1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This tablegen backend emits subtarget enumerations. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "CodeGenTarget.h" 14 #include "CodeGenSchedule.h" 15 #include "PredicateExpander.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS, DenseMap<Record *, unsigned> &FeatureMap); 77 unsigned FeatureKeyValues(raw_ostream &OS, 78 const DenseMap<Record *, unsigned> &FeatureMap); 79 unsigned CPUKeyValues(raw_ostream &OS, 80 const DenseMap<Record *, unsigned> &FeatureMap); 81 void FormItineraryStageString(const std::string &Names, 82 Record *ItinData, std::string &ItinString, 83 unsigned &NStages); 84 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 85 unsigned &NOperandCycles); 86 void FormItineraryBypassString(const std::string &Names, 87 Record *ItinData, 88 std::string &ItinString, unsigned NOperandCycles); 89 void EmitStageAndOperandCycleData(raw_ostream &OS, 90 std::vector<std::vector<InstrItinerary>> 91 &ProcItinLists); 92 void EmitItineraries(raw_ostream &OS, 93 std::vector<std::vector<InstrItinerary>> 94 &ProcItinLists); 95 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 98 raw_ostream &OS); 99 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 100 raw_ostream &OS); 101 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 102 char Separator); 103 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, 104 raw_ostream &OS); 105 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 106 raw_ostream &OS); 107 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 108 const CodeGenProcModel &ProcModel); 109 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 110 const CodeGenProcModel &ProcModel); 111 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 112 const CodeGenProcModel &ProcModel); 113 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 114 SchedClassTables &SchedTables); 115 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 116 void EmitProcessorModels(raw_ostream &OS); 117 void EmitProcessorLookup(raw_ostream &OS); 118 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 119 void emitSchedModelHelpersImpl(raw_ostream &OS, 120 bool OnlyExpandMCInstPredicates = false); 121 void emitGenMCSubtargetInfo(raw_ostream &OS); 122 void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS); 123 124 void EmitSchedModel(raw_ostream &OS); 125 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 126 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 127 unsigned NumProcs); 128 129 public: 130 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 131 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 132 Target(TGT.getName()) {} 133 134 void run(raw_ostream &o); 135 }; 136 137 } // end anonymous namespace 138 139 // 140 // Enumeration - Emit the specified class as an enumeration. 141 // 142 void SubtargetEmitter::Enumeration(raw_ostream &OS, 143 DenseMap<Record *, unsigned> &FeatureMap) { 144 // Get all records of class and sort 145 std::vector<Record*> DefList = 146 Records.getAllDerivedDefinitions("SubtargetFeature"); 147 llvm::sort(DefList, LessRecord()); 148 149 unsigned N = DefList.size(); 150 if (N == 0) 151 return; 152 if (N > MAX_SUBTARGET_FEATURES) 153 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 154 155 OS << "namespace " << Target << " {\n"; 156 157 // Open enumeration. 158 OS << "enum {\n"; 159 160 // For each record 161 for (unsigned i = 0; i < N; ++i) { 162 // Next record 163 Record *Def = DefList[i]; 164 165 // Get and emit name 166 OS << " " << Def->getName() << " = " << i << ",\n"; 167 168 // Save the index for this feature. 169 FeatureMap[Def] = i; 170 } 171 172 // Close enumeration and namespace 173 OS << "};\n"; 174 OS << "} // end namespace " << Target << "\n"; 175 } 176 177 static void printFeatureMask(raw_ostream &OS, RecVec &FeatureList, 178 const DenseMap<Record *, unsigned> &FeatureMap) { 179 std::array<uint64_t, MAX_SUBTARGET_WORDS> Mask = {}; 180 for (unsigned j = 0, M = FeatureList.size(); j < M; ++j) { 181 unsigned Bit = FeatureMap.lookup(FeatureList[j]); 182 Mask[Bit / 64] |= 1ULL << (Bit % 64); 183 } 184 185 OS << "{ { { "; 186 for (unsigned i = 0; i != Mask.size(); ++i) { 187 OS << "0x"; 188 OS.write_hex(Mask[i]); 189 OS << "ULL, "; 190 } 191 OS << "} } }"; 192 } 193 194 // 195 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 196 // command line. 197 // 198 unsigned SubtargetEmitter::FeatureKeyValues( 199 raw_ostream &OS, const DenseMap<Record *, unsigned> &FeatureMap) { 200 // Gather and sort all the features 201 std::vector<Record*> FeatureList = 202 Records.getAllDerivedDefinitions("SubtargetFeature"); 203 204 if (FeatureList.empty()) 205 return 0; 206 207 llvm::sort(FeatureList, LessRecordFieldName()); 208 209 // Begin feature table 210 OS << "// Sorted (by key) array of values for CPU features.\n" 211 << "extern const llvm::SubtargetFeatureKV " << Target 212 << "FeatureKV[] = {\n"; 213 214 // For each feature 215 unsigned NumFeatures = 0; 216 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 217 // Next feature 218 Record *Feature = FeatureList[i]; 219 220 StringRef Name = Feature->getName(); 221 StringRef CommandLineName = Feature->getValueAsString("Name"); 222 StringRef Desc = Feature->getValueAsString("Desc"); 223 224 if (CommandLineName.empty()) continue; 225 226 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 227 OS << " { " 228 << "\"" << CommandLineName << "\", " 229 << "\"" << Desc << "\", " 230 << Target << "::" << Name << ", "; 231 232 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); 233 234 printFeatureMask(OS, ImpliesList, FeatureMap); 235 236 OS << " },\n"; 237 ++NumFeatures; 238 } 239 240 // End feature table 241 OS << "};\n"; 242 243 return NumFeatures; 244 } 245 246 // 247 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 248 // line. 249 // 250 unsigned 251 SubtargetEmitter::CPUKeyValues(raw_ostream &OS, 252 const DenseMap<Record *, unsigned> &FeatureMap) { 253 // Gather and sort processor information 254 std::vector<Record*> ProcessorList = 255 Records.getAllDerivedDefinitions("Processor"); 256 llvm::sort(ProcessorList, LessRecordFieldName()); 257 258 // Begin processor table 259 OS << "// Sorted (by key) array of values for CPU subtype.\n" 260 << "extern const llvm::SubtargetSubTypeKV " << Target 261 << "SubTypeKV[] = {\n"; 262 263 // For each processor 264 for (Record *Processor : ProcessorList) { 265 StringRef Name = Processor->getValueAsString("Name"); 266 RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); 267 268 // Emit as { "cpu", "description", 0, { f1 , f2 , ... fn } }, 269 OS << " { " 270 << "\"" << Name << "\", "; 271 272 printFeatureMask(OS, FeatureList, FeatureMap); 273 274 // Emit the scheduler model pointer. 275 const std::string &ProcModelName = 276 SchedModels.getModelForProc(Processor).ModelName; 277 OS << ", &" << ProcModelName << " },\n"; 278 } 279 280 // End processor table 281 OS << "};\n"; 282 283 return ProcessorList.size(); 284 } 285 286 // 287 // FormItineraryStageString - Compose a string containing the stage 288 // data initialization for the specified itinerary. N is the number 289 // of stages. 290 // 291 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 292 Record *ItinData, 293 std::string &ItinString, 294 unsigned &NStages) { 295 // Get states list 296 RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); 297 298 // For each stage 299 unsigned N = NStages = StageList.size(); 300 for (unsigned i = 0; i < N;) { 301 // Next stage 302 const Record *Stage = StageList[i]; 303 304 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 305 int Cycles = Stage->getValueAsInt("Cycles"); 306 ItinString += " { " + itostr(Cycles) + ", "; 307 308 // Get unit list 309 RecVec UnitList = Stage->getValueAsListOfDefs("Units"); 310 311 // For each unit 312 for (unsigned j = 0, M = UnitList.size(); j < M;) { 313 // Add name and bitwise or 314 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 315 if (++j < M) ItinString += " | "; 316 } 317 318 int TimeInc = Stage->getValueAsInt("TimeInc"); 319 ItinString += ", " + itostr(TimeInc); 320 321 int Kind = Stage->getValueAsInt("Kind"); 322 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 323 324 // Close off stage 325 ItinString += " }"; 326 if (++i < N) ItinString += ", "; 327 } 328 } 329 330 // 331 // FormItineraryOperandCycleString - Compose a string containing the 332 // operand cycle initialization for the specified itinerary. N is the 333 // number of operands that has cycles specified. 334 // 335 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 336 std::string &ItinString, unsigned &NOperandCycles) { 337 // Get operand cycle list 338 std::vector<int64_t> OperandCycleList = 339 ItinData->getValueAsListOfInts("OperandCycles"); 340 341 // For each operand cycle 342 unsigned N = NOperandCycles = OperandCycleList.size(); 343 for (unsigned i = 0; i < N;) { 344 // Next operand cycle 345 const int OCycle = OperandCycleList[i]; 346 347 ItinString += " " + itostr(OCycle); 348 if (++i < N) ItinString += ", "; 349 } 350 } 351 352 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 353 Record *ItinData, 354 std::string &ItinString, 355 unsigned NOperandCycles) { 356 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); 357 unsigned N = BypassList.size(); 358 unsigned i = 0; 359 for (; i < N;) { 360 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 361 if (++i < NOperandCycles) ItinString += ", "; 362 } 363 for (; i < NOperandCycles;) { 364 ItinString += " 0"; 365 if (++i < NOperandCycles) ItinString += ", "; 366 } 367 } 368 369 // 370 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 371 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 372 // by CodeGenSchedClass::Index. 373 // 374 void SubtargetEmitter:: 375 EmitStageAndOperandCycleData(raw_ostream &OS, 376 std::vector<std::vector<InstrItinerary>> 377 &ProcItinLists) { 378 // Multiple processor models may share an itinerary record. Emit it once. 379 SmallPtrSet<Record*, 8> ItinsDefSet; 380 381 // Emit functional units for all the itineraries. 382 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 383 384 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 385 continue; 386 387 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 388 if (FUs.empty()) 389 continue; 390 391 StringRef Name = ProcModel.ItinsDef->getName(); 392 OS << "\n// Functional units for \"" << Name << "\"\n" 393 << "namespace " << Name << "FU {\n"; 394 395 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 396 OS << " const unsigned " << FUs[j]->getName() 397 << " = 1 << " << j << ";\n"; 398 399 OS << "} // end namespace " << Name << "FU\n"; 400 401 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 402 if (!BPs.empty()) { 403 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name 404 << "\"\n" << "namespace " << Name << "Bypass {\n"; 405 406 OS << " const unsigned NoBypass = 0;\n"; 407 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 408 OS << " const unsigned " << BPs[j]->getName() 409 << " = 1 << " << j << ";\n"; 410 411 OS << "} // end namespace " << Name << "Bypass\n"; 412 } 413 } 414 415 // Begin stages table 416 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 417 "Stages[] = {\n"; 418 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 419 420 // Begin operand cycle table 421 std::string OperandCycleTable = "extern const unsigned " + Target + 422 "OperandCycles[] = {\n"; 423 OperandCycleTable += " 0, // No itinerary\n"; 424 425 // Begin pipeline bypass table 426 std::string BypassTable = "extern const unsigned " + Target + 427 "ForwardingPaths[] = {\n"; 428 BypassTable += " 0, // No itinerary\n"; 429 430 // For each Itinerary across all processors, add a unique entry to the stages, 431 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 432 // object with computed offsets to the ProcItinLists result. 433 unsigned StageCount = 1, OperandCycleCount = 1; 434 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 435 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 436 // Add process itinerary to the list. 437 ProcItinLists.resize(ProcItinLists.size()+1); 438 439 // If this processor defines no itineraries, then leave the itinerary list 440 // empty. 441 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 442 if (!ProcModel.hasItineraries()) 443 continue; 444 445 StringRef Name = ProcModel.ItinsDef->getName(); 446 447 ItinList.resize(SchedModels.numInstrSchedClasses()); 448 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 449 450 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 451 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 452 453 // Next itinerary data 454 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 455 456 // Get string and stage count 457 std::string ItinStageString; 458 unsigned NStages = 0; 459 if (ItinData) 460 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 461 462 // Get string and operand cycle count 463 std::string ItinOperandCycleString; 464 unsigned NOperandCycles = 0; 465 std::string ItinBypassString; 466 if (ItinData) { 467 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 468 NOperandCycles); 469 470 FormItineraryBypassString(Name, ItinData, ItinBypassString, 471 NOperandCycles); 472 } 473 474 // Check to see if stage already exists and create if it doesn't 475 uint16_t FindStage = 0; 476 if (NStages > 0) { 477 FindStage = ItinStageMap[ItinStageString]; 478 if (FindStage == 0) { 479 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 480 StageTable += ItinStageString + ", // " + itostr(StageCount); 481 if (NStages > 1) 482 StageTable += "-" + itostr(StageCount + NStages - 1); 483 StageTable += "\n"; 484 // Record Itin class number. 485 ItinStageMap[ItinStageString] = FindStage = StageCount; 486 StageCount += NStages; 487 } 488 } 489 490 // Check to see if operand cycle already exists and create if it doesn't 491 uint16_t FindOperandCycle = 0; 492 if (NOperandCycles > 0) { 493 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 494 FindOperandCycle = ItinOperandMap[ItinOperandString]; 495 if (FindOperandCycle == 0) { 496 // Emit as cycle, // index 497 OperandCycleTable += ItinOperandCycleString + ", // "; 498 std::string OperandIdxComment = itostr(OperandCycleCount); 499 if (NOperandCycles > 1) 500 OperandIdxComment += "-" 501 + itostr(OperandCycleCount + NOperandCycles - 1); 502 OperandCycleTable += OperandIdxComment + "\n"; 503 // Record Itin class number. 504 ItinOperandMap[ItinOperandCycleString] = 505 FindOperandCycle = OperandCycleCount; 506 // Emit as bypass, // index 507 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 508 OperandCycleCount += NOperandCycles; 509 } 510 } 511 512 // Set up itinerary as location and location + stage count 513 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 514 InstrItinerary Intinerary = { 515 NumUOps, 516 FindStage, 517 uint16_t(FindStage + NStages), 518 FindOperandCycle, 519 uint16_t(FindOperandCycle + NOperandCycles), 520 }; 521 522 // Inject - empty slots will be 0, 0 523 ItinList[SchedClassIdx] = Intinerary; 524 } 525 } 526 527 // Closing stage 528 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 529 StageTable += "};\n"; 530 531 // Closing operand cycles 532 OperandCycleTable += " 0 // End operand cycles\n"; 533 OperandCycleTable += "};\n"; 534 535 BypassTable += " 0 // End bypass tables\n"; 536 BypassTable += "};\n"; 537 538 // Emit tables. 539 OS << StageTable; 540 OS << OperandCycleTable; 541 OS << BypassTable; 542 } 543 544 // 545 // EmitProcessorData - Generate data for processor itineraries that were 546 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 547 // Itineraries for each processor. The Itinerary lists are indexed on 548 // CodeGenSchedClass::Index. 549 // 550 void SubtargetEmitter:: 551 EmitItineraries(raw_ostream &OS, 552 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 553 // Multiple processor models may share an itinerary record. Emit it once. 554 SmallPtrSet<Record*, 8> ItinsDefSet; 555 556 // For each processor's machine model 557 std::vector<std::vector<InstrItinerary>>::iterator 558 ProcItinListsIter = ProcItinLists.begin(); 559 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 560 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 561 562 Record *ItinsDef = PI->ItinsDef; 563 if (!ItinsDefSet.insert(ItinsDef).second) 564 continue; 565 566 // Get the itinerary list for the processor. 567 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 568 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 569 570 // Empty itineraries aren't referenced anywhere in the tablegen output 571 // so don't emit them. 572 if (ItinList.empty()) 573 continue; 574 575 OS << "\n"; 576 OS << "static const llvm::InstrItinerary "; 577 578 // Begin processor itinerary table 579 OS << ItinsDef->getName() << "[] = {\n"; 580 581 // For each itinerary class in CodeGenSchedClass::Index order. 582 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 583 InstrItinerary &Intinerary = ItinList[j]; 584 585 // Emit Itinerary in the form of 586 // { firstStage, lastStage, firstCycle, lastCycle } // index 587 OS << " { " << 588 Intinerary.NumMicroOps << ", " << 589 Intinerary.FirstStage << ", " << 590 Intinerary.LastStage << ", " << 591 Intinerary.FirstOperandCycle << ", " << 592 Intinerary.LastOperandCycle << " }" << 593 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 594 } 595 // End processor itinerary table 596 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" 597 "// end marker\n"; 598 OS << "};\n"; 599 } 600 } 601 602 // Emit either the value defined in the TableGen Record, or the default 603 // value defined in the C++ header. The Record is null if the processor does not 604 // define a model. 605 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 606 StringRef Name, char Separator) { 607 OS << " "; 608 int V = R ? R->getValueAsInt(Name) : -1; 609 if (V >= 0) 610 OS << V << Separator << " // " << Name; 611 else 612 OS << "MCSchedModel::Default" << Name << Separator; 613 OS << '\n'; 614 } 615 616 void SubtargetEmitter::EmitProcessorResourceSubUnits( 617 const CodeGenProcModel &ProcModel, raw_ostream &OS) { 618 OS << "\nstatic const unsigned " << ProcModel.ModelName 619 << "ProcResourceSubUnits[] = {\n" 620 << " 0, // Invalid\n"; 621 622 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 623 Record *PRDef = ProcModel.ProcResourceDefs[i]; 624 if (!PRDef->isSubClassOf("ProcResGroup")) 625 continue; 626 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 627 for (Record *RUDef : ResUnits) { 628 Record *const RU = 629 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); 630 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { 631 OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; 632 } 633 } 634 OS << " // " << PRDef->getName() << "\n"; 635 } 636 OS << "};\n"; 637 } 638 639 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, 640 raw_ostream &OS) { 641 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; 642 if (Record *RCU = ProcModel.RetireControlUnit) { 643 ReorderBufferSize = 644 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); 645 MaxRetirePerCycle = 646 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); 647 } 648 649 OS << ReorderBufferSize << ", // ReorderBufferSize\n "; 650 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; 651 } 652 653 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, 654 unsigned NumRegisterFiles, 655 unsigned NumCostEntries, raw_ostream &OS) { 656 if (NumRegisterFiles) 657 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); 658 else 659 OS << "nullptr,\n 0"; 660 661 OS << ", // Number of register files.\n "; 662 if (NumCostEntries) 663 OS << ProcModel.ModelName << "RegisterCosts,\n "; 664 else 665 OS << "nullptr,\n "; 666 OS << NumCostEntries << ", // Number of register cost entries.\n"; 667 } 668 669 unsigned 670 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 671 raw_ostream &OS) { 672 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { 673 return RF.hasDefaultCosts(); 674 })) 675 return 0; 676 677 // Print the RegisterCost table first. 678 OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n"; 679 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName 680 << "RegisterCosts" 681 << "[] = {\n"; 682 683 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { 684 // Skip register files with a default cost table. 685 if (RF.hasDefaultCosts()) 686 continue; 687 // Add entries to the cost table. 688 for (const CodeGenRegisterCost &RC : RF.Costs) { 689 OS << " { "; 690 Record *Rec = RC.RCDef; 691 if (Rec->getValue("Namespace")) 692 OS << Rec->getValueAsString("Namespace") << "::"; 693 OS << Rec->getName() << "RegClassID, " << RC.Cost << ", " 694 << RC.AllowMoveElimination << "},\n"; 695 } 696 } 697 OS << "};\n"; 698 699 // Now generate a table with register file info. 700 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, " 701 << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n"; 702 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName 703 << "RegisterFiles" 704 << "[] = {\n" 705 << " { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n"; 706 unsigned CostTblIndex = 0; 707 708 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { 709 OS << " { "; 710 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; 711 unsigned NumCostEntries = RD.Costs.size(); 712 OS << NumCostEntries << ", " << CostTblIndex << ", " 713 << RD.MaxMovesEliminatedPerCycle << ", " 714 << RD.AllowZeroMoveEliminationOnly << "},\n"; 715 CostTblIndex += NumCostEntries; 716 } 717 OS << "};\n"; 718 719 return CostTblIndex; 720 } 721 722 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel, 723 raw_ostream &OS) { 724 unsigned QueueID = 0; 725 if (ProcModel.LoadQueue) { 726 const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor"); 727 QueueID = 728 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 729 std::find(ProcModel.ProcResourceDefs.begin(), 730 ProcModel.ProcResourceDefs.end(), Queue)); 731 } 732 OS << " " << QueueID << ", // Resource Descriptor for the Load Queue\n"; 733 734 QueueID = 0; 735 if (ProcModel.StoreQueue) { 736 const Record *Queue = 737 ProcModel.StoreQueue->getValueAsDef("QueueDescriptor"); 738 QueueID = 739 1 + std::distance(ProcModel.ProcResourceDefs.begin(), 740 std::find(ProcModel.ProcResourceDefs.begin(), 741 ProcModel.ProcResourceDefs.end(), Queue)); 742 } 743 OS << " " << QueueID << ", // Resource Descriptor for the Store Queue\n"; 744 } 745 746 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 747 raw_ostream &OS) { 748 // Generate a table of register file descriptors (one entry per each user 749 // defined register file), and a table of register costs. 750 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); 751 752 // Now generate a table for the extra processor info. 753 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName 754 << "ExtraInfo = {\n "; 755 756 // Add information related to the retire control unit. 757 EmitRetireControlUnitInfo(ProcModel, OS); 758 759 // Add information related to the register files (i.e. where to find register 760 // file descriptors and register costs). 761 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), 762 NumCostEntries, OS); 763 764 // Add information about load/store queues. 765 EmitLoadStoreQueueInfo(ProcModel, OS); 766 767 OS << "};\n"; 768 } 769 770 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 771 raw_ostream &OS) { 772 EmitProcessorResourceSubUnits(ProcModel, OS); 773 774 OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n"; 775 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName 776 << "ProcResources" 777 << "[] = {\n" 778 << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; 779 780 unsigned SubUnitsOffset = 1; 781 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 782 Record *PRDef = ProcModel.ProcResourceDefs[i]; 783 784 Record *SuperDef = nullptr; 785 unsigned SuperIdx = 0; 786 unsigned NumUnits = 0; 787 const unsigned SubUnitsBeginOffset = SubUnitsOffset; 788 int BufferSize = PRDef->getValueAsInt("BufferSize"); 789 if (PRDef->isSubClassOf("ProcResGroup")) { 790 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 791 for (Record *RU : ResUnits) { 792 NumUnits += RU->getValueAsInt("NumUnits"); 793 SubUnitsOffset += RU->getValueAsInt("NumUnits"); 794 } 795 } 796 else { 797 // Find the SuperIdx 798 if (PRDef->getValueInit("Super")->isComplete()) { 799 SuperDef = 800 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 801 ProcModel, PRDef->getLoc()); 802 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 803 } 804 NumUnits = PRDef->getValueAsInt("NumUnits"); 805 } 806 // Emit the ProcResourceDesc 807 OS << " {\"" << PRDef->getName() << "\", "; 808 if (PRDef->getName().size() < 15) 809 OS.indent(15 - PRDef->getName().size()); 810 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; 811 if (SubUnitsBeginOffset != SubUnitsOffset) { 812 OS << ProcModel.ModelName << "ProcResourceSubUnits + " 813 << SubUnitsBeginOffset; 814 } else { 815 OS << "nullptr"; 816 } 817 OS << "}, // #" << i+1; 818 if (SuperDef) 819 OS << ", Super=" << SuperDef->getName(); 820 OS << "\n"; 821 } 822 OS << "};\n"; 823 } 824 825 // Find the WriteRes Record that defines processor resources for this 826 // SchedWrite. 827 Record *SubtargetEmitter::FindWriteResources( 828 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 829 830 // Check if the SchedWrite is already subtarget-specific and directly 831 // specifies a set of processor resources. 832 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 833 return SchedWrite.TheDef; 834 835 Record *AliasDef = nullptr; 836 for (Record *A : SchedWrite.Aliases) { 837 const CodeGenSchedRW &AliasRW = 838 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 839 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 840 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 841 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 842 continue; 843 } 844 if (AliasDef) 845 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 846 "defined for processor " + ProcModel.ModelName + 847 " Ensure only one SchedAlias exists per RW."); 848 AliasDef = AliasRW.TheDef; 849 } 850 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 851 return AliasDef; 852 853 // Check this processor's list of write resources. 854 Record *ResDef = nullptr; 855 for (Record *WR : ProcModel.WriteResDefs) { 856 if (!WR->isSubClassOf("WriteRes")) 857 continue; 858 if (AliasDef == WR->getValueAsDef("WriteType") 859 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 860 if (ResDef) { 861 PrintFatalError(WR->getLoc(), "Resources are defined for both " 862 "SchedWrite and its alias on processor " + 863 ProcModel.ModelName); 864 } 865 ResDef = WR; 866 } 867 } 868 // TODO: If ProcModel has a base model (previous generation processor), 869 // then call FindWriteResources recursively with that model here. 870 if (!ResDef) { 871 PrintFatalError(ProcModel.ModelDef->getLoc(), 872 Twine("Processor does not define resources for ") + 873 SchedWrite.TheDef->getName()); 874 } 875 return ResDef; 876 } 877 878 /// Find the ReadAdvance record for the given SchedRead on this processor or 879 /// return NULL. 880 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 881 const CodeGenProcModel &ProcModel) { 882 // Check for SchedReads that directly specify a ReadAdvance. 883 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 884 return SchedRead.TheDef; 885 886 // Check this processor's list of aliases for SchedRead. 887 Record *AliasDef = nullptr; 888 for (Record *A : SchedRead.Aliases) { 889 const CodeGenSchedRW &AliasRW = 890 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 891 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 892 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 893 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 894 continue; 895 } 896 if (AliasDef) 897 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 898 "defined for processor " + ProcModel.ModelName + 899 " Ensure only one SchedAlias exists per RW."); 900 AliasDef = AliasRW.TheDef; 901 } 902 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 903 return AliasDef; 904 905 // Check this processor's ReadAdvanceList. 906 Record *ResDef = nullptr; 907 for (Record *RA : ProcModel.ReadAdvanceDefs) { 908 if (!RA->isSubClassOf("ReadAdvance")) 909 continue; 910 if (AliasDef == RA->getValueAsDef("ReadType") 911 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 912 if (ResDef) { 913 PrintFatalError(RA->getLoc(), "Resources are defined for both " 914 "SchedRead and its alias on processor " + 915 ProcModel.ModelName); 916 } 917 ResDef = RA; 918 } 919 } 920 // TODO: If ProcModel has a base model (previous generation processor), 921 // then call FindReadAdvance recursively with that model here. 922 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 923 PrintFatalError(ProcModel.ModelDef->getLoc(), 924 Twine("Processor does not define resources for ") + 925 SchedRead.TheDef->getName()); 926 } 927 return ResDef; 928 } 929 930 // Expand an explicit list of processor resources into a full list of implied 931 // resource groups and super resources that cover them. 932 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 933 std::vector<int64_t> &Cycles, 934 const CodeGenProcModel &PM) { 935 assert(PRVec.size() == Cycles.size() && "failed precondition"); 936 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 937 Record *PRDef = PRVec[i]; 938 RecVec SubResources; 939 if (PRDef->isSubClassOf("ProcResGroup")) 940 SubResources = PRDef->getValueAsListOfDefs("Resources"); 941 else { 942 SubResources.push_back(PRDef); 943 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 944 for (Record *SubDef = PRDef; 945 SubDef->getValueInit("Super")->isComplete();) { 946 if (SubDef->isSubClassOf("ProcResGroup")) { 947 // Disallow this for simplicitly. 948 PrintFatalError(SubDef->getLoc(), "Processor resource group " 949 " cannot be a super resources."); 950 } 951 Record *SuperDef = 952 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 953 SubDef->getLoc()); 954 PRVec.push_back(SuperDef); 955 Cycles.push_back(Cycles[i]); 956 SubDef = SuperDef; 957 } 958 } 959 for (Record *PR : PM.ProcResourceDefs) { 960 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 961 continue; 962 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 963 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 964 for( ; SubI != SubE; ++SubI) { 965 if (!is_contained(SuperResources, *SubI)) { 966 break; 967 } 968 } 969 if (SubI == SubE) { 970 PRVec.push_back(PR); 971 Cycles.push_back(Cycles[i]); 972 } 973 } 974 } 975 } 976 977 // Generate the SchedClass table for this processor and update global 978 // tables. Must be called for each processor in order. 979 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 980 SchedClassTables &SchedTables) { 981 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 982 if (!ProcModel.hasInstrSchedModel()) 983 return; 984 985 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 986 LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 987 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 988 LLVM_DEBUG(SC.dump(&SchedModels)); 989 990 SCTab.resize(SCTab.size() + 1); 991 MCSchedClassDesc &SCDesc = SCTab.back(); 992 // SCDesc.Name is guarded by NDEBUG 993 SCDesc.NumMicroOps = 0; 994 SCDesc.BeginGroup = false; 995 SCDesc.EndGroup = false; 996 SCDesc.WriteProcResIdx = 0; 997 SCDesc.WriteLatencyIdx = 0; 998 SCDesc.ReadAdvanceIdx = 0; 999 1000 // A Variant SchedClass has no resources of its own. 1001 bool HasVariants = false; 1002 for (const CodeGenSchedTransition &CGT : 1003 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 1004 if (CGT.ProcIndices[0] == 0 || 1005 is_contained(CGT.ProcIndices, ProcModel.Index)) { 1006 HasVariants = true; 1007 break; 1008 } 1009 } 1010 if (HasVariants) { 1011 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 1012 continue; 1013 } 1014 1015 // Determine if the SchedClass is actually reachable on this processor. If 1016 // not don't try to locate the processor resources, it will fail. 1017 // If ProcIndices contains 0, this class applies to all processors. 1018 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 1019 if (SC.ProcIndices[0] != 0) { 1020 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 1021 continue; 1022 } 1023 IdxVec Writes = SC.Writes; 1024 IdxVec Reads = SC.Reads; 1025 if (!SC.InstRWs.empty()) { 1026 // This class has a default ReadWrite list which can be overridden by 1027 // InstRW definitions. 1028 Record *RWDef = nullptr; 1029 for (Record *RW : SC.InstRWs) { 1030 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 1031 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 1032 RWDef = RW; 1033 break; 1034 } 1035 } 1036 if (RWDef) { 1037 Writes.clear(); 1038 Reads.clear(); 1039 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 1040 Writes, Reads); 1041 } 1042 } 1043 if (Writes.empty()) { 1044 // Check this processor's itinerary class resources. 1045 for (Record *I : ProcModel.ItinRWDefs) { 1046 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 1047 if (is_contained(Matched, SC.ItinClassDef)) { 1048 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 1049 Writes, Reads); 1050 break; 1051 } 1052 } 1053 if (Writes.empty()) { 1054 LLVM_DEBUG(dbgs() << ProcModel.ModelName 1055 << " does not have resources for class " << SC.Name 1056 << '\n'); 1057 } 1058 } 1059 // Sum resources across all operand writes. 1060 std::vector<MCWriteProcResEntry> WriteProcResources; 1061 std::vector<MCWriteLatencyEntry> WriteLatencies; 1062 std::vector<std::string> WriterNames; 1063 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 1064 for (unsigned W : Writes) { 1065 IdxVec WriteSeq; 1066 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 1067 ProcModel); 1068 1069 // For each operand, create a latency entry. 1070 MCWriteLatencyEntry WLEntry; 1071 WLEntry.Cycles = 0; 1072 unsigned WriteID = WriteSeq.back(); 1073 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 1074 // If this Write is not referenced by a ReadAdvance, don't distinguish it 1075 // from other WriteLatency entries. 1076 if (!SchedModels.hasReadOfWrite( 1077 SchedModels.getSchedWrite(WriteID).TheDef)) { 1078 WriteID = 0; 1079 } 1080 WLEntry.WriteResourceID = WriteID; 1081 1082 for (unsigned WS : WriteSeq) { 1083 1084 Record *WriteRes = 1085 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 1086 1087 // Mark the parent class as invalid for unsupported write types. 1088 if (WriteRes->getValueAsBit("Unsupported")) { 1089 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1090 break; 1091 } 1092 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 1093 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 1094 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 1095 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 1096 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 1097 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 1098 1099 // Create an entry for each ProcResource listed in WriteRes. 1100 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 1101 std::vector<int64_t> Cycles = 1102 WriteRes->getValueAsListOfInts("ResourceCycles"); 1103 1104 if (Cycles.empty()) { 1105 // If ResourceCycles is not provided, default to one cycle per 1106 // resource. 1107 Cycles.resize(PRVec.size(), 1); 1108 } else if (Cycles.size() != PRVec.size()) { 1109 // If ResourceCycles is provided, check consistency. 1110 PrintFatalError( 1111 WriteRes->getLoc(), 1112 Twine("Inconsistent resource cycles: !size(ResourceCycles) != " 1113 "!size(ProcResources): ") 1114 .concat(Twine(PRVec.size())) 1115 .concat(" vs ") 1116 .concat(Twine(Cycles.size()))); 1117 } 1118 1119 ExpandProcResources(PRVec, Cycles, ProcModel); 1120 1121 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 1122 PRIdx != PREnd; ++PRIdx) { 1123 MCWriteProcResEntry WPREntry; 1124 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 1125 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 1126 WPREntry.Cycles = Cycles[PRIdx]; 1127 // If this resource is already used in this sequence, add the current 1128 // entry's cycles so that the same resource appears to be used 1129 // serially, rather than multiple parallel uses. This is important for 1130 // in-order machine where the resource consumption is a hazard. 1131 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 1132 for( ; WPRIdx != WPREnd; ++WPRIdx) { 1133 if (WriteProcResources[WPRIdx].ProcResourceIdx 1134 == WPREntry.ProcResourceIdx) { 1135 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 1136 break; 1137 } 1138 } 1139 if (WPRIdx == WPREnd) 1140 WriteProcResources.push_back(WPREntry); 1141 } 1142 } 1143 WriteLatencies.push_back(WLEntry); 1144 } 1145 // Create an entry for each operand Read in this SchedClass. 1146 // Entries must be sorted first by UseIdx then by WriteResourceID. 1147 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 1148 UseIdx != EndIdx; ++UseIdx) { 1149 Record *ReadAdvance = 1150 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1151 if (!ReadAdvance) 1152 continue; 1153 1154 // Mark the parent class as invalid for unsupported write types. 1155 if (ReadAdvance->getValueAsBit("Unsupported")) { 1156 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1157 break; 1158 } 1159 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1160 IdxVec WriteIDs; 1161 if (ValidWrites.empty()) 1162 WriteIDs.push_back(0); 1163 else { 1164 for (Record *VW : ValidWrites) { 1165 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 1166 } 1167 } 1168 llvm::sort(WriteIDs); 1169 for(unsigned W : WriteIDs) { 1170 MCReadAdvanceEntry RAEntry; 1171 RAEntry.UseIdx = UseIdx; 1172 RAEntry.WriteResourceID = W; 1173 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1174 ReadAdvanceEntries.push_back(RAEntry); 1175 } 1176 } 1177 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1178 WriteProcResources.clear(); 1179 WriteLatencies.clear(); 1180 ReadAdvanceEntries.clear(); 1181 } 1182 // Add the information for this SchedClass to the global tables using basic 1183 // compression. 1184 // 1185 // WritePrecRes entries are sorted by ProcResIdx. 1186 llvm::sort(WriteProcResources, LessWriteProcResources()); 1187 1188 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1189 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1190 std::search(SchedTables.WriteProcResources.begin(), 1191 SchedTables.WriteProcResources.end(), 1192 WriteProcResources.begin(), WriteProcResources.end()); 1193 if (WPRPos != SchedTables.WriteProcResources.end()) 1194 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1195 else { 1196 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1197 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1198 WriteProcResources.end()); 1199 } 1200 // Latency entries must remain in operand order. 1201 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1202 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1203 std::search(SchedTables.WriteLatencies.begin(), 1204 SchedTables.WriteLatencies.end(), 1205 WriteLatencies.begin(), WriteLatencies.end()); 1206 if (WLPos != SchedTables.WriteLatencies.end()) { 1207 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1208 SCDesc.WriteLatencyIdx = idx; 1209 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1210 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1211 std::string::npos) { 1212 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1213 } 1214 } 1215 else { 1216 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1217 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1218 WriteLatencies.begin(), 1219 WriteLatencies.end()); 1220 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1221 WriterNames.begin(), WriterNames.end()); 1222 } 1223 // ReadAdvanceEntries must remain in operand order. 1224 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1225 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1226 std::search(SchedTables.ReadAdvanceEntries.begin(), 1227 SchedTables.ReadAdvanceEntries.end(), 1228 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1229 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1230 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1231 else { 1232 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1233 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1234 ReadAdvanceEntries.end()); 1235 } 1236 } 1237 } 1238 1239 // Emit SchedClass tables for all processors and associated global tables. 1240 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1241 raw_ostream &OS) { 1242 // Emit global WriteProcResTable. 1243 OS << "\n// {ProcResourceIdx, Cycles}\n" 1244 << "extern const llvm::MCWriteProcResEntry " 1245 << Target << "WriteProcResTable[] = {\n" 1246 << " { 0, 0}, // Invalid\n"; 1247 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1248 WPRIdx != WPREnd; ++WPRIdx) { 1249 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1250 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1251 << format("%2d", WPREntry.Cycles) << "}"; 1252 if (WPRIdx + 1 < WPREnd) 1253 OS << ','; 1254 OS << " // #" << WPRIdx << '\n'; 1255 } 1256 OS << "}; // " << Target << "WriteProcResTable\n"; 1257 1258 // Emit global WriteLatencyTable. 1259 OS << "\n// {Cycles, WriteResourceID}\n" 1260 << "extern const llvm::MCWriteLatencyEntry " 1261 << Target << "WriteLatencyTable[] = {\n" 1262 << " { 0, 0}, // Invalid\n"; 1263 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1264 WLIdx != WLEnd; ++WLIdx) { 1265 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1266 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1267 << format("%2d", WLEntry.WriteResourceID) << "}"; 1268 if (WLIdx + 1 < WLEnd) 1269 OS << ','; 1270 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1271 } 1272 OS << "}; // " << Target << "WriteLatencyTable\n"; 1273 1274 // Emit global ReadAdvanceTable. 1275 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1276 << "extern const llvm::MCReadAdvanceEntry " 1277 << Target << "ReadAdvanceTable[] = {\n" 1278 << " {0, 0, 0}, // Invalid\n"; 1279 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1280 RAIdx != RAEnd; ++RAIdx) { 1281 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1282 OS << " {" << RAEntry.UseIdx << ", " 1283 << format("%2d", RAEntry.WriteResourceID) << ", " 1284 << format("%2d", RAEntry.Cycles) << "}"; 1285 if (RAIdx + 1 < RAEnd) 1286 OS << ','; 1287 OS << " // #" << RAIdx << '\n'; 1288 } 1289 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1290 1291 // Emit a SchedClass table for each processor. 1292 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1293 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1294 if (!PI->hasInstrSchedModel()) 1295 continue; 1296 1297 std::vector<MCSchedClassDesc> &SCTab = 1298 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1299 1300 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1301 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1302 OS << "static const llvm::MCSchedClassDesc " 1303 << PI->ModelName << "SchedClasses[] = {\n"; 1304 1305 // The first class is always invalid. We no way to distinguish it except by 1306 // name and position. 1307 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1308 && "invalid class not first"); 1309 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1310 << MCSchedClassDesc::InvalidNumMicroOps 1311 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1312 1313 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1314 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1315 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1316 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1317 if (SchedClass.Name.size() < 18) 1318 OS.indent(18 - SchedClass.Name.size()); 1319 OS << MCDesc.NumMicroOps 1320 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1321 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1322 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1323 << ", " << MCDesc.NumWriteProcResEntries 1324 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1325 << ", " << MCDesc.NumWriteLatencyEntries 1326 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1327 << ", " << MCDesc.NumReadAdvanceEntries 1328 << "}, // #" << SCIdx << '\n'; 1329 } 1330 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1331 } 1332 } 1333 1334 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1335 // For each processor model. 1336 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1337 // Emit extra processor info if available. 1338 if (PM.hasExtraProcessorInfo()) 1339 EmitExtraProcessorInfo(PM, OS); 1340 // Emit processor resource table. 1341 if (PM.hasInstrSchedModel()) 1342 EmitProcessorResources(PM, OS); 1343 else if(!PM.ProcResourceDefs.empty()) 1344 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1345 "ProcResources without defining WriteRes SchedWriteRes"); 1346 1347 // Begin processor itinerary properties 1348 OS << "\n"; 1349 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1350 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1351 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1352 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1353 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1354 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1355 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1356 1357 bool PostRAScheduler = 1358 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1359 1360 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1361 << "PostRAScheduler\n"; 1362 1363 bool CompleteModel = 1364 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1365 1366 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1367 << "CompleteModel\n"; 1368 1369 OS << " " << PM.Index << ", // Processor ID\n"; 1370 if (PM.hasInstrSchedModel()) 1371 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1372 << " " << PM.ModelName << "SchedClasses" << ",\n" 1373 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1374 << " " << (SchedModels.schedClassEnd() 1375 - SchedModels.schedClassBegin()) << ",\n"; 1376 else 1377 OS << " nullptr, nullptr, 0, 0," 1378 << " // No instruction-level machine model.\n"; 1379 if (PM.hasItineraries()) 1380 OS << " " << PM.ItinsDef->getName() << ",\n"; 1381 else 1382 OS << " nullptr, // No Itinerary\n"; 1383 if (PM.hasExtraProcessorInfo()) 1384 OS << " &" << PM.ModelName << "ExtraInfo,\n"; 1385 else 1386 OS << " nullptr // No extra processor descriptor\n"; 1387 OS << "};\n"; 1388 } 1389 } 1390 1391 // 1392 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1393 // 1394 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1395 OS << "#ifdef DBGFIELD\n" 1396 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1397 << "#endif\n" 1398 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1399 << "#define DBGFIELD(x) x,\n" 1400 << "#else\n" 1401 << "#define DBGFIELD(x)\n" 1402 << "#endif\n"; 1403 1404 if (SchedModels.hasItineraries()) { 1405 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1406 // Emit the stage data 1407 EmitStageAndOperandCycleData(OS, ProcItinLists); 1408 EmitItineraries(OS, ProcItinLists); 1409 } 1410 OS << "\n// ===============================================================\n" 1411 << "// Data tables for the new per-operand machine model.\n"; 1412 1413 SchedClassTables SchedTables; 1414 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1415 GenSchedClassTables(ProcModel, SchedTables); 1416 } 1417 EmitSchedClassTables(SchedTables, OS); 1418 1419 OS << "\n#undef DBGFIELD\n"; 1420 1421 // Emit the processor machine model 1422 EmitProcessorModels(OS); 1423 } 1424 1425 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) { 1426 std::string Buffer; 1427 raw_string_ostream Stream(Buffer); 1428 1429 // Collect all the PredicateProlog records and print them to the output 1430 // stream. 1431 std::vector<Record *> Prologs = 1432 Records.getAllDerivedDefinitions("PredicateProlog"); 1433 llvm::sort(Prologs, LessRecord()); 1434 for (Record *P : Prologs) 1435 Stream << P->getValueAsString("Code") << '\n'; 1436 1437 Stream.flush(); 1438 OS << Buffer; 1439 } 1440 1441 static void emitPredicates(const CodeGenSchedTransition &T, 1442 const CodeGenSchedClass &SC, PredicateExpander &PE, 1443 raw_ostream &OS) { 1444 std::string Buffer; 1445 raw_string_ostream SS(Buffer); 1446 1447 auto IsTruePredicate = [](const Record *Rec) { 1448 return Rec->isSubClassOf("MCSchedPredicate") && 1449 Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue"); 1450 }; 1451 1452 // If not all predicates are MCTrue, then we need an if-stmt. 1453 unsigned NumNonTruePreds = 1454 T.PredTerm.size() - count_if(T.PredTerm, IsTruePredicate); 1455 1456 SS.indent(PE.getIndentLevel() * 2); 1457 1458 if (NumNonTruePreds) { 1459 bool FirstNonTruePredicate = true; 1460 SS << "if ("; 1461 1462 PE.setIndentLevel(PE.getIndentLevel() + 2); 1463 1464 for (const Record *Rec : T.PredTerm) { 1465 // Skip predicates that evaluate to "true". 1466 if (IsTruePredicate(Rec)) 1467 continue; 1468 1469 if (FirstNonTruePredicate) { 1470 FirstNonTruePredicate = false; 1471 } else { 1472 SS << "\n"; 1473 SS.indent(PE.getIndentLevel() * 2); 1474 SS << "&& "; 1475 } 1476 1477 if (Rec->isSubClassOf("MCSchedPredicate")) { 1478 PE.expandPredicate(SS, Rec->getValueAsDef("Pred")); 1479 continue; 1480 } 1481 1482 // Expand this legacy predicate and wrap it around braces if there is more 1483 // than one predicate to expand. 1484 SS << ((NumNonTruePreds > 1) ? "(" : "") 1485 << Rec->getValueAsString("Predicate") 1486 << ((NumNonTruePreds > 1) ? ")" : ""); 1487 } 1488 1489 SS << ")\n"; // end of if-stmt 1490 PE.decreaseIndentLevel(); 1491 SS.indent(PE.getIndentLevel() * 2); 1492 PE.decreaseIndentLevel(); 1493 } 1494 1495 SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n'; 1496 SS.flush(); 1497 OS << Buffer; 1498 } 1499 1500 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate 1501 // epilogue code for the auto-generated helper. 1502 void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) { 1503 if (ShouldReturnZero) { 1504 OS << " // Don't know how to resolve this scheduling class.\n" 1505 << " return 0;\n"; 1506 return; 1507 } 1508 1509 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n"; 1510 } 1511 1512 bool hasMCSchedPredicates(const CodeGenSchedTransition &T) { 1513 return all_of(T.PredTerm, [](const Record *Rec) { 1514 return Rec->isSubClassOf("MCSchedPredicate"); 1515 }); 1516 } 1517 1518 void collectVariantClasses(const CodeGenSchedModels &SchedModels, 1519 IdxVec &VariantClasses, 1520 bool OnlyExpandMCInstPredicates) { 1521 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1522 // Ignore non-variant scheduling classes. 1523 if (SC.Transitions.empty()) 1524 continue; 1525 1526 if (OnlyExpandMCInstPredicates) { 1527 // Ignore this variant scheduling class no transitions use any meaningful 1528 // MCSchedPredicate definitions. 1529 if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) { 1530 return hasMCSchedPredicates(T); 1531 })) 1532 continue; 1533 } 1534 1535 VariantClasses.push_back(SC.Index); 1536 } 1537 } 1538 1539 void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) { 1540 // A variant scheduling class may define transitions for multiple 1541 // processors. This function identifies wich processors are associated with 1542 // transition rules specified by variant class `SC`. 1543 for (const CodeGenSchedTransition &T : SC.Transitions) { 1544 IdxVec PI; 1545 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1546 ProcIndices.begin(), ProcIndices.end(), 1547 std::back_inserter(PI)); 1548 ProcIndices.swap(PI); 1549 } 1550 } 1551 1552 void SubtargetEmitter::emitSchedModelHelpersImpl( 1553 raw_ostream &OS, bool OnlyExpandMCInstPredicates) { 1554 IdxVec VariantClasses; 1555 collectVariantClasses(SchedModels, VariantClasses, 1556 OnlyExpandMCInstPredicates); 1557 1558 if (VariantClasses.empty()) { 1559 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1560 return; 1561 } 1562 1563 // Construct a switch statement where the condition is a check on the 1564 // scheduling class identifier. There is a `case` for every variant class 1565 // defined by the processor models of this target. 1566 // Each `case` implements a number of rules to resolve (i.e. to transition from) 1567 // a variant scheduling class to another scheduling class. Rules are 1568 // described by instances of CodeGenSchedTransition. Note that transitions may 1569 // not be valid for all processors. 1570 OS << " switch (SchedClass) {\n"; 1571 for (unsigned VC : VariantClasses) { 1572 IdxVec ProcIndices; 1573 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1574 collectProcessorIndices(SC, ProcIndices); 1575 1576 OS << " case " << VC << ": // " << SC.Name << '\n'; 1577 1578 PredicateExpander PE(Target); 1579 PE.setByRef(false); 1580 PE.setExpandForMC(OnlyExpandMCInstPredicates); 1581 for (unsigned PI : ProcIndices) { 1582 OS << " "; 1583 1584 // Emit a guard on the processor ID. 1585 if (PI != 0) { 1586 OS << (OnlyExpandMCInstPredicates 1587 ? "if (CPUID == " 1588 : "if (SchedModel->getProcessorID() == "); 1589 OS << PI << ") "; 1590 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n'; 1591 } 1592 1593 // Now emit transitions associated with processor PI. 1594 for (const CodeGenSchedTransition &T : SC.Transitions) { 1595 if (PI != 0 && !count(T.ProcIndices, PI)) 1596 continue; 1597 1598 // Emit only transitions based on MCSchedPredicate, if it's the case. 1599 // At least the transition specified by NoSchedPred is emitted, 1600 // which becomes the default transition for those variants otherwise 1601 // not based on MCSchedPredicate. 1602 // FIXME: preferably, llvm-mca should instead assume a reasonable 1603 // default when a variant transition is not based on MCSchedPredicate 1604 // for a given processor. 1605 if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T)) 1606 continue; 1607 1608 PE.setIndentLevel(3); 1609 emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS); 1610 } 1611 1612 OS << " }\n"; 1613 1614 if (PI == 0) 1615 break; 1616 } 1617 1618 if (SC.isInferred()) 1619 OS << " return " << SC.Index << ";\n"; 1620 OS << " break;\n"; 1621 } 1622 1623 OS << " };\n"; 1624 1625 emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates); 1626 } 1627 1628 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1629 raw_ostream &OS) { 1630 OS << "unsigned " << ClassName 1631 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1632 << " const TargetSchedModel *SchedModel) const {\n"; 1633 1634 // Emit the predicate prolog code. 1635 emitPredicateProlog(Records, OS); 1636 1637 // Emit target predicates. 1638 emitSchedModelHelpersImpl(OS); 1639 1640 OS << "} // " << ClassName << "::resolveSchedClass\n\n"; 1641 1642 OS << "unsigned " << ClassName 1643 << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI," 1644 << " unsigned CPUID) const {\n" 1645 << " return " << Target << "_MC" 1646 << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID);\n" 1647 << "} // " << ClassName << "::resolveVariantSchedClass\n\n"; 1648 1649 STIPredicateExpander PE(Target); 1650 PE.setClassPrefix(ClassName); 1651 PE.setExpandDefinition(true); 1652 PE.setByRef(false); 1653 PE.setIndentLevel(0); 1654 1655 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1656 PE.expandSTIPredicate(OS, Fn); 1657 } 1658 1659 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1660 raw_ostream &OS) { 1661 const CodeGenHwModes &CGH = TGT.getHwModes(); 1662 assert(CGH.getNumModeIds() > 0); 1663 if (CGH.getNumModeIds() == 1) 1664 return; 1665 1666 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1667 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1668 const HwMode &HM = CGH.getMode(M); 1669 OS << " if (checkFeatures(\"" << HM.Features 1670 << "\")) return " << M << ";\n"; 1671 } 1672 OS << " return 0;\n}\n"; 1673 } 1674 1675 // 1676 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1677 // the subtarget features string. 1678 // 1679 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1680 unsigned NumFeatures, 1681 unsigned NumProcs) { 1682 std::vector<Record*> Features = 1683 Records.getAllDerivedDefinitions("SubtargetFeature"); 1684 llvm::sort(Features, LessRecord()); 1685 1686 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1687 << "// subtarget options.\n" 1688 << "void llvm::"; 1689 OS << Target; 1690 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1691 << " LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1692 << " LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1693 1694 if (Features.empty()) { 1695 OS << "}\n"; 1696 return; 1697 } 1698 1699 OS << " InitMCProcessorInfo(CPU, FS);\n" 1700 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1701 1702 for (Record *R : Features) { 1703 // Next record 1704 StringRef Instance = R->getName(); 1705 StringRef Value = R->getValueAsString("Value"); 1706 StringRef Attribute = R->getValueAsString("Attribute"); 1707 1708 if (Value=="true" || Value=="false") 1709 OS << " if (Bits[" << Target << "::" 1710 << Instance << "]) " 1711 << Attribute << " = " << Value << ";\n"; 1712 else 1713 OS << " if (Bits[" << Target << "::" 1714 << Instance << "] && " 1715 << Attribute << " < " << Value << ") " 1716 << Attribute << " = " << Value << ";\n"; 1717 } 1718 1719 OS << "}\n"; 1720 } 1721 1722 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) { 1723 OS << "namespace " << Target << "_MC {\n" 1724 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n" 1725 << " const MCInst *MI, unsigned CPUID) {\n"; 1726 emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true); 1727 OS << "}\n"; 1728 OS << "} // end of namespace " << Target << "_MC\n\n"; 1729 1730 OS << "struct " << Target 1731 << "GenMCSubtargetInfo : public MCSubtargetInfo {\n"; 1732 OS << " " << Target << "GenMCSubtargetInfo(const Triple &TT, \n" 1733 << " StringRef CPU, StringRef FS, ArrayRef<SubtargetFeatureKV> PF,\n" 1734 << " ArrayRef<SubtargetSubTypeKV> PD,\n" 1735 << " const MCWriteProcResEntry *WPR,\n" 1736 << " const MCWriteLatencyEntry *WL,\n" 1737 << " const MCReadAdvanceEntry *RA, const InstrStage *IS,\n" 1738 << " const unsigned *OC, const unsigned *FP) :\n" 1739 << " MCSubtargetInfo(TT, CPU, FS, PF, PD,\n" 1740 << " WPR, WL, RA, IS, OC, FP) { }\n\n" 1741 << " unsigned resolveVariantSchedClass(unsigned SchedClass,\n" 1742 << " const MCInst *MI, unsigned CPUID) const override {\n" 1743 << " return " << Target << "_MC" 1744 << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID); \n"; 1745 OS << " }\n"; 1746 OS << "};\n"; 1747 } 1748 1749 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) { 1750 OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n"; 1751 OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1752 1753 STIPredicateExpander PE(Target); 1754 PE.setExpandForMC(true); 1755 PE.setByRef(true); 1756 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1757 PE.expandSTIPredicate(OS, Fn); 1758 1759 OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n"; 1760 1761 OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n"; 1762 OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1763 1764 std::string ClassPrefix = Target + "MCInstrAnalysis"; 1765 PE.setExpandDefinition(true); 1766 PE.setClassPrefix(ClassPrefix); 1767 PE.setIndentLevel(0); 1768 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1769 PE.expandSTIPredicate(OS, Fn); 1770 1771 OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n"; 1772 } 1773 1774 // 1775 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1776 // 1777 void SubtargetEmitter::run(raw_ostream &OS) { 1778 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1779 1780 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1781 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1782 1783 DenseMap<Record *, unsigned> FeatureMap; 1784 1785 OS << "namespace llvm {\n"; 1786 Enumeration(OS, FeatureMap); 1787 OS << "} // end namespace llvm\n\n"; 1788 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1789 1790 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1791 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1792 1793 OS << "namespace llvm {\n"; 1794 #if 0 1795 OS << "namespace {\n"; 1796 #endif 1797 unsigned NumFeatures = FeatureKeyValues(OS, FeatureMap); 1798 OS << "\n"; 1799 EmitSchedModel(OS); 1800 OS << "\n"; 1801 unsigned NumProcs = CPUKeyValues(OS, FeatureMap); 1802 OS << "\n"; 1803 #if 0 1804 OS << "} // end anonymous namespace\n\n"; 1805 #endif 1806 1807 // MCInstrInfo initialization routine. 1808 emitGenMCSubtargetInfo(OS); 1809 1810 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1811 << "MCSubtargetInfoImpl(" 1812 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1813 OS << " return new " << Target << "GenMCSubtargetInfo(TT, CPU, FS, "; 1814 if (NumFeatures) 1815 OS << Target << "FeatureKV, "; 1816 else 1817 OS << "None, "; 1818 if (NumProcs) 1819 OS << Target << "SubTypeKV, "; 1820 else 1821 OS << "None, "; 1822 OS << '\n'; OS.indent(22); 1823 OS << Target << "WriteProcResTable, " 1824 << Target << "WriteLatencyTable, " 1825 << Target << "ReadAdvanceTable, "; 1826 OS << '\n'; OS.indent(22); 1827 if (SchedModels.hasItineraries()) { 1828 OS << Target << "Stages, " 1829 << Target << "OperandCycles, " 1830 << Target << "ForwardingPaths"; 1831 } else 1832 OS << "nullptr, nullptr, nullptr"; 1833 OS << ");\n}\n\n"; 1834 1835 OS << "} // end namespace llvm\n\n"; 1836 1837 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1838 1839 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1840 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1841 1842 OS << "#include \"llvm/Support/Debug.h\"\n"; 1843 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1844 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1845 1846 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1847 1848 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1849 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1850 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1851 1852 std::string ClassName = Target + "GenSubtargetInfo"; 1853 OS << "namespace llvm {\n"; 1854 OS << "class DFAPacketizer;\n"; 1855 OS << "namespace " << Target << "_MC {\n" 1856 << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass," 1857 << " const MCInst *MI, unsigned CPUID);\n" 1858 << "}\n\n"; 1859 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1860 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1861 << "StringRef FS);\n" 1862 << "public:\n" 1863 << " unsigned resolveSchedClass(unsigned SchedClass, " 1864 << " const MachineInstr *DefMI," 1865 << " const TargetSchedModel *SchedModel) const override;\n" 1866 << " unsigned resolveVariantSchedClass(unsigned SchedClass," 1867 << " const MCInst *MI, unsigned CPUID) const override;\n" 1868 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1869 << " const;\n"; 1870 if (TGT.getHwModes().getNumModeIds() > 1) 1871 OS << " unsigned getHwMode() const override;\n"; 1872 1873 STIPredicateExpander PE(Target); 1874 PE.setByRef(false); 1875 for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates()) 1876 PE.expandSTIPredicate(OS, Fn); 1877 1878 OS << "};\n" 1879 << "} // end namespace llvm\n\n"; 1880 1881 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1882 1883 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1884 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1885 1886 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1887 OS << "namespace llvm {\n"; 1888 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1889 OS << "extern const llvm::SubtargetSubTypeKV " << Target << "SubTypeKV[];\n"; 1890 OS << "extern const llvm::MCWriteProcResEntry " 1891 << Target << "WriteProcResTable[];\n"; 1892 OS << "extern const llvm::MCWriteLatencyEntry " 1893 << Target << "WriteLatencyTable[];\n"; 1894 OS << "extern const llvm::MCReadAdvanceEntry " 1895 << Target << "ReadAdvanceTable[];\n"; 1896 1897 if (SchedModels.hasItineraries()) { 1898 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1899 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1900 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1901 } 1902 1903 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1904 << "StringRef FS)\n" 1905 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1906 if (NumFeatures) 1907 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1908 else 1909 OS << "None, "; 1910 if (NumProcs) 1911 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1912 else 1913 OS << "None, "; 1914 OS << '\n'; OS.indent(24); 1915 OS << Target << "WriteProcResTable, " 1916 << Target << "WriteLatencyTable, " 1917 << Target << "ReadAdvanceTable, "; 1918 OS << '\n'; OS.indent(24); 1919 if (SchedModels.hasItineraries()) { 1920 OS << Target << "Stages, " 1921 << Target << "OperandCycles, " 1922 << Target << "ForwardingPaths"; 1923 } else 1924 OS << "nullptr, nullptr, nullptr"; 1925 OS << ") {}\n\n"; 1926 1927 EmitSchedModelHelpers(ClassName, OS); 1928 EmitHwModeCheck(ClassName, OS); 1929 1930 OS << "} // end namespace llvm\n\n"; 1931 1932 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1933 1934 EmitMCInstrAnalysisPredicateFunctions(OS); 1935 } 1936 1937 namespace llvm { 1938 1939 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1940 CodeGenTarget CGTarget(RK); 1941 SubtargetEmitter(RK, CGTarget).run(OS); 1942 } 1943 1944 } // end namespace llvm 1945