiple issue counters for " +
707                           CounterDef->getValueAsDef("Resource")->getName());
708     }
709     CD = CounterDef;
710     HasCounters = true;
711   }
712   if (!HasCounters) {
713     return false;
714   }
715   OS << "\nstatic const char* " << ProcModel.ModelName
716      << "PfmIssueCounters[] = {\n";
717   for (unsigned i = 0; i != NumCounterDefs; ++i) {
718     const Record *CounterDef = CounterDefs[i];
719     if (CounterDef) {
720       const auto PfmCounters = CounterDef->getValueAsListOfStrings("Counters");
721       if (PfmCounters.empty())
722         PrintFatalError(CounterDef->getLoc(), "empty counter list");
723       OS << "  \"" << PfmCounters[0];
724       for (unsigned p = 1, e = PfmCounters.size(); p != e; ++p)
725         OS << ",\" \"" << PfmCounters[p];
726       OS << "\",  // #" << i << " = ";
727       OS << CounterDef->getValueAsDef("Resource")->getName() << "\n";
728     } else {
729       OS << "  nullptr, // #" << i << "\n";
730     }
731   }
732   OS << "};\n";
733   return true;
734 }
735 
736 static void EmitPfmCounters(const CodeGenProcModel &ProcModel,
737                             const bool HasPfmIssueCounters, raw_ostream &OS) {
738   OS << "  {\n";
739   // Emit the cycle counter.
740   if (ProcModel.PfmCycleCounterDef)
741     OS << "    \"" << ProcModel.PfmCycleCounterDef->getValueAsString("Counter")
742        << "\",  // Cycle counter.\n";
743   else
744     OS << "    nullptr,  // No cycle counter.\n";
745 
746   // Emit a reference to issue counters table.
747   if (HasPfmIssueCounters)
748     OS << "    " << ProcModel.ModelName << "PfmIssueCounters\n";
749   else
750     OS << "    nullptr  // No issue counters.\n";
751   OS << "  }\n";
752 }
753 
754 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
755                                               raw_ostream &OS) {
756   // Generate a table of register file descriptors (one entry per each user
757   // defined register file), and a table of register costs.
758   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
759 
760   // Generate a table of ProcRes counter names.
761   const bool HasPfmIssueCounters = EmitPfmIssueCountersTable(ProcModel, OS);
762 
763   // Now generate a table for the extra processor info.
764   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
765      << "ExtraInfo = {\n  ";
766 
767   // Add information related to the retire control unit.
768   EmitRetireControlUnitInfo(ProcModel, OS);
769 
770   // Add information related to the register files (i.e. where to find register
771   // file descriptors and register costs).
772   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
773                        NumCostEntries, OS);
774 
775   EmitPfmCounters(ProcModel, HasPfmIssueCounters, OS);
776 
777   OS << "};\n";
778 }
779 
780 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
781                                               raw_ostream &OS) {
782   EmitProcessorResourceSubUnits(ProcModel, OS);
783 
784   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
785   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
786      << "ProcResources"
787      << "[] = {\n"
788      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
789 
790   unsigned SubUnitsOffset = 1;
791   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
792     Record *PRDef = ProcModel.ProcResourceDefs[i];
793 
794     Record *SuperDef = nullptr;
795     unsigned SuperIdx = 0;
796     unsigned NumUnits = 0;
797     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
798     int BufferSize = PRDef->getValueAsInt("BufferSize");
799     if (PRDef->isSubClassOf("ProcResGroup")) {
800       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
801       for (Record *RU : ResUnits) {
802         NumUnits += RU->getValueAsInt("NumUnits");
803         SubUnitsOffset += RU->getValueAsInt("NumUnits");
804       }
805     }
806     else {
807       // Find the SuperIdx
808       if (PRDef->getValueInit("Super")->isComplete()) {
809         SuperDef =
810             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
811                                          ProcModel, PRDef->getLoc());
812         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
813       }
814       NumUnits = PRDef->getValueAsInt("NumUnits");
815     }
816     // Emit the ProcResourceDesc
817     OS << "  {\"" << PRDef->getName() << "\", ";
818     if (PRDef->getName().size() < 15)
819       OS.indent(15 - PRDef->getName().size());
820     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
821     if (SubUnitsBeginOffset != SubUnitsOffset) {
822       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
823          << SubUnitsBeginOffset;
824     } else {
825       OS << "nullptr";
826     }
827     OS << "}, // #" << i+1;
828     if (SuperDef)
829       OS << ", Super=" << SuperDef->getName();
830     OS << "\n";
831   }
832   OS << "};\n";
833 }
834 
835 // Find the WriteRes Record that defines processor resources for this
836 // SchedWrite.
837 Record *SubtargetEmitter::FindWriteResources(
838   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
839 
840   // Check if the SchedWrite is already subtarget-specific and directly
841   // specifies a set of processor resources.
842   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
843     return SchedWrite.TheDef;
844 
845   Record *AliasDef = nullptr;
846   for (Record *A : SchedWrite.Aliases) {
847     const CodeGenSchedRW &AliasRW =
848       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
849     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
850       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
851       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
852         continue;
853     }
854     if (AliasDef)
855       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
856                     "defined for processor " + ProcModel.ModelName +
857                     " Ensure only one SchedAlias exists per RW.");
858     AliasDef = AliasRW.TheDef;
859   }
860   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
861     return AliasDef;
862 
863   // Check this processor's list of write resources.
864   Record *ResDef = nullptr;
865   for (Record *WR : ProcModel.WriteResDefs) {
866     if (!WR->isSubClassOf("WriteRes"))
867       continue;
868     if (AliasDef == WR->getValueAsDef("WriteType")
869         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
870       if (ResDef) {
871         PrintFatalError(WR->getLoc(), "Resources are defined for both "
872                       "SchedWrite and its alias on processor " +
873                       ProcModel.ModelName);
874       }
875       ResDef = WR;
876     }
877   }
878   // TODO: If ProcModel has a base model (previous generation processor),
879   // then call FindWriteResources recursively with that model here.
880   if (!ResDef) {
881     PrintFatalError(ProcModel.ModelDef->getLoc(),
882                     Twine("Processor does not define resources for ") +
883                     SchedWrite.TheDef->getName());
884   }
885   return ResDef;
886 }
887 
888 /// Find the ReadAdvance record for the given SchedRead on this processor or
889 /// return NULL.
890 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
891                                           const CodeGenProcModel &ProcModel) {
892   // Check for SchedReads that directly specify a ReadAdvance.
893   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
894     return SchedRead.TheDef;
895 
896   // Check this processor's list of aliases for SchedRead.
897   Record *AliasDef = nullptr;
898   for (Record *A : SchedRead.Aliases) {
899     const CodeGenSchedRW &AliasRW =
900       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
901     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
902       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
903       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
904         continue;
905     }
906     if (AliasDef)
907       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
908                     "defined for processor " + ProcModel.ModelName +
909                     " Ensure only one SchedAlias exists per RW.");
910     AliasDef = AliasRW.TheDef;
911   }
912   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
913     return AliasDef;
914 
915   // Check this processor's ReadAdvanceList.
916   Record *ResDef = nullptr;
917   for (Record *RA : ProcModel.ReadAdvanceDefs) {
918     if (!RA->isSubClassOf("ReadAdvance"))
919       continue;
920     if (AliasDef == RA->getValueAsDef("ReadType")
921         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
922       if (ResDef) {
923         PrintFatalError(RA->getLoc(), "Resources are defined for both "
924                       "SchedRead and its alias on processor " +
925                       ProcModel.ModelName);
926       }
927       ResDef = RA;
928     }
929   }
930   // TODO: If ProcModel has a base model (previous generation processor),
931   // then call FindReadAdvance recursively with that model here.
932   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
933     PrintFatalError(ProcModel.ModelDef->getLoc(),
934                     Twine("Processor does not define resources for ") +
935                     SchedRead.TheDef->getName());
936   }
937   return ResDef;
938 }
939 
940 // Expand an explicit list of processor resources into a full list of implied
941 // resource groups and super resources that cover them.
942 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
943                                            std::vector<int64_t> &Cycles,
944                                            const CodeGenProcModel &PM) {
945   assert(PRVec.size() == Cycles.size() && "failed precondition");
946   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
947     Record *PRDef = PRVec[i];
948     RecVec SubResources;
949     if (PRDef->isSubClassOf("ProcResGroup"))
950       SubResources = PRDef->getValueAsListOfDefs("Resources");
951     else {
952       SubResources.push_back(PRDef);
953       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
954       for (Record *SubDef = PRDef;
955            SubDef->getValueInit("Super")->isComplete();) {
956         if (SubDef->isSubClassOf("ProcResGroup")) {
957           // Disallow this for simplicitly.
958           PrintFatalError(SubDef->getLoc(), "Processor resource group "
959                           " cannot be a super resources.");
960         }
961         Record *SuperDef =
962             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
963                                          SubDef->getLoc());
964         PRVec.push_back(SuperDef);
965         Cycles.push_back(Cycles[i]);
966         SubDef = SuperDef;
967       }
968     }
969     for (Record *PR : PM.ProcResourceDefs) {
970       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
971         continue;
972       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
973       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
974       for( ; SubI != SubE; ++SubI) {
975         if (!is_contained(SuperResources, *SubI)) {
976           break;
977         }
978       }
979       if (SubI == SubE) {
980         PRVec.push_back(PR);
981         Cycles.push_back(Cycles[i]);
982       }
983     }
984   }
985 }
986 
987 // Generate the SchedClass table for this processor and update global
988 // tables. Must be called for each processor in order.
989 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
990                                            SchedClassTables &SchedTables) {
991   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
992   if (!ProcModel.hasInstrSchedModel())
993     return;
994 
995   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
996   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
997   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
998     LLVM_DEBUG(SC.dump(&SchedModels));
999 
1000     SCTab.resize(SCTab.size() + 1);
1001     MCSchedClassDesc &SCDesc = SCTab.back();
1002     // SCDesc.Name is guarded by NDEBUG
1003     SCDesc.NumMicroOps = 0;
1004     SCDesc.BeginGroup = false;
1005     SCDesc.EndGroup = false;
1006     SCDesc.WriteProcResIdx = 0;
1007     SCDesc.WriteLatencyIdx = 0;
1008     SCDesc.ReadAdvanceIdx = 0;
1009 
1010     // A Variant SchedClass has no resources of its own.
1011     bool HasVariants = false;
1012     for (const CodeGenSchedTransition &CGT :
1013            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
1014       if (CGT.ProcIndices[0] == 0 ||
1015           is_contained(CGT.ProcIndices, ProcModel.Index)) {
1016         HasVariants = true;
1017         break;
1018       }
1019     }
1020     if (HasVariants) {
1021       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
1022       continue;
1023     }
1024 
1025     // Determine if the SchedClass is actually reachable on this processor. If
1026     // not don't try to locate the processor resources, it will fail.
1027     // If ProcIndices contains 0, this class applies to all processors.
1028     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
1029     if (SC.ProcIndices[0] != 0) {
1030       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1031         continue;
1032     }
1033     IdxVec Writes = SC.Writes;
1034     IdxVec Reads = SC.Reads;
1035     if (!SC.InstRWs.empty()) {
1036       // This class has a default ReadWrite list which can be overridden by
1037       // InstRW definitions.
1038       Record *RWDef = nullptr;
1039       for (Record *RW : SC.InstRWs) {
1040         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1041         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1042           RWDef = RW;
1043           break;
1044         }
1045       }
1046       if (RWDef) {
1047         Writes.clear();
1048         Reads.clear();
1049         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1050                             Writes, Reads);
1051       }
1052     }
1053     if (Writes.empty()) {
1054       // Check this processor's itinerary class resources.
1055       for (Record *I : ProcModel.ItinRWDefs) {
1056         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1057         if (is_contained(Matched, SC.ItinClassDef)) {
1058           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1059                               Writes, Reads);
1060           break;
1061         }
1062       }
1063       if (Writes.empty()) {
1064         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1065                           << " does not have resources for class " << SC.Name
1066                           << '\n');
1067       }
1068     }
1069     // Sum resources across all operand writes.
1070     std::vector<MCWriteProcResEntry> WriteProcResources;
1071     std::vector<MCWriteLatencyEntry> WriteLatencies;
1072     std::vector<std::string> WriterNames;
1073     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1074     for (unsigned W : Writes) {
1075       IdxVec WriteSeq;
1076       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1077                                      ProcModel);
1078 
1079       // For each operand, create a latency entry.
1080       MCWriteLatencyEntry WLEntry;
1081       WLEntry.Cycles = 0;
1082       unsigned WriteID = WriteSeq.back();
1083       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1084       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1085       // from other WriteLatency entries.
1086       if (!SchedModels.hasReadOfWrite(
1087             SchedModels.getSchedWrite(WriteID).TheDef)) {
1088         WriteID = 0;
1089       }
1090       WLEntry.WriteResourceID = WriteID;
1091 
1092       for (unsigned WS : WriteSeq) {
1093 
1094         Record *WriteRes =
1095           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1096 
1097         // Mark the parent class as invalid for unsupported write types.
1098         if (WriteRes->getValueAsBit("Unsupported")) {
1099           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1100           break;
1101         }
1102         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1103         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1104         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1105         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1106         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1107         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1108 
1109         // Create an entry for each ProcResource listed in WriteRes.
1110         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1111         std::vector<int64_t> Cycles =
1112           WriteRes->getValueAsListOfInts("ResourceCycles");
1113 
1114         if (Cycles.empty()) {
1115           // If ResourceCycles is not provided, default to one cycle per
1116           // resource.
1117           Cycles.resize(PRVec.size(), 1);
1118         } else if (Cycles.size() != PRVec.size()) {
1119           // If ResourceCycles is provided, check consistency.
1120           PrintFatalError(
1121               WriteRes->getLoc(),
1122               Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
1123                     "!size(ProcResources): ")
1124                   .concat(Twine(PRVec.size()))
1125                   .concat(" vs ")
1126                   .concat(Twine(Cycles.size())));
1127         }
1128 
1129         ExpandProcResources(PRVec, Cycles, ProcModel);
1130 
1131         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1132              PRIdx != PREnd; ++PRIdx) {
1133           MCWriteProcResEntry WPREntry;
1134           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1135           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1136           WPREntry.Cycles = Cycles[PRIdx];
1137           // If this resource is already used in this sequence, add the current
1138           // entry's cycles so that the same resource appears to be used
1139           // serially, rather than multiple parallel uses. This is important for
1140           // in-order machine where the resource consumption is a hazard.
1141           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1142           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1143             if (WriteProcResources[WPRIdx].ProcResourceIdx
1144                 == WPREntry.ProcResourceIdx) {
1145               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1146               break;
1147             }
1148           }
1149           if (WPRIdx == WPREnd)
1150             WriteProcResources.push_back(WPREntry);
1151         }
1152       }
1153       WriteLatencies.push_back(WLEntry);
1154     }
1155     // Create an entry for each operand Read in this SchedClass.
1156     // Entries must be sorted first by UseIdx then by WriteResourceID.
1157     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1158          UseIdx != EndIdx; ++UseIdx) {
1159       Record *ReadAdvance =
1160         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1161       if (!ReadAdvance)
1162         continue;
1163 
1164       // Mark the parent class as invalid for unsupported write types.
1165       if (ReadAdvance->getValueAsBit("Unsupported")) {
1166         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1167         break;
1168       }
1169       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1170       IdxVec WriteIDs;
1171       if (ValidWrites.empty())
1172         WriteIDs.push_back(0);
1173       else {
1174         for (Record *VW : ValidWrites) {
1175           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1176         }
1177       }
1178       llvm::sort(WriteIDs.begin(), WriteIDs.end());
1179       for(unsigned W : WriteIDs) {
1180         MCReadAdvanceEntry RAEntry;
1181         RAEntry.UseIdx = UseIdx;
1182         RAEntry.WriteResourceID = W;
1183         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1184         ReadAdvanceEntries.push_back(RAEntry);
1185       }
1186     }
1187     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1188       WriteProcResources.clear();
1189       WriteLatencies.clear();
1190       ReadAdvanceEntries.clear();
1191     }
1192     // Add the information for this SchedClass to the global tables using basic
1193     // compression.
1194     //
1195     // WritePrecRes entries are sorted by ProcResIdx.
1196     llvm::sort(WriteProcResources.begin(), WriteProcResources.end(),
1197                LessWriteProcResources());
1198 
1199     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1200     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1201       std::search(SchedTables.WriteProcResources.begin(),
1202                   SchedTables.WriteProcResources.end(),
1203                   WriteProcResources.begin(), WriteProcResources.end());
1204     if (WPRPos != SchedTables.WriteProcResources.end())
1205       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1206     else {
1207       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1208       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1209                                             WriteProcResources.end());
1210     }
1211     // Latency entries must remain in operand order.
1212     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1213     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1214       std::search(SchedTables.WriteLatencies.begin(),
1215                   SchedTables.WriteLatencies.end(),
1216                   WriteLatencies.begin(), WriteLatencies.end());
1217     if (WLPos != SchedTables.WriteLatencies.end()) {
1218       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1219       SCDesc.WriteLatencyIdx = idx;
1220       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1221         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1222             std::string::npos) {
1223           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1224         }
1225     }
1226     else {
1227       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1228       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1229                                         WriteLatencies.begin(),
1230                                         WriteLatencies.end());
1231       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1232                                      WriterNames.begin(), WriterNames.end());
1233     }
1234     // ReadAdvanceEntries must remain in operand order.
1235     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1236     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1237       std::search(SchedTables.ReadAdvanceEntries.begin(),
1238                   SchedTables.ReadAdvanceEntries.end(),
1239                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1240     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1241       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1242     else {
1243       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1244       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1245                                             ReadAdvanceEntries.end());
1246     }
1247   }
1248 }
1249 
1250 // Emit SchedClass tables for all processors and associated global tables.
1251 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1252                                             raw_ostream &OS) {
1253   // Emit global WriteProcResTable.
1254   OS << "\n// {ProcResourceIdx, Cycles}\n"
1255      << "extern const llvm::MCWriteProcResEntry "
1256      << Target << "WriteProcResTable[] = {\n"
1257      << "  { 0,  0}, // Invalid\n";
1258   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1259        WPRIdx != WPREnd; ++WPRIdx) {
1260     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1261     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1262        << format("%2d", WPREntry.Cycles) << "}";
1263     if (WPRIdx + 1 < WPREnd)
1264       OS << ',';
1265     OS << " // #" << WPRIdx << '\n';
1266   }
1267   OS << "}; // " << Target << "WriteProcResTable\n";
1268 
1269   // Emit global WriteLatencyTable.
1270   OS << "\n// {Cycles, WriteResourceID}\n"
1271      << "extern const llvm::MCWriteLatencyEntry "
1272      << Target << "WriteLatencyTable[] = {\n"
1273      << "  { 0,  0}, // Invalid\n";
1274   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1275        WLIdx != WLEnd; ++WLIdx) {
1276     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1277     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1278        << format("%2d", WLEntry.WriteResourceID) << "}";
1279     if (WLIdx + 1 < WLEnd)
1280       OS << ',';
1281     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1282   }
1283   OS << "}; // " << Target << "WriteLatencyTable\n";
1284 
1285   // Emit global ReadAdvanceTable.
1286   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1287      << "extern const llvm::MCReadAdvanceEntry "
1288      << Target << "ReadAdvanceTable[] = {\n"
1289      << "  {0,  0,  0}, // Invalid\n";
1290   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1291        RAIdx != RAEnd; ++RAIdx) {
1292     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1293     OS << "  {" << RAEntry.UseIdx << ", "
1294        << format("%2d", RAEntry.WriteResourceID) << ", "
1295        << format("%2d", RAEntry.Cycles) << "}";
1296     if (RAIdx + 1 < RAEnd)
1297       OS << ',';
1298     OS << " // #" << RAIdx << '\n';
1299   }
1300   OS << "}; // " << Target << "ReadAdvanceTable\n";
1301 
1302   // Emit a SchedClass table for each processor.
1303   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1304          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1305     if (!PI->hasInstrSchedModel())
1306       continue;
1307 
1308     std::vector<MCSchedClassDesc> &SCTab =
1309       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1310 
1311     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1312        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1313     OS << "static const llvm::MCSchedClassDesc "
1314        << PI->ModelName << "SchedClasses[] = {\n";
1315 
1316     // The first class is always invalid. We no way to distinguish it except by
1317     // name and position.
1318     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1319            && "invalid class not first");
1320     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1321        << MCSchedClassDesc::InvalidNumMicroOps
1322        << ", false, false,  0, 0,  0, 0,  0, 0},\n";
1323 
1324     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1325       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1326       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1327       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1328       if (SchedClass.Name.size() < 18)
1329         OS.indent(18 - SchedClass.Name.size());
1330       OS << MCDesc.NumMicroOps
1331          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1332          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1333          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1334          << ", " << MCDesc.NumWriteProcResEntries
1335          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1336          << ", " << MCDesc.NumWriteLatencyEntries
1337          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1338          << ", " << MCDesc.NumReadAdvanceEntries
1339          << "}, // #" << SCIdx << '\n';
1340     }
1341     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1342   }
1343 }
1344 
1345 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1346   // For each processor model.
1347   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1348     // Emit extra processor info if available.
1349     if (PM.hasExtraProcessorInfo())
1350       EmitExtraProcessorInfo(PM, OS);
1351     // Emit processor resource table.
1352     if (PM.hasInstrSchedModel())
1353       EmitProcessorResources(PM, OS);
1354     else if(!PM.ProcResourceDefs.empty())
1355       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1356                     "ProcResources without defining WriteRes SchedWriteRes");
1357 
1358     // Begin processor itinerary properties
1359     OS << "\n";
1360     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1361     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1362     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1363     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1364     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1365     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1366     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1367 
1368     bool PostRAScheduler =
1369       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1370 
1371     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1372        << "PostRAScheduler\n";
1373 
1374     bool CompleteModel =
1375       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1376 
1377     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1378        << "CompleteModel\n";
1379 
1380     OS << "  " << PM.Index << ", // Processor ID\n";
1381     if (PM.hasInstrSchedModel())
1382       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1383          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1384          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1385          << "  " << (SchedModels.schedClassEnd()
1386                      - SchedModels.schedClassBegin()) << ",\n";
1387     else
1388       OS << "  nullptr, nullptr, 0, 0,"
1389          << " // No instruction-level machine model.\n";
1390     if (PM.hasItineraries())
1391       OS << "  " << PM.ItinsDef->getName() << ",\n";
1392     else
1393       OS << "  nullptr, // No Itinerary\n";
1394     if (PM.hasExtraProcessorInfo())
1395       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1396     else
1397       OS << "  nullptr // No extra processor descriptor\n";
1398     OS << "};\n";
1399   }
1400 }
1401 
1402 //
1403 // EmitProcessorLookup - generate cpu name to itinerary lookup table.
1404 //
1405 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1406   // Gather and sort processor information
1407   std::vector<Record*> ProcessorList =
1408                           Records.getAllDerivedDefinitions("Processor");
1409   llvm::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName());
1410 
1411   // Begin processor table
1412   OS << "\n";
1413   OS << "// Sorted (by key) array of itineraries for CPU subtype.\n"
1414      << "extern const llvm::SubtargetInfoKV "
1415      << Target << "ProcSchedKV[] = {\n";
1416 
1417   // For each processor
1418   for (Record *Processor : ProcessorList) {
1419     StringRef Name = Processor->getValueAsString("Name");
1420     const std::string &ProcModelName =
1421       SchedModels.getModelForProc(Processor).ModelName;
1422 
1423     // Emit as { "cpu", procinit },
1424     OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n";
1425   }
1426 
1427   // End processor table
1428   OS << "};\n";
1429 }
1430 
1431 //
1432 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1433 //
1434 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1435   OS << "#ifdef DBGFIELD\n"
1436      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1437      << "#endif\n"
1438      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1439      << "#define DBGFIELD(x) x,\n"
1440      << "#else\n"
1441      << "#define DBGFIELD(x)\n"
1442      << "#endif\n";
1443 
1444   if (SchedModels.hasItineraries()) {
1445     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1446     // Emit the stage data
1447     EmitStageAndOperandCycleData(OS, ProcItinLists);
1448     EmitItineraries(OS, ProcItinLists);
1449   }
1450   OS << "\n// ===============================================================\n"
1451      << "// Data tables for the new per-operand machine model.\n";
1452 
1453   SchedClassTables SchedTables;
1454   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1455     GenSchedClassTables(ProcModel, SchedTables);
1456   }
1457   EmitSchedClassTables(SchedTables, OS);
1458 
1459   // Emit the processor machine model
1460   EmitProcessorModels(OS);
1461   // Emit the processor lookup data
1462   EmitProcessorLookup(OS);
1463 
1464   OS << "\n#undef DBGFIELD";
1465 }
1466 
1467 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1468   std::string Buffer;
1469   raw_string_ostream Stream(Buffer);
1470 
1471   // Collect all the PredicateProlog records and print them to the output
1472   // stream.
1473   std::vector<Record *> Prologs =
1474       Records.getAllDerivedDefinitions("PredicateProlog");
1475   llvm::sort(Prologs.begin(), Prologs.end(), LessRecord());
1476   for (Record *P : Prologs)
1477     Stream << P->getValueAsString("Code") << '\n';
1478 
1479   Stream.flush();
1480   OS << Buffer;
1481 }
1482 
1483 static void emitPredicates(const CodeGenSchedTransition &T,
1484                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1485                            raw_ostream &OS) {
1486   std::string Buffer;
1487   raw_string_ostream SS(Buffer);
1488 
1489   auto IsTruePredicate = [](const Record *Rec) {
1490     return Rec->isSubClassOf("MCSchedPredicate") &&
1491            Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1492   };
1493 
1494   // If not all predicates are MCTrue, then we need an if-stmt.
1495   unsigned NumNonTruePreds =
1496       T.PredTerm.size() - count_if(T.PredTerm, IsTruePredicate);
1497 
1498   SS.indent(PE.getIndentLevel() * 2);
1499 
1500   if (NumNonTruePreds) {
1501     bool FirstNonTruePredicate = true;
1502     SS << "if (";
1503 
1504     PE.setIndentLevel(PE.getIndentLevel() + 2);
1505 
1506     for (const Record *Rec : T.PredTerm) {
1507       // Skip predicates that evaluate to "true".
1508       if (IsTruePredicate(Rec))
1509         continue;
1510 
1511       if (FirstNonTruePredicate) {
1512         FirstNonTruePredicate = false;
1513       } else {
1514         SS << "\n";
1515         SS.indent(PE.getIndentLevel() * 2);
1516         SS << "&& ";
1517       }
1518 
1519       if (Rec->isSubClassOf("MCSchedPredicate")) {
1520         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1521         continue;
1522       }
1523 
1524       // Expand this legacy predicate and wrap it around braces if there is more
1525       // than one predicate to expand.
1526       SS << ((NumNonTruePreds > 1) ? "(" : "")
1527          << Rec->getValueAsString("Predicate")
1528          << ((NumNonTruePreds > 1) ? ")" : "");
1529     }
1530 
1531     SS << ")\n"; // end of if-stmt
1532     PE.decreaseIndentLevel();
1533     SS.indent(PE.getIndentLevel() * 2);
1534     PE.decreaseIndentLevel();
1535   }
1536 
1537   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1538   SS.flush();
1539   OS << Buffer;
1540 }
1541 
1542 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1543 // epilogue code for the auto-generated helper.
1544 void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) {
1545   if (ShouldReturnZero) {
1546     OS << "  // Don't know how to resolve this scheduling class.\n"
1547        << "  return 0;\n";
1548     return;
1549   }
1550 
1551   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1552 }
1553 
1554 bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1555   return all_of(T.PredTerm, [](const Record *Rec) {
1556     return Rec->isSubClassOf("MCSchedPredicate");
1557   });
1558 }
1559 
1560 void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1561                            IdxVec &VariantClasses,
1562                            bool OnlyExpandMCInstPredicates) {
1563   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1564     // Ignore non-variant scheduling classes.
1565     if (SC.Transitions.empty())
1566       continue;
1567 
1568     if (OnlyExpandMCInstPredicates) {
1569       // Ignore this variant scheduling class if transitions don't uses any
1570       // MCSchedPredicate definitions.
1571       if (!all_of(SC.Transitions, [](const CodeGenSchedTransition &T) {
1572             return hasMCSchedPredicates(T);
1573           }))
1574         continue;
1575     }
1576 
1577     VariantClasses.push_back(SC.Index);
1578   }
1579 }
1580 
1581 void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) {
1582   // A variant scheduling class may define transitions for multiple
1583   // processors.  This function identifies wich processors are associated with
1584   // transition rules specified by variant class `SC`.
1585   for (const CodeGenSchedTransition &T : SC.Transitions) {
1586     IdxVec PI;
1587     std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(),
1588                    ProcIndices.begin(), ProcIndices.end(),
1589                    std::back_inserter(PI));
1590     ProcIndices.swap(PI);
1591   }
1592 }
1593 
1594 void SubtargetEmitter::emitSchedModelHelpersImpl(
1595     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1596   IdxVec VariantClasses;
1597   collectVariantClasses(SchedModels, VariantClasses,
1598                         OnlyExpandMCInstPredicates);
1599 
1600   if (VariantClasses.empty()) {
1601     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1602     return;
1603   }
1604 
1605   // Construct a switch statement where the condition is a check on the
1606   // scheduling class identifier. There is a `case` for every variant class
1607   // defined by the processor models of this target.
1608   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1609   // a variant scheduling class to another scheduling class.  Rules are
1610   // described by instances of CodeGenSchedTransition. Note that transitions may
1611   // not be valid for all processors.
1612   OS << "  switch (SchedClass) {\n";
1613   for (unsigned VC : VariantClasses) {
1614     IdxVec ProcIndices;
1615     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1616     collectProcessorIndices(SC, ProcIndices);
1617 
1618     OS << "  case " << VC << ": // " << SC.Name << '\n';
1619 
1620     PredicateExpander PE(Target);
1621     PE.setByRef(false);
1622     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1623     for (unsigned PI : ProcIndices) {
1624       OS << "    ";
1625       // Emit a guard on the processor ID.
1626       if (PI != 0) {
1627         OS << (OnlyExpandMCInstPredicates
1628                    ? "if (CPUID == "
1629                    : "if (SchedModel->getProcessorID() == ");
1630         OS << PI << ") ";
1631         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1632       }
1633 
1634       // Now emit transitions associated with processor PI.
1635       for (const CodeGenSchedTransition &T : SC.Transitions) {
1636         if (PI != 0 && !count(T.ProcIndices, PI))
1637           continue;
1638         PE.setIndentLevel(3);
1639         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1640       }
1641 
1642       OS << "    }\n";
1643       if (PI == 0)
1644         break;
1645     }
1646 
1647     if (SC.isInferred())
1648       OS << "    return " << SC.Index << ";\n";
1649     OS << "    break;\n";
1650   }
1651 
1652   OS << "  };\n";
1653 
1654   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1655 }
1656 
1657 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1658                                              raw_ostream &OS) {
1659   OS << "unsigned " << ClassName
1660      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1661      << " const TargetSchedModel *SchedModel) const {\n";
1662 
1663   // Emit the predicate prolog code.
1664   emitPredicateProlog(Records, OS);
1665 
1666   // Emit target predicates.
1667   emitSchedModelHelpersImpl(OS);
1668 
1669   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1670 
1671   OS << "unsigned " << ClassName
1672      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1673      << " unsigned CPUID) const {\n"
1674      << "  return " << Target << "_MC"
1675      << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID);\n"
1676      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1677 
1678   STIPredicateExpander PE(Target);
1679   PE.setClassPrefix(ClassName);
1680   PE.setExpandDefinition(true);
1681   PE.setByRef(false);
1682   PE.setIndentLevel(0);
1683 
1684   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1685     PE.expandSTIPredicate(OS, Fn);
1686 }
1687 
1688 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1689                                        raw_ostream &OS) {
1690   const CodeGenHwModes &CGH = TGT.getHwModes();
1691   assert(CGH.getNumModeIds() > 0);
1692   if (CGH.getNumModeIds() == 1)
1693     return;
1694 
1695   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1696   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1697     const HwMode &HM = CGH.getMode(M);
1698     OS << "  if (checkFeatures(\"" << HM.Features
1699        << "\")) return " << M << ";\n";
1700   }
1701   OS << "  return 0;\n}\n";
1702 }
1703 
1704 //
1705 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1706 // the subtarget features string.
1707 //
1708 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1709                                              unsigned NumFeatures,
1710                                              unsigned NumProcs) {
1711   std::vector<Record*> Features =
1712                        Records.getAllDerivedDefinitions("SubtargetFeature");
1713   llvm::sort(Features.begin(), Features.end(), LessRecord());
1714 
1715   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1716      << "// subtarget options.\n"
1717      << "void llvm::";
1718   OS << Target;
1719   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1720      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1721      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1722 
1723   if (Features.empty()) {
1724     OS << "}\n";
1725     return;
1726   }
1727 
1728   OS << "  InitMCProcessorInfo(CPU, FS);\n"
1729      << "  const FeatureBitset& Bits = getFeatureBits();\n";
1730 
1731   for (Record *R : Features) {
1732     // Next record
1733     StringRef Instance = R->getName();
1734     StringRef Value = R->getValueAsString("Value");
1735     StringRef Attribute = R->getValueAsString("Attribute");
1736 
1737     if (Value=="true" || Value=="false")
1738       OS << "  if (Bits[" << Target << "::"
1739          << Instance << "]) "
1740          << Attribute << " = " << Value << ";\n";
1741     else
1742       OS << "  if (Bits[" << Target << "::"
1743          << Instance << "] && "
1744          << Attribute << " < " << Value << ") "
1745          << Attribute << " = " << Value << ";\n";
1746   }
1747 
1748   OS << "}\n";
1749 }
1750 
1751 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1752   OS << "namespace " << Target << "_MC {\n"
1753      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1754      << "    const MCInst *MI, unsigned CPUID) {\n";
1755   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1756   OS << "}\n";
1757   OS << "} // end of namespace " << Target << "_MC\n\n";
1758 
1759   OS << "struct " << Target
1760      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1761   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT, \n"
1762      << "    StringRef CPU, StringRef FS, ArrayRef<SubtargetFeatureKV> PF,\n"
1763      << "    ArrayRef<SubtargetFeatureKV> PD,\n"
1764      << "    const SubtargetInfoKV *ProcSched,\n"
1765      << "    const MCWriteProcResEntry *WPR,\n"
1766      << "    const MCWriteLatencyEntry *WL,\n"
1767      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1768      << "    const unsigned *OC, const unsigned *FP) :\n"
1769      << "      MCSubtargetInfo(TT, CPU, FS, PF, PD, ProcSched,\n"
1770      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1771      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1772      << "      const MCInst *MI, unsigned CPUID) const override {\n"
1773      << "    return " << Target << "_MC"
1774      << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID); \n";
1775   OS << "  }\n";
1776   OS << "};\n";
1777 }
1778 
1779 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1780   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1781   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1782 
1783   STIPredicateExpander PE(Target);
1784   PE.setExpandForMC(true);
1785   PE.setByRef(true);
1786   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1787     PE.expandSTIPredicate(OS, Fn);
1788 
1789   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1790 
1791   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1792   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1793 
1794   std::string ClassPrefix = Target + "MCInstrAnalysis";
1795   PE.setExpandDefinition(true);
1796   PE.setClassPrefix(ClassPrefix);
1797   PE.setIndentLevel(0);
1798   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1799     PE.expandSTIPredicate(OS, Fn);
1800 
1801   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1802 }
1803 
1804 //
1805 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1806 //
1807 void SubtargetEmitter::run(raw_ostream &OS) {
1808   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1809 
1810   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1811   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1812 
1813   OS << "namespace llvm {\n";
1814   Enumeration(OS);
1815   OS << "} // end namespace llvm\n\n";
1816   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1817 
1818   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1819   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
1820 
1821   OS << "namespace llvm {\n";
1822 #if 0
1823   OS << "namespace {\n";
1824 #endif
1825   unsigned NumFeatures = FeatureKeyValues(OS);
1826   OS << "\n";
1827   unsigned NumProcs = CPUKeyValues(OS);
1828   OS << "\n";
1829   EmitSchedModel(OS);
1830   OS << "\n";
1831 #if 0
1832   OS << "} // end anonymous namespace\n\n";
1833 #endif
1834 
1835   // MCInstrInfo initialization routine.
1836   emitGenMCSubtargetInfo(OS);
1837 
1838   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1839      << "MCSubtargetInfoImpl("
1840      << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1841   OS << "  return new " << Target << "GenMCSubtargetInfo(TT, CPU, FS, ";
1842   if (NumFeatures)
1843     OS << Target << "FeatureKV, ";
1844   else
1845     OS << "None, ";
1846   if (NumProcs)
1847     OS << Target << "SubTypeKV, ";
1848   else
1849     OS << "None, ";
1850   OS << '\n'; OS.indent(22);
1851   OS << Target << "ProcSchedKV, "
1852      << Target << "WriteProcResTable, "
1853      << Target << "WriteLatencyTable, "
1854      << Target << "ReadAdvanceTable, ";
1855   OS << '\n'; OS.indent(22);
1856   if (SchedModels.hasItineraries()) {
1857     OS << Target << "Stages, "
1858        << Target << "OperandCycles, "
1859        << Target << "ForwardingPaths";
1860   } else
1861     OS << "nullptr, nullptr, nullptr";
1862   OS << ");\n}\n\n";
1863 
1864   OS << "} // end namespace llvm\n\n";
1865 
1866   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1867 
1868   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1869   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1870 
1871   OS << "#include \"llvm/Support/Debug.h\"\n";
1872   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1873   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1874 
1875   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1876 
1877   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1878   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1879   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1880 
1881   std::string ClassName = Target + "GenSubtargetInfo";
1882   OS << "namespace llvm {\n";
1883   OS << "class DFAPacketizer;\n";
1884   OS << "namespace " << Target << "_MC {\n"
1885      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1886      << " const MCInst *MI, unsigned CPUID);\n"
1887      << "}\n\n";
1888   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1889      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1890      << "StringRef FS);\n"
1891      << "public:\n"
1892      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1893      << " const MachineInstr *DefMI,"
1894      << " const TargetSchedModel *SchedModel) const override;\n"
1895      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1896      << " const MCInst *MI, unsigned CPUID) const override;\n"
1897      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1898      << " const;\n";
1899   if (TGT.getHwModes().getNumModeIds() > 1)
1900     OS << "  unsigned getHwMode() const override;\n";
1901 
1902   STIPredicateExpander PE(Target);
1903   PE.setByRef(false);
1904   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1905     PE.expandSTIPredicate(OS, Fn);
1906 
1907   OS << "};\n"
1908      << "} // end namespace llvm\n\n";
1909 
1910   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1911 
1912   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1913   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1914 
1915   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1916   OS << "namespace llvm {\n";
1917   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1918   OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1919   OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1920   OS << "extern const llvm::MCWriteProcResEntry "
1921      << Target << "WriteProcResTable[];\n";
1922   OS << "extern const llvm::MCWriteLatencyEntry "
1923      << Target << "WriteLatencyTable[];\n";
1924   OS << "extern const llvm::MCReadAdvanceEntry "
1925      << Target << "ReadAdvanceTable[];\n";
1926 
1927   if (SchedModels.hasItineraries()) {
1928     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1929     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1930     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1931   }
1932 
1933   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1934      << "StringRef FS)\n"
1935      << "  : TargetSubtargetInfo(TT, CPU, FS, ";
1936   if (NumFeatures)
1937     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1938   else
1939     OS << "None, ";
1940   if (NumProcs)
1941     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1942   else
1943     OS << "None, ";
1944   OS << '\n'; OS.indent(24);
1945   OS << Target << "ProcSchedKV, "
1946      << Target << "WriteProcResTable, "
1947      << Target << "WriteLatencyTable, "
1948      << Target << "ReadAdvanceTable, ";
1949   OS << '\n'; OS.indent(24);
1950   if (SchedModels.hasItineraries()) {
1951     OS << Target << "Stages, "
1952        << Target << "OperandCycles, "
1953        << Target << "ForwardingPaths";
1954   } else
1955     OS << "nullptr, nullptr, nullptr";
1956   OS << ") {}\n\n";
1957 
1958   EmitSchedModelHelpers(ClassName, OS);
1959   EmitHwModeCheck(ClassName, OS);
1960 
1961   OS << "} // end namespace llvm\n\n";
1962 
1963   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1964 
1965   EmitMCInstrAnalysisPredicateFunctions(OS);
1966 }
1967 
1968 namespace llvm {
1969 
1970 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1971   CodeGenTarget CGTarget(RK);
1972   SubtargetEmitter(RK, CGTarget).run(OS);
1973 }
1974 
1975 } // end namespace llvm
1976