1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "PredicateExpander.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/StringExtras.h" 20 #include "llvm/ADT/StringRef.h" 21 #include "llvm/MC/MCInstrItineraries.h" 22 #include "llvm/MC/MCSchedule.h" 23 #include "llvm/MC/SubtargetFeature.h" 24 #include "llvm/Support/Debug.h" 25 #include "llvm/Support/Format.h" 26 #include "llvm/Support/raw_ostream.h" 27 #include "llvm/TableGen/Error.h" 28 #include "llvm/TableGen/Record.h" 29 #include "llvm/TableGen/TableGenBackend.h" 30 #include <algorithm> 31 #include <cassert> 32 #include <cstdint> 33 #include <iterator> 34 #include <map> 35 #include <string> 36 #include <vector> 37 38 using namespace llvm; 39 40 #define DEBUG_TYPE "subtarget-emitter" 41 42 namespace { 43 44 class SubtargetEmitter { 45 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 46 // The SchedClassDesc table indexes into a global write resource table, write 47 // latency table, and read advance table. 48 struct SchedClassTables { 49 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 50 std::vector<MCWriteProcResEntry> WriteProcResources; 51 std::vector<MCWriteLatencyEntry> WriteLatencies; 52 std::vector<std::string> WriterNames; 53 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 54 55 // Reserve an invalid entry at index 0 56 SchedClassTables() { 57 ProcSchedClasses.resize(1); 58 WriteProcResources.resize(1); 59 WriteLatencies.resize(1); 60 WriterNames.push_back("InvalidWrite"); 61 ReadAdvanceEntries.resize(1); 62 } 63 }; 64 65 struct LessWriteProcResources { 66 bool operator()(const MCWriteProcResEntry &LHS, 67 const MCWriteProcResEntry &RHS) { 68 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 69 } 70 }; 71 72 const CodeGenTarget &TGT; 73 RecordKeeper &Records; 74 CodeGenSchedModels &SchedModels; 75 std::string Target; 76 77 void Enumeration(raw_ostream &OS); 78 unsigned FeatureKeyValues(raw_ostream &OS); 79 unsigned CPUKeyValues(raw_ostream &OS); 80 void FormItineraryStageString(const std::string &Names, 81 Record *ItinData, std::string &ItinString, 82 unsigned &NStages); 83 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 84 unsigned &NOperandCycles); 85 void FormItineraryBypassString(const std::string &Names, 86 Record *ItinData, 87 std::string &ItinString, unsigned NOperandCycles); 88 void EmitStageAndOperandCycleData(raw_ostream &OS, 89 std::vector<std::vector<InstrItinerary>> 90 &ProcItinLists); 91 void EmitItineraries(raw_ostream &OS, 92 std::vector<std::vector<InstrItinerary>> 93 &ProcItinLists); 94 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 95 raw_ostream &OS); 96 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 97 raw_ostream &OS); 98 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 99 char Separator); 100 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, 101 raw_ostream &OS); 102 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 103 raw_ostream &OS); 104 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 105 const CodeGenProcModel &ProcModel); 106 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 107 const CodeGenProcModel &ProcModel); 108 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 109 const CodeGenProcModel &ProcModel); 110 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 111 SchedClassTables &SchedTables); 112 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 113 void EmitProcessorModels(raw_ostream &OS); 114 void EmitProcessorLookup(raw_ostream &OS); 115 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 116 void emitSchedModelHelpersImpl(raw_ostream &OS, 117 bool OnlyExpandMCInstPredicates = false); 118 void emitGenMCSubtargetInfo(raw_ostream &OS); 119 120 void EmitSchedModel(raw_ostream &OS); 121 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 122 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 123 unsigned NumProcs); 124 125 public: 126 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 127 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 128 Target(TGT.getName()) {} 129 130 void run(raw_ostream &o); 131 }; 132 133 } // end anonymous namespace 134 135 // 136 // Enumeration - Emit the specified class as an enumeration. 137 // 138 void SubtargetEmitter::Enumeration(raw_ostream &OS) { 139 // Get all records of class and sort 140 std::vector<Record*> DefList = 141 Records.getAllDerivedDefinitions("SubtargetFeature"); 142 llvm::sort(DefList.begin(), DefList.end(), LessRecord()); 143 144 unsigned N = DefList.size(); 145 if (N == 0) 146 return; 147 if (N > MAX_SUBTARGET_FEATURES) 148 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 149 150 OS << "namespace " << Target << " {\n"; 151 152 // Open enumeration. 153 OS << "enum {\n"; 154 155 // For each record 156 for (unsigned i = 0; i < N; ++i) { 157 // Next record 158 Record *Def = DefList[i]; 159 160 // Get and emit name 161 OS << " " << Def->getName() << " = " << i << ",\n"; 162 } 163 164 // Close enumeration and namespace 165 OS << "};\n"; 166 OS << "} // end namespace " << Target << "\n"; 167 } 168 169 // 170 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 171 // command line. 172 // 173 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 174 // Gather and sort all the features 175 std::vector<Record*> FeatureList = 176 Records.getAllDerivedDefinitions("SubtargetFeature"); 177 178 if (FeatureList.empty()) 179 return 0; 180 181 llvm::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 182 183 // Begin feature table 184 OS << "// Sorted (by key) array of values for CPU features.\n" 185 << "extern const llvm::SubtargetFeatureKV " << Target 186 << "FeatureKV[] = {\n"; 187 188 // For each feature 189 unsigned NumFeatures = 0; 190 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 191 // Next feature 192 Record *Feature = FeatureList[i]; 193 194 StringRef Name = Feature->getName(); 195 StringRef CommandLineName = Feature->getValueAsString("Name"); 196 StringRef Desc = Feature->getValueAsString("Desc"); 197 198 if (CommandLineName.empty()) continue; 199 200 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 201 OS << " { " 202 << "\"" << CommandLineName << "\", " 203 << "\"" << Desc << "\", " 204 << "{ " << Target << "::" << Name << " }, "; 205 206 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); 207 208 OS << "{"; 209 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 210 OS << " " << Target << "::" << ImpliesList[j]->getName(); 211 if (++j < M) OS << ","; 212 } 213 OS << " } },\n"; 214 ++NumFeatures; 215 } 216 217 // End feature table 218 OS << "};\n"; 219 220 return NumFeatures; 221 } 222 223 // 224 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 225 // line. 226 // 227 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 228 // Gather and sort processor information 229 std::vector<Record*> ProcessorList = 230 Records.getAllDerivedDefinitions("Processor"); 231 llvm::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 232 233 // Begin processor table 234 OS << "// Sorted (by key) array of values for CPU subtype.\n" 235 << "extern const llvm::SubtargetFeatureKV " << Target 236 << "SubTypeKV[] = {\n"; 237 238 // For each processor 239 for (Record *Processor : ProcessorList) { 240 StringRef Name = Processor->getValueAsString("Name"); 241 RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); 242 243 // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, 244 OS << " { " 245 << "\"" << Name << "\", " 246 << "\"Select the " << Name << " processor\", "; 247 248 OS << "{"; 249 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 250 OS << " " << Target << "::" << FeatureList[j]->getName(); 251 if (++j < M) OS << ","; 252 } 253 // The { } is for the "implies" section of this data structure. 254 OS << " }, { } },\n"; 255 } 256 257 // End processor table 258 OS << "};\n"; 259 260 return ProcessorList.size(); 261 } 262 263 // 264 // FormItineraryStageString - Compose a string containing the stage 265 // data initialization for the specified itinerary. N is the number 266 // of stages. 267 // 268 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 269 Record *ItinData, 270 std::string &ItinString, 271 unsigned &NStages) { 272 // Get states list 273 RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); 274 275 // For each stage 276 unsigned N = NStages = StageList.size(); 277 for (unsigned i = 0; i < N;) { 278 // Next stage 279 const Record *Stage = StageList[i]; 280 281 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 282 int Cycles = Stage->getValueAsInt("Cycles"); 283 ItinString += " { " + itostr(Cycles) + ", "; 284 285 // Get unit list 286 RecVec UnitList = Stage->getValueAsListOfDefs("Units"); 287 288 // For each unit 289 for (unsigned j = 0, M = UnitList.size(); j < M;) { 290 // Add name and bitwise or 291 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 292 if (++j < M) ItinString += " | "; 293 } 294 295 int TimeInc = Stage->getValueAsInt("TimeInc"); 296 ItinString += ", " + itostr(TimeInc); 297 298 int Kind = Stage->getValueAsInt("Kind"); 299 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 300 301 // Close off stage 302 ItinString += " }"; 303 if (++i < N) ItinString += ", "; 304 } 305 } 306 307 // 308 // FormItineraryOperandCycleString - Compose a string containing the 309 // operand cycle initialization for the specified itinerary. N is the 310 // number of operands that has cycles specified. 311 // 312 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 313 std::string &ItinString, unsigned &NOperandCycles) { 314 // Get operand cycle list 315 std::vector<int64_t> OperandCycleList = 316 ItinData->getValueAsListOfInts("OperandCycles"); 317 318 // For each operand cycle 319 unsigned N = NOperandCycles = OperandCycleList.size(); 320 for (unsigned i = 0; i < N;) { 321 // Next operand cycle 322 const int OCycle = OperandCycleList[i]; 323 324 ItinString += " " + itostr(OCycle); 325 if (++i < N) ItinString += ", "; 326 } 327 } 328 329 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 330 Record *ItinData, 331 std::string &ItinString, 332 unsigned NOperandCycles) { 333 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); 334 unsigned N = BypassList.size(); 335 unsigned i = 0; 336 for (; i < N;) { 337 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 338 if (++i < NOperandCycles) ItinString += ", "; 339 } 340 for (; i < NOperandCycles;) { 341 ItinString += " 0"; 342 if (++i < NOperandCycles) ItinString += ", "; 343 } 344 } 345 346 // 347 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 348 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 349 // by CodeGenSchedClass::Index. 350 // 351 void SubtargetEmitter:: 352 EmitStageAndOperandCycleData(raw_ostream &OS, 353 std::vector<std::vector<InstrItinerary>> 354 &ProcItinLists) { 355 // Multiple processor models may share an itinerary record. Emit it once. 356 SmallPtrSet<Record*, 8> ItinsDefSet; 357 358 // Emit functional units for all the itineraries. 359 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 360 361 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 362 continue; 363 364 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 365 if (FUs.empty()) 366 continue; 367 368 StringRef Name = ProcModel.ItinsDef->getName(); 369 OS << "\n// Functional units for \"" << Name << "\"\n" 370 << "namespace " << Name << "FU {\n"; 371 372 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 373 OS << " const unsigned " << FUs[j]->getName() 374 << " = 1 << " << j << ";\n"; 375 376 OS << "} // end namespace " << Name << "FU\n"; 377 378 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 379 if (!BPs.empty()) { 380 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name 381 << "\"\n" << "namespace " << Name << "Bypass {\n"; 382 383 OS << " const unsigned NoBypass = 0;\n"; 384 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 385 OS << " const unsigned " << BPs[j]->getName() 386 << " = 1 << " << j << ";\n"; 387 388 OS << "} // end namespace " << Name << "Bypass\n"; 389 } 390 } 391 392 // Begin stages table 393 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 394 "Stages[] = {\n"; 395 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 396 397 // Begin operand cycle table 398 std::string OperandCycleTable = "extern const unsigned " + Target + 399 "OperandCycles[] = {\n"; 400 OperandCycleTable += " 0, // No itinerary\n"; 401 402 // Begin pipeline bypass table 403 std::string BypassTable = "extern const unsigned " + Target + 404 "ForwardingPaths[] = {\n"; 405 BypassTable += " 0, // No itinerary\n"; 406 407 // For each Itinerary across all processors, add a unique entry to the stages, 408 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 409 // object with computed offsets to the ProcItinLists result. 410 unsigned StageCount = 1, OperandCycleCount = 1; 411 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 412 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 413 // Add process itinerary to the list. 414 ProcItinLists.resize(ProcItinLists.size()+1); 415 416 // If this processor defines no itineraries, then leave the itinerary list 417 // empty. 418 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 419 if (!ProcModel.hasItineraries()) 420 continue; 421 422 StringRef Name = ProcModel.ItinsDef->getName(); 423 424 ItinList.resize(SchedModels.numInstrSchedClasses()); 425 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 426 427 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 428 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 429 430 // Next itinerary data 431 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 432 433 // Get string and stage count 434 std::string ItinStageString; 435 unsigned NStages = 0; 436 if (ItinData) 437 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 438 439 // Get string and operand cycle count 440 std::string ItinOperandCycleString; 441 unsigned NOperandCycles = 0; 442 std::string ItinBypassString; 443 if (ItinData) { 444 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 445 NOperandCycles); 446 447 FormItineraryBypassString(Name, ItinData, ItinBypassString, 448 NOperandCycles); 449 } 450 451 // Check to see if stage already exists and create if it doesn't 452 uint16_t FindStage = 0; 453 if (NStages > 0) { 454 FindStage = ItinStageMap[ItinStageString]; 455 if (FindStage == 0) { 456 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 457 StageTable += ItinStageString + ", // " + itostr(StageCount); 458 if (NStages > 1) 459 StageTable += "-" + itostr(StageCount + NStages - 1); 460 StageTable += "\n"; 461 // Record Itin class number. 462 ItinStageMap[ItinStageString] = FindStage = StageCount; 463 StageCount += NStages; 464 } 465 } 466 467 // Check to see if operand cycle already exists and create if it doesn't 468 uint16_t FindOperandCycle = 0; 469 if (NOperandCycles > 0) { 470 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 471 FindOperandCycle = ItinOperandMap[ItinOperandString]; 472 if (FindOperandCycle == 0) { 473 // Emit as cycle, // index 474 OperandCycleTable += ItinOperandCycleString + ", // "; 475 std::string OperandIdxComment = itostr(OperandCycleCount); 476 if (NOperandCycles > 1) 477 OperandIdxComment += "-" 478 + itostr(OperandCycleCount + NOperandCycles - 1); 479 OperandCycleTable += OperandIdxComment + "\n"; 480 // Record Itin class number. 481 ItinOperandMap[ItinOperandCycleString] = 482 FindOperandCycle = OperandCycleCount; 483 // Emit as bypass, // index 484 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 485 OperandCycleCount += NOperandCycles; 486 } 487 } 488 489 // Set up itinerary as location and location + stage count 490 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 491 InstrItinerary Intinerary = { 492 NumUOps, 493 FindStage, 494 uint16_t(FindStage + NStages), 495 FindOperandCycle, 496 uint16_t(FindOperandCycle + NOperandCycles), 497 }; 498 499 // Inject - empty slots will be 0, 0 500 ItinList[SchedClassIdx] = Intinerary; 501 } 502 } 503 504 // Closing stage 505 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 506 StageTable += "};\n"; 507 508 // Closing operand cycles 509 OperandCycleTable += " 0 // End operand cycles\n"; 510 OperandCycleTable += "};\n"; 511 512 BypassTable += " 0 // End bypass tables\n"; 513 BypassTable += "};\n"; 514 515 // Emit tables. 516 OS << StageTable; 517 OS << OperandCycleTable; 518 OS << BypassTable; 519 } 520 521 // 522 // EmitProcessorData - Generate data for processor itineraries that were 523 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 524 // Itineraries for each processor. The Itinerary lists are indexed on 525 // CodeGenSchedClass::Index. 526 // 527 void SubtargetEmitter:: 528 EmitItineraries(raw_ostream &OS, 529 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 530 // Multiple processor models may share an itinerary record. Emit it once. 531 SmallPtrSet<Record*, 8> ItinsDefSet; 532 533 // For each processor's machine model 534 std::vector<std::vector<InstrItinerary>>::iterator 535 ProcItinListsIter = ProcItinLists.begin(); 536 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 537 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 538 539 Record *ItinsDef = PI->ItinsDef; 540 if (!ItinsDefSet.insert(ItinsDef).second) 541 continue; 542 543 // Get the itinerary list for the processor. 544 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 545 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 546 547 // Empty itineraries aren't referenced anywhere in the tablegen output 548 // so don't emit them. 549 if (ItinList.empty()) 550 continue; 551 552 OS << "\n"; 553 OS << "static const llvm::InstrItinerary "; 554 555 // Begin processor itinerary table 556 OS << ItinsDef->getName() << "[] = {\n"; 557 558 // For each itinerary class in CodeGenSchedClass::Index order. 559 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 560 InstrItinerary &Intinerary = ItinList[j]; 561 562 // Emit Itinerary in the form of 563 // { firstStage, lastStage, firstCycle, lastCycle } // index 564 OS << " { " << 565 Intinerary.NumMicroOps << ", " << 566 Intinerary.FirstStage << ", " << 567 Intinerary.LastStage << ", " << 568 Intinerary.FirstOperandCycle << ", " << 569 Intinerary.LastOperandCycle << " }" << 570 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 571 } 572 // End processor itinerary table 573 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" 574 "// end marker\n"; 575 OS << "};\n"; 576 } 577 } 578 579 // Emit either the value defined in the TableGen Record, or the default 580 // value defined in the C++ header. The Record is null if the processor does not 581 // define a model. 582 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 583 StringRef Name, char Separator) { 584 OS << " "; 585 int V = R ? R->getValueAsInt(Name) : -1; 586 if (V >= 0) 587 OS << V << Separator << " // " << Name; 588 else 589 OS << "MCSchedModel::Default" << Name << Separator; 590 OS << '\n'; 591 } 592 593 void SubtargetEmitter::EmitProcessorResourceSubUnits( 594 const CodeGenProcModel &ProcModel, raw_ostream &OS) { 595 OS << "\nstatic const unsigned " << ProcModel.ModelName 596 << "ProcResourceSubUnits[] = {\n" 597 << " 0, // Invalid\n"; 598 599 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 600 Record *PRDef = ProcModel.ProcResourceDefs[i]; 601 if (!PRDef->isSubClassOf("ProcResGroup")) 602 continue; 603 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 604 for (Record *RUDef : ResUnits) { 605 Record *const RU = 606 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); 607 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { 608 OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; 609 } 610 } 611 OS << " // " << PRDef->getName() << "\n"; 612 } 613 OS << "};\n"; 614 } 615 616 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, 617 raw_ostream &OS) { 618 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; 619 if (Record *RCU = ProcModel.RetireControlUnit) { 620 ReorderBufferSize = 621 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); 622 MaxRetirePerCycle = 623 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); 624 } 625 626 OS << ReorderBufferSize << ", // ReorderBufferSize\n "; 627 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; 628 } 629 630 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, 631 unsigned NumRegisterFiles, 632 unsigned NumCostEntries, raw_ostream &OS) { 633 if (NumRegisterFiles) 634 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); 635 else 636 OS << "nullptr,\n 0"; 637 638 OS << ", // Number of register files.\n "; 639 if (NumCostEntries) 640 OS << ProcModel.ModelName << "RegisterCosts,\n "; 641 else 642 OS << "nullptr,\n "; 643 OS << NumCostEntries << ", // Number of register cost entries.\n"; 644 } 645 646 unsigned 647 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 648 raw_ostream &OS) { 649 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { 650 return RF.hasDefaultCosts(); 651 })) 652 return 0; 653 654 // Print the RegisterCost table first. 655 OS << "\n// {RegisterClassID, Register Cost}\n"; 656 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName 657 << "RegisterCosts" 658 << "[] = {\n"; 659 660 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { 661 // Skip register files with a default cost table. 662 if (RF.hasDefaultCosts()) 663 continue; 664 // Add entries to the cost table. 665 for (const CodeGenRegisterCost &RC : RF.Costs) { 666 OS << " { "; 667 Record *Rec = RC.RCDef; 668 if (Rec->getValue("Namespace")) 669 OS << Rec->getValueAsString("Namespace") << "::"; 670 OS << Rec->getName() << "RegClassID, " << RC.Cost << "},\n"; 671 } 672 } 673 OS << "};\n"; 674 675 // Now generate a table with register file info. 676 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl}\n"; 677 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName 678 << "RegisterFiles" 679 << "[] = {\n" 680 << " { \"InvalidRegisterFile\", 0, 0, 0 },\n"; 681 unsigned CostTblIndex = 0; 682 683 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { 684 OS << " { "; 685 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; 686 unsigned NumCostEntries = RD.Costs.size(); 687 OS << NumCostEntries << ", " << CostTblIndex << "},\n"; 688 CostTblIndex += NumCostEntries; 689 } 690 OS << "};\n"; 691 692 return CostTblIndex; 693 } 694 695 static bool EmitPfmIssueCountersTable(const CodeGenProcModel &ProcModel, 696 raw_ostream &OS) { 697 unsigned NumCounterDefs = 1 + ProcModel.ProcResourceDefs.size(); 698 std::vector<const Record *> CounterDefs(NumCounterDefs); 699 bool HasCounters = false; 700 for (const Record *CounterDef : ProcModel.PfmIssueCounterDefs) { 701 const Record *&CD = CounterDefs[ProcModel.getProcResourceIdx( 702 CounterDef->getValueAsDef("Resource"))]; 703 if (CD) { 704 PrintFatalError(CounterDef->getLoc(), 705 "multiple issue counters for " + 706 CounterDef->getValueAsDef("Resource")->getName()); 707 } 708 CD = CounterDef; 709 HasCounters = true; 710 } 711 if (!HasCounters) { 712 return false; 713 } 714 OS << "\nstatic const char* " << ProcModel.ModelName 715 << "PfmIssueCounters[] = {\n"; 716 for (unsigned i = 0; i != NumCounterDefs; ++i) { 717 const Record *CounterDef = CounterDefs[i]; 718 if (CounterDef) { 719 const auto PfmCounters = CounterDef->getValueAsListOfStrings("Counters"); 720 if (PfmCounters.empty()) 721 PrintFatalError(CounterDef->getLoc(), "empty counter list"); 722 OS << " \"" << PfmCounters[0]; 723 for (unsigned p = 1, e = PfmCounters.size(); p != e; ++p) 724 OS << ",\" \"" << PfmCounters[p]; 725 OS << "\", // #" << i << " = "; 726 OS << CounterDef->getValueAsDef("Resource")->getName() << "\n"; 727 } else { 728 OS << " nullptr, // #" << i << "\n"; 729 } 730 } 731 OS << "};\n"; 732 return true; 733 } 734 735 static void EmitPfmCounters(const CodeGenProcModel &ProcModel, 736 const bool HasPfmIssueCounters, raw_ostream &OS) { 737 OS << " {\n"; 738 // Emit the cycle counter. 739 if (ProcModel.PfmCycleCounterDef) 740 OS << " \"" << ProcModel.PfmCycleCounterDef->getValueAsString("Counter") 741 << "\", // Cycle counter.\n"; 742 else 743 OS << " nullptr, // No cycle counter.\n"; 744 745 // Emit a reference to issue counters table. 746 if (HasPfmIssueCounters) 747 OS << " " << ProcModel.ModelName << "PfmIssueCounters\n"; 748 else 749 OS << " nullptr // No issue counters.\n"; 750 OS << " }\n"; 751 } 752 753 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 754 raw_ostream &OS) { 755 // Generate a table of register file descriptors (one entry per each user 756 // defined register file), and a table of register costs. 757 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); 758 759 // Generate a table of ProcRes counter names. 760 const bool HasPfmIssueCounters = EmitPfmIssueCountersTable(ProcModel, OS); 761 762 // Now generate a table for the extra processor info. 763 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName 764 << "ExtraInfo = {\n "; 765 766 // Add information related to the retire control unit. 767 EmitRetireControlUnitInfo(ProcModel, OS); 768 769 // Add information related to the register files (i.e. where to find register 770 // file descriptors and register costs). 771 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), 772 NumCostEntries, OS); 773 774 EmitPfmCounters(ProcModel, HasPfmIssueCounters, OS); 775 776 OS << "};\n"; 777 } 778 779 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 780 raw_ostream &OS) { 781 EmitProcessorResourceSubUnits(ProcModel, OS); 782 783 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered, SubUnitsIdxBegin}\n"; 784 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName 785 << "ProcResources" 786 << "[] = {\n" 787 << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; 788 789 unsigned SubUnitsOffset = 1; 790 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 791 Record *PRDef = ProcModel.ProcResourceDefs[i]; 792 793 Record *SuperDef = nullptr; 794 unsigned SuperIdx = 0; 795 unsigned NumUnits = 0; 796 const unsigned SubUnitsBeginOffset = SubUnitsOffset; 797 int BufferSize = PRDef->getValueAsInt("BufferSize"); 798 if (PRDef->isSubClassOf("ProcResGroup")) { 799 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 800 for (Record *RU : ResUnits) { 801 NumUnits += RU->getValueAsInt("NumUnits"); 802 SubUnitsOffset += RU->getValueAsInt("NumUnits"); 803 } 804 } 805 else { 806 // Find the SuperIdx 807 if (PRDef->getValueInit("Super")->isComplete()) { 808 SuperDef = 809 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 810 ProcModel, PRDef->getLoc()); 811 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 812 } 813 NumUnits = PRDef->getValueAsInt("NumUnits"); 814 } 815 // Emit the ProcResourceDesc 816 OS << " {\"" << PRDef->getName() << "\", "; 817 if (PRDef->getName().size() < 15) 818 OS.indent(15 - PRDef->getName().size()); 819 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; 820 if (SubUnitsBeginOffset != SubUnitsOffset) { 821 OS << ProcModel.ModelName << "ProcResourceSubUnits + " 822 << SubUnitsBeginOffset; 823 } else { 824 OS << "nullptr"; 825 } 826 OS << "}, // #" << i+1; 827 if (SuperDef) 828 OS << ", Super=" << SuperDef->getName(); 829 OS << "\n"; 830 } 831 OS << "};\n"; 832 } 833 834 // Find the WriteRes Record that defines processor resources for this 835 // SchedWrite. 836 Record *SubtargetEmitter::FindWriteResources( 837 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 838 839 // Check if the SchedWrite is already subtarget-specific and directly 840 // specifies a set of processor resources. 841 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 842 return SchedWrite.TheDef; 843 844 Record *AliasDef = nullptr; 845 for (Record *A : SchedWrite.Aliases) { 846 const CodeGenSchedRW &AliasRW = 847 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 848 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 849 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 850 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 851 continue; 852 } 853 if (AliasDef) 854 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 855 "defined for processor " + ProcModel.ModelName + 856 " Ensure only one SchedAlias exists per RW."); 857 AliasDef = AliasRW.TheDef; 858 } 859 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 860 return AliasDef; 861 862 // Check this processor's list of write resources. 863 Record *ResDef = nullptr; 864 for (Record *WR : ProcModel.WriteResDefs) { 865 if (!WR->isSubClassOf("WriteRes")) 866 continue; 867 if (AliasDef == WR->getValueAsDef("WriteType") 868 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 869 if (ResDef) { 870 PrintFatalError(WR->getLoc(), "Resources are defined for both " 871 "SchedWrite and its alias on processor " + 872 ProcModel.ModelName); 873 } 874 ResDef = WR; 875 } 876 } 877 // TODO: If ProcModel has a base model (previous generation processor), 878 // then call FindWriteResources recursively with that model here. 879 if (!ResDef) { 880 PrintFatalError(ProcModel.ModelDef->getLoc(), 881 Twine("Processor does not define resources for ") + 882 SchedWrite.TheDef->getName()); 883 } 884 return ResDef; 885 } 886 887 /// Find the ReadAdvance record for the given SchedRead on this processor or 888 /// return NULL. 889 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 890 const CodeGenProcModel &ProcModel) { 891 // Check for SchedReads that directly specify a ReadAdvance. 892 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 893 return SchedRead.TheDef; 894 895 // Check this processor's list of aliases for SchedRead. 896 Record *AliasDef = nullptr; 897 for (Record *A : SchedRead.Aliases) { 898 const CodeGenSchedRW &AliasRW = 899 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 900 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 901 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 902 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 903 continue; 904 } 905 if (AliasDef) 906 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 907 "defined for processor " + ProcModel.ModelName + 908 " Ensure only one SchedAlias exists per RW."); 909 AliasDef = AliasRW.TheDef; 910 } 911 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 912 return AliasDef; 913 914 // Check this processor's ReadAdvanceList. 915 Record *ResDef = nullptr; 916 for (Record *RA : ProcModel.ReadAdvanceDefs) { 917 if (!RA->isSubClassOf("ReadAdvance")) 918 continue; 919 if (AliasDef == RA->getValueAsDef("ReadType") 920 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 921 if (ResDef) { 922 PrintFatalError(RA->getLoc(), "Resources are defined for both " 923 "SchedRead and its alias on processor " + 924 ProcModel.ModelName); 925 } 926 ResDef = RA; 927 } 928 } 929 // TODO: If ProcModel has a base model (previous generation processor), 930 // then call FindReadAdvance recursively with that model here. 931 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 932 PrintFatalError(ProcModel.ModelDef->getLoc(), 933 Twine("Processor does not define resources for ") + 934 SchedRead.TheDef->getName()); 935 } 936 return ResDef; 937 } 938 939 // Expand an explicit list of processor resources into a full list of implied 940 // resource groups and super resources that cover them. 941 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 942 std::vector<int64_t> &Cycles, 943 const CodeGenProcModel &PM) { 944 // Default to 1 resource cycle. 945 Cycles.resize(PRVec.size(), 1); 946 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 947 Record *PRDef = PRVec[i]; 948 RecVec SubResources; 949 if (PRDef->isSubClassOf("ProcResGroup")) 950 SubResources = PRDef->getValueAsListOfDefs("Resources"); 951 else { 952 SubResources.push_back(PRDef); 953 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 954 for (Record *SubDef = PRDef; 955 SubDef->getValueInit("Super")->isComplete();) { 956 if (SubDef->isSubClassOf("ProcResGroup")) { 957 // Disallow this for simplicitly. 958 PrintFatalError(SubDef->getLoc(), "Processor resource group " 959 " cannot be a super resources."); 960 } 961 Record *SuperDef = 962 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 963 SubDef->getLoc()); 964 PRVec.push_back(SuperDef); 965 Cycles.push_back(Cycles[i]); 966 SubDef = SuperDef; 967 } 968 } 969 for (Record *PR : PM.ProcResourceDefs) { 970 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 971 continue; 972 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 973 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 974 for( ; SubI != SubE; ++SubI) { 975 if (!is_contained(SuperResources, *SubI)) { 976 break; 977 } 978 } 979 if (SubI == SubE) { 980 PRVec.push_back(PR); 981 Cycles.push_back(Cycles[i]); 982 } 983 } 984 } 985 } 986 987 // Generate the SchedClass table for this processor and update global 988 // tables. Must be called for each processor in order. 989 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 990 SchedClassTables &SchedTables) { 991 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 992 if (!ProcModel.hasInstrSchedModel()) 993 return; 994 995 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 996 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 997 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 998 LLVM_DEBUG(SC.dump(&SchedModels)); 999 1000 SCTab.resize(SCTab.size() + 1); 1001 MCSchedClassDesc &SCDesc = SCTab.back(); 1002 // SCDesc.Name is guarded by NDEBUG 1003 SCDesc.NumMicroOps = 0; 1004 SCDesc.BeginGroup = false; 1005 SCDesc.EndGroup = false; 1006 SCDesc.WriteProcResIdx = 0; 1007 SCDesc.WriteLatencyIdx = 0; 1008 SCDesc.ReadAdvanceIdx = 0; 1009 1010 // A Variant SchedClass has no resources of its own. 1011 bool HasVariants = false; 1012 for (const CodeGenSchedTransition &CGT : 1013 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 1014 if (CGT.ProcIndices[0] == 0 || 1015 is_contained(CGT.ProcIndices, ProcModel.Index)) { 1016 HasVariants = true; 1017 break; 1018 } 1019 } 1020 if (HasVariants) { 1021 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 1022 continue; 1023 } 1024 1025 // Determine if the SchedClass is actually reachable on this processor. If 1026 // not don't try to locate the processor resources, it will fail. 1027 // If ProcIndices contains 0, this class applies to all processors. 1028 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 1029 if (SC.ProcIndices[0] != 0) { 1030 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 1031 continue; 1032 } 1033 IdxVec Writes = SC.Writes; 1034 IdxVec Reads = SC.Reads; 1035 if (!SC.InstRWs.empty()) { 1036 // This class has a default ReadWrite list which can be overridden by 1037 // InstRW definitions. 1038 Record *RWDef = nullptr; 1039 for (Record *RW : SC.InstRWs) { 1040 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1041 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 1042 RWDef = RW; 1043 break; 1044 } 1045 } 1046 if (RWDef) { 1047 Writes.clear(); 1048 Reads.clear(); 1049 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 1050 Writes, Reads); 1051 } 1052 } 1053 if (Writes.empty()) { 1054 // Check this processor's itinerary class resources. 1055 for (Record *I : ProcModel.ItinRWDefs) { 1056 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 1057 if (is_contained(Matched, SC.ItinClassDef)) { 1058 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 1059 Writes, Reads); 1060 break; 1061 } 1062 } 1063 if (Writes.empty()) { 1064 LLVM_DEBUG(dbgs() << ProcModel.ModelName 1065 << " does not have resources for class " << SC.Name 1066 << '\n'); 1067 } 1068 } 1069 // Sum resources across all operand writes. 1070 std::vector<MCWriteProcResEntry> WriteProcResources; 1071 std::vector<MCWriteLatencyEntry> WriteLatencies; 1072 std::vector<std::string> WriterNames; 1073 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 1074 for (unsigned W : Writes) { 1075 IdxVec WriteSeq; 1076 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 1077 ProcModel); 1078 1079 // For each operand, create a latency entry. 1080 MCWriteLatencyEntry WLEntry; 1081 WLEntry.Cycles = 0; 1082 unsigned WriteID = WriteSeq.back(); 1083 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 1084 // If this Write is not referenced by a ReadAdvance, don't distinguish it 1085 // from other WriteLatency entries. 1086 if (!SchedModels.hasReadOfWrite( 1087 SchedModels.getSchedWrite(WriteID).TheDef)) { 1088 WriteID = 0; 1089 } 1090 WLEntry.WriteResourceID = WriteID; 1091 1092 for (unsigned WS : WriteSeq) { 1093 1094 Record *WriteRes = 1095 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 1096 1097 // Mark the parent class as invalid for unsupported write types. 1098 if (WriteRes->getValueAsBit("Unsupported")) { 1099 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1100 break; 1101 } 1102 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 1103 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 1104 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 1105 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 1106 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 1107 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 1108 1109 // Create an entry for each ProcResource listed in WriteRes. 1110 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 1111 std::vector<int64_t> Cycles = 1112 WriteRes->getValueAsListOfInts("ResourceCycles"); 1113 1114 ExpandProcResources(PRVec, Cycles, ProcModel); 1115 1116 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 1117 PRIdx != PREnd; ++PRIdx) { 1118 MCWriteProcResEntry WPREntry; 1119 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 1120 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 1121 WPREntry.Cycles = Cycles[PRIdx]; 1122 // If this resource is already used in this sequence, add the current 1123 // entry's cycles so that the same resource appears to be used 1124 // serially, rather than multiple parallel uses. This is important for 1125 // in-order machine where the resource consumption is a hazard. 1126 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 1127 for( ; WPRIdx != WPREnd; ++WPRIdx) { 1128 if (WriteProcResources[WPRIdx].ProcResourceIdx 1129 == WPREntry.ProcResourceIdx) { 1130 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 1131 break; 1132 } 1133 } 1134 if (WPRIdx == WPREnd) 1135 WriteProcResources.push_back(WPREntry); 1136 } 1137 } 1138 WriteLatencies.push_back(WLEntry); 1139 } 1140 // Create an entry for each operand Read in this SchedClass. 1141 // Entries must be sorted first by UseIdx then by WriteResourceID. 1142 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 1143 UseIdx != EndIdx; ++UseIdx) { 1144 Record *ReadAdvance = 1145 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1146 if (!ReadAdvance) 1147 continue; 1148 1149 // Mark the parent class as invalid for unsupported write types. 1150 if (ReadAdvance->getValueAsBit("Unsupported")) { 1151 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1152 break; 1153 } 1154 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1155 IdxVec WriteIDs; 1156 if (ValidWrites.empty()) 1157 WriteIDs.push_back(0); 1158 else { 1159 for (Record *VW : ValidWrites) { 1160 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 1161 } 1162 } 1163 llvm::sort(WriteIDs.begin(), WriteIDs.end()); 1164 for(unsigned W : WriteIDs) { 1165 MCReadAdvanceEntry RAEntry; 1166 RAEntry.UseIdx = UseIdx; 1167 RAEntry.WriteResourceID = W; 1168 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1169 ReadAdvanceEntries.push_back(RAEntry); 1170 } 1171 } 1172 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1173 WriteProcResources.clear(); 1174 WriteLatencies.clear(); 1175 ReadAdvanceEntries.clear(); 1176 } 1177 // Add the information for this SchedClass to the global tables using basic 1178 // compression. 1179 // 1180 // WritePrecRes entries are sorted by ProcResIdx. 1181 llvm::sort(WriteProcResources.begin(), WriteProcResources.end(), 1182 LessWriteProcResources()); 1183 1184 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1185 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1186 std::search(SchedTables.WriteProcResources.begin(), 1187 SchedTables.WriteProcResources.end(), 1188 WriteProcResources.begin(), WriteProcResources.end()); 1189 if (WPRPos != SchedTables.WriteProcResources.end()) 1190 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1191 else { 1192 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1193 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1194 WriteProcResources.end()); 1195 } 1196 // Latency entries must remain in operand order. 1197 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1198 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1199 std::search(SchedTables.WriteLatencies.begin(), 1200 SchedTables.WriteLatencies.end(), 1201 WriteLatencies.begin(), WriteLatencies.end()); 1202 if (WLPos != SchedTables.WriteLatencies.end()) { 1203 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1204 SCDesc.WriteLatencyIdx = idx; 1205 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1206 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1207 std::string::npos) { 1208 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1209 } 1210 } 1211 else { 1212 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1213 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1214 WriteLatencies.begin(), 1215 WriteLatencies.end()); 1216 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1217 WriterNames.begin(), WriterNames.end()); 1218 } 1219 // ReadAdvanceEntries must remain in operand order. 1220 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1221 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1222 std::search(SchedTables.ReadAdvanceEntries.begin(), 1223 SchedTables.ReadAdvanceEntries.end(), 1224 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1225 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1226 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1227 else { 1228 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1229 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1230 ReadAdvanceEntries.end()); 1231 } 1232 } 1233 } 1234 1235 // Emit SchedClass tables for all processors and associated global tables. 1236 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1237 raw_ostream &OS) { 1238 // Emit global WriteProcResTable. 1239 OS << "\n// {ProcResourceIdx, Cycles}\n" 1240 << "extern const llvm::MCWriteProcResEntry " 1241 << Target << "WriteProcResTable[] = {\n" 1242 << " { 0, 0}, // Invalid\n"; 1243 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1244 WPRIdx != WPREnd; ++WPRIdx) { 1245 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1246 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1247 << format("%2d", WPREntry.Cycles) << "}"; 1248 if (WPRIdx + 1 < WPREnd) 1249 OS << ','; 1250 OS << " // #" << WPRIdx << '\n'; 1251 } 1252 OS << "}; // " << Target << "WriteProcResTable\n"; 1253 1254 // Emit global WriteLatencyTable. 1255 OS << "\n// {Cycles, WriteResourceID}\n" 1256 << "extern const llvm::MCWriteLatencyEntry " 1257 << Target << "WriteLatencyTable[] = {\n" 1258 << " { 0, 0}, // Invalid\n"; 1259 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1260 WLIdx != WLEnd; ++WLIdx) { 1261 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1262 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1263 << format("%2d", WLEntry.WriteResourceID) << "}"; 1264 if (WLIdx + 1 < WLEnd) 1265 OS << ','; 1266 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1267 } 1268 OS << "}; // " << Target << "WriteLatencyTable\n"; 1269 1270 // Emit global ReadAdvanceTable. 1271 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1272 << "extern const llvm::MCReadAdvanceEntry " 1273 << Target << "ReadAdvanceTable[] = {\n" 1274 << " {0, 0, 0}, // Invalid\n"; 1275 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1276 RAIdx != RAEnd; ++RAIdx) { 1277 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1278 OS << " {" << RAEntry.UseIdx << ", " 1279 << format("%2d", RAEntry.WriteResourceID) << ", " 1280 << format("%2d", RAEntry.Cycles) << "}"; 1281 if (RAIdx + 1 < RAEnd) 1282 OS << ','; 1283 OS << " // #" << RAIdx << '\n'; 1284 } 1285 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1286 1287 // Emit a SchedClass table for each processor. 1288 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1289 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1290 if (!PI->hasInstrSchedModel()) 1291 continue; 1292 1293 std::vector<MCSchedClassDesc> &SCTab = 1294 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1295 1296 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1297 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1298 OS << "static const llvm::MCSchedClassDesc " 1299 << PI->ModelName << "SchedClasses[] = {\n"; 1300 1301 // The first class is always invalid. We no way to distinguish it except by 1302 // name and position. 1303 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1304 && "invalid class not first"); 1305 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1306 << MCSchedClassDesc::InvalidNumMicroOps 1307 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1308 1309 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1310 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1311 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1312 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1313 if (SchedClass.Name.size() < 18) 1314 OS.indent(18 - SchedClass.Name.size()); 1315 OS << MCDesc.NumMicroOps 1316 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1317 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1318 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1319 << ", " << MCDesc.NumWriteProcResEntries 1320 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1321 << ", " << MCDesc.NumWriteLatencyEntries 1322 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1323 << ", " << MCDesc.NumReadAdvanceEntries 1324 << "}, // #" << SCIdx << '\n'; 1325 } 1326 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1327 } 1328 } 1329 1330 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1331 // For each processor model. 1332 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1333 // Emit extra processor info if available. 1334 if (PM.hasExtraProcessorInfo()) 1335 EmitExtraProcessorInfo(PM, OS); 1336 // Emit processor resource table. 1337 if (PM.hasInstrSchedModel()) 1338 EmitProcessorResources(PM, OS); 1339 else if(!PM.ProcResourceDefs.empty()) 1340 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1341 "ProcResources without defining WriteRes SchedWriteRes"); 1342 1343 // Begin processor itinerary properties 1344 OS << "\n"; 1345 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1346 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1347 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1348 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1349 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1350 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1351 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1352 1353 bool PostRAScheduler = 1354 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1355 1356 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1357 << "PostRAScheduler\n"; 1358 1359 bool CompleteModel = 1360 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1361 1362 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1363 << "CompleteModel\n"; 1364 1365 OS << " " << PM.Index << ", // Processor ID\n"; 1366 if (PM.hasInstrSchedModel()) 1367 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1368 << " " << PM.ModelName << "SchedClasses" << ",\n" 1369 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1370 << " " << (SchedModels.schedClassEnd() 1371 - SchedModels.schedClassBegin()) << ",\n"; 1372 else 1373 OS << " nullptr, nullptr, 0, 0," 1374 << " // No instruction-level machine model.\n"; 1375 if (PM.hasItineraries()) 1376 OS << " " << PM.ItinsDef->getName() << ",\n"; 1377 else 1378 OS << " nullptr, // No Itinerary\n"; 1379 if (PM.hasExtraProcessorInfo()) 1380 OS << " &" << PM.ModelName << "ExtraInfo,\n"; 1381 else 1382 OS << " nullptr // No extra processor descriptor\n"; 1383 OS << "};\n"; 1384 } 1385 } 1386 1387 // 1388 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1389 // 1390 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1391 // Gather and sort processor information 1392 std::vector<Record*> ProcessorList = 1393 Records.getAllDerivedDefinitions("Processor"); 1394 llvm::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1395 1396 // Begin processor table 1397 OS << "\n"; 1398 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1399 << "extern const llvm::SubtargetInfoKV " 1400 << Target << "ProcSchedKV[] = {\n"; 1401 1402 // For each processor 1403 for (Record *Processor : ProcessorList) { 1404 StringRef Name = Processor->getValueAsString("Name"); 1405 const std::string &ProcModelName = 1406 SchedModels.getModelForProc(Processor).ModelName; 1407 1408 // Emit as { "cpu", procinit }, 1409 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n"; 1410 } 1411 1412 // End processor table 1413 OS << "};\n"; 1414 } 1415 1416 // 1417 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1418 // 1419 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1420 OS << "#ifdef DBGFIELD\n" 1421 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1422 << "#endif\n" 1423 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1424 << "#define DBGFIELD(x) x,\n" 1425 << "#else\n" 1426 << "#define DBGFIELD(x)\n" 1427 << "#endif\n"; 1428 1429 if (SchedModels.hasItineraries()) { 1430 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1431 // Emit the stage data 1432 EmitStageAndOperandCycleData(OS, ProcItinLists); 1433 EmitItineraries(OS, ProcItinLists); 1434 } 1435 OS << "\n// ===============================================================\n" 1436 << "// Data tables for the new per-operand machine model.\n"; 1437 1438 SchedClassTables SchedTables; 1439 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1440 GenSchedClassTables(ProcModel, SchedTables); 1441 } 1442 EmitSchedClassTables(SchedTables, OS); 1443 1444 // Emit the processor machine model 1445 EmitProcessorModels(OS); 1446 // Emit the processor lookup data 1447 EmitProcessorLookup(OS); 1448 1449 OS << "\n#undef DBGFIELD"; 1450 } 1451 1452 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) { 1453 std::string Buffer; 1454 raw_string_ostream Stream(Buffer); 1455 1456 // Collect all the PredicateProlog records and print them to the output 1457 // stream. 1458 std::vector<Record *> Prologs = 1459 Records.getAllDerivedDefinitions("PredicateProlog"); 1460 llvm::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1461 for (Record *P : Prologs) 1462 Stream << P->getValueAsString("Code") << '\n'; 1463 1464 Stream.flush(); 1465 OS << Buffer; 1466 } 1467 1468 static void emitPredicates(const CodeGenSchedTransition &T, 1469 const CodeGenSchedClass &SC, 1470 PredicateExpander &PE, 1471 raw_ostream &OS) { 1472 std::string Buffer; 1473 raw_string_ostream StringStream(Buffer); 1474 formatted_raw_ostream FOS(StringStream); 1475 1476 FOS.PadToColumn(6); 1477 FOS << "if ("; 1478 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end(); RI != RE; ++RI) { 1479 if (RI != T.PredTerm.begin()) { 1480 FOS << "\n"; 1481 FOS.PadToColumn(8); 1482 FOS << "&& "; 1483 } 1484 const Record *Rec = *RI; 1485 if (Rec->isSubClassOf("MCSchedPredicate")) 1486 PE.expandPredicate(FOS, Rec->getValueAsDef("Pred")); 1487 else 1488 FOS << "(" << Rec->getValueAsString("Predicate") << ")"; 1489 } 1490 1491 FOS << ")\n"; 1492 FOS.PadToColumn(8); 1493 FOS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n'; 1494 FOS.flush(); 1495 OS << Buffer; 1496 } 1497 1498 void SubtargetEmitter::emitSchedModelHelpersImpl( 1499 raw_ostream &OS, bool OnlyExpandMCInstPredicates) { 1500 // Collect Variant Classes. 1501 IdxVec VariantClasses; 1502 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1503 if (SC.Transitions.empty()) 1504 continue; 1505 VariantClasses.push_back(SC.Index); 1506 } 1507 1508 if (!VariantClasses.empty()) { 1509 bool FoundPredicates = false; 1510 for (unsigned VC : VariantClasses) { 1511 // Emit code for each variant scheduling class. 1512 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1513 IdxVec ProcIndices; 1514 for (const CodeGenSchedTransition &T : SC.Transitions) { 1515 if (OnlyExpandMCInstPredicates && 1516 !all_of(T.PredTerm, [](const Record *Rec) { 1517 return Rec->isSubClassOf("MCSchedPredicate"); 1518 })) 1519 continue; 1520 1521 IdxVec PI; 1522 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1523 ProcIndices.begin(), ProcIndices.end(), 1524 std::back_inserter(PI)); 1525 ProcIndices.swap(PI); 1526 } 1527 if (ProcIndices.empty()) 1528 continue; 1529 1530 // Emit a switch statement only if there are predicates to expand. 1531 if (!FoundPredicates) { 1532 OS << " switch (SchedClass) {\n"; 1533 FoundPredicates = true; 1534 } 1535 1536 OS << " case " << VC << ": // " << SC.Name << '\n'; 1537 PredicateExpander PE; 1538 PE.setByRef(false); 1539 PE.setExpandForMC(OnlyExpandMCInstPredicates); 1540 for (unsigned PI : ProcIndices) { 1541 OS << " "; 1542 if (PI != 0) { 1543 OS << (OnlyExpandMCInstPredicates 1544 ? "if (CPUID == " 1545 : "if (SchedModel->getProcessorID() == "); 1546 OS << PI << ") "; 1547 } 1548 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n'; 1549 1550 for (const CodeGenSchedTransition &T : SC.Transitions) { 1551 if (PI != 0 && !count(T.ProcIndices, PI)) 1552 continue; 1553 PE.setIndentLevel(4); 1554 emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS); 1555 } 1556 1557 OS << " }\n"; 1558 if (PI == 0) 1559 break; 1560 } 1561 if (SC.isInferred()) 1562 OS << " return " << SC.Index << ";\n"; 1563 OS << " break;\n"; 1564 } 1565 1566 if (FoundPredicates) 1567 OS << " };\n"; 1568 } 1569 1570 if (OnlyExpandMCInstPredicates) { 1571 OS << " // Don't know how to resolve this scheduling class.\n" 1572 << " return 0;\n"; 1573 return; 1574 } 1575 1576 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"; 1577 } 1578 1579 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1580 raw_ostream &OS) { 1581 OS << "unsigned " << ClassName 1582 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1583 << " const TargetSchedModel *SchedModel) const {\n"; 1584 1585 // Emit the predicate prolog code. 1586 emitPredicateProlog(Records, OS); 1587 1588 // Emit target predicates. 1589 emitSchedModelHelpersImpl(OS); 1590 1591 OS << "} // " << ClassName << "::resolveSchedClass\n"; 1592 } 1593 1594 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1595 raw_ostream &OS) { 1596 const CodeGenHwModes &CGH = TGT.getHwModes(); 1597 assert(CGH.getNumModeIds() > 0); 1598 if (CGH.getNumModeIds() == 1) 1599 return; 1600 1601 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1602 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1603 const HwMode &HM = CGH.getMode(M); 1604 OS << " if (checkFeatures(\"" << HM.Features 1605 << "\")) return " << M << ";\n"; 1606 } 1607 OS << " return 0;\n}\n"; 1608 } 1609 1610 // 1611 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1612 // the subtarget features string. 1613 // 1614 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1615 unsigned NumFeatures, 1616 unsigned NumProcs) { 1617 std::vector<Record*> Features = 1618 Records.getAllDerivedDefinitions("SubtargetFeature"); 1619 llvm::sort(Features.begin(), Features.end(), LessRecord()); 1620 1621 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1622 << "// subtarget options.\n" 1623 << "void llvm::"; 1624 OS << Target; 1625 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1626 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1627 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1628 1629 if (Features.empty()) { 1630 OS << "}\n"; 1631 return; 1632 } 1633 1634 OS << " InitMCProcessorInfo(CPU, FS);\n" 1635 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1636 1637 for (Record *R : Features) { 1638 // Next record 1639 StringRef Instance = R->getName(); 1640 StringRef Value = R->getValueAsString("Value"); 1641 StringRef Attribute = R->getValueAsString("Attribute"); 1642 1643 if (Value=="true" || Value=="false") 1644 OS << " if (Bits[" << Target << "::" 1645 << Instance << "]) " 1646 << Attribute << " = " << Value << ";\n"; 1647 else 1648 OS << " if (Bits[" << Target << "::" 1649 << Instance << "] && " 1650 << Attribute << " < " << Value << ") " 1651 << Attribute << " = " << Value << ";\n"; 1652 } 1653 1654 OS << "}\n"; 1655 } 1656 1657 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) { 1658 OS << "struct " << Target 1659 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n"; 1660 OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT, \n" 1661 << " StringRef CPU, StringRef FS, ArrayRef<SubtargetFeatureKV> PF,\n" 1662 << " ArrayRef<SubtargetFeatureKV> PD,\n" 1663 << " const SubtargetInfoKV *ProcSched,\n" 1664 << " const MCWriteProcResEntry *WPR,\n" 1665 << " const MCWriteLatencyEntry *WL,\n" 1666 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n" 1667 << " const unsigned *OC, const unsigned *FP) :\n" 1668 << " MCSubtargetInfo(TT, CPU, FS, PF, PD, ProcSched,\n" 1669 << " WPR, WL, RA, IS, OC, FP) { }\n\n" 1670 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n" 1671 << " const MCInst *MI, unsigned CPUID) const override {\n"; 1672 emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true); 1673 OS << " }\n"; 1674 OS << "};\n"; 1675 } 1676 1677 // 1678 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1679 // 1680 void SubtargetEmitter::run(raw_ostream &OS) { 1681 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1682 1683 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1684 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1685 1686 OS << "namespace llvm {\n"; 1687 Enumeration(OS); 1688 OS << "} // end namespace llvm\n\n"; 1689 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1690 1691 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1692 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1693 1694 OS << "namespace llvm {\n"; 1695 #if 0 1696 OS << "namespace {\n"; 1697 #endif 1698 unsigned NumFeatures = FeatureKeyValues(OS); 1699 OS << "\n"; 1700 unsigned NumProcs = CPUKeyValues(OS); 1701 OS << "\n"; 1702 EmitSchedModel(OS); 1703 OS << "\n"; 1704 #if 0 1705 OS << "} // end anonymous namespace\n\n"; 1706 #endif 1707 1708 // MCInstrInfo initialization routine. 1709 emitGenMCSubtargetInfo(OS); 1710 1711 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1712 << "MCSubtargetInfoImpl(" 1713 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1714 OS << " return new " << Target << "GenMCSubtargetInfo(TT, CPU, FS, "; 1715 if (NumFeatures) 1716 OS << Target << "FeatureKV, "; 1717 else 1718 OS << "None, "; 1719 if (NumProcs) 1720 OS << Target << "SubTypeKV, "; 1721 else 1722 OS << "None, "; 1723 OS << '\n'; OS.indent(22); 1724 OS << Target << "ProcSchedKV, " 1725 << Target << "WriteProcResTable, " 1726 << Target << "WriteLatencyTable, " 1727 << Target << "ReadAdvanceTable, "; 1728 OS << '\n'; OS.indent(22); 1729 if (SchedModels.hasItineraries()) { 1730 OS << Target << "Stages, " 1731 << Target << "OperandCycles, " 1732 << Target << "ForwardingPaths"; 1733 } else 1734 OS << "nullptr, nullptr, nullptr"; 1735 OS << ");\n}\n\n"; 1736 1737 OS << "} // end namespace llvm\n\n"; 1738 1739 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1740 1741 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1742 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1743 1744 OS << "#include \"llvm/Support/Debug.h\"\n"; 1745 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1746 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1747 1748 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1749 1750 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1751 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1752 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1753 1754 std::string ClassName = Target + "GenSubtargetInfo"; 1755 OS << "namespace llvm {\n"; 1756 OS << "class DFAPacketizer;\n"; 1757 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1758 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1759 << "StringRef FS);\n" 1760 << "public:\n" 1761 << " unsigned resolveSchedClass(unsigned SchedClass, " 1762 << " const MachineInstr *DefMI," 1763 << " const TargetSchedModel *SchedModel) const override;\n" 1764 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1765 << " const;\n"; 1766 if (TGT.getHwModes().getNumModeIds() > 1) 1767 OS << " unsigned getHwMode() const override;\n"; 1768 OS << "};\n" 1769 << "} // end namespace llvm\n\n"; 1770 1771 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1772 1773 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1774 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1775 1776 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1777 OS << "namespace llvm {\n"; 1778 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1779 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1780 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1781 OS << "extern const llvm::MCWriteProcResEntry " 1782 << Target << "WriteProcResTable[];\n"; 1783 OS << "extern const llvm::MCWriteLatencyEntry " 1784 << Target << "WriteLatencyTable[];\n"; 1785 OS << "extern const llvm::MCReadAdvanceEntry " 1786 << Target << "ReadAdvanceTable[];\n"; 1787 1788 if (SchedModels.hasItineraries()) { 1789 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1790 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1791 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1792 } 1793 1794 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1795 << "StringRef FS)\n" 1796 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1797 if (NumFeatures) 1798 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1799 else 1800 OS << "None, "; 1801 if (NumProcs) 1802 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1803 else 1804 OS << "None, "; 1805 OS << '\n'; OS.indent(24); 1806 OS << Target << "ProcSchedKV, " 1807 << Target << "WriteProcResTable, " 1808 << Target << "WriteLatencyTable, " 1809 << Target << "ReadAdvanceTable, "; 1810 OS << '\n'; OS.indent(24); 1811 if (SchedModels.hasItineraries()) { 1812 OS << Target << "Stages, " 1813 << Target << "OperandCycles, " 1814 << Target << "ForwardingPaths"; 1815 } else 1816 OS << "nullptr, nullptr, nullptr"; 1817 OS << ") {}\n\n"; 1818 1819 EmitSchedModelHelpers(ClassName, OS); 1820 EmitHwModeCheck(ClassName, OS); 1821 1822 OS << "} // end namespace llvm\n\n"; 1823 1824 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1825 } 1826 1827 namespace llvm { 1828 1829 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1830 CodeGenTarget CGTarget(RK); 1831 SubtargetEmitter(RK, CGTarget).run(OS); 1832 } 1833 1834 } // end namespace llvm 1835