1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 RecordKeeper &Records; 72 CodeGenSchedModels &SchedModels; 73 std::string Target; 74 75 void Enumeration(raw_ostream &OS); 76 unsigned FeatureKeyValues(raw_ostream &OS); 77 unsigned CPUKeyValues(raw_ostream &OS); 78 void FormItineraryStageString(const std::string &Names, 79 Record *ItinData, std::string &ItinString, 80 unsigned &NStages); 81 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 82 unsigned &NOperandCycles); 83 void FormItineraryBypassString(const std::string &Names, 84 Record *ItinData, 85 std::string &ItinString, unsigned NOperandCycles); 86 void EmitStageAndOperandCycleData(raw_ostream &OS, 87 std::vector<std::vector<InstrItinerary>> 88 &ProcItinLists); 89 void EmitItineraries(raw_ostream &OS, 90 std::vector<std::vector<InstrItinerary>> 91 &ProcItinLists); 92 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 93 char Separator); 94 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 95 raw_ostream &OS); 96 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 97 const CodeGenProcModel &ProcModel); 98 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 99 const CodeGenProcModel &ProcModel); 100 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 101 const CodeGenProcModel &ProcModel); 102 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 103 SchedClassTables &SchedTables); 104 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 105 void EmitProcessorModels(raw_ostream &OS); 106 void EmitProcessorLookup(raw_ostream &OS); 107 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 108 void EmitSchedModel(raw_ostream &OS); 109 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 110 unsigned NumProcs); 111 112 public: 113 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT): 114 Records(R), SchedModels(TGT.getSchedModels()), Target(TGT.getName()) {} 115 116 void run(raw_ostream &o); 117 }; 118 119 } // end anonymous namespace 120 121 // 122 // Enumeration - Emit the specified class as an enumeration. 123 // 124 void SubtargetEmitter::Enumeration(raw_ostream &OS) { 125 // Get all records of class and sort 126 std::vector<Record*> DefList = 127 Records.getAllDerivedDefinitions("SubtargetFeature"); 128 std::sort(DefList.begin(), DefList.end(), LessRecord()); 129 130 unsigned N = DefList.size(); 131 if (N == 0) 132 return; 133 if (N > MAX_SUBTARGET_FEATURES) 134 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 135 136 OS << "namespace " << Target << " {\n"; 137 138 // Open enumeration. 139 OS << "enum {\n"; 140 141 // For each record 142 for (unsigned i = 0; i < N;) { 143 // Next record 144 Record *Def = DefList[i]; 145 146 // Get and emit name 147 OS << " " << Def->getName() << " = " << i; 148 if (++i < N) OS << ","; 149 150 OS << "\n"; 151 } 152 153 // Close enumeration and namespace 154 OS << "};\n"; 155 OS << "} // end namespace " << Target << "\n"; 156 } 157 158 // 159 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 160 // command line. 161 // 162 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 163 // Gather and sort all the features 164 std::vector<Record*> FeatureList = 165 Records.getAllDerivedDefinitions("SubtargetFeature"); 166 167 if (FeatureList.empty()) 168 return 0; 169 170 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 171 172 // Begin feature table 173 OS << "// Sorted (by key) array of values for CPU features.\n" 174 << "extern const llvm::SubtargetFeatureKV " << Target 175 << "FeatureKV[] = {\n"; 176 177 // For each feature 178 unsigned NumFeatures = 0; 179 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 180 // Next feature 181 Record *Feature = FeatureList[i]; 182 183 StringRef Name = Feature->getName(); 184 StringRef CommandLineName = Feature->getValueAsString("Name"); 185 StringRef Desc = Feature->getValueAsString("Desc"); 186 187 if (CommandLineName.empty()) continue; 188 189 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 190 OS << " { " 191 << "\"" << CommandLineName << "\", " 192 << "\"" << Desc << "\", " 193 << "{ " << Target << "::" << Name << " }, "; 194 195 const std::vector<Record*> &ImpliesList = 196 Feature->getValueAsListOfDefs("Implies"); 197 198 OS << "{"; 199 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 200 OS << " " << Target << "::" << ImpliesList[j]->getName(); 201 if (++j < M) OS << ","; 202 } 203 OS << " }"; 204 205 OS << " }"; 206 ++NumFeatures; 207 208 // Depending on 'if more in the list' emit comma 209 if ((i + 1) < N) OS << ","; 210 211 OS << "\n"; 212 } 213 214 // End feature table 215 OS << "};\n"; 216 217 return NumFeatures; 218 } 219 220 // 221 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 222 // line. 223 // 224 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 225 // Gather and sort processor information 226 std::vector<Record*> ProcessorList = 227 Records.getAllDerivedDefinitions("Processor"); 228 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 229 230 // Begin processor table 231 OS << "// Sorted (by key) array of values for CPU subtype.\n" 232 << "extern const llvm::SubtargetFeatureKV " << Target 233 << "SubTypeKV[] = {\n"; 234 235 // For each processor 236 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 237 // Next processor 238 Record *Processor = ProcessorList[i]; 239 240 StringRef Name = Processor->getValueAsString("Name"); 241 const std::vector<Record*> &FeatureList = 242 Processor->getValueAsListOfDefs("Features"); 243 244 // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, 245 OS << " { " 246 << "\"" << Name << "\", " 247 << "\"Select the " << Name << " processor\", "; 248 249 OS << "{"; 250 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 251 OS << " " << Target << "::" << FeatureList[j]->getName(); 252 if (++j < M) OS << ","; 253 } 254 OS << " }"; 255 256 // The { } is for the "implies" section of this data structure. 257 OS << ", { } }"; 258 259 // Depending on 'if more in the list' emit comma 260 if (++i < N) OS << ","; 261 262 OS << "\n"; 263 } 264 265 // End processor table 266 OS << "};\n"; 267 268 return ProcessorList.size(); 269 } 270 271 // 272 // FormItineraryStageString - Compose a string containing the stage 273 // data initialization for the specified itinerary. N is the number 274 // of stages. 275 // 276 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 277 Record *ItinData, 278 std::string &ItinString, 279 unsigned &NStages) { 280 // Get states list 281 const std::vector<Record*> &StageList = 282 ItinData->getValueAsListOfDefs("Stages"); 283 284 // For each stage 285 unsigned N = NStages = StageList.size(); 286 for (unsigned i = 0; i < N;) { 287 // Next stage 288 const Record *Stage = StageList[i]; 289 290 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 291 int Cycles = Stage->getValueAsInt("Cycles"); 292 ItinString += " { " + itostr(Cycles) + ", "; 293 294 // Get unit list 295 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 296 297 // For each unit 298 for (unsigned j = 0, M = UnitList.size(); j < M;) { 299 // Add name and bitwise or 300 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 301 if (++j < M) ItinString += " | "; 302 } 303 304 int TimeInc = Stage->getValueAsInt("TimeInc"); 305 ItinString += ", " + itostr(TimeInc); 306 307 int Kind = Stage->getValueAsInt("Kind"); 308 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 309 310 // Close off stage 311 ItinString += " }"; 312 if (++i < N) ItinString += ", "; 313 } 314 } 315 316 // 317 // FormItineraryOperandCycleString - Compose a string containing the 318 // operand cycle initialization for the specified itinerary. N is the 319 // number of operands that has cycles specified. 320 // 321 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 322 std::string &ItinString, unsigned &NOperandCycles) { 323 // Get operand cycle list 324 const std::vector<int64_t> &OperandCycleList = 325 ItinData->getValueAsListOfInts("OperandCycles"); 326 327 // For each operand cycle 328 unsigned N = NOperandCycles = OperandCycleList.size(); 329 for (unsigned i = 0; i < N;) { 330 // Next operand cycle 331 const int OCycle = OperandCycleList[i]; 332 333 ItinString += " " + itostr(OCycle); 334 if (++i < N) ItinString += ", "; 335 } 336 } 337 338 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 339 Record *ItinData, 340 std::string &ItinString, 341 unsigned NOperandCycles) { 342 const std::vector<Record*> &BypassList = 343 ItinData->getValueAsListOfDefs("Bypasses"); 344 unsigned N = BypassList.size(); 345 unsigned i = 0; 346 for (; i < N;) { 347 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 348 if (++i < NOperandCycles) ItinString += ", "; 349 } 350 for (; i < NOperandCycles;) { 351 ItinString += " 0"; 352 if (++i < NOperandCycles) ItinString += ", "; 353 } 354 } 355 356 // 357 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 358 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 359 // by CodeGenSchedClass::Index. 360 // 361 void SubtargetEmitter:: 362 EmitStageAndOperandCycleData(raw_ostream &OS, 363 std::vector<std::vector<InstrItinerary>> 364 &ProcItinLists) { 365 // Multiple processor models may share an itinerary record. Emit it once. 366 SmallPtrSet<Record*, 8> ItinsDefSet; 367 368 // Emit functional units for all the itineraries. 369 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 370 371 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 372 continue; 373 374 std::vector<Record*> FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 375 if (FUs.empty()) 376 continue; 377 378 StringRef Name = ProcModel.ItinsDef->getName(); 379 OS << "\n// Functional units for \"" << Name << "\"\n" 380 << "namespace " << Name << "FU {\n"; 381 382 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 383 OS << " const unsigned " << FUs[j]->getName() 384 << " = 1 << " << j << ";\n"; 385 386 OS << "} // end namespace " << Name << "FU\n"; 387 388 std::vector<Record*> BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 389 if (!BPs.empty()) { 390 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 391 << "\"\n" << "namespace " << Name << "Bypass {\n"; 392 393 OS << " const unsigned NoBypass = 0;\n"; 394 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 395 OS << " const unsigned " << BPs[j]->getName() 396 << " = 1 << " << j << ";\n"; 397 398 OS << "} // end namespace " << Name << "Bypass\n"; 399 } 400 } 401 402 // Begin stages table 403 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 404 "Stages[] = {\n"; 405 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 406 407 // Begin operand cycle table 408 std::string OperandCycleTable = "extern const unsigned " + Target + 409 "OperandCycles[] = {\n"; 410 OperandCycleTable += " 0, // No itinerary\n"; 411 412 // Begin pipeline bypass table 413 std::string BypassTable = "extern const unsigned " + Target + 414 "ForwardingPaths[] = {\n"; 415 BypassTable += " 0, // No itinerary\n"; 416 417 // For each Itinerary across all processors, add a unique entry to the stages, 418 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 419 // object with computed offsets to the ProcItinLists result. 420 unsigned StageCount = 1, OperandCycleCount = 1; 421 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 422 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 423 // Add process itinerary to the list. 424 ProcItinLists.resize(ProcItinLists.size()+1); 425 426 // If this processor defines no itineraries, then leave the itinerary list 427 // empty. 428 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 429 if (!ProcModel.hasItineraries()) 430 continue; 431 432 StringRef Name = ProcModel.ItinsDef->getName(); 433 434 ItinList.resize(SchedModels.numInstrSchedClasses()); 435 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 436 437 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 438 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 439 440 // Next itinerary data 441 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 442 443 // Get string and stage count 444 std::string ItinStageString; 445 unsigned NStages = 0; 446 if (ItinData) 447 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 448 449 // Get string and operand cycle count 450 std::string ItinOperandCycleString; 451 unsigned NOperandCycles = 0; 452 std::string ItinBypassString; 453 if (ItinData) { 454 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 455 NOperandCycles); 456 457 FormItineraryBypassString(Name, ItinData, ItinBypassString, 458 NOperandCycles); 459 } 460 461 // Check to see if stage already exists and create if it doesn't 462 unsigned FindStage = 0; 463 if (NStages > 0) { 464 FindStage = ItinStageMap[ItinStageString]; 465 if (FindStage == 0) { 466 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 467 StageTable += ItinStageString + ", // " + itostr(StageCount); 468 if (NStages > 1) 469 StageTable += "-" + itostr(StageCount + NStages - 1); 470 StageTable += "\n"; 471 // Record Itin class number. 472 ItinStageMap[ItinStageString] = FindStage = StageCount; 473 StageCount += NStages; 474 } 475 } 476 477 // Check to see if operand cycle already exists and create if it doesn't 478 unsigned FindOperandCycle = 0; 479 if (NOperandCycles > 0) { 480 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 481 FindOperandCycle = ItinOperandMap[ItinOperandString]; 482 if (FindOperandCycle == 0) { 483 // Emit as cycle, // index 484 OperandCycleTable += ItinOperandCycleString + ", // "; 485 std::string OperandIdxComment = itostr(OperandCycleCount); 486 if (NOperandCycles > 1) 487 OperandIdxComment += "-" 488 + itostr(OperandCycleCount + NOperandCycles - 1); 489 OperandCycleTable += OperandIdxComment + "\n"; 490 // Record Itin class number. 491 ItinOperandMap[ItinOperandCycleString] = 492 FindOperandCycle = OperandCycleCount; 493 // Emit as bypass, // index 494 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 495 OperandCycleCount += NOperandCycles; 496 } 497 } 498 499 // Set up itinerary as location and location + stage count 500 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 501 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 502 FindOperandCycle, 503 FindOperandCycle + NOperandCycles }; 504 505 // Inject - empty slots will be 0, 0 506 ItinList[SchedClassIdx] = Intinerary; 507 } 508 } 509 510 // Closing stage 511 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 512 StageTable += "};\n"; 513 514 // Closing operand cycles 515 OperandCycleTable += " 0 // End operand cycles\n"; 516 OperandCycleTable += "};\n"; 517 518 BypassTable += " 0 // End bypass tables\n"; 519 BypassTable += "};\n"; 520 521 // Emit tables. 522 OS << StageTable; 523 OS << OperandCycleTable; 524 OS << BypassTable; 525 } 526 527 // 528 // EmitProcessorData - Generate data for processor itineraries that were 529 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 530 // Itineraries for each processor. The Itinerary lists are indexed on 531 // CodeGenSchedClass::Index. 532 // 533 void SubtargetEmitter:: 534 EmitItineraries(raw_ostream &OS, 535 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 536 // Multiple processor models may share an itinerary record. Emit it once. 537 SmallPtrSet<Record*, 8> ItinsDefSet; 538 539 // For each processor's machine model 540 std::vector<std::vector<InstrItinerary>>::iterator 541 ProcItinListsIter = ProcItinLists.begin(); 542 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 543 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 544 545 Record *ItinsDef = PI->ItinsDef; 546 if (!ItinsDefSet.insert(ItinsDef).second) 547 continue; 548 549 // Get the itinerary list for the processor. 550 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 551 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 552 553 // Empty itineraries aren't referenced anywhere in the tablegen output 554 // so don't emit them. 555 if (ItinList.empty()) 556 continue; 557 558 OS << "\n"; 559 OS << "static const llvm::InstrItinerary "; 560 561 // Begin processor itinerary table 562 OS << ItinsDef->getName() << "[] = {\n"; 563 564 // For each itinerary class in CodeGenSchedClass::Index order. 565 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 566 InstrItinerary &Intinerary = ItinList[j]; 567 568 // Emit Itinerary in the form of 569 // { firstStage, lastStage, firstCycle, lastCycle } // index 570 OS << " { " << 571 Intinerary.NumMicroOps << ", " << 572 Intinerary.FirstStage << ", " << 573 Intinerary.LastStage << ", " << 574 Intinerary.FirstOperandCycle << ", " << 575 Intinerary.LastOperandCycle << " }" << 576 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 577 } 578 // End processor itinerary table 579 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 580 OS << "};\n"; 581 } 582 } 583 584 // Emit either the value defined in the TableGen Record, or the default 585 // value defined in the C++ header. The Record is null if the processor does not 586 // define a model. 587 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 588 StringRef Name, char Separator) { 589 OS << " "; 590 int V = R ? R->getValueAsInt(Name) : -1; 591 if (V >= 0) 592 OS << V << Separator << " // " << Name; 593 else 594 OS << "MCSchedModel::Default" << Name << Separator; 595 OS << '\n'; 596 } 597 598 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 599 raw_ostream &OS) { 600 char Sep = ProcModel.ProcResourceDefs.empty() ? ' ' : ','; 601 602 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 603 OS << "static const llvm::MCProcResourceDesc " 604 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 605 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0}" << Sep << "\n"; 606 607 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 608 Record *PRDef = ProcModel.ProcResourceDefs[i]; 609 610 Record *SuperDef = nullptr; 611 unsigned SuperIdx = 0; 612 unsigned NumUnits = 0; 613 int BufferSize = PRDef->getValueAsInt("BufferSize"); 614 if (PRDef->isSubClassOf("ProcResGroup")) { 615 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 616 for (Record *RU : ResUnits) { 617 NumUnits += RU->getValueAsInt("NumUnits"); 618 } 619 } 620 else { 621 // Find the SuperIdx 622 if (PRDef->getValueInit("Super")->isComplete()) { 623 SuperDef = SchedModels.findProcResUnits( 624 PRDef->getValueAsDef("Super"), ProcModel); 625 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 626 } 627 NumUnits = PRDef->getValueAsInt("NumUnits"); 628 } 629 // Emit the ProcResourceDesc 630 if (i+1 == e) 631 Sep = ' '; 632 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 633 if (PRDef->getName().size() < 15) 634 OS.indent(15 - PRDef->getName().size()); 635 OS << NumUnits << ", " << SuperIdx << ", " 636 << BufferSize << "}" << Sep << " // #" << i+1; 637 if (SuperDef) 638 OS << ", Super=" << SuperDef->getName(); 639 OS << "\n"; 640 } 641 OS << "};\n"; 642 } 643 644 // Find the WriteRes Record that defines processor resources for this 645 // SchedWrite. 646 Record *SubtargetEmitter::FindWriteResources( 647 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 648 649 // Check if the SchedWrite is already subtarget-specific and directly 650 // specifies a set of processor resources. 651 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 652 return SchedWrite.TheDef; 653 654 Record *AliasDef = nullptr; 655 for (Record *A : SchedWrite.Aliases) { 656 const CodeGenSchedRW &AliasRW = 657 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 658 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 659 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 660 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 661 continue; 662 } 663 if (AliasDef) 664 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 665 "defined for processor " + ProcModel.ModelName + 666 " Ensure only one SchedAlias exists per RW."); 667 AliasDef = AliasRW.TheDef; 668 } 669 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 670 return AliasDef; 671 672 // Check this processor's list of write resources. 673 Record *ResDef = nullptr; 674 for (Record *WR : ProcModel.WriteResDefs) { 675 if (!WR->isSubClassOf("WriteRes")) 676 continue; 677 if (AliasDef == WR->getValueAsDef("WriteType") 678 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 679 if (ResDef) { 680 PrintFatalError(WR->getLoc(), "Resources are defined for both " 681 "SchedWrite and its alias on processor " + 682 ProcModel.ModelName); 683 } 684 ResDef = WR; 685 } 686 } 687 // TODO: If ProcModel has a base model (previous generation processor), 688 // then call FindWriteResources recursively with that model here. 689 if (!ResDef) { 690 PrintFatalError(ProcModel.ModelDef->getLoc(), 691 std::string("Processor does not define resources for ") 692 + SchedWrite.TheDef->getName()); 693 } 694 return ResDef; 695 } 696 697 /// Find the ReadAdvance record for the given SchedRead on this processor or 698 /// return NULL. 699 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 700 const CodeGenProcModel &ProcModel) { 701 // Check for SchedReads that directly specify a ReadAdvance. 702 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 703 return SchedRead.TheDef; 704 705 // Check this processor's list of aliases for SchedRead. 706 Record *AliasDef = nullptr; 707 for (Record *A : SchedRead.Aliases) { 708 const CodeGenSchedRW &AliasRW = 709 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 710 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 711 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 712 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 713 continue; 714 } 715 if (AliasDef) 716 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 717 "defined for processor " + ProcModel.ModelName + 718 " Ensure only one SchedAlias exists per RW."); 719 AliasDef = AliasRW.TheDef; 720 } 721 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 722 return AliasDef; 723 724 // Check this processor's ReadAdvanceList. 725 Record *ResDef = nullptr; 726 for (Record *RA : ProcModel.ReadAdvanceDefs) { 727 if (!RA->isSubClassOf("ReadAdvance")) 728 continue; 729 if (AliasDef == RA->getValueAsDef("ReadType") 730 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 731 if (ResDef) { 732 PrintFatalError(RA->getLoc(), "Resources are defined for both " 733 "SchedRead and its alias on processor " + 734 ProcModel.ModelName); 735 } 736 ResDef = RA; 737 } 738 } 739 // TODO: If ProcModel has a base model (previous generation processor), 740 // then call FindReadAdvance recursively with that model here. 741 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 742 PrintFatalError(ProcModel.ModelDef->getLoc(), 743 std::string("Processor does not define resources for ") 744 + SchedRead.TheDef->getName()); 745 } 746 return ResDef; 747 } 748 749 // Expand an explicit list of processor resources into a full list of implied 750 // resource groups and super resources that cover them. 751 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 752 std::vector<int64_t> &Cycles, 753 const CodeGenProcModel &PM) { 754 // Default to 1 resource cycle. 755 Cycles.resize(PRVec.size(), 1); 756 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 757 Record *PRDef = PRVec[i]; 758 RecVec SubResources; 759 if (PRDef->isSubClassOf("ProcResGroup")) 760 SubResources = PRDef->getValueAsListOfDefs("Resources"); 761 else { 762 SubResources.push_back(PRDef); 763 PRDef = SchedModels.findProcResUnits(PRVec[i], PM); 764 for (Record *SubDef = PRDef; 765 SubDef->getValueInit("Super")->isComplete();) { 766 if (SubDef->isSubClassOf("ProcResGroup")) { 767 // Disallow this for simplicitly. 768 PrintFatalError(SubDef->getLoc(), "Processor resource group " 769 " cannot be a super resources."); 770 } 771 Record *SuperDef = 772 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); 773 PRVec.push_back(SuperDef); 774 Cycles.push_back(Cycles[i]); 775 SubDef = SuperDef; 776 } 777 } 778 for (Record *PR : PM.ProcResourceDefs) { 779 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 780 continue; 781 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 782 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 783 for( ; SubI != SubE; ++SubI) { 784 if (!is_contained(SuperResources, *SubI)) { 785 break; 786 } 787 } 788 if (SubI == SubE) { 789 PRVec.push_back(PR); 790 Cycles.push_back(Cycles[i]); 791 } 792 } 793 } 794 } 795 796 // Generate the SchedClass table for this processor and update global 797 // tables. Must be called for each processor in order. 798 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 799 SchedClassTables &SchedTables) { 800 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 801 if (!ProcModel.hasInstrSchedModel()) 802 return; 803 804 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 805 DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 806 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 807 DEBUG(SC.dump(&SchedModels)); 808 809 SCTab.resize(SCTab.size() + 1); 810 MCSchedClassDesc &SCDesc = SCTab.back(); 811 // SCDesc.Name is guarded by NDEBUG 812 SCDesc.NumMicroOps = 0; 813 SCDesc.BeginGroup = false; 814 SCDesc.EndGroup = false; 815 SCDesc.WriteProcResIdx = 0; 816 SCDesc.WriteLatencyIdx = 0; 817 SCDesc.ReadAdvanceIdx = 0; 818 819 // A Variant SchedClass has no resources of its own. 820 bool HasVariants = false; 821 for (std::vector<CodeGenSchedTransition>::const_iterator 822 TI = SC.Transitions.begin(), TE = SC.Transitions.end(); 823 TI != TE; ++TI) { 824 if (TI->ProcIndices[0] == 0) { 825 HasVariants = true; 826 break; 827 } 828 if (is_contained(TI->ProcIndices, ProcModel.Index)) { 829 HasVariants = true; 830 break; 831 } 832 } 833 if (HasVariants) { 834 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 835 continue; 836 } 837 838 // Determine if the SchedClass is actually reachable on this processor. If 839 // not don't try to locate the processor resources, it will fail. 840 // If ProcIndices contains 0, this class applies to all processors. 841 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 842 if (SC.ProcIndices[0] != 0) { 843 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 844 continue; 845 } 846 IdxVec Writes = SC.Writes; 847 IdxVec Reads = SC.Reads; 848 if (!SC.InstRWs.empty()) { 849 // This class has a default ReadWrite list which can be overriden by 850 // InstRW definitions. 851 Record *RWDef = nullptr; 852 for (Record *RW : SC.InstRWs) { 853 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 854 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 855 RWDef = RW; 856 break; 857 } 858 } 859 if (RWDef) { 860 Writes.clear(); 861 Reads.clear(); 862 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 863 Writes, Reads); 864 } 865 } 866 if (Writes.empty()) { 867 // Check this processor's itinerary class resources. 868 for (Record *I : ProcModel.ItinRWDefs) { 869 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 870 if (is_contained(Matched, SC.ItinClassDef)) { 871 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 872 Writes, Reads); 873 break; 874 } 875 } 876 if (Writes.empty()) { 877 DEBUG(dbgs() << ProcModel.ModelName 878 << " does not have resources for class " << SC.Name << '\n'); 879 } 880 } 881 // Sum resources across all operand writes. 882 std::vector<MCWriteProcResEntry> WriteProcResources; 883 std::vector<MCWriteLatencyEntry> WriteLatencies; 884 std::vector<std::string> WriterNames; 885 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 886 for (unsigned W : Writes) { 887 IdxVec WriteSeq; 888 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 889 ProcModel); 890 891 // For each operand, create a latency entry. 892 MCWriteLatencyEntry WLEntry; 893 WLEntry.Cycles = 0; 894 unsigned WriteID = WriteSeq.back(); 895 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 896 // If this Write is not referenced by a ReadAdvance, don't distinguish it 897 // from other WriteLatency entries. 898 if (!SchedModels.hasReadOfWrite( 899 SchedModels.getSchedWrite(WriteID).TheDef)) { 900 WriteID = 0; 901 } 902 WLEntry.WriteResourceID = WriteID; 903 904 for (unsigned WS : WriteSeq) { 905 906 Record *WriteRes = 907 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 908 909 // Mark the parent class as invalid for unsupported write types. 910 if (WriteRes->getValueAsBit("Unsupported")) { 911 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 912 break; 913 } 914 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 915 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 916 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 917 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 918 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 919 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 920 921 // Create an entry for each ProcResource listed in WriteRes. 922 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 923 std::vector<int64_t> Cycles = 924 WriteRes->getValueAsListOfInts("ResourceCycles"); 925 926 ExpandProcResources(PRVec, Cycles, ProcModel); 927 928 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 929 PRIdx != PREnd; ++PRIdx) { 930 MCWriteProcResEntry WPREntry; 931 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 932 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 933 WPREntry.Cycles = Cycles[PRIdx]; 934 // If this resource is already used in this sequence, add the current 935 // entry's cycles so that the same resource appears to be used 936 // serially, rather than multiple parallel uses. This is important for 937 // in-order machine where the resource consumption is a hazard. 938 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 939 for( ; WPRIdx != WPREnd; ++WPRIdx) { 940 if (WriteProcResources[WPRIdx].ProcResourceIdx 941 == WPREntry.ProcResourceIdx) { 942 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 943 break; 944 } 945 } 946 if (WPRIdx == WPREnd) 947 WriteProcResources.push_back(WPREntry); 948 } 949 } 950 WriteLatencies.push_back(WLEntry); 951 } 952 // Create an entry for each operand Read in this SchedClass. 953 // Entries must be sorted first by UseIdx then by WriteResourceID. 954 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 955 UseIdx != EndIdx; ++UseIdx) { 956 Record *ReadAdvance = 957 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 958 if (!ReadAdvance) 959 continue; 960 961 // Mark the parent class as invalid for unsupported write types. 962 if (ReadAdvance->getValueAsBit("Unsupported")) { 963 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 964 break; 965 } 966 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 967 IdxVec WriteIDs; 968 if (ValidWrites.empty()) 969 WriteIDs.push_back(0); 970 else { 971 for (Record *VW : ValidWrites) { 972 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 973 } 974 } 975 std::sort(WriteIDs.begin(), WriteIDs.end()); 976 for(unsigned W : WriteIDs) { 977 MCReadAdvanceEntry RAEntry; 978 RAEntry.UseIdx = UseIdx; 979 RAEntry.WriteResourceID = W; 980 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 981 ReadAdvanceEntries.push_back(RAEntry); 982 } 983 } 984 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 985 WriteProcResources.clear(); 986 WriteLatencies.clear(); 987 ReadAdvanceEntries.clear(); 988 } 989 // Add the information for this SchedClass to the global tables using basic 990 // compression. 991 // 992 // WritePrecRes entries are sorted by ProcResIdx. 993 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 994 LessWriteProcResources()); 995 996 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 997 std::vector<MCWriteProcResEntry>::iterator WPRPos = 998 std::search(SchedTables.WriteProcResources.begin(), 999 SchedTables.WriteProcResources.end(), 1000 WriteProcResources.begin(), WriteProcResources.end()); 1001 if (WPRPos != SchedTables.WriteProcResources.end()) 1002 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1003 else { 1004 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1005 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1006 WriteProcResources.end()); 1007 } 1008 // Latency entries must remain in operand order. 1009 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1010 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1011 std::search(SchedTables.WriteLatencies.begin(), 1012 SchedTables.WriteLatencies.end(), 1013 WriteLatencies.begin(), WriteLatencies.end()); 1014 if (WLPos != SchedTables.WriteLatencies.end()) { 1015 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1016 SCDesc.WriteLatencyIdx = idx; 1017 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1018 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1019 std::string::npos) { 1020 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1021 } 1022 } 1023 else { 1024 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1025 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1026 WriteLatencies.begin(), 1027 WriteLatencies.end()); 1028 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1029 WriterNames.begin(), WriterNames.end()); 1030 } 1031 // ReadAdvanceEntries must remain in operand order. 1032 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1033 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1034 std::search(SchedTables.ReadAdvanceEntries.begin(), 1035 SchedTables.ReadAdvanceEntries.end(), 1036 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1037 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1038 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1039 else { 1040 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1041 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1042 ReadAdvanceEntries.end()); 1043 } 1044 } 1045 } 1046 1047 // Emit SchedClass tables for all processors and associated global tables. 1048 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1049 raw_ostream &OS) { 1050 // Emit global WriteProcResTable. 1051 OS << "\n// {ProcResourceIdx, Cycles}\n" 1052 << "extern const llvm::MCWriteProcResEntry " 1053 << Target << "WriteProcResTable[] = {\n" 1054 << " { 0, 0}, // Invalid\n"; 1055 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1056 WPRIdx != WPREnd; ++WPRIdx) { 1057 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1058 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1059 << format("%2d", WPREntry.Cycles) << "}"; 1060 if (WPRIdx + 1 < WPREnd) 1061 OS << ','; 1062 OS << " // #" << WPRIdx << '\n'; 1063 } 1064 OS << "}; // " << Target << "WriteProcResTable\n"; 1065 1066 // Emit global WriteLatencyTable. 1067 OS << "\n// {Cycles, WriteResourceID}\n" 1068 << "extern const llvm::MCWriteLatencyEntry " 1069 << Target << "WriteLatencyTable[] = {\n" 1070 << " { 0, 0}, // Invalid\n"; 1071 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1072 WLIdx != WLEnd; ++WLIdx) { 1073 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1074 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1075 << format("%2d", WLEntry.WriteResourceID) << "}"; 1076 if (WLIdx + 1 < WLEnd) 1077 OS << ','; 1078 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1079 } 1080 OS << "}; // " << Target << "WriteLatencyTable\n"; 1081 1082 // Emit global ReadAdvanceTable. 1083 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1084 << "extern const llvm::MCReadAdvanceEntry " 1085 << Target << "ReadAdvanceTable[] = {\n" 1086 << " {0, 0, 0}, // Invalid\n"; 1087 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1088 RAIdx != RAEnd; ++RAIdx) { 1089 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1090 OS << " {" << RAEntry.UseIdx << ", " 1091 << format("%2d", RAEntry.WriteResourceID) << ", " 1092 << format("%2d", RAEntry.Cycles) << "}"; 1093 if (RAIdx + 1 < RAEnd) 1094 OS << ','; 1095 OS << " // #" << RAIdx << '\n'; 1096 } 1097 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1098 1099 // Emit a SchedClass table for each processor. 1100 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1101 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1102 if (!PI->hasInstrSchedModel()) 1103 continue; 1104 1105 std::vector<MCSchedClassDesc> &SCTab = 1106 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1107 1108 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1109 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1110 OS << "static const llvm::MCSchedClassDesc " 1111 << PI->ModelName << "SchedClasses[] = {\n"; 1112 1113 // The first class is always invalid. We no way to distinguish it except by 1114 // name and position. 1115 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1116 && "invalid class not first"); 1117 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1118 << MCSchedClassDesc::InvalidNumMicroOps 1119 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1120 1121 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1122 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1123 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1124 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1125 if (SchedClass.Name.size() < 18) 1126 OS.indent(18 - SchedClass.Name.size()); 1127 OS << MCDesc.NumMicroOps 1128 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1129 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1130 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1131 << ", " << MCDesc.NumWriteProcResEntries 1132 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1133 << ", " << MCDesc.NumWriteLatencyEntries 1134 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1135 << ", " << MCDesc.NumReadAdvanceEntries << "}"; 1136 if (SCIdx + 1 < SCEnd) 1137 OS << ','; 1138 OS << " // #" << SCIdx << '\n'; 1139 } 1140 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1141 } 1142 } 1143 1144 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1145 // For each processor model. 1146 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1147 // Emit processor resource table. 1148 if (PM.hasInstrSchedModel()) 1149 EmitProcessorResources(PM, OS); 1150 else if(!PM.ProcResourceDefs.empty()) 1151 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1152 "ProcResources without defining WriteRes SchedWriteRes"); 1153 1154 // Begin processor itinerary properties 1155 OS << "\n"; 1156 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1157 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1158 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1159 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1160 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1161 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1162 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1163 1164 bool PostRAScheduler = 1165 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1166 1167 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1168 << "PostRAScheduler\n"; 1169 1170 bool CompleteModel = 1171 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1172 1173 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1174 << "CompleteModel\n"; 1175 1176 OS << " " << PM.Index << ", // Processor ID\n"; 1177 if (PM.hasInstrSchedModel()) 1178 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1179 << " " << PM.ModelName << "SchedClasses" << ",\n" 1180 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1181 << " " << (SchedModels.schedClassEnd() 1182 - SchedModels.schedClassBegin()) << ",\n"; 1183 else 1184 OS << " nullptr, nullptr, 0, 0," 1185 << " // No instruction-level machine model.\n"; 1186 if (PM.hasItineraries()) 1187 OS << " " << PM.ItinsDef->getName() << "};\n"; 1188 else 1189 OS << " nullptr}; // No Itinerary\n"; 1190 } 1191 } 1192 1193 // 1194 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1195 // 1196 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1197 // Gather and sort processor information 1198 std::vector<Record*> ProcessorList = 1199 Records.getAllDerivedDefinitions("Processor"); 1200 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1201 1202 // Begin processor table 1203 OS << "\n"; 1204 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1205 << "extern const llvm::SubtargetInfoKV " 1206 << Target << "ProcSchedKV[] = {\n"; 1207 1208 // For each processor 1209 for (unsigned i = 0, N = ProcessorList.size(); i < N;) { 1210 // Next processor 1211 Record *Processor = ProcessorList[i]; 1212 1213 StringRef Name = Processor->getValueAsString("Name"); 1214 const std::string &ProcModelName = 1215 SchedModels.getModelForProc(Processor).ModelName; 1216 1217 // Emit as { "cpu", procinit }, 1218 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " }"; 1219 1220 // Depending on ''if more in the list'' emit comma 1221 if (++i < N) OS << ","; 1222 1223 OS << "\n"; 1224 } 1225 1226 // End processor table 1227 OS << "};\n"; 1228 } 1229 1230 // 1231 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1232 // 1233 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1234 OS << "#ifdef DBGFIELD\n" 1235 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1236 << "#endif\n" 1237 << "#ifndef NDEBUG\n" 1238 << "#define DBGFIELD(x) x,\n" 1239 << "#else\n" 1240 << "#define DBGFIELD(x)\n" 1241 << "#endif\n"; 1242 1243 if (SchedModels.hasItineraries()) { 1244 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1245 // Emit the stage data 1246 EmitStageAndOperandCycleData(OS, ProcItinLists); 1247 EmitItineraries(OS, ProcItinLists); 1248 } 1249 OS << "\n// ===============================================================\n" 1250 << "// Data tables for the new per-operand machine model.\n"; 1251 1252 SchedClassTables SchedTables; 1253 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1254 GenSchedClassTables(ProcModel, SchedTables); 1255 } 1256 EmitSchedClassTables(SchedTables, OS); 1257 1258 // Emit the processor machine model 1259 EmitProcessorModels(OS); 1260 // Emit the processor lookup data 1261 EmitProcessorLookup(OS); 1262 1263 OS << "#undef DBGFIELD"; 1264 } 1265 1266 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1267 raw_ostream &OS) { 1268 OS << "unsigned " << ClassName 1269 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1270 << " const TargetSchedModel *SchedModel) const {\n"; 1271 1272 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1273 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1274 for (Record *P : Prologs) { 1275 OS << P->getValueAsString("Code") << '\n'; 1276 } 1277 IdxVec VariantClasses; 1278 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1279 if (SC.Transitions.empty()) 1280 continue; 1281 VariantClasses.push_back(SC.Index); 1282 } 1283 if (!VariantClasses.empty()) { 1284 OS << " switch (SchedClass) {\n"; 1285 for (unsigned VC : VariantClasses) { 1286 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1287 OS << " case " << VC << ": // " << SC.Name << '\n'; 1288 IdxVec ProcIndices; 1289 for (const CodeGenSchedTransition &T : SC.Transitions) { 1290 IdxVec PI; 1291 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1292 ProcIndices.begin(), ProcIndices.end(), 1293 std::back_inserter(PI)); 1294 ProcIndices.swap(PI); 1295 } 1296 for (unsigned PI : ProcIndices) { 1297 OS << " "; 1298 if (PI != 0) 1299 OS << "if (SchedModel->getProcessorID() == " << PI << ") "; 1300 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName 1301 << '\n'; 1302 for (const CodeGenSchedTransition &T : SC.Transitions) { 1303 if (PI != 0 && !std::count(T.ProcIndices.begin(), 1304 T.ProcIndices.end(), PI)) { 1305 continue; 1306 } 1307 OS << " if ("; 1308 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end(); 1309 RI != RE; ++RI) { 1310 if (RI != T.PredTerm.begin()) 1311 OS << "\n && "; 1312 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1313 } 1314 OS << ")\n" 1315 << " return " << T.ToClassIdx << "; // " 1316 << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n'; 1317 } 1318 OS << " }\n"; 1319 if (PI == 0) 1320 break; 1321 } 1322 if (SC.isInferred()) 1323 OS << " return " << SC.Index << ";\n"; 1324 OS << " break;\n"; 1325 } 1326 OS << " };\n"; 1327 } 1328 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1329 << "} // " << ClassName << "::resolveSchedClass\n"; 1330 } 1331 1332 // 1333 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1334 // the subtarget features string. 1335 // 1336 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1337 unsigned NumFeatures, 1338 unsigned NumProcs) { 1339 std::vector<Record*> Features = 1340 Records.getAllDerivedDefinitions("SubtargetFeature"); 1341 std::sort(Features.begin(), Features.end(), LessRecord()); 1342 1343 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1344 << "// subtarget options.\n" 1345 << "void llvm::"; 1346 OS << Target; 1347 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1348 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1349 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1350 1351 if (Features.empty()) { 1352 OS << "}\n"; 1353 return; 1354 } 1355 1356 OS << " InitMCProcessorInfo(CPU, FS);\n" 1357 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1358 1359 for (Record *R : Features) { 1360 // Next record 1361 StringRef Instance = R->getName(); 1362 StringRef Value = R->getValueAsString("Value"); 1363 StringRef Attribute = R->getValueAsString("Attribute"); 1364 1365 if (Value=="true" || Value=="false") 1366 OS << " if (Bits[" << Target << "::" 1367 << Instance << "]) " 1368 << Attribute << " = " << Value << ";\n"; 1369 else 1370 OS << " if (Bits[" << Target << "::" 1371 << Instance << "] && " 1372 << Attribute << " < " << Value << ") " 1373 << Attribute << " = " << Value << ";\n"; 1374 } 1375 1376 OS << "}\n"; 1377 } 1378 1379 // 1380 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1381 // 1382 void SubtargetEmitter::run(raw_ostream &OS) { 1383 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1384 1385 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1386 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1387 1388 OS << "namespace llvm {\n"; 1389 Enumeration(OS); 1390 OS << "} // end namespace llvm\n\n"; 1391 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1392 1393 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1394 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1395 1396 OS << "namespace llvm {\n"; 1397 #if 0 1398 OS << "namespace {\n"; 1399 #endif 1400 unsigned NumFeatures = FeatureKeyValues(OS); 1401 OS << "\n"; 1402 unsigned NumProcs = CPUKeyValues(OS); 1403 OS << "\n"; 1404 EmitSchedModel(OS); 1405 OS << "\n"; 1406 #if 0 1407 OS << "} // end anonymous namespace\n\n"; 1408 #endif 1409 1410 // MCInstrInfo initialization routine. 1411 OS << "static inline MCSubtargetInfo *create" << Target 1412 << "MCSubtargetInfoImpl(" 1413 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1414 OS << " return new MCSubtargetInfo(TT, CPU, FS, "; 1415 if (NumFeatures) 1416 OS << Target << "FeatureKV, "; 1417 else 1418 OS << "None, "; 1419 if (NumProcs) 1420 OS << Target << "SubTypeKV, "; 1421 else 1422 OS << "None, "; 1423 OS << '\n'; OS.indent(22); 1424 OS << Target << "ProcSchedKV, " 1425 << Target << "WriteProcResTable, " 1426 << Target << "WriteLatencyTable, " 1427 << Target << "ReadAdvanceTable, "; 1428 OS << '\n'; OS.indent(22); 1429 if (SchedModels.hasItineraries()) { 1430 OS << Target << "Stages, " 1431 << Target << "OperandCycles, " 1432 << Target << "ForwardingPaths"; 1433 } else 1434 OS << "nullptr, nullptr, nullptr"; 1435 OS << ");\n}\n\n"; 1436 1437 OS << "} // end namespace llvm\n\n"; 1438 1439 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1440 1441 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1442 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1443 1444 OS << "#include \"llvm/Support/Debug.h\"\n"; 1445 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1446 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1447 1448 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1449 1450 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1451 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1452 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1453 1454 std::string ClassName = Target + "GenSubtargetInfo"; 1455 OS << "namespace llvm {\n"; 1456 OS << "class DFAPacketizer;\n"; 1457 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1458 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1459 << "StringRef FS);\n" 1460 << "public:\n" 1461 << " unsigned resolveSchedClass(unsigned SchedClass, " 1462 << " const MachineInstr *DefMI," 1463 << " const TargetSchedModel *SchedModel) const override;\n" 1464 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1465 << " const;\n" 1466 << "};\n"; 1467 OS << "} // end namespace llvm\n\n"; 1468 1469 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1470 1471 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1472 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1473 1474 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1475 OS << "namespace llvm {\n"; 1476 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1477 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1478 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1479 OS << "extern const llvm::MCWriteProcResEntry " 1480 << Target << "WriteProcResTable[];\n"; 1481 OS << "extern const llvm::MCWriteLatencyEntry " 1482 << Target << "WriteLatencyTable[];\n"; 1483 OS << "extern const llvm::MCReadAdvanceEntry " 1484 << Target << "ReadAdvanceTable[];\n"; 1485 1486 if (SchedModels.hasItineraries()) { 1487 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1488 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1489 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1490 } 1491 1492 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1493 << "StringRef FS)\n" 1494 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1495 if (NumFeatures) 1496 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1497 else 1498 OS << "None, "; 1499 if (NumProcs) 1500 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1501 else 1502 OS << "None, "; 1503 OS << '\n'; OS.indent(24); 1504 OS << Target << "ProcSchedKV, " 1505 << Target << "WriteProcResTable, " 1506 << Target << "WriteLatencyTable, " 1507 << Target << "ReadAdvanceTable, "; 1508 OS << '\n'; OS.indent(24); 1509 if (SchedModels.hasItineraries()) { 1510 OS << Target << "Stages, " 1511 << Target << "OperandCycles, " 1512 << Target << "ForwardingPaths"; 1513 } else 1514 OS << "nullptr, nullptr, nullptr"; 1515 OS << ") {}\n\n"; 1516 1517 EmitSchedModelHelpers(ClassName, OS); 1518 1519 OS << "} // end namespace llvm\n\n"; 1520 1521 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1522 } 1523 1524 namespace llvm { 1525 1526 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1527 CodeGenTarget CGTarget(RK); 1528 SubtargetEmitter(RK, CGTarget).run(OS); 1529 } 1530 1531 } // end namespace llvm 1532