1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits subtarget enumerations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTarget.h" 14 #include "CodeGenSchedule.h" 15 #include "PredicateExpander.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap); 77 unsigned FeatureKeyValues(raw_ostream &OS, 78 const DenseMap<Record *, unsigned> &FeatureMap); 79 unsigned CPUKeyValues(raw_ostream &OS, 80 const DenseMap<Record *, unsigned> &FeatureMap); 81 void FormItineraryStageString(const std::string &Names, 82 Record *ItinData, std::string &ItinString, 83 unsigned &NStages); 84 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 85 unsigned &NOperandCycles); 86 void FormItineraryBypassString(const std::string &Names, 87 Record *ItinData, 88 std::string &ItinString, unsigned NOperandCycles); 89 void EmitStageAndOperandCycleData(raw_ostream &OS, 90 std::vector<std::vector<InstrItinerary>> 91 &ProcItinLists); 92 void EmitItineraries(raw_ostream &OS, 93 std::vector<std::vector<InstrItinerary>> 94 &ProcItinLists); 95 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 98 raw_ostream &OS); 99 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 100 raw_ostream &OS); 101 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 102 char Separator); 103 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, 104 raw_ostream &OS); 105 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 106 raw_ostream &OS); 107 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 108 const CodeGenProcModel &ProcModel); 109 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 110 const CodeGenProcModel &ProcModel); 111 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 112 const CodeGenProcModel &ProcModel); 113 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 114 SchedClassTables &SchedTables); 115 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 116 void EmitProcessorModels(raw_ostream &OS); 117 void EmitProcessorLookup(raw_ostream &OS); 118 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 119 void emitSchedModelHelpersImpl(raw_ostream &OS, 120 bool OnlyExpandMCInstPredicates = false); 121 void emitGenMCSubtargetInfo(raw_ostream &OS); 122 void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS); 123 124 void EmitSchedModel(raw_ostream &OS); 125 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 126 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 127 unsigned NumProcs); 128 129 public: 130 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 131 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 132 Target(TGT.getName()) {} 133 134 void run(raw_ostream &o); 135 }; 136 137 } // end anonymous namespace 138 139 // 140 // Enumeration - Emit the specified class as an enumeration. 141 // 142 void SubtargetEmitter::Enumeration(raw_ostream &OS, 143 DenseMap<Record *, unsigned> &FeatureMap) { 144 // Get all records of class and sort 145 std::vector<Record*> DefList = 146 Records.getAllDerivedDefinitions("SubtargetFeature"); 147 llvm::sort(DefList, LessRecord()); 148 149 unsigned N = DefList.size(); 150 if (N == 0) 151 return; 152 if (N + 1 > MAX_SUBTARGET_FEATURES) 153 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 154 155 OS << "namespace " << Target << " {\n"; 156 157 // Open enumeration. 158 OS << "enum {\n"; 159 160 // For each record 161 for (unsigned i = 0; i < N; ++i) { 162 // Next record 163 Record *Def = DefList[i]; 164 165 // Get and emit name 166 OS << " " << Def->getName() << " = " << i << ",\n"; 167 168 // Save the index for this feature. 169 FeatureMap[Def] = i; 170 } 171 172 OS << " " 173 << "NumSubtargetFeatures = " << N << "\n"; 174 175 // Close enumeration and namespace 176 OS << "};\n"; 177 OS << "} // end namespace " << Target << "\n"; 178 } 179 180 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList, 181 const DenseMap<Record *, unsigned> &FeatureMap) { 182 std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {}; 183 for (unsigned j = 0, M = FeatureList.size(); j < M; ++j) { 184 unsigned Bit = FeatureMap.lookup(FeatureList[j]); 185 Mask[Bit / 64] |= 1ULL << (Bit % 64); 186 } 187 188 OS << "{ { { "; 189 for (unsigned i = 0; i != Mask.size(); ++i) { 190 OS << "0x"; 191 OS.write_hex(Mask[i]); 192 OS << "ULL, "; 193 } 194 OS << "} } }"; 195 } 196 197 // 198 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 199 // command line. 200 // 201 unsigned SubtargetEmitter::FeatureKeyValues( 202 raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) { 203 // Gather and sort all the features 204 std::vector<Record*> FeatureList = 205 Records.getAllDerivedDefinitions("SubtargetFeature"); 206 207 if (FeatureList.empty()) 208 return 0; 209 210 llvm::sort(FeatureList, LessRecordFieldName()); 211 212 // Begin feature table 213 OS << "// Sorted (by key) array of values for CPU features.\n" 214 << "extern const llvm::SubtargetFeatureKV " << Target 215 << "FeatureKV[] = {\n"; 216 217 // For each feature 218 unsigned NumFeatures = 0; 219 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 220 // Next feature 221 Record *Feature = FeatureList[i]; 222 223 StringRef Name = Feature->getName(); 224 StringRef CommandLineName = Feature->getValueAsString("Name"); 225 StringRef Desc = Feature->getValueAsString("Desc"); 226 227 if (CommandLineName.empty()) continue; 228 229 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 230 OS << " { " 231 << "\"" << CommandLineName << "\", " 232 << "\"" << Desc << "\", " 233 << Target << "::" << Name << ", "; 234 235 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); 236 237 printFeatureMask(OS, ImpliesList, FeatureMap); 238 239 OS << " },\n"; 240 ++NumFeatures; 241 } 242 243 // End feature table 244 OS << "};\n"; 245 246 return NumFeatures; 247 } 248 249 // 250 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 251 // line. 252 // 253 unsigned 254 SubtargetEmitter::CPUKeyValues(raw_ostream &OS, 255 const DenseMap<Record *, unsigned> &FeatureMap) { 256 // Gather and sort processor information 257 std::vector<Record*> ProcessorList = 258 Records.getAllDerivedDefinitions("Processor"); 259 llvm::sort(ProcessorList, LessRecordFieldName()); 260 261 // Begin processor table 262 OS << "// Sorted (by key) array of values for CPU subtype.\n" 263 << "extern const llvm::SubtargetSubTypeKV " << Target 264 << "SubTypeKV[] = {\n"; 265 266 // For each processor 267 for (Record *Processor : ProcessorList) { 268 StringRef Name = Processor->getValueAsString("Name"); 269 RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); 270 RecVec TuneFeatureList = Processor->getValueAsListOfDefs("TuneFeatures"); 271 272 // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } }, 273 OS << " { " 274 << "\"" << Name << "\", "; 275 276 printFeatureMask(OS, FeatureList, FeatureMap); 277 OS << ", "; 278 printFeatureMask(OS, TuneFeatureList, FeatureMap); 279 280 // Emit the scheduler model pointer. 281 const std::string &ProcModelName = 282 SchedModels.getModelForProc(Processor).ModelName; 283 OS << ", &" << ProcModelName << " },\n"; 284 } 285 286 // End processor table 287 OS << "};\n"; 288 289 return ProcessorList.size(); 290 } 291 292 // 293 // FormItineraryStageString - Compose a string containing the stage 294 // data initialization for the specified itinerary. N is the number 295 // of stages. 296 // 297 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 298 Record *ItinData, 299 std::string &ItinString, 300 unsigned &NStages) { 301 // Get states list 302 RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); 303 304 // For each stage 305 unsigned N = NStages = StageList.size(); 306 for (unsigned i = 0; i < N;) { 307 // Next stage 308 const Record *Stage = StageList[i]; 309 310 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 311 int Cycles = Stage->getValueAsInt("Cycles"); 312 ItinString += " { " + itostr(Cycles) + ", "; 313 314 // Get unit list 315 RecVec UnitList = Stage->getValueAsListOfDefs("Units"); 316 317 // For each unit 318 for (unsigned j = 0, M = UnitList.size(); j < M;) { 319 // Add name and bitwise or 320 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 321 if (++j < M) ItinString += " | "; 322 } 323 324 int TimeInc = Stage->getValueAsInt("TimeInc"); 325 ItinString += ", " + itostr(TimeInc); 326 327 int Kind = Stage->getValueAsInt("Kind"); 328 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 329 330 // Close off stage 331 ItinString += " }"; 332 if (++i < N) ItinString += ", "; 333 } 334 } 335 336 // 337 // FormItineraryOperandCycleString - Compose a string containing the 338 // operand cycle initialization for the specified itinerary. N is the 339 // number of operands that has cycles specified. 340 // 341 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 342 std::string &ItinString, unsigned &NOperandCycles) { 343 // Get operand cycle list 344 std::vector<int64_t> OperandCycleList = 345 ItinData->getValueAsListOfInts("OperandCycles"); 346 347 // For each operand cycle 348 unsigned N = NOperandCycles = OperandCycleList.size(); 349 for (unsigned i = 0; i < N;) { 350 // Next operand cycle 351 const int OCycle = OperandCycleList[i]; 352 353 ItinString += " " + itostr(OCycle); 354 if (++i < N) ItinString += ", "; 355 } 356 } 357 358 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 359 Record *ItinData, 360 std::string &ItinString, 361 unsigned NOperandCycles) { 362 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); 363 unsigned N = BypassList.size(); 364 unsigned i = 0; 365 for (; i < N;) { 366 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 367 if (++i < NOperandCycles) ItinString += ", "; 368 } 369 for (; i < NOperandCycles;) { 370 ItinString += " 0"; 371 if (++i < NOperandCycles) ItinString += ", "; 372 } 373 } 374 375 // 376 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 377 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 378 // by CodeGenSchedClass::Index. 379 // 380 void SubtargetEmitter:: 381 EmitStageAndOperandCycleData(raw_ostream &OS, 382 std::vector<std::vector<InstrItinerary>> 383 &ProcItinLists) { 384 // Multiple processor models may share an itinerary record. Emit it once. 385 SmallPtrSet<Record*, 8> ItinsDefSet; 386 387 // Emit functional units for all the itineraries. 388 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 389 390 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 391 continue; 392 393 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 394 if (FUs.empty()) 395 continue; 396 397 StringRef Name = ProcModel.ItinsDef->getName(); 398 OS << "\n// Functional units for \"" << Name << "\"\n" 399 << "namespace " << Name << "FU {\n"; 400 401 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 402 OS << " const InstrStage::FuncUnits " << FUs[j]->getName() 403 << " = 1ULL << " << j << ";\n"; 404 405 OS << "} // end namespace " << Name << "FU\n"; 406 407 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 408 if (!BPs.empty()) { 409 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name 410 << "\"\n" << "namespace " << Name << "Bypass {\n"; 411 412 OS << " const unsigned NoBypass = 0;\n"; 413 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 414 OS << " const unsigned " << BPs[j]->getName() 415 << " = 1 << " << j << ";\n"; 416 417 OS << "} // end namespace " << Name << "Bypass\n"; 418 } 419 } 420 421 // Begin stages table 422 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 423 "Stages[] = {\n"; 424 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 425 426 // Begin operand cycle table 427 std::string OperandCycleTable = "extern const unsigned " + Target + 428 "OperandCycles[] = {\n"; 429 OperandCycleTable += " 0, // No itinerary\n"; 430 431 // Begin pipeline bypass table 432 std::string BypassTable = "extern const unsigned " + Target + 433 "ForwardingPaths[] = {\n"; 434 BypassTable += " 0, // No itinerary\n"; 435 436 // For each Itinerary across all processors, add a unique entry to the stages, 437 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 438 // object with computed offsets to the ProcItinLists result. 439 unsigned StageCount = 1, OperandCycleCount = 1; 440 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 441 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 442 // Add process itinerary to the list. 443 ProcItinLists.resize(ProcItinLists.size()+1); 444 445 // If this processor defines no itineraries, then leave the itinerary list 446 // empty. 447 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 448 if (!ProcModel.hasItineraries()) 449 continue; 450 451 StringRef Name = ProcModel.ItinsDef->getName(); 452 453 ItinList.resize(SchedModels.numInstrSchedClasses()); 454 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 455 456 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 457 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 458 459 // Next itinerary data 460 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 461 462 // Get string and stage count 463 std::string ItinStageString; 464 unsigned NStages = 0; 465 if (ItinData) 466 FormItineraryStageString(std::string(Name), ItinData, ItinStageString, 467 NStages); 468 469 // Get string and operand cycle count 470 std::string ItinOperandCycleString; 471 unsigned NOperandCycles = 0; 472 std::string ItinBypassString; 473 if (ItinData) { 474 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 475 NOperandCycles); 476 477 FormItineraryBypassString(std::string(Name), ItinData, ItinBypassString, 478 NOperandCycles); 479 } 480 481 // Check to see if stage already exists and create if it doesn't 482 uint16_t FindStage = 0; 483 if (NStages > 0) { 484 FindStage = ItinStageMap[ItinStageString]; 485 if (FindStage == 0) { 486 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 487 StageTable += ItinStageString + ", // " + itostr(StageCount); 488 if (NStages > 1) 489 StageTable += "-" + itostr(StageCount + NStages - 1); 490 StageTable += "\n"; 491 // Record Itin class number. 492 ItinStageMap[ItinStageString] = FindStage = StageCount; 493 StageCount += NStages; 494 } 495 } 496 497 // Check to see if operand cycle already exists and create if it doesn't 498 uint16_t FindOperandCycle = 0; 499 if (NOperandCycles > 0) { 500 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 501 FindOperandCycle = ItinOperandMap[ItinOperandString]; 502 if (FindOperandCycle == 0) { 503 // Emit as cycle, // index 504 OperandCycleTable += ItinOperandCycleString + ", // "; 505 std::string OperandIdxComment = itostr(OperandCycleCount); 506 if (NOperandCycles > 1) 507 OperandIdxComment += "-" 508 + itostr(OperandCycleCount + NOperandCycles - 1); 509 OperandCycleTable += OperandIdxComment + "\n"; 510 // Record Itin class number. 511 ItinOperandMap[ItinOperandCycleString] = 512 FindOperandCycle = OperandCycleCount; 513 // Emit as bypass, // index 514 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 515 OperandCycleCount += NOperandCycles; 516 } 517 } 518 519 // Set up itinerary as location and location + stage count 520 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 521 InstrItinerary Intinerary = { 522 NumUOps, 523 FindStage, 524 uint16_t(FindStage + NStages), 525 FindOperandCycle, 526 uint16_t(FindOperandCycle + NOperandCycles), 527 }; 528 529 // Inject - empty slots will be 0, 0 530 ItinList[SchedClassIdx] = Intinerary; 531 } 532 } 533 534 // Closing stage 535 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 536 StageTable += "};\n"; 537 538 // Closing operand cycles 539 OperandCycleTable += " 0 // End operand cycles\n"; 540 OperandCycleTable += "};\n"; 541 542 BypassTable += " 0 // End bypass tables\n"; 543 BypassTable += "};\n"; 544 545 // Emit tables. 546 OS << StageTable; 547 OS << OperandCycleTable; 548 OS << BypassTable; 549 } 550 551 // 552 // EmitProcessorData - Generate data for processor itineraries that were 553 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 554 // Itineraries for each processor. The Itinerary lists are indexed on 555 // CodeGenSchedClass::Index. 556 // 557 void SubtargetEmitter:: 558 EmitItineraries(raw_ostream &OS, 559 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 560 // Multiple processor models may share an itinerary record. Emit it once. 561 SmallPtrSet<Record*, 8> ItinsDefSet; 562 563 // For each processor's machine model 564 std::vector<std::vector<InstrItinerary>>::iterator 565 ProcItinListsIter = ProcItinLists.begin(); 566 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 567 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 568 569 Record *ItinsDef = PI->ItinsDef; 570 if (!ItinsDefSet.insert(ItinsDef).second) 571 continue; 572 573 // Get the itinerary list for the processor. 574 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 575 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 576 577 // Empty itineraries aren't referenced anywhere in the tablegen output 578 // so don't emit them. 579 if (ItinList.empty()) 580 continue; 581 582 OS << "\n"; 583 OS << "static const llvm::InstrItinerary "; 584 585 // Begin processor itinerary table 586 OS << ItinsDef->getName() << "[] = {\n"; 587 588 // For each itinerary class in CodeGenSchedClass::Index order. 589 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 590 InstrItinerary &Intinerary = ItinList[j]; 591 592 // Emit Itinerary in the form of 593 // { firstStage, lastStage, firstCycle, lastCycle } // index 594 OS << " { " << 595 Intinerary.NumMicroOps << ", " << 596 Intinerary.FirstStage << ", " << 597 Intinerary.LastStage << ", " << 598 Intinerary.FirstOperandCycle << ", " << 599 Intinerary.LastOperandCycle << " }" << 600 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 601 } 602 // End processor itinerary table 603 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" 604 "// end marker\n"; 605 OS << "};\n"; 606 } 607 } 608 609 // Emit either the value defined in the TableGen Record, or the default 610 // value defined in the C++ header. The Record is null if the processor does not 611 // define a model. 612 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 613 StringRef Name, char Separator) { 614 OS << " "; 615 int V = R ? R->getValueAsInt(Name) : -1; 616 if (V >= 0) 617 OS << V << Separator << " // " << Name; 618 else 619 OS << "MCSchedModel::Default" << Name << Separator; 620 OS << '\n'; 621 } 622 623 void SubtargetEmitter::EmitProcessorResourceSubUnits( 624 const CodeGenProcModel &ProcModel, raw_ostream &OS) { 625 OS << "\nstatic const unsigned " << ProcModel.ModelName 626 << "ProcResourceSubUnits[] = {\n" 627 << " 0, // Invalid\n"; 628 629 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 630 Record *PRDef = ProcModel.ProcResourceDefs[i]; 631 if (!PRDef->isSubClassOf("ProcResGroup")) 632 continue; 633 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 634 for (Record *RUDef : ResUnits) { 635 Record *const RU = 636 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); 637 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { 638 OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; 639 } 640 } 641 OS << " // " << PRDef->getName() << "\n"; 642 } 643 OS << "};\n"; 644 } 645 646 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, 647 raw_ostream &OS) { 648 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; 649 if (Record *RCU = ProcModel.RetireControlUnit) { 650 ReorderBufferSize = 651 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); 652 MaxRetirePerCycle = 653 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); 654 } 655 656 OS << ReorderBufferSize << ", // ReorderBufferSize\n "; 657 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; 658 } 659 660 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, 661 unsigned NumRegisterFiles, 662 unsigned NumCostEntries, raw_ostream &OS) { 663 if (NumRegisterFiles) 664 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); 665 else 666 OS << "nullptr,\n 0"; 667 668 OS << ", // Number of register files.\n "; 669 if (NumCostEntries) 670 OS << ProcModel.ModelName << "RegisterCosts,\n "; 671 else 672 OS << "nullptr,\n "; 673 OS << NumCostEntries << ", // Number of register cost entries.\n"; 674 } 675 676 unsigned 677 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 678 raw_ostream &OS) { 679 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { 680 return RF.hasDefaultCosts(); 681 })) 682 return 0; 683 684 // Print the RegisterCost table first. 685 OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n"; 686 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName 687 << "RegisterCosts" 688 << "[] = {\n"; 689 690 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { 691 // Skip register files with a default cost table. 692 if (RF.hasDefaultCosts()) 693 continue; 694 // Add entries to the cost table. 695 for (const CodeGenRegisterCost &RC : RF.Costs) { 696 OS << " { "; 697 Record *Rec = RC.RCDef; 698 if (Rec->getValue("Namespace")) 699 OS << Rec->getValueAsString("Namespace") << "::"; 700 OS << Rec->getName() << "RegClassID, " << RC.Cost << ", " 701 << RC.AllowMoveElimination << "},\n"; 702 } 703 } 704 OS << "};\n"; 705 706 // Now generate a table with register file info. 707 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, " 708 << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n"; 709 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName 710 << "RegisterFiles" 711 << "[] = {\n" 712 << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n"; 713 unsigned CostTblIndex = 0; 714 715 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { 716 OS << " { "; 717 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; 718 unsigned NumCostEntries = RD.Costs.size(); 719 OS << NumCostEntries << ", " << CostTblIndex << ", " 720 << RD.MaxMovesEliminatedPerCycle << ", " 721 << RD.AllowZeroMoveEliminationOnly << "},\n"; 722 CostTblIndex += NumCostEntries; 723 } 724 OS << "};\n"; 725 726 return CostTblIndex; 727 } 728 729 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 730 raw_ostream &OS) { 731 unsigned QueueID = 0; 732 if (ProcModel.LoadQueue) { 733 const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor"); 734 QueueID = 735 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 736 std::find(ProcModel.ProcResourceDefs.begin(), 737 ProcModel.ProcResourceDefs.end(), Queue)); 738 } 739 OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n"; 740 741 QueueID = 0; 742 if (ProcModel.StoreQueue) { 743 const Record *Queue = 744 ProcModel.StoreQueue->getValueAsDef("QueueDescriptor"); 745 QueueID = 746 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 747 std::find(ProcModel.ProcResourceDefs.begin(), 748 ProcModel.ProcResourceDefs.end(), Queue)); 749 } 750 OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n"; 751 } 752 753 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 754 raw_ostream &OS) { 755 // Generate a table of register file descriptors (one entry per each user 756 // defined register file), and a table of register costs. 757 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); 758 759 // Now generate a table for the extra processor info. 760 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName 761 << "ExtraInfo = {\n "; 762 763 // Add information related to the retire control unit. 764 EmitRetireControlUnitInfo(ProcModel, OS); 765 766 // Add information related to the register files (i.e. where to find register 767 // file descriptors and register costs). 768 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), 769 NumCostEntries, OS); 770 771 // Add information about load/store queues. 772 EmitLoadStoreQueueInfo(ProcModel, OS); 773 774 OS << "};\n"; 775 } 776 777 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 778 raw_ostream &OS) { 779 EmitProcessorResourceSubUnits(ProcModel, OS); 780 781 OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n"; 782 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName 783 << "ProcResources" 784 << "[] = {\n" 785 << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; 786 787 unsigned SubUnitsOffset = 1; 788 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 789 Record *PRDef = ProcModel.ProcResourceDefs[i]; 790 791 Record *SuperDef = nullptr; 792 unsigned SuperIdx = 0; 793 unsigned NumUnits = 0; 794 const unsigned SubUnitsBeginOffset = SubUnitsOffset; 795 int BufferSize = PRDef->getValueAsInt("BufferSize"); 796 if (PRDef->isSubClassOf("ProcResGroup")) { 797 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 798 for (Record *RU : ResUnits) { 799 NumUnits += RU->getValueAsInt("NumUnits"); 800 SubUnitsOffset += RU->getValueAsInt("NumUnits"); 801 } 802 } 803 else { 804 // Find the SuperIdx 805 if (PRDef->getValueInit("Super")->isComplete()) { 806 SuperDef = 807 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 808 ProcModel, PRDef->getLoc()); 809 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 810 } 811 NumUnits = PRDef->getValueAsInt("NumUnits"); 812 } 813 // Emit the ProcResourceDesc 814 OS << " {\"" << PRDef->getName() << "\", "; 815 if (PRDef->getName().size() < 15) 816 OS.indent(15 - PRDef->getName().size()); 817 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; 818 if (SubUnitsBeginOffset != SubUnitsOffset) { 819 OS << ProcModel.ModelName << "ProcResourceSubUnits + " 820 << SubUnitsBeginOffset; 821 } else { 822 OS << "nullptr"; 823 } 824 OS << "}, // #" << i+1; 825 if (SuperDef) 826 OS << ", Super=" << SuperDef->getName(); 827 OS << "\n"; 828 } 829 OS << "};\n"; 830 } 831 832 // Find the WriteRes Record that defines processor resources for this 833 // SchedWrite. 834 Record *SubtargetEmitter::FindWriteResources( 835 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 836 837 // Check if the SchedWrite is already subtarget-specific and directly 838 // specifies a set of processor resources. 839 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 840 return SchedWrite.TheDef; 841 842 Record *AliasDef = nullptr; 843 for (Record *A : SchedWrite.Aliases) { 844 const CodeGenSchedRW &AliasRW = 845 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 846 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 847 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 848 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 849 continue; 850 } 851 if (AliasDef) 852 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 853 "defined for processor " + ProcModel.ModelName + 854 " Ensure only one SchedAlias exists per RW."); 855 AliasDef = AliasRW.TheDef; 856 } 857 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 858 return AliasDef; 859 860 // Check this processor's list of write resources. 861 Record *ResDef = nullptr; 862 for (Record *WR : ProcModel.WriteResDefs) { 863 if (!WR->isSubClassOf("WriteRes")) 864 continue; 865 if (AliasDef == WR->getValueAsDef("WriteType") 866 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 867 if (ResDef) { 868 PrintFatalError(WR->getLoc(), "Resources are defined for both " 869 "SchedWrite and its alias on processor " + 870 ProcModel.ModelName); 871 } 872 ResDef = WR; 873 } 874 } 875 // TODO: If ProcModel has a base model (previous generation processor), 876 // then call FindWriteResources recursively with that model here. 877 if (!ResDef) { 878 PrintFatalError(ProcModel.ModelDef->getLoc(), 879 Twine("Processor does not define resources for ") + 880 SchedWrite.TheDef->getName()); 881 } 882 return ResDef; 883 } 884 885 /// Find the ReadAdvance record for the given SchedRead on this processor or 886 /// return NULL. 887 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 888 const CodeGenProcModel &ProcModel) { 889 // Check for SchedReads that directly specify a ReadAdvance. 890 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 891 return SchedRead.TheDef; 892 893 // Check this processor's list of aliases for SchedRead. 894 Record *AliasDef = nullptr; 895 for (Record *A : SchedRead.Aliases) { 896 const CodeGenSchedRW &AliasRW = 897 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 898 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 899 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 900 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 901 continue; 902 } 903 if (AliasDef) 904 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 905 "defined for processor " + ProcModel.ModelName + 906 " Ensure only one SchedAlias exists per RW."); 907 AliasDef = AliasRW.TheDef; 908 } 909 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 910 return AliasDef; 911 912 // Check this processor's ReadAdvanceList. 913 Record *ResDef = nullptr; 914 for (Record *RA : ProcModel.ReadAdvanceDefs) { 915 if (!RA->isSubClassOf("ReadAdvance")) 916 continue; 917 if (AliasDef == RA->getValueAsDef("ReadType") 918 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 919 if (ResDef) { 920 PrintFatalError(RA->getLoc(), "Resources are defined for both " 921 "SchedRead and its alias on processor " + 922 ProcModel.ModelName); 923 } 924 ResDef = RA; 925 } 926 } 927 // TODO: If ProcModel has a base model (previous generation processor), 928 // then call FindReadAdvance recursively with that model here. 929 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 930 PrintFatalError(ProcModel.ModelDef->getLoc(), 931 Twine("Processor does not define resources for ") + 932 SchedRead.TheDef->getName()); 933 } 934 return ResDef; 935 } 936 937 // Expand an explicit list of processor resources into a full list of implied 938 // resource groups and super resources that cover them. 939 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 940 std::vector<int64_t> &Cycles, 941 const CodeGenProcModel &PM) { 942 assert(PRVec.size() == Cycles.size() && "failed precondition"); 943 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 944 Record *PRDef = PRVec[i]; 945 RecVec SubResources; 946 if (PRDef->isSubClassOf("ProcResGroup")) 947 SubResources = PRDef->getValueAsListOfDefs("Resources"); 948 else { 949 SubResources.push_back(PRDef); 950 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 951 for (Record *SubDef = PRDef; 952 SubDef->getValueInit("Super")->isComplete();) { 953 if (SubDef->isSubClassOf("ProcResGroup")) { 954 // Disallow this for simplicitly. 955 PrintFatalError(SubDef->getLoc(), "Processor resource group " 956 " cannot be a super resources."); 957 } 958 Record *SuperDef = 959 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 960 SubDef->getLoc()); 961 PRVec.push_back(SuperDef); 962 Cycles.push_back(Cycles[i]); 963 SubDef = SuperDef; 964 } 965 } 966 for (Record *PR : PM.ProcResourceDefs) { 967 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 968 continue; 969 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 970 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 971 for( ; SubI != SubE; ++SubI) { 972 if (!is_contained(SuperResources, *SubI)) { 973 break; 974 } 975 } 976 if (SubI == SubE) { 977 PRVec.push_back(PR); 978 Cycles.push_back(Cycles[i]); 979 } 980 } 981 } 982 } 983 984 // Generate the SchedClass table for this processor and update global 985 // tables. Must be called for each processor in order. 986 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 987 SchedClassTables &SchedTables) { 988 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 989 if (!ProcModel.hasInstrSchedModel()) 990 return; 991 992 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 993 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 994 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 995 LLVM_DEBUG(SC.dump(&SchedModels)); 996 997 SCTab.resize(SCTab.size() + 1); 998 MCSchedClassDesc &SCDesc = SCTab.back(); 999 // SCDesc.Name is guarded by NDEBUG 1000 SCDesc.NumMicroOps = 0; 1001 SCDesc.BeginGroup = false; 1002 SCDesc.EndGroup = false; 1003 SCDesc.WriteProcResIdx = 0; 1004 SCDesc.WriteLatencyIdx = 0; 1005 SCDesc.ReadAdvanceIdx = 0; 1006 1007 // A Variant SchedClass has no resources of its own. 1008 bool HasVariants = false; 1009 for (const CodeGenSchedTransition &CGT : 1010 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 1011 if (CGT.ProcIndices[0] == 0 || 1012 is_contained(CGT.ProcIndices, ProcModel.Index)) { 1013 HasVariants = true; 1014 break; 1015 } 1016 } 1017 if (HasVariants) { 1018 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 1019 continue; 1020 } 1021 1022 // Determine if the SchedClass is actually reachable on this processor. If 1023 // not don't try to locate the processor resources, it will fail. 1024 // If ProcIndices contains 0, this class applies to all processors. 1025 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 1026 if (SC.ProcIndices[0] != 0) { 1027 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 1028 continue; 1029 } 1030 IdxVec Writes = SC.Writes; 1031 IdxVec Reads = SC.Reads; 1032 if (!SC.InstRWs.empty()) { 1033 // This class has a default ReadWrite list which can be overridden by 1034 // InstRW definitions. 1035 Record *RWDef = nullptr; 1036 for (Record *RW : SC.InstRWs) { 1037 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1038 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 1039 RWDef = RW; 1040 break; 1041 } 1042 } 1043 if (RWDef) { 1044 Writes.clear(); 1045 Reads.clear(); 1046 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 1047 Writes, Reads); 1048 } 1049 } 1050 if (Writes.empty()) { 1051 // Check this processor's itinerary class resources. 1052 for (Record *I : ProcModel.ItinRWDefs) { 1053 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 1054 if (is_contained(Matched, SC.ItinClassDef)) { 1055 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 1056 Writes, Reads); 1057 break; 1058 } 1059 } 1060 if (Writes.empty()) { 1061 LLVM_DEBUG(dbgs() << ProcModel.ModelName 1062 << " does not have resources for class " << SC.Name 1063 << '\n'); 1064 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1065 } 1066 } 1067 // Sum resources across all operand writes. 1068 std::vector<MCWriteProcResEntry> WriteProcResources; 1069 std::vector<MCWriteLatencyEntry> WriteLatencies; 1070 std::vector<std::string> WriterNames; 1071 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 1072 for (unsigned W : Writes) { 1073 IdxVec WriteSeq; 1074 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 1075 ProcModel); 1076 1077 // For each operand, create a latency entry. 1078 MCWriteLatencyEntry WLEntry; 1079 WLEntry.Cycles = 0; 1080 unsigned WriteID = WriteSeq.back(); 1081 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 1082 // If this Write is not referenced by a ReadAdvance, don't distinguish it 1083 // from other WriteLatency entries. 1084 if (!SchedModels.hasReadOfWrite( 1085 SchedModels.getSchedWrite(WriteID).TheDef)) { 1086 WriteID = 0; 1087 } 1088 WLEntry.WriteResourceID = WriteID; 1089 1090 for (unsigned WS : WriteSeq) { 1091 1092 Record *WriteRes = 1093 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 1094 1095 // Mark the parent class as invalid for unsupported write types. 1096 if (WriteRes->getValueAsBit("Unsupported")) { 1097 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1098 break; 1099 } 1100 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 1101 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 1102 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 1103 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 1104 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 1105 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 1106 1107 // Create an entry for each ProcResource listed in WriteRes. 1108 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 1109 std::vector<int64_t> Cycles = 1110 WriteRes->getValueAsListOfInts("ResourceCycles"); 1111 1112 if (Cycles.empty()) { 1113 // If ResourceCycles is not provided, default to one cycle per 1114 // resource. 1115 Cycles.resize(PRVec.size(), 1); 1116 } else if (Cycles.size() != PRVec.size()) { 1117 // If ResourceCycles is provided, check consistency. 1118 PrintFatalError( 1119 WriteRes->getLoc(), 1120 Twine("Inconsistent resource cycles: !size(ResourceCycles) != " 1121 "!size(ProcResources): ") 1122 .concat(Twine(PRVec.size())) 1123 .concat(" vs ") 1124 .concat(Twine(Cycles.size()))); 1125 } 1126 1127 ExpandProcResources(PRVec, Cycles, ProcModel); 1128 1129 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 1130 PRIdx != PREnd; ++PRIdx) { 1131 MCWriteProcResEntry WPREntry; 1132 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 1133 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 1134 WPREntry.Cycles = Cycles[PRIdx]; 1135 // If this resource is already used in this sequence, add the current 1136 // entry's cycles so that the same resource appears to be used 1137 // serially, rather than multiple parallel uses. This is important for 1138 // in-order machine where the resource consumption is a hazard. 1139 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 1140 for( ; WPRIdx != WPREnd; ++WPRIdx) { 1141 if (WriteProcResources[WPRIdx].ProcResourceIdx 1142 == WPREntry.ProcResourceIdx) { 1143 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 1144 break; 1145 } 1146 } 1147 if (WPRIdx == WPREnd) 1148 WriteProcResources.push_back(WPREntry); 1149 } 1150 } 1151 WriteLatencies.push_back(WLEntry); 1152 } 1153 // Create an entry for each operand Read in this SchedClass. 1154 // Entries must be sorted first by UseIdx then by WriteResourceID. 1155 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 1156 UseIdx != EndIdx; ++UseIdx) { 1157 Record *ReadAdvance = 1158 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1159 if (!ReadAdvance) 1160 continue; 1161 1162 // Mark the parent class as invalid for unsupported write types. 1163 if (ReadAdvance->getValueAsBit("Unsupported")) { 1164 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1165 break; 1166 } 1167 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1168 IdxVec WriteIDs; 1169 if (ValidWrites.empty()) 1170 WriteIDs.push_back(0); 1171 else { 1172 for (Record *VW : ValidWrites) { 1173 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 1174 } 1175 } 1176 llvm::sort(WriteIDs); 1177 for(unsigned W : WriteIDs) { 1178 MCReadAdvanceEntry RAEntry; 1179 RAEntry.UseIdx = UseIdx; 1180 RAEntry.WriteResourceID = W; 1181 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1182 ReadAdvanceEntries.push_back(RAEntry); 1183 } 1184 } 1185 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1186 WriteProcResources.clear(); 1187 WriteLatencies.clear(); 1188 ReadAdvanceEntries.clear(); 1189 } 1190 // Add the information for this SchedClass to the global tables using basic 1191 // compression. 1192 // 1193 // WritePrecRes entries are sorted by ProcResIdx. 1194 llvm::sort(WriteProcResources, LessWriteProcResources()); 1195 1196 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1197 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1198 std::search(SchedTables.WriteProcResources.begin(), 1199 SchedTables.WriteProcResources.end(), 1200 WriteProcResources.begin(), WriteProcResources.end()); 1201 if (WPRPos != SchedTables.WriteProcResources.end()) 1202 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1203 else { 1204 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1205 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1206 WriteProcResources.end()); 1207 } 1208 // Latency entries must remain in operand order. 1209 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1210 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1211 std::search(SchedTables.WriteLatencies.begin(), 1212 SchedTables.WriteLatencies.end(), 1213 WriteLatencies.begin(), WriteLatencies.end()); 1214 if (WLPos != SchedTables.WriteLatencies.end()) { 1215 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1216 SCDesc.WriteLatencyIdx = idx; 1217 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1218 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1219 std::string::npos) { 1220 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1221 } 1222 } 1223 else { 1224 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1225 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1226 WriteLatencies.begin(), 1227 WriteLatencies.end()); 1228 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1229 WriterNames.begin(), WriterNames.end()); 1230 } 1231 // ReadAdvanceEntries must remain in operand order. 1232 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1233 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1234 std::search(SchedTables.ReadAdvanceEntries.begin(), 1235 SchedTables.ReadAdvanceEntries.end(), 1236 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1237 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1238 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1239 else { 1240 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1241 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1242 ReadAdvanceEntries.end()); 1243 } 1244 } 1245 } 1246 1247 // Emit SchedClass tables for all processors and associated global tables. 1248 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1249 raw_ostream &OS) { 1250 // Emit global WriteProcResTable. 1251 OS << "\n// {ProcResourceIdx, Cycles}\n" 1252 << "extern const llvm::MCWriteProcResEntry " 1253 << Target << "WriteProcResTable[] = {\n" 1254 << " { 0, 0}, // Invalid\n"; 1255 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1256 WPRIdx != WPREnd; ++WPRIdx) { 1257 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1258 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1259 << format("%2d", WPREntry.Cycles) << "}"; 1260 if (WPRIdx + 1 < WPREnd) 1261 OS << ','; 1262 OS << " // #" << WPRIdx << '\n'; 1263 } 1264 OS << "}; // " << Target << "WriteProcResTable\n"; 1265 1266 // Emit global WriteLatencyTable. 1267 OS << "\n// {Cycles, WriteResourceID}\n" 1268 << "extern const llvm::MCWriteLatencyEntry " 1269 << Target << "WriteLatencyTable[] = {\n" 1270 << " { 0, 0}, // Invalid\n"; 1271 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1272 WLIdx != WLEnd; ++WLIdx) { 1273 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1274 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1275 << format("%2d", WLEntry.WriteResourceID) << "}"; 1276 if (WLIdx + 1 < WLEnd) 1277 OS << ','; 1278 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1279 } 1280 OS << "}; // " << Target << "WriteLatencyTable\n"; 1281 1282 // Emit global ReadAdvanceTable. 1283 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1284 << "extern const llvm::MCReadAdvanceEntry " 1285 << Target << "ReadAdvanceTable[] = {\n" 1286 << " {0, 0, 0}, // Invalid\n"; 1287 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1288 RAIdx != RAEnd; ++RAIdx) { 1289 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1290 OS << " {" << RAEntry.UseIdx << ", " 1291 << format("%2d", RAEntry.WriteResourceID) << ", " 1292 << format("%2d", RAEntry.Cycles) << "}"; 1293 if (RAIdx + 1 < RAEnd) 1294 OS << ','; 1295 OS << " // #" << RAIdx << '\n'; 1296 } 1297 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1298 1299 // Emit a SchedClass table for each processor. 1300 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1301 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1302 if (!PI->hasInstrSchedModel()) 1303 continue; 1304 1305 std::vector<MCSchedClassDesc> &SCTab = 1306 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1307 1308 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1309 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1310 OS << "static const llvm::MCSchedClassDesc " 1311 << PI->ModelName << "SchedClasses[] = {\n"; 1312 1313 // The first class is always invalid. We no way to distinguish it except by 1314 // name and position. 1315 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1316 && "invalid class not first"); 1317 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1318 << MCSchedClassDesc::InvalidNumMicroOps 1319 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1320 1321 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1322 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1323 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1324 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1325 if (SchedClass.Name.size() < 18) 1326 OS.indent(18 - SchedClass.Name.size()); 1327 OS << MCDesc.NumMicroOps 1328 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1329 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1330 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1331 << ", " << MCDesc.NumWriteProcResEntries 1332 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1333 << ", " << MCDesc.NumWriteLatencyEntries 1334 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1335 << ", " << MCDesc.NumReadAdvanceEntries 1336 << "}, // #" << SCIdx << '\n'; 1337 } 1338 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1339 } 1340 } 1341 1342 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1343 // For each processor model. 1344 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1345 // Emit extra processor info if available. 1346 if (PM.hasExtraProcessorInfo()) 1347 EmitExtraProcessorInfo(PM, OS); 1348 // Emit processor resource table. 1349 if (PM.hasInstrSchedModel()) 1350 EmitProcessorResources(PM, OS); 1351 else if(!PM.ProcResourceDefs.empty()) 1352 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1353 "ProcResources without defining WriteRes SchedWriteRes"); 1354 1355 // Begin processor itinerary properties 1356 OS << "\n"; 1357 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1358 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1359 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1360 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1361 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1362 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1363 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1364 1365 bool PostRAScheduler = 1366 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1367 1368 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1369 << "PostRAScheduler\n"; 1370 1371 bool CompleteModel = 1372 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1373 1374 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1375 << "CompleteModel\n"; 1376 1377 OS << " " << PM.Index << ", // Processor ID\n"; 1378 if (PM.hasInstrSchedModel()) 1379 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1380 << " " << PM.ModelName << "SchedClasses" << ",\n" 1381 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1382 << " " << (SchedModels.schedClassEnd() 1383 - SchedModels.schedClassBegin()) << ",\n"; 1384 else 1385 OS << " nullptr, nullptr, 0, 0," 1386 << " // No instruction-level machine model.\n"; 1387 if (PM.hasItineraries()) 1388 OS << " " << PM.ItinsDef->getName() << ",\n"; 1389 else 1390 OS << " nullptr, // No Itinerary\n"; 1391 if (PM.hasExtraProcessorInfo()) 1392 OS << " &" << PM.ModelName << "ExtraInfo,\n"; 1393 else 1394 OS << " nullptr // No extra processor descriptor\n"; 1395 OS << "};\n"; 1396 } 1397 } 1398 1399 // 1400 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1401 // 1402 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1403 OS << "#ifdef DBGFIELD\n" 1404 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1405 << "#endif\n" 1406 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1407 << "#define DBGFIELD(x) x,\n" 1408 << "#else\n" 1409 << "#define DBGFIELD(x)\n" 1410 << "#endif\n"; 1411 1412 if (SchedModels.hasItineraries()) { 1413 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1414 // Emit the stage data 1415 EmitStageAndOperandCycleData(OS, ProcItinLists); 1416 EmitItineraries(OS, ProcItinLists); 1417 } 1418 OS << "\n// ===============================================================\n" 1419 << "// Data tables for the new per-operand machine model.\n"; 1420 1421 SchedClassTables SchedTables; 1422 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1423 GenSchedClassTables(ProcModel, SchedTables); 1424 } 1425 EmitSchedClassTables(SchedTables, OS); 1426 1427 OS << "\n#undef DBGFIELD\n"; 1428 1429 // Emit the processor machine model 1430 EmitProcessorModels(OS); 1431 } 1432 1433 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) { 1434 std::string Buffer; 1435 raw_string_ostream Stream(Buffer); 1436 1437 // Collect all the PredicateProlog records and print them to the output 1438 // stream. 1439 std::vector<Record *> Prologs = 1440 Records.getAllDerivedDefinitions("PredicateProlog"); 1441 llvm::sort(Prologs, LessRecord()); 1442 for (Record *P : Prologs) 1443 Stream << P->getValueAsString("Code") << '\n'; 1444 1445 Stream.flush(); 1446 OS << Buffer; 1447 } 1448 1449 static void emitPredicates(const CodeGenSchedTransition &T, 1450 const CodeGenSchedClass &SC, PredicateExpander &PE, 1451 raw_ostream &OS) { 1452 std::string Buffer; 1453 raw_string_ostream SS(Buffer); 1454 1455 auto IsTruePredicate = [](const Record *Rec) { 1456 return Rec->isSubClassOf("MCSchedPredicate") && 1457 Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue"); 1458 }; 1459 1460 // If not all predicates are MCTrue, then we need an if-stmt. 1461 unsigned NumNonTruePreds = 1462 T.PredTerm.size() - count_if(T.PredTerm, IsTruePredicate); 1463 1464 SS.indent(PE.getIndentLevel() * 2); 1465 1466 if (NumNonTruePreds) { 1467 bool FirstNonTruePredicate = true; 1468 SS << "if ("; 1469 1470 PE.setIndentLevel(PE.getIndentLevel() + 2); 1471 1472 for (const Record *Rec : T.PredTerm) { 1473 // Skip predicates that evaluate to "true". 1474 if (IsTruePredicate(Rec)) 1475 continue; 1476 1477 if (FirstNonTruePredicate) { 1478 FirstNonTruePredicate = false; 1479 } else { 1480 SS << "\n"; 1481 SS.indent(PE.getIndentLevel() * 2); 1482 SS << "&& "; 1483 } 1484 1485 if (Rec->isSubClassOf("MCSchedPredicate")) { 1486 PE.expandPredicate(SS, Rec->getValueAsDef("Pred")); 1487 continue; 1488 } 1489 1490 // Expand this legacy predicate and wrap it around braces if there is more 1491 // than one predicate to expand. 1492 SS << ((NumNonTruePreds > 1) ? "(" : "") 1493 << Rec->getValueAsString("Predicate") 1494 << ((NumNonTruePreds > 1) ? ")" : ""); 1495 } 1496 1497 SS << ")\n"; // end of if-stmt 1498 PE.decreaseIndentLevel(); 1499 SS.indent(PE.getIndentLevel() * 2); 1500 PE.decreaseIndentLevel(); 1501 } 1502 1503 SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n'; 1504 SS.flush(); 1505 OS << Buffer; 1506 } 1507 1508 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate 1509 // epilogue code for the auto-generated helper. 1510 void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) { 1511 if (ShouldReturnZero) { 1512 OS << " // Don't know how to resolve this scheduling class.\n" 1513 << " return 0;\n"; 1514 return; 1515 } 1516 1517 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"; 1518 } 1519 1520 bool hasMCSchedPredicates(const CodeGenSchedTransition &T) { 1521 return all_of(T.PredTerm, [](const Record *Rec) { 1522 return Rec->isSubClassOf("MCSchedPredicate"); 1523 }); 1524 } 1525 1526 void collectVariantClasses(const CodeGenSchedModels &SchedModels, 1527 IdxVec &VariantClasses, 1528 bool OnlyExpandMCInstPredicates) { 1529 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1530 // Ignore non-variant scheduling classes. 1531 if (SC.Transitions.empty()) 1532 continue; 1533 1534 if (OnlyExpandMCInstPredicates) { 1535 // Ignore this variant scheduling class no transitions use any meaningful 1536 // MCSchedPredicate definitions. 1537 if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) { 1538 return hasMCSchedPredicates(T); 1539 })) 1540 continue; 1541 } 1542 1543 VariantClasses.push_back(SC.Index); 1544 } 1545 } 1546 1547 void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) { 1548 // A variant scheduling class may define transitions for multiple 1549 // processors. This function identifies wich processors are associated with 1550 // transition rules specified by variant class `SC`. 1551 for (const CodeGenSchedTransition &T : SC.Transitions) { 1552 IdxVec PI; 1553 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1554 ProcIndices.begin(), ProcIndices.end(), 1555 std::back_inserter(PI)); 1556 ProcIndices.swap(PI); 1557 } 1558 } 1559 1560 void SubtargetEmitter::emitSchedModelHelpersImpl( 1561 raw_ostream &OS, bool OnlyExpandMCInstPredicates) { 1562 IdxVec VariantClasses; 1563 collectVariantClasses(SchedModels, VariantClasses, 1564 OnlyExpandMCInstPredicates); 1565 1566 if (VariantClasses.empty()) { 1567 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1568 return; 1569 } 1570 1571 // Construct a switch statement where the condition is a check on the 1572 // scheduling class identifier. There is a `case` for every variant class 1573 // defined by the processor models of this target. 1574 // Each `case` implements a number of rules to resolve (i.e. to transition from) 1575 // a variant scheduling class to another scheduling class. Rules are 1576 // described by instances of CodeGenSchedTransition. Note that transitions may 1577 // not be valid for all processors. 1578 OS << " switch (SchedClass) {\n"; 1579 for (unsigned VC : VariantClasses) { 1580 IdxVec ProcIndices; 1581 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1582 collectProcessorIndices(SC, ProcIndices); 1583 1584 OS << " case " << VC << ": // " << SC.Name << '\n'; 1585 1586 PredicateExpander PE(Target); 1587 PE.setByRef(false); 1588 PE.setExpandForMC(OnlyExpandMCInstPredicates); 1589 for (unsigned PI : ProcIndices) { 1590 OS << " "; 1591 1592 // Emit a guard on the processor ID. 1593 if (PI != 0) { 1594 OS << (OnlyExpandMCInstPredicates 1595 ? "if (CPUID == " 1596 : "if (SchedModel->getProcessorID() == "); 1597 OS << PI << ") "; 1598 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n'; 1599 } 1600 1601 // Now emit transitions associated with processor PI. 1602 for (const CodeGenSchedTransition &T : SC.Transitions) { 1603 if (PI != 0 && !count(T.ProcIndices, PI)) 1604 continue; 1605 1606 // Emit only transitions based on MCSchedPredicate, if it's the case. 1607 // At least the transition specified by NoSchedPred is emitted, 1608 // which becomes the default transition for those variants otherwise 1609 // not based on MCSchedPredicate. 1610 // FIXME: preferably, llvm-mca should instead assume a reasonable 1611 // default when a variant transition is not based on MCSchedPredicate 1612 // for a given processor. 1613 if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T)) 1614 continue; 1615 1616 PE.setIndentLevel(3); 1617 emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS); 1618 } 1619 1620 OS << " }\n"; 1621 1622 if (PI == 0) 1623 break; 1624 } 1625 1626 if (SC.isInferred()) 1627 OS << " return " << SC.Index << ";\n"; 1628 OS << " break;\n"; 1629 } 1630 1631 OS << " };\n"; 1632 1633 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1634 } 1635 1636 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1637 raw_ostream &OS) { 1638 OS << "unsigned " << ClassName 1639 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1640 << " const TargetSchedModel *SchedModel) const {\n"; 1641 1642 // Emit the predicate prolog code. 1643 emitPredicateProlog(Records, OS); 1644 1645 // Emit target predicates. 1646 emitSchedModelHelpersImpl(OS); 1647 1648 OS << "} // " << ClassName << "::resolveSchedClass\n\n"; 1649 1650 OS << "unsigned " << ClassName 1651 << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI," 1652 << " unsigned CPUID) const {\n" 1653 << " return " << Target << "_MC" 1654 << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID);\n" 1655 << "} // " << ClassName << "::resolveVariantSchedClass\n\n"; 1656 1657 STIPredicateExpander PE(Target); 1658 PE.setClassPrefix(ClassName); 1659 PE.setExpandDefinition(true); 1660 PE.setByRef(false); 1661 PE.setIndentLevel(0); 1662 1663 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1664 PE.expandSTIPredicate(OS, Fn); 1665 } 1666 1667 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1668 raw_ostream &OS) { 1669 const CodeGenHwModes &CGH = TGT.getHwModes(); 1670 assert(CGH.getNumModeIds() > 0); 1671 if (CGH.getNumModeIds() == 1) 1672 return; 1673 1674 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1675 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1676 const HwMode &HM = CGH.getMode(M); 1677 OS << " if (checkFeatures(\"" << HM.Features 1678 << "\")) return " << M << ";\n"; 1679 } 1680 OS << " return 0;\n}\n"; 1681 } 1682 1683 // 1684 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1685 // the subtarget features string. 1686 // 1687 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1688 unsigned NumFeatures, 1689 unsigned NumProcs) { 1690 std::vector<Record*> Features = 1691 Records.getAllDerivedDefinitions("SubtargetFeature"); 1692 llvm::sort(Features, LessRecord()); 1693 1694 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1695 << "// subtarget options.\n" 1696 << "void llvm::"; 1697 OS << Target; 1698 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef TuneCPU, " 1699 << "StringRef FS) {\n" 1700 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1701 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1702 1703 if (Features.empty()) { 1704 OS << "}\n"; 1705 return; 1706 } 1707 1708 OS << " InitMCProcessorInfo(CPU, TuneCPU, FS);\n" 1709 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1710 1711 for (Record *R : Features) { 1712 // Next record 1713 StringRef Instance = R->getName(); 1714 StringRef Value = R->getValueAsString("Value"); 1715 StringRef Attribute = R->getValueAsString("Attribute"); 1716 1717 if (Value=="true" || Value=="false") 1718 OS << " if (Bits[" << Target << "::" 1719 << Instance << "]) " 1720 << Attribute << " = " << Value << ";\n"; 1721 else 1722 OS << " if (Bits[" << Target << "::" 1723 << Instance << "] && " 1724 << Attribute << " < " << Value << ") " 1725 << Attribute << " = " << Value << ";\n"; 1726 } 1727 1728 OS << "}\n"; 1729 } 1730 1731 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) { 1732 OS << "namespace " << Target << "_MC {\n" 1733 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n" 1734 << " const MCInst *MI, unsigned CPUID) {\n"; 1735 emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true); 1736 OS << "}\n"; 1737 OS << "} // end namespace " << Target << "_MC\n\n"; 1738 1739 OS << "struct " << Target 1740 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n"; 1741 OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT,\n" 1742 << " StringRef CPU, StringRef TuneCPU, StringRef FS,\n" 1743 << " ArrayRef<SubtargetFeatureKV> PF,\n" 1744 << " ArrayRef<SubtargetSubTypeKV> PD,\n" 1745 << " const MCWriteProcResEntry *WPR,\n" 1746 << " const MCWriteLatencyEntry *WL,\n" 1747 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n" 1748 << " const unsigned *OC, const unsigned *FP) :\n" 1749 << " MCSubtargetInfo(TT, CPU, TuneCPU, FS, PF, PD,\n" 1750 << " WPR, WL, RA, IS, OC, FP) { }\n\n" 1751 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n" 1752 << " const MCInst *MI, unsigned CPUID) const override {\n" 1753 << " return " << Target << "_MC" 1754 << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID); \n"; 1755 OS << " }\n"; 1756 if (TGT.getHwModes().getNumModeIds() > 1) 1757 OS << " unsigned getHwMode() const override;\n"; 1758 OS << "};\n"; 1759 EmitHwModeCheck(Target + "GenMCSubtargetInfo", OS); 1760 } 1761 1762 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) { 1763 OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n"; 1764 OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1765 1766 STIPredicateExpander PE(Target); 1767 PE.setExpandForMC(true); 1768 PE.setByRef(true); 1769 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1770 PE.expandSTIPredicate(OS, Fn); 1771 1772 OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1773 1774 OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n"; 1775 OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1776 1777 std::string ClassPrefix = Target + "MCInstrAnalysis"; 1778 PE.setExpandDefinition(true); 1779 PE.setClassPrefix(ClassPrefix); 1780 PE.setIndentLevel(0); 1781 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1782 PE.expandSTIPredicate(OS, Fn); 1783 1784 OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1785 } 1786 1787 // 1788 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1789 // 1790 void SubtargetEmitter::run(raw_ostream &OS) { 1791 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1792 1793 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1794 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1795 1796 DenseMap<Record *, unsigned> FeatureMap; 1797 1798 OS << "namespace llvm {\n"; 1799 Enumeration(OS, FeatureMap); 1800 OS << "} // end namespace llvm\n\n"; 1801 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1802 1803 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1804 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1805 1806 OS << "namespace llvm {\n"; 1807 #if 0 1808 OS << "namespace {\n"; 1809 #endif 1810 unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap); 1811 OS << "\n"; 1812 EmitSchedModel(OS); 1813 OS << "\n"; 1814 unsigned NumProcs = CPUKeyValues(OS, FeatureMap); 1815 OS << "\n"; 1816 #if 0 1817 OS << "} // end anonymous namespace\n\n"; 1818 #endif 1819 1820 // MCInstrInfo initialization routine. 1821 emitGenMCSubtargetInfo(OS); 1822 1823 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1824 << "MCSubtargetInfoImpl(" 1825 << "const Triple &TT, StringRef CPU, StringRef TuneCPU, StringRef FS) {\n"; 1826 OS << " return new " << Target 1827 << "GenMCSubtargetInfo(TT, CPU, TuneCPU, FS, "; 1828 if (NumFeatures) 1829 OS << Target << "FeatureKV, "; 1830 else 1831 OS << "None, "; 1832 if (NumProcs) 1833 OS << Target << "SubTypeKV, "; 1834 else 1835 OS << "None, "; 1836 OS << '\n'; OS.indent(22); 1837 OS << Target << "WriteProcResTable, " 1838 << Target << "WriteLatencyTable, " 1839 << Target << "ReadAdvanceTable, "; 1840 OS << '\n'; OS.indent(22); 1841 if (SchedModels.hasItineraries()) { 1842 OS << Target << "Stages, " 1843 << Target << "OperandCycles, " 1844 << Target << "ForwardingPaths"; 1845 } else 1846 OS << "nullptr, nullptr, nullptr"; 1847 OS << ");\n}\n\n"; 1848 1849 OS << "} // end namespace llvm\n\n"; 1850 1851 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1852 1853 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1854 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1855 1856 OS << "#include \"llvm/Support/Debug.h\"\n"; 1857 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1858 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1859 1860 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1861 1862 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1863 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1864 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1865 1866 std::string ClassName = Target + "GenSubtargetInfo"; 1867 OS << "namespace llvm {\n"; 1868 OS << "class DFAPacketizer;\n"; 1869 OS << "namespace " << Target << "_MC {\n" 1870 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass," 1871 << " const MCInst *MI, unsigned CPUID);\n" 1872 << "} // end namespace " << Target << "_MC\n\n"; 1873 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1874 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1875 << "StringRef TuneCPU, StringRef FS);\n" 1876 << "public:\n" 1877 << " unsigned resolveSchedClass(unsigned SchedClass, " 1878 << " const MachineInstr *DefMI," 1879 << " const TargetSchedModel *SchedModel) const override;\n" 1880 << " unsigned resolveVariantSchedClass(unsigned SchedClass," 1881 << " const MCInst *MI, unsigned CPUID) const override;\n" 1882 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1883 << " const;\n"; 1884 if (TGT.getHwModes().getNumModeIds() > 1) 1885 OS << " unsigned getHwMode() const override;\n"; 1886 1887 STIPredicateExpander PE(Target); 1888 PE.setByRef(false); 1889 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1890 PE.expandSTIPredicate(OS, Fn); 1891 1892 OS << "};\n" 1893 << "} // end namespace llvm\n\n"; 1894 1895 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1896 1897 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1898 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1899 1900 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1901 OS << "namespace llvm {\n"; 1902 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1903 OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n"; 1904 OS << "extern const llvm::MCWriteProcResEntry " 1905 << Target << "WriteProcResTable[];\n"; 1906 OS << "extern const llvm::MCWriteLatencyEntry " 1907 << Target << "WriteLatencyTable[];\n"; 1908 OS << "extern const llvm::MCReadAdvanceEntry " 1909 << Target << "ReadAdvanceTable[];\n"; 1910 1911 if (SchedModels.hasItineraries()) { 1912 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1913 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1914 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1915 } 1916 1917 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1918 << "StringRef TuneCPU, StringRef FS)\n" 1919 << " : TargetSubtargetInfo(TT, CPU, TuneCPU, FS, "; 1920 if (NumFeatures) 1921 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1922 else 1923 OS << "None, "; 1924 if (NumProcs) 1925 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1926 else 1927 OS << "None, "; 1928 OS << '\n'; OS.indent(24); 1929 OS << Target << "WriteProcResTable, " 1930 << Target << "WriteLatencyTable, " 1931 << Target << "ReadAdvanceTable, "; 1932 OS << '\n'; OS.indent(24); 1933 if (SchedModels.hasItineraries()) { 1934 OS << Target << "Stages, " 1935 << Target << "OperandCycles, " 1936 << Target << "ForwardingPaths"; 1937 } else 1938 OS << "nullptr, nullptr, nullptr"; 1939 OS << ") {}\n\n"; 1940 1941 EmitSchedModelHelpers(ClassName, OS); 1942 EmitHwModeCheck(ClassName, OS); 1943 1944 OS << "} // end namespace llvm\n\n"; 1945 1946 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1947 1948 EmitMCInstrAnalysisPredicateFunctions(OS); 1949 } 1950 1951 namespace llvm { 1952 1953 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1954 CodeGenTarget CGTarget(RK); 1955 SubtargetEmitter(RK, CGTarget).run(OS); 1956 } 1957 1958 } // end namespace llvm 1959