1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS); 77 unsigned FeatureKeyValues(raw_ostream &OS); 78 unsigned CPUKeyValues(raw_ostream &OS); 79 void FormItineraryStageString(const std::string &Names, 80 Record *ItinData, std::string &ItinString, 81 unsigned &NStages); 82 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 83 unsigned &NOperandCycles); 84 void FormItineraryBypassString(const std::string &Names, 85 Record *ItinData, 86 std::string &ItinString, unsigned NOperandCycles); 87 void EmitStageAndOperandCycleData(raw_ostream &OS, 88 std::vector<std::vector<InstrItinerary>> 89 &ProcItinLists); 90 void EmitItineraries(raw_ostream &OS, 91 std::vector<std::vector<InstrItinerary>> 92 &ProcItinLists); 93 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 94 char Separator); 95 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 98 const CodeGenProcModel &ProcModel); 99 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 100 const CodeGenProcModel &ProcModel); 101 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 102 const CodeGenProcModel &ProcModel); 103 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 104 SchedClassTables &SchedTables); 105 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 106 void EmitProcessorModels(raw_ostream &OS); 107 void EmitProcessorLookup(raw_ostream &OS); 108 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 109 void EmitSchedModel(raw_ostream &OS); 110 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 111 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 112 unsigned NumProcs); 113 114 public: 115 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 116 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 117 Target(TGT.getName()) {} 118 119 void run(raw_ostream &o); 120 }; 121 122 } // end anonymous namespace 123 124 // 125 // Enumeration - Emit the specified class as an enumeration. 126 // 127 void SubtargetEmitter::Enumeration(raw_ostream &OS) { 128 // Get all records of class and sort 129 std::vector<Record*> DefList = 130 Records.getAllDerivedDefinitions("SubtargetFeature"); 131 std::sort(DefList.begin(), DefList.end(), LessRecord()); 132 133 unsigned N = DefList.size(); 134 if (N == 0) 135 return; 136 if (N > MAX_SUBTARGET_FEATURES) 137 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 138 139 OS << "namespace " << Target << " {\n"; 140 141 // Open enumeration. 142 OS << "enum {\n"; 143 144 // For each record 145 for (unsigned i = 0; i < N; ++i) { 146 // Next record 147 Record *Def = DefList[i]; 148 149 // Get and emit name 150 OS << " " << Def->getName() << " = " << i << ",\n"; 151 } 152 153 // Close enumeration and namespace 154 OS << "};\n"; 155 OS << "} // end namespace " << Target << "\n"; 156 } 157 158 // 159 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 160 // command line. 161 // 162 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 163 // Gather and sort all the features 164 std::vector<Record*> FeatureList = 165 Records.getAllDerivedDefinitions("SubtargetFeature"); 166 167 if (FeatureList.empty()) 168 return 0; 169 170 std::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 171 172 // Begin feature table 173 OS << "// Sorted (by key) array of values for CPU features.\n" 174 << "extern const llvm::SubtargetFeatureKV " << Target 175 << "FeatureKV[] = {\n"; 176 177 // For each feature 178 unsigned NumFeatures = 0; 179 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 180 // Next feature 181 Record *Feature = FeatureList[i]; 182 183 StringRef Name = Feature->getName(); 184 StringRef CommandLineName = Feature->getValueAsString("Name"); 185 StringRef Desc = Feature->getValueAsString("Desc"); 186 187 if (CommandLineName.empty()) continue; 188 189 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 190 OS << " { " 191 << "\"" << CommandLineName << "\", " 192 << "\"" << Desc << "\", " 193 << "{ " << Target << "::" << Name << " }, "; 194 195 const std::vector<Record*> &ImpliesList = 196 Feature->getValueAsListOfDefs("Implies"); 197 198 OS << "{"; 199 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 200 OS << " " << Target << "::" << ImpliesList[j]->getName(); 201 if (++j < M) OS << ","; 202 } 203 OS << " } },\n"; 204 ++NumFeatures; 205 } 206 207 // End feature table 208 OS << "};\n"; 209 210 return NumFeatures; 211 } 212 213 // 214 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 215 // line. 216 // 217 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 218 // Gather and sort processor information 219 std::vector<Record*> ProcessorList = 220 Records.getAllDerivedDefinitions("Processor"); 221 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 222 223 // Begin processor table 224 OS << "// Sorted (by key) array of values for CPU subtype.\n" 225 << "extern const llvm::SubtargetFeatureKV " << Target 226 << "SubTypeKV[] = {\n"; 227 228 // For each processor 229 for (Record *Processor : ProcessorList) { 230 StringRef Name = Processor->getValueAsString("Name"); 231 const std::vector<Record*> &FeatureList = 232 Processor->getValueAsListOfDefs("Features"); 233 234 // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, 235 OS << " { " 236 << "\"" << Name << "\", " 237 << "\"Select the " << Name << " processor\", "; 238 239 OS << "{"; 240 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 241 OS << " " << Target << "::" << FeatureList[j]->getName(); 242 if (++j < M) OS << ","; 243 } 244 // The { } is for the "implies" section of this data structure. 245 OS << " }, { } },\n"; 246 } 247 248 // End processor table 249 OS << "};\n"; 250 251 return ProcessorList.size(); 252 } 253 254 // 255 // FormItineraryStageString - Compose a string containing the stage 256 // data initialization for the specified itinerary. N is the number 257 // of stages. 258 // 259 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 260 Record *ItinData, 261 std::string &ItinString, 262 unsigned &NStages) { 263 // Get states list 264 const std::vector<Record*> &StageList = 265 ItinData->getValueAsListOfDefs("Stages"); 266 267 // For each stage 268 unsigned N = NStages = StageList.size(); 269 for (unsigned i = 0; i < N;) { 270 // Next stage 271 const Record *Stage = StageList[i]; 272 273 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 274 int Cycles = Stage->getValueAsInt("Cycles"); 275 ItinString += " { " + itostr(Cycles) + ", "; 276 277 // Get unit list 278 const std::vector<Record*> &UnitList = Stage->getValueAsListOfDefs("Units"); 279 280 // For each unit 281 for (unsigned j = 0, M = UnitList.size(); j < M;) { 282 // Add name and bitwise or 283 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 284 if (++j < M) ItinString += " | "; 285 } 286 287 int TimeInc = Stage->getValueAsInt("TimeInc"); 288 ItinString += ", " + itostr(TimeInc); 289 290 int Kind = Stage->getValueAsInt("Kind"); 291 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 292 293 // Close off stage 294 ItinString += " }"; 295 if (++i < N) ItinString += ", "; 296 } 297 } 298 299 // 300 // FormItineraryOperandCycleString - Compose a string containing the 301 // operand cycle initialization for the specified itinerary. N is the 302 // number of operands that has cycles specified. 303 // 304 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 305 std::string &ItinString, unsigned &NOperandCycles) { 306 // Get operand cycle list 307 const std::vector<int64_t> &OperandCycleList = 308 ItinData->getValueAsListOfInts("OperandCycles"); 309 310 // For each operand cycle 311 unsigned N = NOperandCycles = OperandCycleList.size(); 312 for (unsigned i = 0; i < N;) { 313 // Next operand cycle 314 const int OCycle = OperandCycleList[i]; 315 316 ItinString += " " + itostr(OCycle); 317 if (++i < N) ItinString += ", "; 318 } 319 } 320 321 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 322 Record *ItinData, 323 std::string &ItinString, 324 unsigned NOperandCycles) { 325 const std::vector<Record*> &BypassList = 326 ItinData->getValueAsListOfDefs("Bypasses"); 327 unsigned N = BypassList.size(); 328 unsigned i = 0; 329 for (; i < N;) { 330 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 331 if (++i < NOperandCycles) ItinString += ", "; 332 } 333 for (; i < NOperandCycles;) { 334 ItinString += " 0"; 335 if (++i < NOperandCycles) ItinString += ", "; 336 } 337 } 338 339 // 340 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 341 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 342 // by CodeGenSchedClass::Index. 343 // 344 void SubtargetEmitter:: 345 EmitStageAndOperandCycleData(raw_ostream &OS, 346 std::vector<std::vector<InstrItinerary>> 347 &ProcItinLists) { 348 // Multiple processor models may share an itinerary record. Emit it once. 349 SmallPtrSet<Record*, 8> ItinsDefSet; 350 351 // Emit functional units for all the itineraries. 352 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 353 354 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 355 continue; 356 357 std::vector<Record*> FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 358 if (FUs.empty()) 359 continue; 360 361 StringRef Name = ProcModel.ItinsDef->getName(); 362 OS << "\n// Functional units for \"" << Name << "\"\n" 363 << "namespace " << Name << "FU {\n"; 364 365 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 366 OS << " const unsigned " << FUs[j]->getName() 367 << " = 1 << " << j << ";\n"; 368 369 OS << "} // end namespace " << Name << "FU\n"; 370 371 std::vector<Record*> BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 372 if (!BPs.empty()) { 373 OS << "\n// Pipeline forwarding pathes for itineraries \"" << Name 374 << "\"\n" << "namespace " << Name << "Bypass {\n"; 375 376 OS << " const unsigned NoBypass = 0;\n"; 377 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 378 OS << " const unsigned " << BPs[j]->getName() 379 << " = 1 << " << j << ";\n"; 380 381 OS << "} // end namespace " << Name << "Bypass\n"; 382 } 383 } 384 385 // Begin stages table 386 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 387 "Stages[] = {\n"; 388 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 389 390 // Begin operand cycle table 391 std::string OperandCycleTable = "extern const unsigned " + Target + 392 "OperandCycles[] = {\n"; 393 OperandCycleTable += " 0, // No itinerary\n"; 394 395 // Begin pipeline bypass table 396 std::string BypassTable = "extern const unsigned " + Target + 397 "ForwardingPaths[] = {\n"; 398 BypassTable += " 0, // No itinerary\n"; 399 400 // For each Itinerary across all processors, add a unique entry to the stages, 401 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 402 // object with computed offsets to the ProcItinLists result. 403 unsigned StageCount = 1, OperandCycleCount = 1; 404 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 405 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 406 // Add process itinerary to the list. 407 ProcItinLists.resize(ProcItinLists.size()+1); 408 409 // If this processor defines no itineraries, then leave the itinerary list 410 // empty. 411 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 412 if (!ProcModel.hasItineraries()) 413 continue; 414 415 StringRef Name = ProcModel.ItinsDef->getName(); 416 417 ItinList.resize(SchedModels.numInstrSchedClasses()); 418 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 419 420 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 421 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 422 423 // Next itinerary data 424 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 425 426 // Get string and stage count 427 std::string ItinStageString; 428 unsigned NStages = 0; 429 if (ItinData) 430 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 431 432 // Get string and operand cycle count 433 std::string ItinOperandCycleString; 434 unsigned NOperandCycles = 0; 435 std::string ItinBypassString; 436 if (ItinData) { 437 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 438 NOperandCycles); 439 440 FormItineraryBypassString(Name, ItinData, ItinBypassString, 441 NOperandCycles); 442 } 443 444 // Check to see if stage already exists and create if it doesn't 445 unsigned FindStage = 0; 446 if (NStages > 0) { 447 FindStage = ItinStageMap[ItinStageString]; 448 if (FindStage == 0) { 449 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 450 StageTable += ItinStageString + ", // " + itostr(StageCount); 451 if (NStages > 1) 452 StageTable += "-" + itostr(StageCount + NStages - 1); 453 StageTable += "\n"; 454 // Record Itin class number. 455 ItinStageMap[ItinStageString] = FindStage = StageCount; 456 StageCount += NStages; 457 } 458 } 459 460 // Check to see if operand cycle already exists and create if it doesn't 461 unsigned FindOperandCycle = 0; 462 if (NOperandCycles > 0) { 463 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 464 FindOperandCycle = ItinOperandMap[ItinOperandString]; 465 if (FindOperandCycle == 0) { 466 // Emit as cycle, // index 467 OperandCycleTable += ItinOperandCycleString + ", // "; 468 std::string OperandIdxComment = itostr(OperandCycleCount); 469 if (NOperandCycles > 1) 470 OperandIdxComment += "-" 471 + itostr(OperandCycleCount + NOperandCycles - 1); 472 OperandCycleTable += OperandIdxComment + "\n"; 473 // Record Itin class number. 474 ItinOperandMap[ItinOperandCycleString] = 475 FindOperandCycle = OperandCycleCount; 476 // Emit as bypass, // index 477 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 478 OperandCycleCount += NOperandCycles; 479 } 480 } 481 482 // Set up itinerary as location and location + stage count 483 int NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 484 InstrItinerary Intinerary = { NumUOps, FindStage, FindStage + NStages, 485 FindOperandCycle, 486 FindOperandCycle + NOperandCycles }; 487 488 // Inject - empty slots will be 0, 0 489 ItinList[SchedClassIdx] = Intinerary; 490 } 491 } 492 493 // Closing stage 494 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 495 StageTable += "};\n"; 496 497 // Closing operand cycles 498 OperandCycleTable += " 0 // End operand cycles\n"; 499 OperandCycleTable += "};\n"; 500 501 BypassTable += " 0 // End bypass tables\n"; 502 BypassTable += "};\n"; 503 504 // Emit tables. 505 OS << StageTable; 506 OS << OperandCycleTable; 507 OS << BypassTable; 508 } 509 510 // 511 // EmitProcessorData - Generate data for processor itineraries that were 512 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 513 // Itineraries for each processor. The Itinerary lists are indexed on 514 // CodeGenSchedClass::Index. 515 // 516 void SubtargetEmitter:: 517 EmitItineraries(raw_ostream &OS, 518 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 519 // Multiple processor models may share an itinerary record. Emit it once. 520 SmallPtrSet<Record*, 8> ItinsDefSet; 521 522 // For each processor's machine model 523 std::vector<std::vector<InstrItinerary>>::iterator 524 ProcItinListsIter = ProcItinLists.begin(); 525 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 526 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 527 528 Record *ItinsDef = PI->ItinsDef; 529 if (!ItinsDefSet.insert(ItinsDef).second) 530 continue; 531 532 // Get the itinerary list for the processor. 533 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 534 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 535 536 // Empty itineraries aren't referenced anywhere in the tablegen output 537 // so don't emit them. 538 if (ItinList.empty()) 539 continue; 540 541 OS << "\n"; 542 OS << "static const llvm::InstrItinerary "; 543 544 // Begin processor itinerary table 545 OS << ItinsDef->getName() << "[] = {\n"; 546 547 // For each itinerary class in CodeGenSchedClass::Index order. 548 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 549 InstrItinerary &Intinerary = ItinList[j]; 550 551 // Emit Itinerary in the form of 552 // { firstStage, lastStage, firstCycle, lastCycle } // index 553 OS << " { " << 554 Intinerary.NumMicroOps << ", " << 555 Intinerary.FirstStage << ", " << 556 Intinerary.LastStage << ", " << 557 Intinerary.FirstOperandCycle << ", " << 558 Intinerary.LastOperandCycle << " }" << 559 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 560 } 561 // End processor itinerary table 562 OS << " { 0, ~0U, ~0U, ~0U, ~0U } // end marker\n"; 563 OS << "};\n"; 564 } 565 } 566 567 // Emit either the value defined in the TableGen Record, or the default 568 // value defined in the C++ header. The Record is null if the processor does not 569 // define a model. 570 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 571 StringRef Name, char Separator) { 572 OS << " "; 573 int V = R ? R->getValueAsInt(Name) : -1; 574 if (V >= 0) 575 OS << V << Separator << " // " << Name; 576 else 577 OS << "MCSchedModel::Default" << Name << Separator; 578 OS << '\n'; 579 } 580 581 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 582 raw_ostream &OS) { 583 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered}\n"; 584 OS << "static const llvm::MCProcResourceDesc " 585 << ProcModel.ModelName << "ProcResources" << "[] = {\n" 586 << " {DBGFIELD(\"InvalidUnit\") 0, 0, 0},\n"; 587 588 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 589 Record *PRDef = ProcModel.ProcResourceDefs[i]; 590 591 Record *SuperDef = nullptr; 592 unsigned SuperIdx = 0; 593 unsigned NumUnits = 0; 594 int BufferSize = PRDef->getValueAsInt("BufferSize"); 595 if (PRDef->isSubClassOf("ProcResGroup")) { 596 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 597 for (Record *RU : ResUnits) { 598 NumUnits += RU->getValueAsInt("NumUnits"); 599 } 600 } 601 else { 602 // Find the SuperIdx 603 if (PRDef->getValueInit("Super")->isComplete()) { 604 SuperDef = SchedModels.findProcResUnits( 605 PRDef->getValueAsDef("Super"), ProcModel); 606 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 607 } 608 NumUnits = PRDef->getValueAsInt("NumUnits"); 609 } 610 // Emit the ProcResourceDesc 611 OS << " {DBGFIELD(\"" << PRDef->getName() << "\") "; 612 if (PRDef->getName().size() < 15) 613 OS.indent(15 - PRDef->getName().size()); 614 OS << NumUnits << ", " << SuperIdx << ", " 615 << BufferSize << "}, // #" << i+1; 616 if (SuperDef) 617 OS << ", Super=" << SuperDef->getName(); 618 OS << "\n"; 619 } 620 OS << "};\n"; 621 } 622 623 // Find the WriteRes Record that defines processor resources for this 624 // SchedWrite. 625 Record *SubtargetEmitter::FindWriteResources( 626 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 627 628 // Check if the SchedWrite is already subtarget-specific and directly 629 // specifies a set of processor resources. 630 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 631 return SchedWrite.TheDef; 632 633 Record *AliasDef = nullptr; 634 for (Record *A : SchedWrite.Aliases) { 635 const CodeGenSchedRW &AliasRW = 636 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 637 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 638 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 639 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 640 continue; 641 } 642 if (AliasDef) 643 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 644 "defined for processor " + ProcModel.ModelName + 645 " Ensure only one SchedAlias exists per RW."); 646 AliasDef = AliasRW.TheDef; 647 } 648 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 649 return AliasDef; 650 651 // Check this processor's list of write resources. 652 Record *ResDef = nullptr; 653 for (Record *WR : ProcModel.WriteResDefs) { 654 if (!WR->isSubClassOf("WriteRes")) 655 continue; 656 if (AliasDef == WR->getValueAsDef("WriteType") 657 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 658 if (ResDef) { 659 PrintFatalError(WR->getLoc(), "Resources are defined for both " 660 "SchedWrite and its alias on processor " + 661 ProcModel.ModelName); 662 } 663 ResDef = WR; 664 } 665 } 666 // TODO: If ProcModel has a base model (previous generation processor), 667 // then call FindWriteResources recursively with that model here. 668 if (!ResDef) { 669 PrintFatalError(ProcModel.ModelDef->getLoc(), 670 std::string("Processor does not define resources for ") 671 + SchedWrite.TheDef->getName()); 672 } 673 return ResDef; 674 } 675 676 /// Find the ReadAdvance record for the given SchedRead on this processor or 677 /// return NULL. 678 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 679 const CodeGenProcModel &ProcModel) { 680 // Check for SchedReads that directly specify a ReadAdvance. 681 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 682 return SchedRead.TheDef; 683 684 // Check this processor's list of aliases for SchedRead. 685 Record *AliasDef = nullptr; 686 for (Record *A : SchedRead.Aliases) { 687 const CodeGenSchedRW &AliasRW = 688 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 689 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 690 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 691 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 692 continue; 693 } 694 if (AliasDef) 695 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 696 "defined for processor " + ProcModel.ModelName + 697 " Ensure only one SchedAlias exists per RW."); 698 AliasDef = AliasRW.TheDef; 699 } 700 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 701 return AliasDef; 702 703 // Check this processor's ReadAdvanceList. 704 Record *ResDef = nullptr; 705 for (Record *RA : ProcModel.ReadAdvanceDefs) { 706 if (!RA->isSubClassOf("ReadAdvance")) 707 continue; 708 if (AliasDef == RA->getValueAsDef("ReadType") 709 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 710 if (ResDef) { 711 PrintFatalError(RA->getLoc(), "Resources are defined for both " 712 "SchedRead and its alias on processor " + 713 ProcModel.ModelName); 714 } 715 ResDef = RA; 716 } 717 } 718 // TODO: If ProcModel has a base model (previous generation processor), 719 // then call FindReadAdvance recursively with that model here. 720 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 721 PrintFatalError(ProcModel.ModelDef->getLoc(), 722 std::string("Processor does not define resources for ") 723 + SchedRead.TheDef->getName()); 724 } 725 return ResDef; 726 } 727 728 // Expand an explicit list of processor resources into a full list of implied 729 // resource groups and super resources that cover them. 730 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 731 std::vector<int64_t> &Cycles, 732 const CodeGenProcModel &PM) { 733 // Default to 1 resource cycle. 734 Cycles.resize(PRVec.size(), 1); 735 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 736 Record *PRDef = PRVec[i]; 737 RecVec SubResources; 738 if (PRDef->isSubClassOf("ProcResGroup")) 739 SubResources = PRDef->getValueAsListOfDefs("Resources"); 740 else { 741 SubResources.push_back(PRDef); 742 PRDef = SchedModels.findProcResUnits(PRVec[i], PM); 743 for (Record *SubDef = PRDef; 744 SubDef->getValueInit("Super")->isComplete();) { 745 if (SubDef->isSubClassOf("ProcResGroup")) { 746 // Disallow this for simplicitly. 747 PrintFatalError(SubDef->getLoc(), "Processor resource group " 748 " cannot be a super resources."); 749 } 750 Record *SuperDef = 751 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM); 752 PRVec.push_back(SuperDef); 753 Cycles.push_back(Cycles[i]); 754 SubDef = SuperDef; 755 } 756 } 757 for (Record *PR : PM.ProcResourceDefs) { 758 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 759 continue; 760 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 761 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 762 for( ; SubI != SubE; ++SubI) { 763 if (!is_contained(SuperResources, *SubI)) { 764 break; 765 } 766 } 767 if (SubI == SubE) { 768 PRVec.push_back(PR); 769 Cycles.push_back(Cycles[i]); 770 } 771 } 772 } 773 } 774 775 // Generate the SchedClass table for this processor and update global 776 // tables. Must be called for each processor in order. 777 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 778 SchedClassTables &SchedTables) { 779 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 780 if (!ProcModel.hasInstrSchedModel()) 781 return; 782 783 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 784 DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 785 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 786 DEBUG(SC.dump(&SchedModels)); 787 788 SCTab.resize(SCTab.size() + 1); 789 MCSchedClassDesc &SCDesc = SCTab.back(); 790 // SCDesc.Name is guarded by NDEBUG 791 SCDesc.NumMicroOps = 0; 792 SCDesc.BeginGroup = false; 793 SCDesc.EndGroup = false; 794 SCDesc.WriteProcResIdx = 0; 795 SCDesc.WriteLatencyIdx = 0; 796 SCDesc.ReadAdvanceIdx = 0; 797 798 // A Variant SchedClass has no resources of its own. 799 bool HasVariants = false; 800 for (const CodeGenSchedTransition &CGT : 801 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 802 if (CGT.ProcIndices[0] == 0 || 803 is_contained(CGT.ProcIndices, ProcModel.Index)) { 804 HasVariants = true; 805 break; 806 } 807 } 808 if (HasVariants) { 809 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 810 continue; 811 } 812 813 // Determine if the SchedClass is actually reachable on this processor. If 814 // not don't try to locate the processor resources, it will fail. 815 // If ProcIndices contains 0, this class applies to all processors. 816 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 817 if (SC.ProcIndices[0] != 0) { 818 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 819 continue; 820 } 821 IdxVec Writes = SC.Writes; 822 IdxVec Reads = SC.Reads; 823 if (!SC.InstRWs.empty()) { 824 // This class has a default ReadWrite list which can be overriden by 825 // InstRW definitions. 826 Record *RWDef = nullptr; 827 for (Record *RW : SC.InstRWs) { 828 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 829 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 830 RWDef = RW; 831 break; 832 } 833 } 834 if (RWDef) { 835 Writes.clear(); 836 Reads.clear(); 837 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 838 Writes, Reads); 839 } 840 } 841 if (Writes.empty()) { 842 // Check this processor's itinerary class resources. 843 for (Record *I : ProcModel.ItinRWDefs) { 844 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 845 if (is_contained(Matched, SC.ItinClassDef)) { 846 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 847 Writes, Reads); 848 break; 849 } 850 } 851 if (Writes.empty()) { 852 DEBUG(dbgs() << ProcModel.ModelName 853 << " does not have resources for class " << SC.Name << '\n'); 854 } 855 } 856 // Sum resources across all operand writes. 857 std::vector<MCWriteProcResEntry> WriteProcResources; 858 std::vector<MCWriteLatencyEntry> WriteLatencies; 859 std::vector<std::string> WriterNames; 860 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 861 for (unsigned W : Writes) { 862 IdxVec WriteSeq; 863 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 864 ProcModel); 865 866 // For each operand, create a latency entry. 867 MCWriteLatencyEntry WLEntry; 868 WLEntry.Cycles = 0; 869 unsigned WriteID = WriteSeq.back(); 870 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 871 // If this Write is not referenced by a ReadAdvance, don't distinguish it 872 // from other WriteLatency entries. 873 if (!SchedModels.hasReadOfWrite( 874 SchedModels.getSchedWrite(WriteID).TheDef)) { 875 WriteID = 0; 876 } 877 WLEntry.WriteResourceID = WriteID; 878 879 for (unsigned WS : WriteSeq) { 880 881 Record *WriteRes = 882 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 883 884 // Mark the parent class as invalid for unsupported write types. 885 if (WriteRes->getValueAsBit("Unsupported")) { 886 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 887 break; 888 } 889 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 890 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 891 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 892 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 893 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 894 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 895 896 // Create an entry for each ProcResource listed in WriteRes. 897 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 898 std::vector<int64_t> Cycles = 899 WriteRes->getValueAsListOfInts("ResourceCycles"); 900 901 ExpandProcResources(PRVec, Cycles, ProcModel); 902 903 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 904 PRIdx != PREnd; ++PRIdx) { 905 MCWriteProcResEntry WPREntry; 906 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 907 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 908 WPREntry.Cycles = Cycles[PRIdx]; 909 // If this resource is already used in this sequence, add the current 910 // entry's cycles so that the same resource appears to be used 911 // serially, rather than multiple parallel uses. This is important for 912 // in-order machine where the resource consumption is a hazard. 913 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 914 for( ; WPRIdx != WPREnd; ++WPRIdx) { 915 if (WriteProcResources[WPRIdx].ProcResourceIdx 916 == WPREntry.ProcResourceIdx) { 917 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 918 break; 919 } 920 } 921 if (WPRIdx == WPREnd) 922 WriteProcResources.push_back(WPREntry); 923 } 924 } 925 WriteLatencies.push_back(WLEntry); 926 } 927 // Create an entry for each operand Read in this SchedClass. 928 // Entries must be sorted first by UseIdx then by WriteResourceID. 929 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 930 UseIdx != EndIdx; ++UseIdx) { 931 Record *ReadAdvance = 932 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 933 if (!ReadAdvance) 934 continue; 935 936 // Mark the parent class as invalid for unsupported write types. 937 if (ReadAdvance->getValueAsBit("Unsupported")) { 938 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 939 break; 940 } 941 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 942 IdxVec WriteIDs; 943 if (ValidWrites.empty()) 944 WriteIDs.push_back(0); 945 else { 946 for (Record *VW : ValidWrites) { 947 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 948 } 949 } 950 std::sort(WriteIDs.begin(), WriteIDs.end()); 951 for(unsigned W : WriteIDs) { 952 MCReadAdvanceEntry RAEntry; 953 RAEntry.UseIdx = UseIdx; 954 RAEntry.WriteResourceID = W; 955 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 956 ReadAdvanceEntries.push_back(RAEntry); 957 } 958 } 959 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 960 WriteProcResources.clear(); 961 WriteLatencies.clear(); 962 ReadAdvanceEntries.clear(); 963 } 964 // Add the information for this SchedClass to the global tables using basic 965 // compression. 966 // 967 // WritePrecRes entries are sorted by ProcResIdx. 968 std::sort(WriteProcResources.begin(), WriteProcResources.end(), 969 LessWriteProcResources()); 970 971 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 972 std::vector<MCWriteProcResEntry>::iterator WPRPos = 973 std::search(SchedTables.WriteProcResources.begin(), 974 SchedTables.WriteProcResources.end(), 975 WriteProcResources.begin(), WriteProcResources.end()); 976 if (WPRPos != SchedTables.WriteProcResources.end()) 977 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 978 else { 979 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 980 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 981 WriteProcResources.end()); 982 } 983 // Latency entries must remain in operand order. 984 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 985 std::vector<MCWriteLatencyEntry>::iterator WLPos = 986 std::search(SchedTables.WriteLatencies.begin(), 987 SchedTables.WriteLatencies.end(), 988 WriteLatencies.begin(), WriteLatencies.end()); 989 if (WLPos != SchedTables.WriteLatencies.end()) { 990 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 991 SCDesc.WriteLatencyIdx = idx; 992 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 993 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 994 std::string::npos) { 995 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 996 } 997 } 998 else { 999 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1000 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1001 WriteLatencies.begin(), 1002 WriteLatencies.end()); 1003 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1004 WriterNames.begin(), WriterNames.end()); 1005 } 1006 // ReadAdvanceEntries must remain in operand order. 1007 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1008 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1009 std::search(SchedTables.ReadAdvanceEntries.begin(), 1010 SchedTables.ReadAdvanceEntries.end(), 1011 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1012 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1013 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1014 else { 1015 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1016 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1017 ReadAdvanceEntries.end()); 1018 } 1019 } 1020 } 1021 1022 // Emit SchedClass tables for all processors and associated global tables. 1023 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1024 raw_ostream &OS) { 1025 // Emit global WriteProcResTable. 1026 OS << "\n// {ProcResourceIdx, Cycles}\n" 1027 << "extern const llvm::MCWriteProcResEntry " 1028 << Target << "WriteProcResTable[] = {\n" 1029 << " { 0, 0}, // Invalid\n"; 1030 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1031 WPRIdx != WPREnd; ++WPRIdx) { 1032 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1033 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1034 << format("%2d", WPREntry.Cycles) << "}"; 1035 if (WPRIdx + 1 < WPREnd) 1036 OS << ','; 1037 OS << " // #" << WPRIdx << '\n'; 1038 } 1039 OS << "}; // " << Target << "WriteProcResTable\n"; 1040 1041 // Emit global WriteLatencyTable. 1042 OS << "\n// {Cycles, WriteResourceID}\n" 1043 << "extern const llvm::MCWriteLatencyEntry " 1044 << Target << "WriteLatencyTable[] = {\n" 1045 << " { 0, 0}, // Invalid\n"; 1046 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1047 WLIdx != WLEnd; ++WLIdx) { 1048 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1049 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1050 << format("%2d", WLEntry.WriteResourceID) << "}"; 1051 if (WLIdx + 1 < WLEnd) 1052 OS << ','; 1053 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1054 } 1055 OS << "}; // " << Target << "WriteLatencyTable\n"; 1056 1057 // Emit global ReadAdvanceTable. 1058 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1059 << "extern const llvm::MCReadAdvanceEntry " 1060 << Target << "ReadAdvanceTable[] = {\n" 1061 << " {0, 0, 0}, // Invalid\n"; 1062 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1063 RAIdx != RAEnd; ++RAIdx) { 1064 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1065 OS << " {" << RAEntry.UseIdx << ", " 1066 << format("%2d", RAEntry.WriteResourceID) << ", " 1067 << format("%2d", RAEntry.Cycles) << "}"; 1068 if (RAIdx + 1 < RAEnd) 1069 OS << ','; 1070 OS << " // #" << RAIdx << '\n'; 1071 } 1072 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1073 1074 // Emit a SchedClass table for each processor. 1075 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1076 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1077 if (!PI->hasInstrSchedModel()) 1078 continue; 1079 1080 std::vector<MCSchedClassDesc> &SCTab = 1081 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1082 1083 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1084 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1085 OS << "static const llvm::MCSchedClassDesc " 1086 << PI->ModelName << "SchedClasses[] = {\n"; 1087 1088 // The first class is always invalid. We no way to distinguish it except by 1089 // name and position. 1090 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1091 && "invalid class not first"); 1092 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1093 << MCSchedClassDesc::InvalidNumMicroOps 1094 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1095 1096 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1097 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1098 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1099 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1100 if (SchedClass.Name.size() < 18) 1101 OS.indent(18 - SchedClass.Name.size()); 1102 OS << MCDesc.NumMicroOps 1103 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1104 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1105 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1106 << ", " << MCDesc.NumWriteProcResEntries 1107 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1108 << ", " << MCDesc.NumWriteLatencyEntries 1109 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1110 << ", " << MCDesc.NumReadAdvanceEntries 1111 << "}, // #" << SCIdx << '\n'; 1112 } 1113 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1114 } 1115 } 1116 1117 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1118 // For each processor model. 1119 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1120 // Emit processor resource table. 1121 if (PM.hasInstrSchedModel()) 1122 EmitProcessorResources(PM, OS); 1123 else if(!PM.ProcResourceDefs.empty()) 1124 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1125 "ProcResources without defining WriteRes SchedWriteRes"); 1126 1127 // Begin processor itinerary properties 1128 OS << "\n"; 1129 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1130 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1131 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1132 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1133 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1134 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1135 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1136 1137 bool PostRAScheduler = 1138 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1139 1140 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1141 << "PostRAScheduler\n"; 1142 1143 bool CompleteModel = 1144 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1145 1146 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1147 << "CompleteModel\n"; 1148 1149 OS << " " << PM.Index << ", // Processor ID\n"; 1150 if (PM.hasInstrSchedModel()) 1151 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1152 << " " << PM.ModelName << "SchedClasses" << ",\n" 1153 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1154 << " " << (SchedModels.schedClassEnd() 1155 - SchedModels.schedClassBegin()) << ",\n"; 1156 else 1157 OS << " nullptr, nullptr, 0, 0," 1158 << " // No instruction-level machine model.\n"; 1159 if (PM.hasItineraries()) 1160 OS << " " << PM.ItinsDef->getName() << "\n"; 1161 else 1162 OS << " nullptr // No Itinerary\n"; 1163 OS << "};\n"; 1164 } 1165 } 1166 1167 // 1168 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1169 // 1170 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1171 // Gather and sort processor information 1172 std::vector<Record*> ProcessorList = 1173 Records.getAllDerivedDefinitions("Processor"); 1174 std::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1175 1176 // Begin processor table 1177 OS << "\n"; 1178 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1179 << "extern const llvm::SubtargetInfoKV " 1180 << Target << "ProcSchedKV[] = {\n"; 1181 1182 // For each processor 1183 for (Record *Processor : ProcessorList) { 1184 StringRef Name = Processor->getValueAsString("Name"); 1185 const std::string &ProcModelName = 1186 SchedModels.getModelForProc(Processor).ModelName; 1187 1188 // Emit as { "cpu", procinit }, 1189 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n"; 1190 } 1191 1192 // End processor table 1193 OS << "};\n"; 1194 } 1195 1196 // 1197 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1198 // 1199 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1200 OS << "#ifdef DBGFIELD\n" 1201 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1202 << "#endif\n" 1203 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1204 << "#define DBGFIELD(x) x,\n" 1205 << "#else\n" 1206 << "#define DBGFIELD(x)\n" 1207 << "#endif\n"; 1208 1209 if (SchedModels.hasItineraries()) { 1210 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1211 // Emit the stage data 1212 EmitStageAndOperandCycleData(OS, ProcItinLists); 1213 EmitItineraries(OS, ProcItinLists); 1214 } 1215 OS << "\n// ===============================================================\n" 1216 << "// Data tables for the new per-operand machine model.\n"; 1217 1218 SchedClassTables SchedTables; 1219 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1220 GenSchedClassTables(ProcModel, SchedTables); 1221 } 1222 EmitSchedClassTables(SchedTables, OS); 1223 1224 // Emit the processor machine model 1225 EmitProcessorModels(OS); 1226 // Emit the processor lookup data 1227 EmitProcessorLookup(OS); 1228 1229 OS << "\n#undef DBGFIELD"; 1230 } 1231 1232 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1233 raw_ostream &OS) { 1234 OS << "unsigned " << ClassName 1235 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1236 << " const TargetSchedModel *SchedModel) const {\n"; 1237 1238 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1239 std::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1240 for (Record *P : Prologs) { 1241 OS << P->getValueAsString("Code") << '\n'; 1242 } 1243 IdxVec VariantClasses; 1244 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1245 if (SC.Transitions.empty()) 1246 continue; 1247 VariantClasses.push_back(SC.Index); 1248 } 1249 if (!VariantClasses.empty()) { 1250 OS << " switch (SchedClass) {\n"; 1251 for (unsigned VC : VariantClasses) { 1252 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1253 OS << " case " << VC << ": // " << SC.Name << '\n'; 1254 IdxVec ProcIndices; 1255 for (const CodeGenSchedTransition &T : SC.Transitions) { 1256 IdxVec PI; 1257 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1258 ProcIndices.begin(), ProcIndices.end(), 1259 std::back_inserter(PI)); 1260 ProcIndices.swap(PI); 1261 } 1262 for (unsigned PI : ProcIndices) { 1263 OS << " "; 1264 if (PI != 0) 1265 OS << "if (SchedModel->getProcessorID() == " << PI << ") "; 1266 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName 1267 << '\n'; 1268 for (const CodeGenSchedTransition &T : SC.Transitions) { 1269 if (PI != 0 && !std::count(T.ProcIndices.begin(), 1270 T.ProcIndices.end(), PI)) { 1271 continue; 1272 } 1273 OS << " if ("; 1274 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end(); 1275 RI != RE; ++RI) { 1276 if (RI != T.PredTerm.begin()) 1277 OS << "\n && "; 1278 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1279 } 1280 OS << ")\n" 1281 << " return " << T.ToClassIdx << "; // " 1282 << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n'; 1283 } 1284 OS << " }\n"; 1285 if (PI == 0) 1286 break; 1287 } 1288 if (SC.isInferred()) 1289 OS << " return " << SC.Index << ";\n"; 1290 OS << " break;\n"; 1291 } 1292 OS << " };\n"; 1293 } 1294 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1295 << "} // " << ClassName << "::resolveSchedClass\n"; 1296 } 1297 1298 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1299 raw_ostream &OS) { 1300 const CodeGenHwModes &CGH = TGT.getHwModes(); 1301 assert(CGH.getNumModeIds() > 0); 1302 if (CGH.getNumModeIds() == 1) 1303 return; 1304 1305 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1306 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1307 const HwMode &HM = CGH.getMode(M); 1308 OS << " if (checkFeatures(\"" << HM.Features 1309 << "\")) return " << M << ";\n"; 1310 } 1311 OS << " return 0;\n}\n"; 1312 } 1313 1314 // 1315 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1316 // the subtarget features string. 1317 // 1318 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1319 unsigned NumFeatures, 1320 unsigned NumProcs) { 1321 std::vector<Record*> Features = 1322 Records.getAllDerivedDefinitions("SubtargetFeature"); 1323 std::sort(Features.begin(), Features.end(), LessRecord()); 1324 1325 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1326 << "// subtarget options.\n" 1327 << "void llvm::"; 1328 OS << Target; 1329 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1330 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1331 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1332 1333 if (Features.empty()) { 1334 OS << "}\n"; 1335 return; 1336 } 1337 1338 OS << " InitMCProcessorInfo(CPU, FS);\n" 1339 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1340 1341 for (Record *R : Features) { 1342 // Next record 1343 StringRef Instance = R->getName(); 1344 StringRef Value = R->getValueAsString("Value"); 1345 StringRef Attribute = R->getValueAsString("Attribute"); 1346 1347 if (Value=="true" || Value=="false") 1348 OS << " if (Bits[" << Target << "::" 1349 << Instance << "]) " 1350 << Attribute << " = " << Value << ";\n"; 1351 else 1352 OS << " if (Bits[" << Target << "::" 1353 << Instance << "] && " 1354 << Attribute << " < " << Value << ") " 1355 << Attribute << " = " << Value << ";\n"; 1356 } 1357 1358 OS << "}\n"; 1359 } 1360 1361 // 1362 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1363 // 1364 void SubtargetEmitter::run(raw_ostream &OS) { 1365 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1366 1367 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1368 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1369 1370 OS << "namespace llvm {\n"; 1371 Enumeration(OS); 1372 OS << "} // end namespace llvm\n\n"; 1373 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1374 1375 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1376 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1377 1378 OS << "namespace llvm {\n"; 1379 #if 0 1380 OS << "namespace {\n"; 1381 #endif 1382 unsigned NumFeatures = FeatureKeyValues(OS); 1383 OS << "\n"; 1384 unsigned NumProcs = CPUKeyValues(OS); 1385 OS << "\n"; 1386 EmitSchedModel(OS); 1387 OS << "\n"; 1388 #if 0 1389 OS << "} // end anonymous namespace\n\n"; 1390 #endif 1391 1392 // MCInstrInfo initialization routine. 1393 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1394 << "MCSubtargetInfoImpl(" 1395 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1396 OS << " return new MCSubtargetInfo(TT, CPU, FS, "; 1397 if (NumFeatures) 1398 OS << Target << "FeatureKV, "; 1399 else 1400 OS << "None, "; 1401 if (NumProcs) 1402 OS << Target << "SubTypeKV, "; 1403 else 1404 OS << "None, "; 1405 OS << '\n'; OS.indent(22); 1406 OS << Target << "ProcSchedKV, " 1407 << Target << "WriteProcResTable, " 1408 << Target << "WriteLatencyTable, " 1409 << Target << "ReadAdvanceTable, "; 1410 OS << '\n'; OS.indent(22); 1411 if (SchedModels.hasItineraries()) { 1412 OS << Target << "Stages, " 1413 << Target << "OperandCycles, " 1414 << Target << "ForwardingPaths"; 1415 } else 1416 OS << "nullptr, nullptr, nullptr"; 1417 OS << ");\n}\n\n"; 1418 1419 OS << "} // end namespace llvm\n\n"; 1420 1421 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1422 1423 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1424 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1425 1426 OS << "#include \"llvm/Support/Debug.h\"\n"; 1427 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1428 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1429 1430 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1431 1432 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1433 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1434 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1435 1436 std::string ClassName = Target + "GenSubtargetInfo"; 1437 OS << "namespace llvm {\n"; 1438 OS << "class DFAPacketizer;\n"; 1439 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1440 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1441 << "StringRef FS);\n" 1442 << "public:\n" 1443 << " unsigned resolveSchedClass(unsigned SchedClass, " 1444 << " const MachineInstr *DefMI," 1445 << " const TargetSchedModel *SchedModel) const override;\n" 1446 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1447 << " const;\n"; 1448 if (TGT.getHwModes().getNumModeIds() > 1) 1449 OS << " unsigned getHwMode() const override;\n"; 1450 OS << "};\n" 1451 << "} // end namespace llvm\n\n"; 1452 1453 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1454 1455 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1456 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1457 1458 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1459 OS << "namespace llvm {\n"; 1460 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1461 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1462 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1463 OS << "extern const llvm::MCWriteProcResEntry " 1464 << Target << "WriteProcResTable[];\n"; 1465 OS << "extern const llvm::MCWriteLatencyEntry " 1466 << Target << "WriteLatencyTable[];\n"; 1467 OS << "extern const llvm::MCReadAdvanceEntry " 1468 << Target << "ReadAdvanceTable[];\n"; 1469 1470 if (SchedModels.hasItineraries()) { 1471 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1472 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1473 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1474 } 1475 1476 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1477 << "StringRef FS)\n" 1478 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1479 if (NumFeatures) 1480 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1481 else 1482 OS << "None, "; 1483 if (NumProcs) 1484 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1485 else 1486 OS << "None, "; 1487 OS << '\n'; OS.indent(24); 1488 OS << Target << "ProcSchedKV, " 1489 << Target << "WriteProcResTable, " 1490 << Target << "WriteLatencyTable, " 1491 << Target << "ReadAdvanceTable, "; 1492 OS << '\n'; OS.indent(24); 1493 if (SchedModels.hasItineraries()) { 1494 OS << Target << "Stages, " 1495 << Target << "OperandCycles, " 1496 << Target << "ForwardingPaths"; 1497 } else 1498 OS << "nullptr, nullptr, nullptr"; 1499 OS << ") {}\n\n"; 1500 1501 EmitSchedModelHelpers(ClassName, OS); 1502 EmitHwModeCheck(ClassName, OS); 1503 1504 OS << "} // end namespace llvm\n\n"; 1505 1506 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1507 } 1508 1509 namespace llvm { 1510 1511 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1512 CodeGenTarget CGTarget(RK); 1513 SubtargetEmitter(RK, CGTarget).run(OS); 1514 } 1515 1516 } // end namespace llvm 1517