1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS); 77 unsigned FeatureKeyValues(raw_ostream &OS); 78 unsigned CPUKeyValues(raw_ostream &OS); 79 void FormItineraryStageString(const std::string &Names, 80 Record *ItinData, std::string &ItinString, 81 unsigned &NStages); 82 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 83 unsigned &NOperandCycles); 84 void FormItineraryBypassString(const std::string &Names, 85 Record *ItinData, 86 std::string &ItinString, unsigned NOperandCycles); 87 void EmitStageAndOperandCycleData(raw_ostream &OS, 88 std::vector<std::vector<InstrItinerary>> 89 &ProcItinLists); 90 void EmitItineraries(raw_ostream &OS, 91 std::vector<std::vector<InstrItinerary>> 92 &ProcItinLists); 93 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 94 char Separator); 95 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 98 const CodeGenProcModel &ProcModel); 99 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 100 const CodeGenProcModel &ProcModel); 101 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 102 const CodeGenProcModel &ProcModel); 103 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 104 SchedClassTables &SchedTables); 105 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 106 void EmitProcessorModels(raw_ostream &OS); 107 void EmitProcessorLookup(raw_ostream &OS); 108 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 109 void EmitSchedModel(raw_ostream &OS); 110 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 111 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 112 unsigned NumProcs); 113 114 public: 115 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 116 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 117 Target(TGT.getName()) {} 118 119 void run(raw_ostream &o); 120 }; 121 122 } // end anonymous namespace 123 124 // 125 // Enumeration - Emit the specified class as an enumeration. 126 // 127 void SubtargetEmitter::Enumeration(raw_ostream &OS) { 128 // Get all records of class and sort 129 std::vector<Record*> DefList = 130 Records.getAllDerivedDefinitions("SubtargetFeature"); 131 std::sort(DefList.begin(), DefList.end(), LessRecord()); 132 133 unsigned N = DefList.size(); 134 if (N == 0) 135 return; 136 if (N > MAX_SUBTARGET_FEATURES) 137 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 138 139 OS << "namespace " << Target << " {\n"; 140 141 // Open enumeration. 142 OS << "enum {\n"; 143 144 // For each record 145 for (unsigned i = 0; i < N; ++i) { 146 // Next record 147 Record *Def = DefList[i]; 148 149 // Get and emit name 150 OS << " " << Def->getName() << " = " << i << ",\n"; 151 } 152 153 // Close enumeration and namespace 154 OS << "};\n"; 155 OS << "} // end namespace " << Target << "\n"; 156 } 157 158 // 159 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 160 // command line. 161 // 162 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 163 // Gather and sort all the features 164 std::vector<Record*> FeatureList = 165 Records.getAllDerivedDefinitions("SubtargetFeature"); 166 167 if (FeatureList.empty()) 168 return 0; 169 170 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 171 172 // Begin feature table 173 OS << "// Sorted (by key) array of values for CPU features.\n" 174 << "extern const llvm::SubtargetFeatureKV " << Target 175 << "FeatureKV[] = {\n"; 176 177 // For each feature 178 unsigned NumFeatures = 0; 179 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 180 // Next feature 181 Record *Feature = FeatureList[i]; 182 183 StringRef Name = Feature->getName(); 184 StringRef CommandLineName = Feature->getValueAsString("Name"); 185 StringRef Desc = Feature->getValueAsString("Desc"); 186 187 if (CommandLineName.empty()) continue; 188 189 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 190 OS << " { " 191 << "\"" << CommandLineName << "\", " 192 << "\"" << Desc << "\", " 193 << "{ " << Target << "::" << Name << " }, "; 194 195 const std::vector<Record*> &ImpliesList = 196 Feature->getValueAsListOfDefs("Implies"); 197 198 OS << "{"; 199 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 200 OS << " " << Target << "::" << ImpliesList[j]->getName(); 201 if (++j < M) OS << ","; 202 } 203 OS << " } },\n"; 204 ++NumFeatures; 205 } 206 207 // End feature table 208 OS << "};\n"; 209 210 return NumFeatures; 211 } 212 213 // 214 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 215 // line. 216 // 217 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 218 // Gather and sort processor information 219 std::vector<Record*> ProcessorList = 220 Records.getAllDerivedDefinitions("Processor"); 221 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 222 223 // Begin processor table 224 OS << "// Sorted (by key) array of values for CPU subtype.\n" 225 << "extern const llvm::SubtargetFeatureKV " << Target 226 << "SubTypeKV[] = {\n"; 227 228 // For each processor 229 for (Record *Processor : ProcessorList) { 230 StringRef Name = Processor->getValueAsString("Name"); 231 const std::vector<Record*> &FeatureList = 232 Processor->getValueAsListOfDefs("Features"); 233 234 // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, 235 OS << " { " 236 << "\"" << Name << "\", " 237 << "\"Select the " << Name << " processor\", "; 238 239 OS << "{"; 240 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 241 OS << " " << Target << "::" << FeatureList[j]->getName(); 242 if (++j < M) OS << ","; 243 } 244 // The { } is for the "implies" section of this data structure. 245 OS << " }, { } },\n"; 246 } 247 248 // End processor table 249 OS << "};\n"; 250 251 return ProcessorList.size(); 252 } 253 254 // 255 // FormItineraryStageString - Compose a string containing the stage 256 // data initialization for the specified itinerary. N is the number 257 // of stages. 258 // 259 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 260 Record *ItinData, 261 std::string &ItinString, 262 unsigned &NStages) { 263 // Get states list 264 const std::vector<Record*> &StageList = 265 ItinData->getValueAsListOfDefs("Stages"); 266 267 // For each stage 268 unsigned N = NStages = StageList.size(); 269 for (unsigned i = 0; i < N;) { 270 // Next stage 271 const Record *Stage = StageList[i]; 272 273 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 274 int Cycles = Stage->getValueAsInt("Cycles"); 275 ItinString += " { " + itostr(Cycles) + ", "; 276 277 // Get unit list 278 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 279 280 // For each unit 281 for (unsigned j = 0, M = UnitList.size(); j < M;) { 282 // Add name and bitwise or 283 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 284 if (++j < M) ItinString += " | "; 285 } 286 287 int TimeInc = Stage->getValueAsInt("TimeInc"); 288 ItinString += ", " + itostr(TimeInc); 289 290 int Kind = Stage->getValueAsInt("Kind"); 291 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 292 293 // Close off stage 294 ItinString += " }"; 295 if (++i < N) ItinString += ", "; 296 } 297 } 298 299 // 300 // FormItineraryOperandCycleString - Compose a string containing the 301 // operand cycle initialization for the specified itinerary. N is the 302 // number of operands that has cycles specified. 303 // 304 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 305 std::string &ItinString, unsigned &NOperandCycles) { 306 // Get operand cycle list 307 const std::vector<int64_t> &OperandCycleList = 308 ItinData->getValueAsListOfInts("OperandCycles"); 309 310 // For each operand cycle 311 unsigned N = NOperandCycles = OperandCycleList.size(); 312 for (unsigned i = 0; i < N;) { 313 // Next operand cycle 314 const int OCycle = OperandCycleList[i]; 315 316 ItinString += " " + itostr(OCycle); 317 if (++i < N) ItinString += ", "; 318 } 319 } 320 321 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 322 Record *ItinData, 323 std::string &ItinString, 324 unsigned NOperandCycles) { 325 const std::vector<Record*> &BypassList = 326 ItinData->getValueAsListOfDefs("Bypasses"); 327 unsigned N = BypassList.size(); 328 unsigned i = 0; 329 for (; i < N;) { 330 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 331 if (++i < NOperandCycles) ItinString += ", "; 332 } 333 for (; i < NOperandCycles;) { 334 ItinString += " 0"; 335 if (++i < NOperandCycles) ItinString += ", "; 336 } 337 } 338 339 // 340 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 341 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 342 // by CodeGenSchedClass::Index. 343 // 344 void SubtargetEmitter:: 345 EmitStageAndOperandCycleData(raw_ostream &OS, 346 std::vector<std::vector<InstrItinerary>> 347 &ProcItinLists) { 348 // Multiple processor models may share an itinerary record. Emit it once. 349 SmallPtrSet<Record*, 8> ItinsDefSet; 350 351 // Emit functional units for all the itineraries. 352 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 353 354 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 355 continue; 356 357 std::vector<Record*> FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 358 if (FUs.empty()) 359 continue; 360 361 StringRef Name = ProcModel.ItinsDef->getName(); 362 OS << "\n// Functional units for \"" << Name << "\"\n" 363 << "namespace " << Name << "FU {\n"; 364 365 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 366 OS << " const unsigned " << FUs[j]->getName() 367 << " = 1 << " << j << ";\n"; 368 369 OS << "} // end namespace " << Name << "FU\n"; 370 371 std::vector<Record*> BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 372 if (!BPs.empty()) { 373 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 374 << "\"\n" << "namespace " << Name << "Bypass {\n"; 375 376 OS << " const unsigned NoBypass = 0;\n"; 377 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 378 OS << " const unsigned " << BPs[j]->getName() 379 << " = 1 << " << j << ";\n"; 380 381 OS << "} // end namespace " << Name << "Bypass\n"; 382 } 383 } 384 385 // Begin stages table 386 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 387 "Stages[] = {\n"; 388 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 389 390 // Begin operand cycle table 391 std::string OperandCycleTable = "extern const unsigned " + Target + 392 "OperandCycles[] = {\n"; 393 OperandCycleTable += " 0, // No itinerary\n"; 394 395 // Begin pipeline bypass table 396 std::string BypassTable = "extern const unsigned " + Target + 397 "ForwardingPaths[] = {\n"; 398 BypassTable += " 0, // No itinerary\n"; 399 400 // For each Itinerary across all processors, add a unique entry to the stages, 401 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 402 // object with computed offsets to the ProcItinLists result. 403 unsigned StageCount = 1, OperandCycleCount = 1; 404 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 405 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 406 // Add process itinerary to the list. 407 ProcItinLists.resize(ProcItinLists.size()+1); 408 409 // If this processor defines no itineraries, then leave the itinerary list 410 // empty. 411 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 412 if (!ProcModel.hasItineraries()) 413 continue; 414 415 StringRef Name = ProcModel.ItinsDef->getName(); 416 417 ItinList.resize(SchedModels.numInstrSchedClasses()); 418 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 419 420 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 421 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 422 423 // Next itinerary data 424 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 425 426 // Get string and stage count 427 std::string ItinStageString; 428 unsigned NStages = 0; 429 if (ItinData) 430 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 431 432 // Get string and operand cycle count 433 std::string ItinOperandCycleString; 434 unsigned NOperandCycles = 0; 435 std::string ItinBypassString; 436 if (ItinData) { 437 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 438 NOperandCycles); 439 440 FormItineraryBypassString(Name, ItinData, ItinBypassString, 441 NOperandCycles); 442 } 443 444 // Check to see if stage already exists and create if it doesn't 445 unsigned FindStage = 0; 446 if (NStages > 0) { 447 FindStage = ItinStageMap[ItinStageString]; 448 if (FindStage == 0) { 449 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 450 StageTable += ItinStageString + ", // " + itostr(StageCount); 451 if (NStages > 1) 452 StageTable += "-" + itostr(StageCount + NStages - 1); 453 StageTable += "\n"; 454 // Record Itin class number. 455 ItinStageMap[ItinStageString] = FindStage = StageCount; 456 StageCount += NStages; 457 } 458 } 459 460 // Check to see if operand cycle already exists and create if it doesn't 461 unsigned FindOperandCycle = 0; 462 if (NOperandCycles > 0) { 463 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 464 FindOperandCycle = ItinOperandMap[ItinOperandString]; 465 if (FindOperandCycle == 0) { 466 // Emit as cycle, // index 467 OperandCycleTable += ItinOperandCycleString + ", // "; 468 std::string OperandIdxComment = itostr(OperandCycleCount); 469 if (NOperandCycles > 1) 470 OperandIdxComment += "-" 471 + itostr(OperandCycleCount + NOperandCycles - 1); 472 OperandCycleTable += OperandIdxComment + "\n"; 473 // Record Itin class number. 474 ItinOperandMap[ItinOperandCycleString] = 475 FindOperandCycle = OperandCycleCount; 476 // Emit as bypass, // index 477 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 478 OperandCycleCount += NOperandCycles; 479 } 480 } 481 482 // Set up itinerary as location and location + stage count 483 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 484 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 485 FindOperandCycle, 486 FindOperandCycle + NOperandCycles }; 487 488 // Inject - empty slots will be 0, 0 489 ItinList[SchedClassIdx] = Intinerary; 490 } 491 } 492 493 // Closing stage 494 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 495 StageTable += "};\n"; 496 497 // Closing operand cycles 498 OperandCycleTable += " 0 // End operand cycles\n"; 499 OperandCycleTable += "};\n"; 500 501 BypassTable += " 0 // End bypass tables\n"; 502 BypassTable += "};\n"; 503 504 // Emit tables. 505 OS << StageTable; 506 OS << OperandCycleTable; 507 OS << BypassTable; 508 } 509 510 // 511 // EmitProcessorData - Generate data for processor itineraries that were 512 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 513 // Itineraries for each processor. The Itinerary lists are indexed on 514 // CodeGenSchedClass::Index. 515 // 516 void SubtargetEmitter:: 517 EmitItineraries(raw_ostream &OS, 518 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 519 // Multiple processor models may share an itinerary record. Emit it once. 520 SmallPtrSet<Record*, 8> ItinsDefSet; 521 522 // For each processor's machine model 523 std::vector<std::vector<InstrItinerary>>::iterator 524 ProcItinListsIter = ProcItinLists.begin(); 525 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 526 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 527 528 Record *ItinsDef = PI->ItinsDef; 529 if (!ItinsDefSet.insert(ItinsDef).second) 530 continue; 531 532 // Get the itinerary list for the processor. 533 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 534 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 535 536 // Empty itineraries aren't referenced anywhere in the tablegen output 537 // so don't emit them. 538 if (ItinList.empty()) 539 continue; 540 541 OS << "\n"; 542 OS << "static const llvm::InstrItinerary "; 543 544 // Begin processor itinerary table 545 OS << ItinsDef->getName() << "[] = {\n"; 546 547 // For each itinerary class in CodeGenSchedClass::Index order. 548 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 549 InstrItinerary &Intinerary = ItinList[j]; 550 551 // Emit Itinerary in the form of 552 // { firstStage, lastStage, firstCycle, lastCycle } // index 553 OS << " { " << 554 Intinerary.NumMicroOps << ", " << 555 Intinerary.FirstStage << ", " << 556 Intinerary.LastStage << ", " << 557 Intinerary.FirstOperandCycle << ", " << 558 Intinerary.LastOperandCycle << " }" << 559 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 560 } 561 // End processor itinerary table 562 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 563 OS << "};\n"; 564 } 565 } 566 567 // Emit either the value defined in the TableGen Record, or the default 568 // value defined in the C++ header. The Record is null if the processor does not 569 // define a model. 570 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 571 StringRef Name, char Separator) { 572 OS << " "; 573 int V = R ? R->getValueAsInt(Name) : -1; 574 if (V >= 0) 575 OS << V << Separator << " // " << Name; 576 else 577 OS << "MCSchedModel::Default" << Name << Separator; 578 OS << '\n'; 579 } 580 581 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 582 raw_ostream &OS) { 583 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 584 OS << "static const llvm::MCProcResourceDesc " 585 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 586 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0},\n"; 587 588 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 589 Record *PRDef = ProcModel.ProcResourceDefs[i]; 590 591 Record *SuperDef = nullptr; 592 unsigned SuperIdx = 0; 593 unsigned NumUnits = 0; 594 int BufferSize = PRDef->getValueAsInt("BufferSize"); 595 if (PRDef->isSubClassOf("ProcResGroup")) { 596 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 597 for (Record *RU : ResUnits) { 598 NumUnits += RU->getValueAsInt("NumUnits"); 599 } 600 } 601 else { 602 // Find the SuperIdx 603 if (PRDef->getValueInit("Super")->isComplete()) { 604 SuperDef = 605 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 606 ProcModel, PRDef->getLoc()); 607 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 608 } 609 NumUnits = PRDef->getValueAsInt("NumUnits"); 610 } 611 // Emit the ProcResourceDesc 612 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 613 if (PRDef->getName().size() < 15) 614 OS.indent(15 - PRDef->getName().size()); 615 OS << NumUnits << ", " << SuperIdx << ", " 616 << BufferSize << "}, // #" << i+1; 617 if (SuperDef) 618 OS << ", Super=" << SuperDef->getName(); 619 OS << "\n"; 620 } 621 OS << "};\n"; 622 } 623 624 // Find the WriteRes Record that defines processor resources for this 625 // SchedWrite. 626 Record *SubtargetEmitter::FindWriteResources( 627 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 628 629 // Check if the SchedWrite is already subtarget-specific and directly 630 // specifies a set of processor resources. 631 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 632 return SchedWrite.TheDef; 633 634 Record *AliasDef = nullptr; 635 for (Record *A : SchedWrite.Aliases) { 636 const CodeGenSchedRW &AliasRW = 637 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 638 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 639 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 640 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 641 continue; 642 } 643 if (AliasDef) 644 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 645 "defined for processor " + ProcModel.ModelName + 646 " Ensure only one SchedAlias exists per RW."); 647 AliasDef = AliasRW.TheDef; 648 } 649 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 650 return AliasDef; 651 652 // Check this processor's list of write resources. 653 Record *ResDef = nullptr; 654 for (Record *WR : ProcModel.WriteResDefs) { 655 if (!WR->isSubClassOf("WriteRes")) 656 continue; 657 if (AliasDef == WR->getValueAsDef("WriteType") 658 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 659 if (ResDef) { 660 PrintFatalError(WR->getLoc(), "Resources are defined for both " 661 "SchedWrite and its alias on processor " + 662 ProcModel.ModelName); 663 } 664 ResDef = WR; 665 } 666 } 667 // TODO: If ProcModel has a base model (previous generation processor), 668 // then call FindWriteResources recursively with that model here. 669 if (!ResDef) { 670 PrintFatalError(ProcModel.ModelDef->getLoc(), 671 Twine("Processor does not define resources for ") + 672 SchedWrite.TheDef->getName()); 673 } 674 return ResDef; 675 } 676 677 /// Find the ReadAdvance record for the given SchedRead on this processor or 678 /// return NULL. 679 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 680 const CodeGenProcModel &ProcModel) { 681 // Check for SchedReads that directly specify a ReadAdvance. 682 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 683 return SchedRead.TheDef; 684 685 // Check this processor's list of aliases for SchedRead. 686 Record *AliasDef = nullptr; 687 for (Record *A : SchedRead.Aliases) { 688 const CodeGenSchedRW &AliasRW = 689 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 690 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 691 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 692 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 693 continue; 694 } 695 if (AliasDef) 696 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 697 "defined for processor " + ProcModel.ModelName + 698 " Ensure only one SchedAlias exists per RW."); 699 AliasDef = AliasRW.TheDef; 700 } 701 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 702 return AliasDef; 703 704 // Check this processor's ReadAdvanceList. 705 Record *ResDef = nullptr; 706 for (Record *RA : ProcModel.ReadAdvanceDefs) { 707 if (!RA->isSubClassOf("ReadAdvance")) 708 continue; 709 if (AliasDef == RA->getValueAsDef("ReadType") 710 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 711 if (ResDef) { 712 PrintFatalError(RA->getLoc(), "Resources are defined for both " 713 "SchedRead and its alias on processor " + 714 ProcModel.ModelName); 715 } 716 ResDef = RA; 717 } 718 } 719 // TODO: If ProcModel has a base model (previous generation processor), 720 // then call FindReadAdvance recursively with that model here. 721 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 722 PrintFatalError(ProcModel.ModelDef->getLoc(), 723 Twine("Processor does not define resources for ") + 724 SchedRead.TheDef->getName()); 725 } 726 return ResDef; 727 } 728 729 // Expand an explicit list of processor resources into a full list of implied 730 // resource groups and super resources that cover them. 731 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 732 std::vector<int64_t> &Cycles, 733 const CodeGenProcModel &PM) { 734 // Default to 1 resource cycle. 735 Cycles.resize(PRVec.size(), 1); 736 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 737 Record *PRDef = PRVec[i]; 738 RecVec SubResources; 739 if (PRDef->isSubClassOf("ProcResGroup")) 740 SubResources = PRDef->getValueAsListOfDefs("Resources"); 741 else { 742 SubResources.push_back(PRDef); 743 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 744 for (Record *SubDef = PRDef; 745 SubDef->getValueInit("Super")->isComplete();) { 746 if (SubDef->isSubClassOf("ProcResGroup")) { 747 // Disallow this for simplicitly. 748 PrintFatalError(SubDef->getLoc(), "Processor resource group " 749 " cannot be a super resources."); 750 } 751 Record *SuperDef = 752 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 753 SubDef->getLoc()); 754 PRVec.push_back(SuperDef); 755 Cycles.push_back(Cycles[i]); 756 SubDef = SuperDef; 757 } 758 } 759 for (Record *PR : PM.ProcResourceDefs) { 760 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 761 continue; 762 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 763 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 764 for( ; SubI != SubE; ++SubI) { 765 if (!is_contained(SuperResources, *SubI)) { 766 break; 767 } 768 } 769 if (SubI == SubE) { 770 PRVec.push_back(PR); 771 Cycles.push_back(Cycles[i]); 772 } 773 } 774 } 775 } 776 777 // Generate the SchedClass table for this processor and update global 778 // tables. Must be called for each processor in order. 779 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 780 SchedClassTables &SchedTables) { 781 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 782 if (!ProcModel.hasInstrSchedModel()) 783 return; 784 785 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 786 DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 787 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 788 DEBUG(SC.dump(&SchedModels)); 789 790 SCTab.resize(SCTab.size() + 1); 791 MCSchedClassDesc &SCDesc = SCTab.back(); 792 // SCDesc.Name is guarded by NDEBUG 793 SCDesc.NumMicroOps = 0; 794 SCDesc.BeginGroup = false; 795 SCDesc.EndGroup = false; 796 SCDesc.WriteProcResIdx = 0; 797 SCDesc.WriteLatencyIdx = 0; 798 SCDesc.ReadAdvanceIdx = 0; 799 800 // A Variant SchedClass has no resources of its own. 801 bool HasVariants = false; 802 for (const CodeGenSchedTransition &CGT : 803 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 804 if (CGT.ProcIndices[0] == 0 || 805 is_contained(CGT.ProcIndices, ProcModel.Index)) { 806 HasVariants = true; 807 break; 808 } 809 } 810 if (HasVariants) { 811 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 812 continue; 813 } 814 815 // Determine if the SchedClass is actually reachable on this processor. If 816 // not don't try to locate the processor resources, it will fail. 817 // If ProcIndices contains 0, this class applies to all processors. 818 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 819 if (SC.ProcIndices[0] != 0) { 820 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 821 continue; 822 } 823 IdxVec Writes = SC.Writes; 824 IdxVec Reads = SC.Reads; 825 if (!SC.InstRWs.empty()) { 826 // This class has a default ReadWrite list which can be overriden by 827 // InstRW definitions. 828 Record *RWDef = nullptr; 829 for (Record *RW : SC.InstRWs) { 830 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 831 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 832 RWDef = RW; 833 break; 834 } 835 } 836 if (RWDef) { 837 Writes.clear(); 838 Reads.clear(); 839 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 840 Writes, Reads); 841 } 842 } 843 if (Writes.empty()) { 844 // Check this processor's itinerary class resources. 845 for (Record *I : ProcModel.ItinRWDefs) { 846 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 847 if (is_contained(Matched, SC.ItinClassDef)) { 848 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 849 Writes, Reads); 850 break; 851 } 852 } 853 if (Writes.empty()) { 854 DEBUG(dbgs() << ProcModel.ModelName 855 << " does not have resources for class " << SC.Name << '\n'); 856 } 857 } 858 // Sum resources across all operand writes. 859 std::vector<MCWriteProcResEntry> WriteProcResources; 860 std::vector<MCWriteLatencyEntry> WriteLatencies; 861 std::vector<std::string> WriterNames; 862 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 863 for (unsigned W : Writes) { 864 IdxVec WriteSeq; 865 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 866 ProcModel); 867 868 // For each operand, create a latency entry. 869 MCWriteLatencyEntry WLEntry; 870 WLEntry.Cycles = 0; 871 unsigned WriteID = WriteSeq.back(); 872 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 873 // If this Write is not referenced by a ReadAdvance, don't distinguish it 874 // from other WriteLatency entries. 875 if (!SchedModels.hasReadOfWrite( 876 SchedModels.getSchedWrite(WriteID).TheDef)) { 877 WriteID = 0; 878 } 879 WLEntry.WriteResourceID = WriteID; 880 881 for (unsigned WS : WriteSeq) { 882 883 Record *WriteRes = 884 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 885 886 // Mark the parent class as invalid for unsupported write types. 887 if (WriteRes->getValueAsBit("Unsupported")) { 888 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 889 break; 890 } 891 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 892 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 893 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 894 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 895 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 896 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 897 898 // Create an entry for each ProcResource listed in WriteRes. 899 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 900 std::vector<int64_t> Cycles = 901 WriteRes->getValueAsListOfInts("ResourceCycles"); 902 903 ExpandProcResources(PRVec, Cycles, ProcModel); 904 905 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 906 PRIdx != PREnd; ++PRIdx) { 907 MCWriteProcResEntry WPREntry; 908 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 909 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 910 WPREntry.Cycles = Cycles[PRIdx]; 911 // If this resource is already used in this sequence, add the current 912 // entry's cycles so that the same resource appears to be used 913 // serially, rather than multiple parallel uses. This is important for 914 // in-order machine where the resource consumption is a hazard. 915 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 916 for( ; WPRIdx != WPREnd; ++WPRIdx) { 917 if (WriteProcResources[WPRIdx].ProcResourceIdx 918 == WPREntry.ProcResourceIdx) { 919 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 920 break; 921 } 922 } 923 if (WPRIdx == WPREnd) 924 WriteProcResources.push_back(WPREntry); 925 } 926 } 927 WriteLatencies.push_back(WLEntry); 928 } 929 // Create an entry for each operand Read in this SchedClass. 930 // Entries must be sorted first by UseIdx then by WriteResourceID. 931 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 932 UseIdx != EndIdx; ++UseIdx) { 933 Record *ReadAdvance = 934 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 935 if (!ReadAdvance) 936 continue; 937 938 // Mark the parent class as invalid for unsupported write types. 939 if (ReadAdvance->getValueAsBit("Unsupported")) { 940 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 941 break; 942 } 943 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 944 IdxVec WriteIDs; 945 if (ValidWrites.empty()) 946 WriteIDs.push_back(0); 947 else { 948 for (Record *VW : ValidWrites) { 949 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 950 } 951 } 952 std::sort(WriteIDs.begin(), WriteIDs.end()); 953 for(unsigned W : WriteIDs) { 954 MCReadAdvanceEntry RAEntry; 955 RAEntry.UseIdx = UseIdx; 956 RAEntry.WriteResourceID = W; 957 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 958 ReadAdvanceEntries.push_back(RAEntry); 959 } 960 } 961 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 962 WriteProcResources.clear(); 963 WriteLatencies.clear(); 964 ReadAdvanceEntries.clear(); 965 } 966 // Add the information for this SchedClass to the global tables using basic 967 // compression. 968 // 969 // WritePrecRes entries are sorted by ProcResIdx. 970 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 971 LessWriteProcResources()); 972 973 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 974 std::vector<MCWriteProcResEntry>::iterator WPRPos = 975 std::search(SchedTables.WriteProcResources.begin(), 976 SchedTables.WriteProcResources.end(), 977 WriteProcResources.begin(), WriteProcResources.end()); 978 if (WPRPos != SchedTables.WriteProcResources.end()) 979 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 980 else { 981 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 982 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 983 WriteProcResources.end()); 984 } 985 // Latency entries must remain in operand order. 986 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 987 std::vector<MCWriteLatencyEntry>::iterator WLPos = 988 std::search(SchedTables.WriteLatencies.begin(), 989 SchedTables.WriteLatencies.end(), 990 WriteLatencies.begin(), WriteLatencies.end()); 991 if (WLPos != SchedTables.WriteLatencies.end()) { 992 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 993 SCDesc.WriteLatencyIdx = idx; 994 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 995 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 996 std::string::npos) { 997 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 998 } 999 } 1000 else { 1001 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1002 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1003 WriteLatencies.begin(), 1004 WriteLatencies.end()); 1005 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1006 WriterNames.begin(), WriterNames.end()); 1007 } 1008 // ReadAdvanceEntries must remain in operand order. 1009 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1010 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1011 std::search(SchedTables.ReadAdvanceEntries.begin(), 1012 SchedTables.ReadAdvanceEntries.end(), 1013 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1014 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1015 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1016 else { 1017 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1018 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1019 ReadAdvanceEntries.end()); 1020 } 1021 } 1022 } 1023 1024 // Emit SchedClass tables for all processors and associated global tables. 1025 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1026 raw_ostream &OS) { 1027 // Emit global WriteProcResTable. 1028 OS << "\n// {ProcResourceIdx, Cycles}\n" 1029 << "extern const llvm::MCWriteProcResEntry " 1030 << Target << "WriteProcResTable[] = {\n" 1031 << " { 0, 0}, // Invalid\n"; 1032 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1033 WPRIdx != WPREnd; ++WPRIdx) { 1034 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1035 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1036 << format("%2d", WPREntry.Cycles) << "}"; 1037 if (WPRIdx + 1 < WPREnd) 1038 OS << ','; 1039 OS << " // #" << WPRIdx << '\n'; 1040 } 1041 OS << "}; // " << Target << "WriteProcResTable\n"; 1042 1043 // Emit global WriteLatencyTable. 1044 OS << "\n// {Cycles, WriteResourceID}\n" 1045 << "extern const llvm::MCWriteLatencyEntry " 1046 << Target << "WriteLatencyTable[] = {\n" 1047 << " { 0, 0}, // Invalid\n"; 1048 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1049 WLIdx != WLEnd; ++WLIdx) { 1050 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1051 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1052 << format("%2d", WLEntry.WriteResourceID) << "}"; 1053 if (WLIdx + 1 < WLEnd) 1054 OS << ','; 1055 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1056 } 1057 OS << "}; // " << Target << "WriteLatencyTable\n"; 1058 1059 // Emit global ReadAdvanceTable. 1060 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1061 << "extern const llvm::MCReadAdvanceEntry " 1062 << Target << "ReadAdvanceTable[] = {\n" 1063 << " {0, 0, 0}, // Invalid\n"; 1064 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1065 RAIdx != RAEnd; ++RAIdx) { 1066 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1067 OS << " {" << RAEntry.UseIdx << ", " 1068 << format("%2d", RAEntry.WriteResourceID) << ", " 1069 << format("%2d", RAEntry.Cycles) << "}"; 1070 if (RAIdx + 1 < RAEnd) 1071 OS << ','; 1072 OS << " // #" << RAIdx << '\n'; 1073 } 1074 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1075 1076 // Emit a SchedClass table for each processor. 1077 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1078 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1079 if (!PI->hasInstrSchedModel()) 1080 continue; 1081 1082 std::vector<MCSchedClassDesc> &SCTab = 1083 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1084 1085 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1086 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1087 OS << "static const llvm::MCSchedClassDesc " 1088 << PI->ModelName << "SchedClasses[] = {\n"; 1089 1090 // The first class is always invalid. We no way to distinguish it except by 1091 // name and position. 1092 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1093 && "invalid class not first"); 1094 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1095 << MCSchedClassDesc::InvalidNumMicroOps 1096 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1097 1098 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1099 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1100 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1101 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1102 if (SchedClass.Name.size() < 18) 1103 OS.indent(18 - SchedClass.Name.size()); 1104 OS << MCDesc.NumMicroOps 1105 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1106 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1107 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1108 << ", " << MCDesc.NumWriteProcResEntries 1109 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1110 << ", " << MCDesc.NumWriteLatencyEntries 1111 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1112 << ", " << MCDesc.NumReadAdvanceEntries 1113 << "}, // #" << SCIdx << '\n'; 1114 } 1115 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1116 } 1117 } 1118 1119 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1120 // For each processor model. 1121 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1122 // Emit processor resource table. 1123 if (PM.hasInstrSchedModel()) 1124 EmitProcessorResources(PM, OS); 1125 else if(!PM.ProcResourceDefs.empty()) 1126 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1127 "ProcResources without defining WriteRes SchedWriteRes"); 1128 1129 // Begin processor itinerary properties 1130 OS << "\n"; 1131 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1132 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1133 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1134 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1135 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1136 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1137 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1138 1139 bool PostRAScheduler = 1140 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1141 1142 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1143 << "PostRAScheduler\n"; 1144 1145 bool CompleteModel = 1146 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1147 1148 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1149 << "CompleteModel\n"; 1150 1151 OS << " " << PM.Index << ", // Processor ID\n"; 1152 if (PM.hasInstrSchedModel()) 1153 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1154 << " " << PM.ModelName << "SchedClasses" << ",\n" 1155 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1156 << " " << (SchedModels.schedClassEnd() 1157 - SchedModels.schedClassBegin()) << ",\n"; 1158 else 1159 OS << " nullptr, nullptr, 0, 0," 1160 << " // No instruction-level machine model.\n"; 1161 if (PM.hasItineraries()) 1162 OS << " " << PM.ItinsDef->getName() << "\n"; 1163 else 1164 OS << " nullptr // No Itinerary\n"; 1165 OS << "};\n"; 1166 } 1167 } 1168 1169 // 1170 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1171 // 1172 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1173 // Gather and sort processor information 1174 std::vector<Record*> ProcessorList = 1175 Records.getAllDerivedDefinitions("Processor"); 1176 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1177 1178 // Begin processor table 1179 OS << "\n"; 1180 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1181 << "extern const llvm::SubtargetInfoKV " 1182 << Target << "ProcSchedKV[] = {\n"; 1183 1184 // For each processor 1185 for (Record *Processor : ProcessorList) { 1186 StringRef Name = Processor->getValueAsString("Name"); 1187 const std::string &ProcModelName = 1188 SchedModels.getModelForProc(Processor).ModelName; 1189 1190 // Emit as { "cpu", procinit }, 1191 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n"; 1192 } 1193 1194 // End processor table 1195 OS << "};\n"; 1196 } 1197 1198 // 1199 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1200 // 1201 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1202 OS << "#ifdef DBGFIELD\n" 1203 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1204 << "#endif\n" 1205 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1206 << "#define DBGFIELD(x) x,\n" 1207 << "#else\n" 1208 << "#define DBGFIELD(x)\n" 1209 << "#endif\n"; 1210 1211 if (SchedModels.hasItineraries()) { 1212 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1213 // Emit the stage data 1214 EmitStageAndOperandCycleData(OS, ProcItinLists); 1215 EmitItineraries(OS, ProcItinLists); 1216 } 1217 OS << "\n// ===============================================================\n" 1218 << "// Data tables for the new per-operand machine model.\n"; 1219 1220 SchedClassTables SchedTables; 1221 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1222 GenSchedClassTables(ProcModel, SchedTables); 1223 } 1224 EmitSchedClassTables(SchedTables, OS); 1225 1226 // Emit the processor machine model 1227 EmitProcessorModels(OS); 1228 // Emit the processor lookup data 1229 EmitProcessorLookup(OS); 1230 1231 OS << "\n#undef DBGFIELD"; 1232 } 1233 1234 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1235 raw_ostream &OS) { 1236 OS << "unsigned " << ClassName 1237 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1238 << " const TargetSchedModel *SchedModel) const {\n"; 1239 1240 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1241 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1242 for (Record *P : Prologs) { 1243 OS << P->getValueAsString("Code") << '\n'; 1244 } 1245 IdxVec VariantClasses; 1246 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1247 if (SC.Transitions.empty()) 1248 continue; 1249 VariantClasses.push_back(SC.Index); 1250 } 1251 if (!VariantClasses.empty()) { 1252 OS << " switch (SchedClass) {\n"; 1253 for (unsigned VC : VariantClasses) { 1254 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1255 OS << " case " << VC << ": // " << SC.Name << '\n'; 1256 IdxVec ProcIndices; 1257 for (const CodeGenSchedTransition &T : SC.Transitions) { 1258 IdxVec PI; 1259 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1260 ProcIndices.begin(), ProcIndices.end(), 1261 std::back_inserter(PI)); 1262 ProcIndices.swap(PI); 1263 } 1264 for (unsigned PI : ProcIndices) { 1265 OS << " "; 1266 if (PI != 0) 1267 OS << "if (SchedModel->getProcessorID() == " << PI << ") "; 1268 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName 1269 << '\n'; 1270 for (const CodeGenSchedTransition &T : SC.Transitions) { 1271 if (PI != 0 && !std::count(T.ProcIndices.begin(), 1272 T.ProcIndices.end(), PI)) { 1273 continue; 1274 } 1275 OS << " if ("; 1276 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end(); 1277 RI != RE; ++RI) { 1278 if (RI != T.PredTerm.begin()) 1279 OS << "\n && "; 1280 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1281 } 1282 OS << ")\n" 1283 << " return " << T.ToClassIdx << "; // " 1284 << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n'; 1285 } 1286 OS << " }\n"; 1287 if (PI == 0) 1288 break; 1289 } 1290 if (SC.isInferred()) 1291 OS << " return " << SC.Index << ";\n"; 1292 OS << " break;\n"; 1293 } 1294 OS << " };\n"; 1295 } 1296 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1297 << "} // " << ClassName << "::resolveSchedClass\n"; 1298 } 1299 1300 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1301 raw_ostream &OS) { 1302 const CodeGenHwModes &CGH = TGT.getHwModes(); 1303 assert(CGH.getNumModeIds() > 0); 1304 if (CGH.getNumModeIds() == 1) 1305 return; 1306 1307 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1308 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1309 const HwMode &HM = CGH.getMode(M); 1310 OS << " if (checkFeatures(\"" << HM.Features 1311 << "\")) return " << M << ";\n"; 1312 } 1313 OS << " return 0;\n}\n"; 1314 } 1315 1316 // 1317 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1318 // the subtarget features string. 1319 // 1320 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1321 unsigned NumFeatures, 1322 unsigned NumProcs) { 1323 std::vector<Record*> Features = 1324 Records.getAllDerivedDefinitions("SubtargetFeature"); 1325 std::sort(Features.begin(), Features.end(), LessRecord()); 1326 1327 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1328 << "// subtarget options.\n" 1329 << "void llvm::"; 1330 OS << Target; 1331 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1332 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1333 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1334 1335 if (Features.empty()) { 1336 OS << "}\n"; 1337 return; 1338 } 1339 1340 OS << " InitMCProcessorInfo(CPU, FS);\n" 1341 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1342 1343 for (Record *R : Features) { 1344 // Next record 1345 StringRef Instance = R->getName(); 1346 StringRef Value = R->getValueAsString("Value"); 1347 StringRef Attribute = R->getValueAsString("Attribute"); 1348 1349 if (Value=="true" || Value=="false") 1350 OS << " if (Bits[" << Target << "::" 1351 << Instance << "]) " 1352 << Attribute << " = " << Value << ";\n"; 1353 else 1354 OS << " if (Bits[" << Target << "::" 1355 << Instance << "] && " 1356 << Attribute << " < " << Value << ") " 1357 << Attribute << " = " << Value << ";\n"; 1358 } 1359 1360 OS << "}\n"; 1361 } 1362 1363 // 1364 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1365 // 1366 void SubtargetEmitter::run(raw_ostream &OS) { 1367 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1368 1369 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1370 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1371 1372 OS << "namespace llvm {\n"; 1373 Enumeration(OS); 1374 OS << "} // end namespace llvm\n\n"; 1375 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1376 1377 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1378 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1379 1380 OS << "namespace llvm {\n"; 1381 #if 0 1382 OS << "namespace {\n"; 1383 #endif 1384 unsigned NumFeatures = FeatureKeyValues(OS); 1385 OS << "\n"; 1386 unsigned NumProcs = CPUKeyValues(OS); 1387 OS << "\n"; 1388 EmitSchedModel(OS); 1389 OS << "\n"; 1390 #if 0 1391 OS << "} // end anonymous namespace\n\n"; 1392 #endif 1393 1394 // MCInstrInfo initialization routine. 1395 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1396 << "MCSubtargetInfoImpl(" 1397 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1398 OS << " return new MCSubtargetInfo(TT, CPU, FS, "; 1399 if (NumFeatures) 1400 OS << Target << "FeatureKV, "; 1401 else 1402 OS << "None, "; 1403 if (NumProcs) 1404 OS << Target << "SubTypeKV, "; 1405 else 1406 OS << "None, "; 1407 OS << '\n'; OS.indent(22); 1408 OS << Target << "ProcSchedKV, " 1409 << Target << "WriteProcResTable, " 1410 << Target << "WriteLatencyTable, " 1411 << Target << "ReadAdvanceTable, "; 1412 OS << '\n'; OS.indent(22); 1413 if (SchedModels.hasItineraries()) { 1414 OS << Target << "Stages, " 1415 << Target << "OperandCycles, " 1416 << Target << "ForwardingPaths"; 1417 } else 1418 OS << "nullptr, nullptr, nullptr"; 1419 OS << ");\n}\n\n"; 1420 1421 OS << "} // end namespace llvm\n\n"; 1422 1423 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1424 1425 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1426 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1427 1428 OS << "#include \"llvm/Support/Debug.h\"\n"; 1429 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1430 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1431 1432 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1433 1434 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1435 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1436 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1437 1438 std::string ClassName = Target + "GenSubtargetInfo"; 1439 OS << "namespace llvm {\n"; 1440 OS << "class DFAPacketizer;\n"; 1441 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1442 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1443 << "StringRef FS);\n" 1444 << "public:\n" 1445 << " unsigned resolveSchedClass(unsigned SchedClass, " 1446 << " const MachineInstr *DefMI," 1447 << " const TargetSchedModel *SchedModel) const override;\n" 1448 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1449 << " const;\n"; 1450 if (TGT.getHwModes().getNumModeIds() > 1) 1451 OS << " unsigned getHwMode() const override;\n"; 1452 OS << "};\n" 1453 << "} // end namespace llvm\n\n"; 1454 1455 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1456 1457 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1458 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1459 1460 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1461 OS << "namespace llvm {\n"; 1462 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1463 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1464 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1465 OS << "extern const llvm::MCWriteProcResEntry " 1466 << Target << "WriteProcResTable[];\n"; 1467 OS << "extern const llvm::MCWriteLatencyEntry " 1468 << Target << "WriteLatencyTable[];\n"; 1469 OS << "extern const llvm::MCReadAdvanceEntry " 1470 << Target << "ReadAdvanceTable[];\n"; 1471 1472 if (SchedModels.hasItineraries()) { 1473 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1474 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1475 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1476 } 1477 1478 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1479 << "StringRef FS)\n" 1480 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1481 if (NumFeatures) 1482 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1483 else 1484 OS << "None, "; 1485 if (NumProcs) 1486 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1487 else 1488 OS << "None, "; 1489 OS << '\n'; OS.indent(24); 1490 OS << Target << "ProcSchedKV, " 1491 << Target << "WriteProcResTable, " 1492 << Target << "WriteLatencyTable, " 1493 << Target << "ReadAdvanceTable, "; 1494 OS << '\n'; OS.indent(24); 1495 if (SchedModels.hasItineraries()) { 1496 OS << Target << "Stages, " 1497 << Target << "OperandCycles, " 1498 << Target << "ForwardingPaths"; 1499 } else 1500 OS << "nullptr, nullptr, nullptr"; 1501 OS << ") {}\n\n"; 1502 1503 EmitSchedModelHelpers(ClassName, OS); 1504 EmitHwModeCheck(ClassName, OS); 1505 1506 OS << "} // end namespace llvm\n\n"; 1507 1508 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1509 } 1510 1511 namespace llvm { 1512 1513 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1514 CodeGenTarget CGTarget(RK); 1515 SubtargetEmitter(RK, CGTarget).run(OS); 1516 } 1517 1518 } // end namespace llvm 1519