1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This tablegen backend emits subtarget enumerations. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "CodeGenTarget.h" 15 #include "CodeGenSchedule.h" 16 #include "llvm/ADT/SmallPtrSet.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/StringExtras.h" 19 #include "llvm/ADT/StringRef.h" 20 #include "llvm/MC/MCInstrItineraries.h" 21 #include "llvm/MC/MCSchedule.h" 22 #include "llvm/MC/SubtargetFeature.h" 23 #include "llvm/Support/Debug.h" 24 #include "llvm/Support/Format.h" 25 #include "llvm/Support/raw_ostream.h" 26 #include "llvm/TableGen/Error.h" 27 #include "llvm/TableGen/Record.h" 28 #include "llvm/TableGen/TableGenBackend.h" 29 #include <algorithm> 30 #include <cassert> 31 #include <cstdint> 32 #include <iterator> 33 #include <map> 34 #include <string> 35 #include <vector> 36 37 using namespace llvm; 38 39 #define DEBUG_TYPE "subtarget-emitter" 40 41 namespace { 42 43 class SubtargetEmitter { 44 // Each processor has a SchedClassDesc table with an entry for each SchedClass. 45 // The SchedClassDesc table indexes into a global write resource table, write 46 // latency table, and read advance table. 47 struct SchedClassTables { 48 std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses; 49 std::vector<MCWriteProcResEntry> WriteProcResources; 50 std::vector<MCWriteLatencyEntry> WriteLatencies; 51 std::vector<std::string> WriterNames; 52 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 53 54 // Reserve an invalid entry at index 0 55 SchedClassTables() { 56 ProcSchedClasses.resize(1); 57 WriteProcResources.resize(1); 58 WriteLatencies.resize(1); 59 WriterNames.push_back("InvalidWrite"); 60 ReadAdvanceEntries.resize(1); 61 } 62 }; 63 64 struct LessWriteProcResources { 65 bool operator()(const MCWriteProcResEntry &LHS, 66 const MCWriteProcResEntry &RHS) { 67 return LHS.ProcResourceIdx < RHS.ProcResourceIdx; 68 } 69 }; 70 71 const CodeGenTarget &TGT; 72 RecordKeeper &Records; 73 CodeGenSchedModels &SchedModels; 74 std::string Target; 75 76 void Enumeration(raw_ostream &OS); 77 unsigned FeatureKeyValues(raw_ostream &OS); 78 unsigned CPUKeyValues(raw_ostream &OS); 79 void FormItineraryStageString(const std::string &Names, 80 Record *ItinData, std::string &ItinString, 81 unsigned &NStages); 82 void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString, 83 unsigned &NOperandCycles); 84 void FormItineraryBypassString(const std::string &Names, 85 Record *ItinData, 86 std::string &ItinString, unsigned NOperandCycles); 87 void EmitStageAndOperandCycleData(raw_ostream &OS, 88 std::vector<std::vector<InstrItinerary>> 89 &ProcItinLists); 90 void EmitItineraries(raw_ostream &OS, 91 std::vector<std::vector<InstrItinerary>> 92 &ProcItinLists); 93 unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 94 raw_ostream &OS); 95 void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 96 raw_ostream &OS); 97 void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name, 98 char Separator); 99 void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel, 100 raw_ostream &OS); 101 void EmitProcessorResources(const CodeGenProcModel &ProcModel, 102 raw_ostream &OS); 103 Record *FindWriteResources(const CodeGenSchedRW &SchedWrite, 104 const CodeGenProcModel &ProcModel); 105 Record *FindReadAdvance(const CodeGenSchedRW &SchedRead, 106 const CodeGenProcModel &ProcModel); 107 void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles, 108 const CodeGenProcModel &ProcModel); 109 void GenSchedClassTables(const CodeGenProcModel &ProcModel, 110 SchedClassTables &SchedTables); 111 void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS); 112 void EmitProcessorModels(raw_ostream &OS); 113 void EmitProcessorLookup(raw_ostream &OS); 114 void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS); 115 void EmitSchedModel(raw_ostream &OS); 116 void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS); 117 void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures, 118 unsigned NumProcs); 119 120 public: 121 SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT) 122 : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()), 123 Target(TGT.getName()) {} 124 125 void run(raw_ostream &o); 126 }; 127 128 } // end anonymous namespace 129 130 // 131 // Enumeration - Emit the specified class as an enumeration. 132 // 133 void SubtargetEmitter::Enumeration(raw_ostream &OS) { 134 // Get all records of class and sort 135 std::vector<Record*> DefList = 136 Records.getAllDerivedDefinitions("SubtargetFeature"); 137 llvm::sort(DefList.begin(), DefList.end(), LessRecord()); 138 139 unsigned N = DefList.size(); 140 if (N == 0) 141 return; 142 if (N > MAX_SUBTARGET_FEATURES) 143 PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES."); 144 145 OS << "namespace " << Target << " {\n"; 146 147 // Open enumeration. 148 OS << "enum {\n"; 149 150 // For each record 151 for (unsigned i = 0; i < N; ++i) { 152 // Next record 153 Record *Def = DefList[i]; 154 155 // Get and emit name 156 OS << " " << Def->getName() << " = " << i << ",\n"; 157 } 158 159 // Close enumeration and namespace 160 OS << "};\n"; 161 OS << "} // end namespace " << Target << "\n"; 162 } 163 164 // 165 // FeatureKeyValues - Emit data of all the subtarget features. Used by the 166 // command line. 167 // 168 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) { 169 // Gather and sort all the features 170 std::vector<Record*> FeatureList = 171 Records.getAllDerivedDefinitions("SubtargetFeature"); 172 173 if (FeatureList.empty()) 174 return 0; 175 176 llvm::sort(FeatureList.begin(), FeatureList.end(), LessRecordFieldName()); 177 178 // Begin feature table 179 OS << "// Sorted (by key) array of values for CPU features.\n" 180 << "extern const llvm::SubtargetFeatureKV " << Target 181 << "FeatureKV[] = {\n"; 182 183 // For each feature 184 unsigned NumFeatures = 0; 185 for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) { 186 // Next feature 187 Record *Feature = FeatureList[i]; 188 189 StringRef Name = Feature->getName(); 190 StringRef CommandLineName = Feature->getValueAsString("Name"); 191 StringRef Desc = Feature->getValueAsString("Desc"); 192 193 if (CommandLineName.empty()) continue; 194 195 // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } } 196 OS << " { " 197 << "\"" << CommandLineName << "\", " 198 << "\"" << Desc << "\", " 199 << "{ " << Target << "::" << Name << " }, "; 200 201 RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies"); 202 203 OS << "{"; 204 for (unsigned j = 0, M = ImpliesList.size(); j < M;) { 205 OS << " " << Target << "::" << ImpliesList[j]->getName(); 206 if (++j < M) OS << ","; 207 } 208 OS << " } },\n"; 209 ++NumFeatures; 210 } 211 212 // End feature table 213 OS << "};\n"; 214 215 return NumFeatures; 216 } 217 218 // 219 // CPUKeyValues - Emit data of all the subtarget processors. Used by command 220 // line. 221 // 222 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) { 223 // Gather and sort processor information 224 std::vector<Record*> ProcessorList = 225 Records.getAllDerivedDefinitions("Processor"); 226 llvm::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 227 228 // Begin processor table 229 OS << "// Sorted (by key) array of values for CPU subtype.\n" 230 << "extern const llvm::SubtargetFeatureKV " << Target 231 << "SubTypeKV[] = {\n"; 232 233 // For each processor 234 for (Record *Processor : ProcessorList) { 235 StringRef Name = Processor->getValueAsString("Name"); 236 RecVec FeatureList = Processor->getValueAsListOfDefs("Features"); 237 238 // Emit as { "cpu", "description", { f1 , f2 , ... fn } }, 239 OS << " { " 240 << "\"" << Name << "\", " 241 << "\"Select the " << Name << " processor\", "; 242 243 OS << "{"; 244 for (unsigned j = 0, M = FeatureList.size(); j < M;) { 245 OS << " " << Target << "::" << FeatureList[j]->getName(); 246 if (++j < M) OS << ","; 247 } 248 // The { } is for the "implies" section of this data structure. 249 OS << " }, { } },\n"; 250 } 251 252 // End processor table 253 OS << "};\n"; 254 255 return ProcessorList.size(); 256 } 257 258 // 259 // FormItineraryStageString - Compose a string containing the stage 260 // data initialization for the specified itinerary. N is the number 261 // of stages. 262 // 263 void SubtargetEmitter::FormItineraryStageString(const std::string &Name, 264 Record *ItinData, 265 std::string &ItinString, 266 unsigned &NStages) { 267 // Get states list 268 RecVec StageList = ItinData->getValueAsListOfDefs("Stages"); 269 270 // For each stage 271 unsigned N = NStages = StageList.size(); 272 for (unsigned i = 0; i < N;) { 273 // Next stage 274 const Record *Stage = StageList[i]; 275 276 // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind } 277 int Cycles = Stage->getValueAsInt("Cycles"); 278 ItinString += " { " + itostr(Cycles) + ", "; 279 280 // Get unit list 281 RecVec UnitList = Stage->getValueAsListOfDefs("Units"); 282 283 // For each unit 284 for (unsigned j = 0, M = UnitList.size(); j < M;) { 285 // Add name and bitwise or 286 ItinString += Name + "FU::" + UnitList[j]->getName().str(); 287 if (++j < M) ItinString += " | "; 288 } 289 290 int TimeInc = Stage->getValueAsInt("TimeInc"); 291 ItinString += ", " + itostr(TimeInc); 292 293 int Kind = Stage->getValueAsInt("Kind"); 294 ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind); 295 296 // Close off stage 297 ItinString += " }"; 298 if (++i < N) ItinString += ", "; 299 } 300 } 301 302 // 303 // FormItineraryOperandCycleString - Compose a string containing the 304 // operand cycle initialization for the specified itinerary. N is the 305 // number of operands that has cycles specified. 306 // 307 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData, 308 std::string &ItinString, unsigned &NOperandCycles) { 309 // Get operand cycle list 310 std::vector<int64_t> OperandCycleList = 311 ItinData->getValueAsListOfInts("OperandCycles"); 312 313 // For each operand cycle 314 unsigned N = NOperandCycles = OperandCycleList.size(); 315 for (unsigned i = 0; i < N;) { 316 // Next operand cycle 317 const int OCycle = OperandCycleList[i]; 318 319 ItinString += " " + itostr(OCycle); 320 if (++i < N) ItinString += ", "; 321 } 322 } 323 324 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name, 325 Record *ItinData, 326 std::string &ItinString, 327 unsigned NOperandCycles) { 328 RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses"); 329 unsigned N = BypassList.size(); 330 unsigned i = 0; 331 for (; i < N;) { 332 ItinString += Name + "Bypass::" + BypassList[i]->getName().str(); 333 if (++i < NOperandCycles) ItinString += ", "; 334 } 335 for (; i < NOperandCycles;) { 336 ItinString += " 0"; 337 if (++i < NOperandCycles) ItinString += ", "; 338 } 339 } 340 341 // 342 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand 343 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed 344 // by CodeGenSchedClass::Index. 345 // 346 void SubtargetEmitter:: 347 EmitStageAndOperandCycleData(raw_ostream &OS, 348 std::vector<std::vector<InstrItinerary>> 349 &ProcItinLists) { 350 // Multiple processor models may share an itinerary record. Emit it once. 351 SmallPtrSet<Record*, 8> ItinsDefSet; 352 353 // Emit functional units for all the itineraries. 354 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 355 356 if (!ItinsDefSet.insert(ProcModel.ItinsDef).second) 357 continue; 358 359 RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU"); 360 if (FUs.empty()) 361 continue; 362 363 StringRef Name = ProcModel.ItinsDef->getName(); 364 OS << "\n// Functional units for \"" << Name << "\"\n" 365 << "namespace " << Name << "FU {\n"; 366 367 for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j) 368 OS << " const unsigned " << FUs[j]->getName() 369 << " = 1 << " << j << ";\n"; 370 371 OS << "} // end namespace " << Name << "FU\n"; 372 373 RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP"); 374 if (!BPs.empty()) { 375 OS << "\n// Pipeline forwarding paths for itineraries \"" << Name 376 << "\"\n" << "namespace " << Name << "Bypass {\n"; 377 378 OS << " const unsigned NoBypass = 0;\n"; 379 for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j) 380 OS << " const unsigned " << BPs[j]->getName() 381 << " = 1 << " << j << ";\n"; 382 383 OS << "} // end namespace " << Name << "Bypass\n"; 384 } 385 } 386 387 // Begin stages table 388 std::string StageTable = "\nextern const llvm::InstrStage " + Target + 389 "Stages[] = {\n"; 390 StageTable += " { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n"; 391 392 // Begin operand cycle table 393 std::string OperandCycleTable = "extern const unsigned " + Target + 394 "OperandCycles[] = {\n"; 395 OperandCycleTable += " 0, // No itinerary\n"; 396 397 // Begin pipeline bypass table 398 std::string BypassTable = "extern const unsigned " + Target + 399 "ForwardingPaths[] = {\n"; 400 BypassTable += " 0, // No itinerary\n"; 401 402 // For each Itinerary across all processors, add a unique entry to the stages, 403 // operand cycles, and pipeline bypass tables. Then add the new Itinerary 404 // object with computed offsets to the ProcItinLists result. 405 unsigned StageCount = 1, OperandCycleCount = 1; 406 std::map<std::string, unsigned> ItinStageMap, ItinOperandMap; 407 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 408 // Add process itinerary to the list. 409 ProcItinLists.resize(ProcItinLists.size()+1); 410 411 // If this processor defines no itineraries, then leave the itinerary list 412 // empty. 413 std::vector<InstrItinerary> &ItinList = ProcItinLists.back(); 414 if (!ProcModel.hasItineraries()) 415 continue; 416 417 StringRef Name = ProcModel.ItinsDef->getName(); 418 419 ItinList.resize(SchedModels.numInstrSchedClasses()); 420 assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins"); 421 422 for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size(); 423 SchedClassIdx < SchedClassEnd; ++SchedClassIdx) { 424 425 // Next itinerary data 426 Record *ItinData = ProcModel.ItinDefList[SchedClassIdx]; 427 428 // Get string and stage count 429 std::string ItinStageString; 430 unsigned NStages = 0; 431 if (ItinData) 432 FormItineraryStageString(Name, ItinData, ItinStageString, NStages); 433 434 // Get string and operand cycle count 435 std::string ItinOperandCycleString; 436 unsigned NOperandCycles = 0; 437 std::string ItinBypassString; 438 if (ItinData) { 439 FormItineraryOperandCycleString(ItinData, ItinOperandCycleString, 440 NOperandCycles); 441 442 FormItineraryBypassString(Name, ItinData, ItinBypassString, 443 NOperandCycles); 444 } 445 446 // Check to see if stage already exists and create if it doesn't 447 uint16_t FindStage = 0; 448 if (NStages > 0) { 449 FindStage = ItinStageMap[ItinStageString]; 450 if (FindStage == 0) { 451 // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices 452 StageTable += ItinStageString + ", // " + itostr(StageCount); 453 if (NStages > 1) 454 StageTable += "-" + itostr(StageCount + NStages - 1); 455 StageTable += "\n"; 456 // Record Itin class number. 457 ItinStageMap[ItinStageString] = FindStage = StageCount; 458 StageCount += NStages; 459 } 460 } 461 462 // Check to see if operand cycle already exists and create if it doesn't 463 uint16_t FindOperandCycle = 0; 464 if (NOperandCycles > 0) { 465 std::string ItinOperandString = ItinOperandCycleString+ItinBypassString; 466 FindOperandCycle = ItinOperandMap[ItinOperandString]; 467 if (FindOperandCycle == 0) { 468 // Emit as cycle, // index 469 OperandCycleTable += ItinOperandCycleString + ", // "; 470 std::string OperandIdxComment = itostr(OperandCycleCount); 471 if (NOperandCycles > 1) 472 OperandIdxComment += "-" 473 + itostr(OperandCycleCount + NOperandCycles - 1); 474 OperandCycleTable += OperandIdxComment + "\n"; 475 // Record Itin class number. 476 ItinOperandMap[ItinOperandCycleString] = 477 FindOperandCycle = OperandCycleCount; 478 // Emit as bypass, // index 479 BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n"; 480 OperandCycleCount += NOperandCycles; 481 } 482 } 483 484 // Set up itinerary as location and location + stage count 485 int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0; 486 InstrItinerary Intinerary = { 487 NumUOps, 488 FindStage, 489 uint16_t(FindStage + NStages), 490 FindOperandCycle, 491 uint16_t(FindOperandCycle + NOperandCycles), 492 }; 493 494 // Inject - empty slots will be 0, 0 495 ItinList[SchedClassIdx] = Intinerary; 496 } 497 } 498 499 // Closing stage 500 StageTable += " { 0, 0, 0, llvm::InstrStage::Required } // End stages\n"; 501 StageTable += "};\n"; 502 503 // Closing operand cycles 504 OperandCycleTable += " 0 // End operand cycles\n"; 505 OperandCycleTable += "};\n"; 506 507 BypassTable += " 0 // End bypass tables\n"; 508 BypassTable += "};\n"; 509 510 // Emit tables. 511 OS << StageTable; 512 OS << OperandCycleTable; 513 OS << BypassTable; 514 } 515 516 // 517 // EmitProcessorData - Generate data for processor itineraries that were 518 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all 519 // Itineraries for each processor. The Itinerary lists are indexed on 520 // CodeGenSchedClass::Index. 521 // 522 void SubtargetEmitter:: 523 EmitItineraries(raw_ostream &OS, 524 std::vector<std::vector<InstrItinerary>> &ProcItinLists) { 525 // Multiple processor models may share an itinerary record. Emit it once. 526 SmallPtrSet<Record*, 8> ItinsDefSet; 527 528 // For each processor's machine model 529 std::vector<std::vector<InstrItinerary>>::iterator 530 ProcItinListsIter = ProcItinLists.begin(); 531 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 532 PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) { 533 534 Record *ItinsDef = PI->ItinsDef; 535 if (!ItinsDefSet.insert(ItinsDef).second) 536 continue; 537 538 // Get the itinerary list for the processor. 539 assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator"); 540 std::vector<InstrItinerary> &ItinList = *ProcItinListsIter; 541 542 // Empty itineraries aren't referenced anywhere in the tablegen output 543 // so don't emit them. 544 if (ItinList.empty()) 545 continue; 546 547 OS << "\n"; 548 OS << "static const llvm::InstrItinerary "; 549 550 // Begin processor itinerary table 551 OS << ItinsDef->getName() << "[] = {\n"; 552 553 // For each itinerary class in CodeGenSchedClass::Index order. 554 for (unsigned j = 0, M = ItinList.size(); j < M; ++j) { 555 InstrItinerary &Intinerary = ItinList[j]; 556 557 // Emit Itinerary in the form of 558 // { firstStage, lastStage, firstCycle, lastCycle } // index 559 OS << " { " << 560 Intinerary.NumMicroOps << ", " << 561 Intinerary.FirstStage << ", " << 562 Intinerary.LastStage << ", " << 563 Intinerary.FirstOperandCycle << ", " << 564 Intinerary.LastOperandCycle << " }" << 565 ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n"; 566 } 567 // End processor itinerary table 568 OS << " { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }" 569 "// end marker\n"; 570 OS << "};\n"; 571 } 572 } 573 574 // Emit either the value defined in the TableGen Record, or the default 575 // value defined in the C++ header. The Record is null if the processor does not 576 // define a model. 577 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R, 578 StringRef Name, char Separator) { 579 OS << " "; 580 int V = R ? R->getValueAsInt(Name) : -1; 581 if (V >= 0) 582 OS << V << Separator << " // " << Name; 583 else 584 OS << "MCSchedModel::Default" << Name << Separator; 585 OS << '\n'; 586 } 587 588 void SubtargetEmitter::EmitProcessorResourceSubUnits( 589 const CodeGenProcModel &ProcModel, raw_ostream &OS) { 590 OS << "\nstatic const unsigned " << ProcModel.ModelName 591 << "ProcResourceSubUnits[] = {\n" 592 << " 0, // Invalid\n"; 593 594 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 595 Record *PRDef = ProcModel.ProcResourceDefs[i]; 596 if (!PRDef->isSubClassOf("ProcResGroup")) 597 continue; 598 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 599 for (Record *RUDef : ResUnits) { 600 Record *const RU = 601 SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc()); 602 for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) { 603 OS << " " << ProcModel.getProcResourceIdx(RU) << ", "; 604 } 605 } 606 OS << " // " << PRDef->getName() << "\n"; 607 } 608 OS << "};\n"; 609 } 610 611 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel, 612 raw_ostream &OS) { 613 int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0; 614 if (Record *RCU = ProcModel.RetireControlUnit) { 615 ReorderBufferSize = 616 std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize")); 617 MaxRetirePerCycle = 618 std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle")); 619 } 620 621 OS << ReorderBufferSize << ", // ReorderBufferSize\n "; 622 OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n "; 623 } 624 625 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel, 626 unsigned NumRegisterFiles, 627 unsigned NumCostEntries, raw_ostream &OS) { 628 if (NumRegisterFiles) 629 OS << ProcModel.ModelName << "RegisterFiles,\n " << (1 + NumRegisterFiles); 630 else 631 OS << "nullptr,\n 0"; 632 633 OS << ", // Number of register files.\n "; 634 if (NumCostEntries) 635 OS << ProcModel.ModelName << "RegisterCosts,\n "; 636 else 637 OS << "nullptr,\n "; 638 OS << NumCostEntries << " // Number of register cost entries.\n"; 639 } 640 641 unsigned 642 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel, 643 raw_ostream &OS) { 644 if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) { 645 return RF.hasDefaultCosts(); 646 })) 647 return 0; 648 649 // Print the RegisterCost table first. 650 OS << "\n// {RegisterClassID, Register Cost}\n"; 651 OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName 652 << "RegisterCosts" 653 << "[] = {\n"; 654 655 for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) { 656 // Skip register files with a default cost table. 657 if (RF.hasDefaultCosts()) 658 continue; 659 // Add entries to the cost table. 660 for (const CodeGenRegisterCost &RC : RF.Costs) { 661 OS << " { "; 662 Record *Rec = RC.RCDef; 663 if (Rec->getValue("Namespace")) 664 OS << Rec->getValueAsString("Namespace") << "::"; 665 OS << Rec->getName() << "RegClassID, " << RC.Cost << "},\n"; 666 } 667 } 668 OS << "};\n"; 669 670 // Now generate a table with register file info. 671 OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl}\n"; 672 OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName 673 << "RegisterFiles" 674 << "[] = {\n" 675 << " { \"InvalidRegisterFile\", 0, 0, 0 },\n"; 676 unsigned CostTblIndex = 0; 677 678 for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) { 679 OS << " { "; 680 OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", "; 681 unsigned NumCostEntries = RD.Costs.size(); 682 OS << NumCostEntries << ", " << CostTblIndex << "},\n"; 683 CostTblIndex += NumCostEntries; 684 } 685 OS << "};\n"; 686 687 return CostTblIndex; 688 } 689 690 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel, 691 raw_ostream &OS) { 692 // Generate a table of register file descriptors (one entry per each user 693 // defined register file), and a table of register costs. 694 unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS); 695 696 // Now generate a table for the extra processor info. 697 OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName 698 << "ExtraInfo = {\n "; 699 700 // Add information related to the retire control unit. 701 EmitRetireControlUnitInfo(ProcModel, OS); 702 703 // Add information related to the register files (i.e. where to find register 704 // file descriptors and register costs). 705 EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(), 706 NumCostEntries, OS); 707 708 OS << "};\n"; 709 } 710 711 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel, 712 raw_ostream &OS) { 713 EmitProcessorResourceSubUnits(ProcModel, OS); 714 715 OS << "\n// {Name, NumUnits, SuperIdx, IsBuffered, SubUnitsIdxBegin}\n"; 716 OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName 717 << "ProcResources" 718 << "[] = {\n" 719 << " {\"InvalidUnit\", 0, 0, 0, 0},\n"; 720 721 unsigned SubUnitsOffset = 1; 722 for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) { 723 Record *PRDef = ProcModel.ProcResourceDefs[i]; 724 725 Record *SuperDef = nullptr; 726 unsigned SuperIdx = 0; 727 unsigned NumUnits = 0; 728 const unsigned SubUnitsBeginOffset = SubUnitsOffset; 729 int BufferSize = PRDef->getValueAsInt("BufferSize"); 730 if (PRDef->isSubClassOf("ProcResGroup")) { 731 RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources"); 732 for (Record *RU : ResUnits) { 733 NumUnits += RU->getValueAsInt("NumUnits"); 734 SubUnitsOffset += RU->getValueAsInt("NumUnits"); 735 } 736 } 737 else { 738 // Find the SuperIdx 739 if (PRDef->getValueInit("Super")->isComplete()) { 740 SuperDef = 741 SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"), 742 ProcModel, PRDef->getLoc()); 743 SuperIdx = ProcModel.getProcResourceIdx(SuperDef); 744 } 745 NumUnits = PRDef->getValueAsInt("NumUnits"); 746 } 747 // Emit the ProcResourceDesc 748 OS << " {\"" << PRDef->getName() << "\", "; 749 if (PRDef->getName().size() < 15) 750 OS.indent(15 - PRDef->getName().size()); 751 OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", "; 752 if (SubUnitsBeginOffset != SubUnitsOffset) { 753 OS << ProcModel.ModelName << "ProcResourceSubUnits + " 754 << SubUnitsBeginOffset; 755 } else { 756 OS << "nullptr"; 757 } 758 OS << "}, // #" << i+1; 759 if (SuperDef) 760 OS << ", Super=" << SuperDef->getName(); 761 OS << "\n"; 762 } 763 OS << "};\n"; 764 } 765 766 // Find the WriteRes Record that defines processor resources for this 767 // SchedWrite. 768 Record *SubtargetEmitter::FindWriteResources( 769 const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) { 770 771 // Check if the SchedWrite is already subtarget-specific and directly 772 // specifies a set of processor resources. 773 if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes")) 774 return SchedWrite.TheDef; 775 776 Record *AliasDef = nullptr; 777 for (Record *A : SchedWrite.Aliases) { 778 const CodeGenSchedRW &AliasRW = 779 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 780 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 781 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 782 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 783 continue; 784 } 785 if (AliasDef) 786 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 787 "defined for processor " + ProcModel.ModelName + 788 " Ensure only one SchedAlias exists per RW."); 789 AliasDef = AliasRW.TheDef; 790 } 791 if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes")) 792 return AliasDef; 793 794 // Check this processor's list of write resources. 795 Record *ResDef = nullptr; 796 for (Record *WR : ProcModel.WriteResDefs) { 797 if (!WR->isSubClassOf("WriteRes")) 798 continue; 799 if (AliasDef == WR->getValueAsDef("WriteType") 800 || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) { 801 if (ResDef) { 802 PrintFatalError(WR->getLoc(), "Resources are defined for both " 803 "SchedWrite and its alias on processor " + 804 ProcModel.ModelName); 805 } 806 ResDef = WR; 807 } 808 } 809 // TODO: If ProcModel has a base model (previous generation processor), 810 // then call FindWriteResources recursively with that model here. 811 if (!ResDef) { 812 PrintFatalError(ProcModel.ModelDef->getLoc(), 813 Twine("Processor does not define resources for ") + 814 SchedWrite.TheDef->getName()); 815 } 816 return ResDef; 817 } 818 819 /// Find the ReadAdvance record for the given SchedRead on this processor or 820 /// return NULL. 821 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead, 822 const CodeGenProcModel &ProcModel) { 823 // Check for SchedReads that directly specify a ReadAdvance. 824 if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance")) 825 return SchedRead.TheDef; 826 827 // Check this processor's list of aliases for SchedRead. 828 Record *AliasDef = nullptr; 829 for (Record *A : SchedRead.Aliases) { 830 const CodeGenSchedRW &AliasRW = 831 SchedModels.getSchedRW(A->getValueAsDef("AliasRW")); 832 if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) { 833 Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel"); 834 if (&SchedModels.getProcModel(ModelDef) != &ProcModel) 835 continue; 836 } 837 if (AliasDef) 838 PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases " 839 "defined for processor " + ProcModel.ModelName + 840 " Ensure only one SchedAlias exists per RW."); 841 AliasDef = AliasRW.TheDef; 842 } 843 if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance")) 844 return AliasDef; 845 846 // Check this processor's ReadAdvanceList. 847 Record *ResDef = nullptr; 848 for (Record *RA : ProcModel.ReadAdvanceDefs) { 849 if (!RA->isSubClassOf("ReadAdvance")) 850 continue; 851 if (AliasDef == RA->getValueAsDef("ReadType") 852 || SchedRead.TheDef == RA->getValueAsDef("ReadType")) { 853 if (ResDef) { 854 PrintFatalError(RA->getLoc(), "Resources are defined for both " 855 "SchedRead and its alias on processor " + 856 ProcModel.ModelName); 857 } 858 ResDef = RA; 859 } 860 } 861 // TODO: If ProcModel has a base model (previous generation processor), 862 // then call FindReadAdvance recursively with that model here. 863 if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") { 864 PrintFatalError(ProcModel.ModelDef->getLoc(), 865 Twine("Processor does not define resources for ") + 866 SchedRead.TheDef->getName()); 867 } 868 return ResDef; 869 } 870 871 // Expand an explicit list of processor resources into a full list of implied 872 // resource groups and super resources that cover them. 873 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec, 874 std::vector<int64_t> &Cycles, 875 const CodeGenProcModel &PM) { 876 // Default to 1 resource cycle. 877 Cycles.resize(PRVec.size(), 1); 878 for (unsigned i = 0, e = PRVec.size(); i != e; ++i) { 879 Record *PRDef = PRVec[i]; 880 RecVec SubResources; 881 if (PRDef->isSubClassOf("ProcResGroup")) 882 SubResources = PRDef->getValueAsListOfDefs("Resources"); 883 else { 884 SubResources.push_back(PRDef); 885 PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc()); 886 for (Record *SubDef = PRDef; 887 SubDef->getValueInit("Super")->isComplete();) { 888 if (SubDef->isSubClassOf("ProcResGroup")) { 889 // Disallow this for simplicitly. 890 PrintFatalError(SubDef->getLoc(), "Processor resource group " 891 " cannot be a super resources."); 892 } 893 Record *SuperDef = 894 SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM, 895 SubDef->getLoc()); 896 PRVec.push_back(SuperDef); 897 Cycles.push_back(Cycles[i]); 898 SubDef = SuperDef; 899 } 900 } 901 for (Record *PR : PM.ProcResourceDefs) { 902 if (PR == PRDef || !PR->isSubClassOf("ProcResGroup")) 903 continue; 904 RecVec SuperResources = PR->getValueAsListOfDefs("Resources"); 905 RecIter SubI = SubResources.begin(), SubE = SubResources.end(); 906 for( ; SubI != SubE; ++SubI) { 907 if (!is_contained(SuperResources, *SubI)) { 908 break; 909 } 910 } 911 if (SubI == SubE) { 912 PRVec.push_back(PR); 913 Cycles.push_back(Cycles[i]); 914 } 915 } 916 } 917 } 918 919 // Generate the SchedClass table for this processor and update global 920 // tables. Must be called for each processor in order. 921 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel, 922 SchedClassTables &SchedTables) { 923 SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1); 924 if (!ProcModel.hasInstrSchedModel()) 925 return; 926 927 std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back(); 928 DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n"); 929 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 930 DEBUG(SC.dump(&SchedModels)); 931 932 SCTab.resize(SCTab.size() + 1); 933 MCSchedClassDesc &SCDesc = SCTab.back(); 934 // SCDesc.Name is guarded by NDEBUG 935 SCDesc.NumMicroOps = 0; 936 SCDesc.BeginGroup = false; 937 SCDesc.EndGroup = false; 938 SCDesc.WriteProcResIdx = 0; 939 SCDesc.WriteLatencyIdx = 0; 940 SCDesc.ReadAdvanceIdx = 0; 941 942 // A Variant SchedClass has no resources of its own. 943 bool HasVariants = false; 944 for (const CodeGenSchedTransition &CGT : 945 make_range(SC.Transitions.begin(), SC.Transitions.end())) { 946 if (CGT.ProcIndices[0] == 0 || 947 is_contained(CGT.ProcIndices, ProcModel.Index)) { 948 HasVariants = true; 949 break; 950 } 951 } 952 if (HasVariants) { 953 SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps; 954 continue; 955 } 956 957 // Determine if the SchedClass is actually reachable on this processor. If 958 // not don't try to locate the processor resources, it will fail. 959 // If ProcIndices contains 0, this class applies to all processors. 960 assert(!SC.ProcIndices.empty() && "expect at least one procidx"); 961 if (SC.ProcIndices[0] != 0) { 962 if (!is_contained(SC.ProcIndices, ProcModel.Index)) 963 continue; 964 } 965 IdxVec Writes = SC.Writes; 966 IdxVec Reads = SC.Reads; 967 if (!SC.InstRWs.empty()) { 968 // This class has a default ReadWrite list which can be overridden by 969 // InstRW definitions. 970 Record *RWDef = nullptr; 971 for (Record *RW : SC.InstRWs) { 972 Record *RWModelDef = RW->getValueAsDef("SchedModel"); 973 if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) { 974 RWDef = RW; 975 break; 976 } 977 } 978 if (RWDef) { 979 Writes.clear(); 980 Reads.clear(); 981 SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"), 982 Writes, Reads); 983 } 984 } 985 if (Writes.empty()) { 986 // Check this processor's itinerary class resources. 987 for (Record *I : ProcModel.ItinRWDefs) { 988 RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses"); 989 if (is_contained(Matched, SC.ItinClassDef)) { 990 SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"), 991 Writes, Reads); 992 break; 993 } 994 } 995 if (Writes.empty()) { 996 DEBUG(dbgs() << ProcModel.ModelName 997 << " does not have resources for class " << SC.Name << '\n'); 998 } 999 } 1000 // Sum resources across all operand writes. 1001 std::vector<MCWriteProcResEntry> WriteProcResources; 1002 std::vector<MCWriteLatencyEntry> WriteLatencies; 1003 std::vector<std::string> WriterNames; 1004 std::vector<MCReadAdvanceEntry> ReadAdvanceEntries; 1005 for (unsigned W : Writes) { 1006 IdxVec WriteSeq; 1007 SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false, 1008 ProcModel); 1009 1010 // For each operand, create a latency entry. 1011 MCWriteLatencyEntry WLEntry; 1012 WLEntry.Cycles = 0; 1013 unsigned WriteID = WriteSeq.back(); 1014 WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name); 1015 // If this Write is not referenced by a ReadAdvance, don't distinguish it 1016 // from other WriteLatency entries. 1017 if (!SchedModels.hasReadOfWrite( 1018 SchedModels.getSchedWrite(WriteID).TheDef)) { 1019 WriteID = 0; 1020 } 1021 WLEntry.WriteResourceID = WriteID; 1022 1023 for (unsigned WS : WriteSeq) { 1024 1025 Record *WriteRes = 1026 FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel); 1027 1028 // Mark the parent class as invalid for unsupported write types. 1029 if (WriteRes->getValueAsBit("Unsupported")) { 1030 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1031 break; 1032 } 1033 WLEntry.Cycles += WriteRes->getValueAsInt("Latency"); 1034 SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps"); 1035 SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup"); 1036 SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup"); 1037 SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue"); 1038 SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue"); 1039 1040 // Create an entry for each ProcResource listed in WriteRes. 1041 RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources"); 1042 std::vector<int64_t> Cycles = 1043 WriteRes->getValueAsListOfInts("ResourceCycles"); 1044 1045 ExpandProcResources(PRVec, Cycles, ProcModel); 1046 1047 for (unsigned PRIdx = 0, PREnd = PRVec.size(); 1048 PRIdx != PREnd; ++PRIdx) { 1049 MCWriteProcResEntry WPREntry; 1050 WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]); 1051 assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx"); 1052 WPREntry.Cycles = Cycles[PRIdx]; 1053 // If this resource is already used in this sequence, add the current 1054 // entry's cycles so that the same resource appears to be used 1055 // serially, rather than multiple parallel uses. This is important for 1056 // in-order machine where the resource consumption is a hazard. 1057 unsigned WPRIdx = 0, WPREnd = WriteProcResources.size(); 1058 for( ; WPRIdx != WPREnd; ++WPRIdx) { 1059 if (WriteProcResources[WPRIdx].ProcResourceIdx 1060 == WPREntry.ProcResourceIdx) { 1061 WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles; 1062 break; 1063 } 1064 } 1065 if (WPRIdx == WPREnd) 1066 WriteProcResources.push_back(WPREntry); 1067 } 1068 } 1069 WriteLatencies.push_back(WLEntry); 1070 } 1071 // Create an entry for each operand Read in this SchedClass. 1072 // Entries must be sorted first by UseIdx then by WriteResourceID. 1073 for (unsigned UseIdx = 0, EndIdx = Reads.size(); 1074 UseIdx != EndIdx; ++UseIdx) { 1075 Record *ReadAdvance = 1076 FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel); 1077 if (!ReadAdvance) 1078 continue; 1079 1080 // Mark the parent class as invalid for unsupported write types. 1081 if (ReadAdvance->getValueAsBit("Unsupported")) { 1082 SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps; 1083 break; 1084 } 1085 RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites"); 1086 IdxVec WriteIDs; 1087 if (ValidWrites.empty()) 1088 WriteIDs.push_back(0); 1089 else { 1090 for (Record *VW : ValidWrites) { 1091 WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false)); 1092 } 1093 } 1094 llvm::sort(WriteIDs.begin(), WriteIDs.end()); 1095 for(unsigned W : WriteIDs) { 1096 MCReadAdvanceEntry RAEntry; 1097 RAEntry.UseIdx = UseIdx; 1098 RAEntry.WriteResourceID = W; 1099 RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles"); 1100 ReadAdvanceEntries.push_back(RAEntry); 1101 } 1102 } 1103 if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) { 1104 WriteProcResources.clear(); 1105 WriteLatencies.clear(); 1106 ReadAdvanceEntries.clear(); 1107 } 1108 // Add the information for this SchedClass to the global tables using basic 1109 // compression. 1110 // 1111 // WritePrecRes entries are sorted by ProcResIdx. 1112 llvm::sort(WriteProcResources.begin(), WriteProcResources.end(), 1113 LessWriteProcResources()); 1114 1115 SCDesc.NumWriteProcResEntries = WriteProcResources.size(); 1116 std::vector<MCWriteProcResEntry>::iterator WPRPos = 1117 std::search(SchedTables.WriteProcResources.begin(), 1118 SchedTables.WriteProcResources.end(), 1119 WriteProcResources.begin(), WriteProcResources.end()); 1120 if (WPRPos != SchedTables.WriteProcResources.end()) 1121 SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin(); 1122 else { 1123 SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size(); 1124 SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(), 1125 WriteProcResources.end()); 1126 } 1127 // Latency entries must remain in operand order. 1128 SCDesc.NumWriteLatencyEntries = WriteLatencies.size(); 1129 std::vector<MCWriteLatencyEntry>::iterator WLPos = 1130 std::search(SchedTables.WriteLatencies.begin(), 1131 SchedTables.WriteLatencies.end(), 1132 WriteLatencies.begin(), WriteLatencies.end()); 1133 if (WLPos != SchedTables.WriteLatencies.end()) { 1134 unsigned idx = WLPos - SchedTables.WriteLatencies.begin(); 1135 SCDesc.WriteLatencyIdx = idx; 1136 for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i) 1137 if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) == 1138 std::string::npos) { 1139 SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i]; 1140 } 1141 } 1142 else { 1143 SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size(); 1144 SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(), 1145 WriteLatencies.begin(), 1146 WriteLatencies.end()); 1147 SchedTables.WriterNames.insert(SchedTables.WriterNames.end(), 1148 WriterNames.begin(), WriterNames.end()); 1149 } 1150 // ReadAdvanceEntries must remain in operand order. 1151 SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size(); 1152 std::vector<MCReadAdvanceEntry>::iterator RAPos = 1153 std::search(SchedTables.ReadAdvanceEntries.begin(), 1154 SchedTables.ReadAdvanceEntries.end(), 1155 ReadAdvanceEntries.begin(), ReadAdvanceEntries.end()); 1156 if (RAPos != SchedTables.ReadAdvanceEntries.end()) 1157 SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin(); 1158 else { 1159 SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size(); 1160 SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(), 1161 ReadAdvanceEntries.end()); 1162 } 1163 } 1164 } 1165 1166 // Emit SchedClass tables for all processors and associated global tables. 1167 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables, 1168 raw_ostream &OS) { 1169 // Emit global WriteProcResTable. 1170 OS << "\n// {ProcResourceIdx, Cycles}\n" 1171 << "extern const llvm::MCWriteProcResEntry " 1172 << Target << "WriteProcResTable[] = {\n" 1173 << " { 0, 0}, // Invalid\n"; 1174 for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size(); 1175 WPRIdx != WPREnd; ++WPRIdx) { 1176 MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx]; 1177 OS << " {" << format("%2d", WPREntry.ProcResourceIdx) << ", " 1178 << format("%2d", WPREntry.Cycles) << "}"; 1179 if (WPRIdx + 1 < WPREnd) 1180 OS << ','; 1181 OS << " // #" << WPRIdx << '\n'; 1182 } 1183 OS << "}; // " << Target << "WriteProcResTable\n"; 1184 1185 // Emit global WriteLatencyTable. 1186 OS << "\n// {Cycles, WriteResourceID}\n" 1187 << "extern const llvm::MCWriteLatencyEntry " 1188 << Target << "WriteLatencyTable[] = {\n" 1189 << " { 0, 0}, // Invalid\n"; 1190 for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size(); 1191 WLIdx != WLEnd; ++WLIdx) { 1192 MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx]; 1193 OS << " {" << format("%2d", WLEntry.Cycles) << ", " 1194 << format("%2d", WLEntry.WriteResourceID) << "}"; 1195 if (WLIdx + 1 < WLEnd) 1196 OS << ','; 1197 OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n'; 1198 } 1199 OS << "}; // " << Target << "WriteLatencyTable\n"; 1200 1201 // Emit global ReadAdvanceTable. 1202 OS << "\n// {UseIdx, WriteResourceID, Cycles}\n" 1203 << "extern const llvm::MCReadAdvanceEntry " 1204 << Target << "ReadAdvanceTable[] = {\n" 1205 << " {0, 0, 0}, // Invalid\n"; 1206 for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size(); 1207 RAIdx != RAEnd; ++RAIdx) { 1208 MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx]; 1209 OS << " {" << RAEntry.UseIdx << ", " 1210 << format("%2d", RAEntry.WriteResourceID) << ", " 1211 << format("%2d", RAEntry.Cycles) << "}"; 1212 if (RAIdx + 1 < RAEnd) 1213 OS << ','; 1214 OS << " // #" << RAIdx << '\n'; 1215 } 1216 OS << "}; // " << Target << "ReadAdvanceTable\n"; 1217 1218 // Emit a SchedClass table for each processor. 1219 for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(), 1220 PE = SchedModels.procModelEnd(); PI != PE; ++PI) { 1221 if (!PI->hasInstrSchedModel()) 1222 continue; 1223 1224 std::vector<MCSchedClassDesc> &SCTab = 1225 SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())]; 1226 1227 OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup," 1228 << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n"; 1229 OS << "static const llvm::MCSchedClassDesc " 1230 << PI->ModelName << "SchedClasses[] = {\n"; 1231 1232 // The first class is always invalid. We no way to distinguish it except by 1233 // name and position. 1234 assert(SchedModels.getSchedClass(0).Name == "NoInstrModel" 1235 && "invalid class not first"); 1236 OS << " {DBGFIELD(\"InvalidSchedClass\") " 1237 << MCSchedClassDesc::InvalidNumMicroOps 1238 << ", false, false, 0, 0, 0, 0, 0, 0},\n"; 1239 1240 for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) { 1241 MCSchedClassDesc &MCDesc = SCTab[SCIdx]; 1242 const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx); 1243 OS << " {DBGFIELD(\"" << SchedClass.Name << "\") "; 1244 if (SchedClass.Name.size() < 18) 1245 OS.indent(18 - SchedClass.Name.size()); 1246 OS << MCDesc.NumMicroOps 1247 << ", " << ( MCDesc.BeginGroup ? "true" : "false" ) 1248 << ", " << ( MCDesc.EndGroup ? "true" : "false" ) 1249 << ", " << format("%2d", MCDesc.WriteProcResIdx) 1250 << ", " << MCDesc.NumWriteProcResEntries 1251 << ", " << format("%2d", MCDesc.WriteLatencyIdx) 1252 << ", " << MCDesc.NumWriteLatencyEntries 1253 << ", " << format("%2d", MCDesc.ReadAdvanceIdx) 1254 << ", " << MCDesc.NumReadAdvanceEntries 1255 << "}, // #" << SCIdx << '\n'; 1256 } 1257 OS << "}; // " << PI->ModelName << "SchedClasses\n"; 1258 } 1259 } 1260 1261 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) { 1262 // For each processor model. 1263 for (const CodeGenProcModel &PM : SchedModels.procModels()) { 1264 // Emit extra processor info if available. 1265 if (PM.hasExtraProcessorInfo()) 1266 EmitExtraProcessorInfo(PM, OS); 1267 // Emit processor resource table. 1268 if (PM.hasInstrSchedModel()) 1269 EmitProcessorResources(PM, OS); 1270 else if(!PM.ProcResourceDefs.empty()) 1271 PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines " 1272 "ProcResources without defining WriteRes SchedWriteRes"); 1273 1274 // Begin processor itinerary properties 1275 OS << "\n"; 1276 OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n"; 1277 EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ','); 1278 EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ','); 1279 EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ','); 1280 EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ','); 1281 EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ','); 1282 EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ','); 1283 1284 bool PostRAScheduler = 1285 (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false); 1286 1287 OS << " " << (PostRAScheduler ? "true" : "false") << ", // " 1288 << "PostRAScheduler\n"; 1289 1290 bool CompleteModel = 1291 (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false); 1292 1293 OS << " " << (CompleteModel ? "true" : "false") << ", // " 1294 << "CompleteModel\n"; 1295 1296 OS << " " << PM.Index << ", // Processor ID\n"; 1297 if (PM.hasInstrSchedModel()) 1298 OS << " " << PM.ModelName << "ProcResources" << ",\n" 1299 << " " << PM.ModelName << "SchedClasses" << ",\n" 1300 << " " << PM.ProcResourceDefs.size()+1 << ",\n" 1301 << " " << (SchedModels.schedClassEnd() 1302 - SchedModels.schedClassBegin()) << ",\n"; 1303 else 1304 OS << " nullptr, nullptr, 0, 0," 1305 << " // No instruction-level machine model.\n"; 1306 if (PM.hasItineraries()) 1307 OS << " " << PM.ItinsDef->getName() << ",\n"; 1308 else 1309 OS << " nullptr, // No Itinerary\n"; 1310 if (PM.hasExtraProcessorInfo()) 1311 OS << " &" << PM.ModelName << "ExtraInfo\n"; 1312 else 1313 OS << " nullptr // No extra processor descriptor\n"; 1314 OS << "};\n"; 1315 } 1316 } 1317 1318 // 1319 // EmitProcessorLookup - generate cpu name to itinerary lookup table. 1320 // 1321 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) { 1322 // Gather and sort processor information 1323 std::vector<Record*> ProcessorList = 1324 Records.getAllDerivedDefinitions("Processor"); 1325 llvm::sort(ProcessorList.begin(), ProcessorList.end(), LessRecordFieldName()); 1326 1327 // Begin processor table 1328 OS << "\n"; 1329 OS << "// Sorted (by key) array of itineraries for CPU subtype.\n" 1330 << "extern const llvm::SubtargetInfoKV " 1331 << Target << "ProcSchedKV[] = {\n"; 1332 1333 // For each processor 1334 for (Record *Processor : ProcessorList) { 1335 StringRef Name = Processor->getValueAsString("Name"); 1336 const std::string &ProcModelName = 1337 SchedModels.getModelForProc(Processor).ModelName; 1338 1339 // Emit as { "cpu", procinit }, 1340 OS << " { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n"; 1341 } 1342 1343 // End processor table 1344 OS << "};\n"; 1345 } 1346 1347 // 1348 // EmitSchedModel - Emits all scheduling model tables, folding common patterns. 1349 // 1350 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) { 1351 OS << "#ifdef DBGFIELD\n" 1352 << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n" 1353 << "#endif\n" 1354 << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n" 1355 << "#define DBGFIELD(x) x,\n" 1356 << "#else\n" 1357 << "#define DBGFIELD(x)\n" 1358 << "#endif\n"; 1359 1360 if (SchedModels.hasItineraries()) { 1361 std::vector<std::vector<InstrItinerary>> ProcItinLists; 1362 // Emit the stage data 1363 EmitStageAndOperandCycleData(OS, ProcItinLists); 1364 EmitItineraries(OS, ProcItinLists); 1365 } 1366 OS << "\n// ===============================================================\n" 1367 << "// Data tables for the new per-operand machine model.\n"; 1368 1369 SchedClassTables SchedTables; 1370 for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) { 1371 GenSchedClassTables(ProcModel, SchedTables); 1372 } 1373 EmitSchedClassTables(SchedTables, OS); 1374 1375 // Emit the processor machine model 1376 EmitProcessorModels(OS); 1377 // Emit the processor lookup data 1378 EmitProcessorLookup(OS); 1379 1380 OS << "\n#undef DBGFIELD"; 1381 } 1382 1383 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName, 1384 raw_ostream &OS) { 1385 OS << "unsigned " << ClassName 1386 << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI," 1387 << " const TargetSchedModel *SchedModel) const {\n"; 1388 1389 std::vector<Record*> Prologs = Records.getAllDerivedDefinitions("PredicateProlog"); 1390 llvm::sort(Prologs.begin(), Prologs.end(), LessRecord()); 1391 for (Record *P : Prologs) { 1392 OS << P->getValueAsString("Code") << '\n'; 1393 } 1394 IdxVec VariantClasses; 1395 for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) { 1396 if (SC.Transitions.empty()) 1397 continue; 1398 VariantClasses.push_back(SC.Index); 1399 } 1400 if (!VariantClasses.empty()) { 1401 OS << " switch (SchedClass) {\n"; 1402 for (unsigned VC : VariantClasses) { 1403 const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC); 1404 OS << " case " << VC << ": // " << SC.Name << '\n'; 1405 IdxVec ProcIndices; 1406 for (const CodeGenSchedTransition &T : SC.Transitions) { 1407 IdxVec PI; 1408 std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(), 1409 ProcIndices.begin(), ProcIndices.end(), 1410 std::back_inserter(PI)); 1411 ProcIndices.swap(PI); 1412 } 1413 for (unsigned PI : ProcIndices) { 1414 OS << " "; 1415 if (PI != 0) 1416 OS << "if (SchedModel->getProcessorID() == " << PI << ") "; 1417 OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName 1418 << '\n'; 1419 for (const CodeGenSchedTransition &T : SC.Transitions) { 1420 if (PI != 0 && !std::count(T.ProcIndices.begin(), 1421 T.ProcIndices.end(), PI)) { 1422 continue; 1423 } 1424 OS << " if ("; 1425 for (RecIter RI = T.PredTerm.begin(), RE = T.PredTerm.end(); 1426 RI != RE; ++RI) { 1427 if (RI != T.PredTerm.begin()) 1428 OS << "\n && "; 1429 OS << "(" << (*RI)->getValueAsString("Predicate") << ")"; 1430 } 1431 OS << ")\n" 1432 << " return " << T.ToClassIdx << "; // " 1433 << SchedModels.getSchedClass(T.ToClassIdx).Name << '\n'; 1434 } 1435 OS << " }\n"; 1436 if (PI == 0) 1437 break; 1438 } 1439 if (SC.isInferred()) 1440 OS << " return " << SC.Index << ";\n"; 1441 OS << " break;\n"; 1442 } 1443 OS << " };\n"; 1444 } 1445 OS << " report_fatal_error(\"Expected a variant SchedClass\");\n" 1446 << "} // " << ClassName << "::resolveSchedClass\n"; 1447 } 1448 1449 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName, 1450 raw_ostream &OS) { 1451 const CodeGenHwModes &CGH = TGT.getHwModes(); 1452 assert(CGH.getNumModeIds() > 0); 1453 if (CGH.getNumModeIds() == 1) 1454 return; 1455 1456 OS << "unsigned " << ClassName << "::getHwMode() const {\n"; 1457 for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) { 1458 const HwMode &HM = CGH.getMode(M); 1459 OS << " if (checkFeatures(\"" << HM.Features 1460 << "\")) return " << M << ";\n"; 1461 } 1462 OS << " return 0;\n}\n"; 1463 } 1464 1465 // 1466 // ParseFeaturesFunction - Produces a subtarget specific function for parsing 1467 // the subtarget features string. 1468 // 1469 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS, 1470 unsigned NumFeatures, 1471 unsigned NumProcs) { 1472 std::vector<Record*> Features = 1473 Records.getAllDerivedDefinitions("SubtargetFeature"); 1474 llvm::sort(Features.begin(), Features.end(), LessRecord()); 1475 1476 OS << "// ParseSubtargetFeatures - Parses features string setting specified\n" 1477 << "// subtarget options.\n" 1478 << "void llvm::"; 1479 OS << Target; 1480 OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n" 1481 << " DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n" 1482 << " DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n"; 1483 1484 if (Features.empty()) { 1485 OS << "}\n"; 1486 return; 1487 } 1488 1489 OS << " InitMCProcessorInfo(CPU, FS);\n" 1490 << " const FeatureBitset& Bits = getFeatureBits();\n"; 1491 1492 for (Record *R : Features) { 1493 // Next record 1494 StringRef Instance = R->getName(); 1495 StringRef Value = R->getValueAsString("Value"); 1496 StringRef Attribute = R->getValueAsString("Attribute"); 1497 1498 if (Value=="true" || Value=="false") 1499 OS << " if (Bits[" << Target << "::" 1500 << Instance << "]) " 1501 << Attribute << " = " << Value << ";\n"; 1502 else 1503 OS << " if (Bits[" << Target << "::" 1504 << Instance << "] && " 1505 << Attribute << " < " << Value << ") " 1506 << Attribute << " = " << Value << ";\n"; 1507 } 1508 1509 OS << "}\n"; 1510 } 1511 1512 // 1513 // SubtargetEmitter::run - Main subtarget enumeration emitter. 1514 // 1515 void SubtargetEmitter::run(raw_ostream &OS) { 1516 emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS); 1517 1518 OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n"; 1519 OS << "#undef GET_SUBTARGETINFO_ENUM\n\n"; 1520 1521 OS << "namespace llvm {\n"; 1522 Enumeration(OS); 1523 OS << "} // end namespace llvm\n\n"; 1524 OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n"; 1525 1526 OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n"; 1527 OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n"; 1528 1529 OS << "namespace llvm {\n"; 1530 #if 0 1531 OS << "namespace {\n"; 1532 #endif 1533 unsigned NumFeatures = FeatureKeyValues(OS); 1534 OS << "\n"; 1535 unsigned NumProcs = CPUKeyValues(OS); 1536 OS << "\n"; 1537 EmitSchedModel(OS); 1538 OS << "\n"; 1539 #if 0 1540 OS << "} // end anonymous namespace\n\n"; 1541 #endif 1542 1543 // MCInstrInfo initialization routine. 1544 OS << "\nstatic inline MCSubtargetInfo *create" << Target 1545 << "MCSubtargetInfoImpl(" 1546 << "const Triple &TT, StringRef CPU, StringRef FS) {\n"; 1547 OS << " return new MCSubtargetInfo(TT, CPU, FS, "; 1548 if (NumFeatures) 1549 OS << Target << "FeatureKV, "; 1550 else 1551 OS << "None, "; 1552 if (NumProcs) 1553 OS << Target << "SubTypeKV, "; 1554 else 1555 OS << "None, "; 1556 OS << '\n'; OS.indent(22); 1557 OS << Target << "ProcSchedKV, " 1558 << Target << "WriteProcResTable, " 1559 << Target << "WriteLatencyTable, " 1560 << Target << "ReadAdvanceTable, "; 1561 OS << '\n'; OS.indent(22); 1562 if (SchedModels.hasItineraries()) { 1563 OS << Target << "Stages, " 1564 << Target << "OperandCycles, " 1565 << Target << "ForwardingPaths"; 1566 } else 1567 OS << "nullptr, nullptr, nullptr"; 1568 OS << ");\n}\n\n"; 1569 1570 OS << "} // end namespace llvm\n\n"; 1571 1572 OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n"; 1573 1574 OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n"; 1575 OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1576 1577 OS << "#include \"llvm/Support/Debug.h\"\n"; 1578 OS << "#include \"llvm/Support/raw_ostream.h\"\n\n"; 1579 ParseFeaturesFunction(OS, NumFeatures, NumProcs); 1580 1581 OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n"; 1582 1583 // Create a TargetSubtargetInfo subclass to hide the MC layer initialization. 1584 OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n"; 1585 OS << "#undef GET_SUBTARGETINFO_HEADER\n\n"; 1586 1587 std::string ClassName = Target + "GenSubtargetInfo"; 1588 OS << "namespace llvm {\n"; 1589 OS << "class DFAPacketizer;\n"; 1590 OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n" 1591 << " explicit " << ClassName << "(const Triple &TT, StringRef CPU, " 1592 << "StringRef FS);\n" 1593 << "public:\n" 1594 << " unsigned resolveSchedClass(unsigned SchedClass, " 1595 << " const MachineInstr *DefMI," 1596 << " const TargetSchedModel *SchedModel) const override;\n" 1597 << " DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)" 1598 << " const;\n"; 1599 if (TGT.getHwModes().getNumModeIds() > 1) 1600 OS << " unsigned getHwMode() const override;\n"; 1601 OS << "};\n" 1602 << "} // end namespace llvm\n\n"; 1603 1604 OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n"; 1605 1606 OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n"; 1607 OS << "#undef GET_SUBTARGETINFO_CTOR\n\n"; 1608 1609 OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n"; 1610 OS << "namespace llvm {\n"; 1611 OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n"; 1612 OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n"; 1613 OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n"; 1614 OS << "extern const llvm::MCWriteProcResEntry " 1615 << Target << "WriteProcResTable[];\n"; 1616 OS << "extern const llvm::MCWriteLatencyEntry " 1617 << Target << "WriteLatencyTable[];\n"; 1618 OS << "extern const llvm::MCReadAdvanceEntry " 1619 << Target << "ReadAdvanceTable[];\n"; 1620 1621 if (SchedModels.hasItineraries()) { 1622 OS << "extern const llvm::InstrStage " << Target << "Stages[];\n"; 1623 OS << "extern const unsigned " << Target << "OperandCycles[];\n"; 1624 OS << "extern const unsigned " << Target << "ForwardingPaths[];\n"; 1625 } 1626 1627 OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, " 1628 << "StringRef FS)\n" 1629 << " : TargetSubtargetInfo(TT, CPU, FS, "; 1630 if (NumFeatures) 1631 OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), "; 1632 else 1633 OS << "None, "; 1634 if (NumProcs) 1635 OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), "; 1636 else 1637 OS << "None, "; 1638 OS << '\n'; OS.indent(24); 1639 OS << Target << "ProcSchedKV, " 1640 << Target << "WriteProcResTable, " 1641 << Target << "WriteLatencyTable, " 1642 << Target << "ReadAdvanceTable, "; 1643 OS << '\n'; OS.indent(24); 1644 if (SchedModels.hasItineraries()) { 1645 OS << Target << "Stages, " 1646 << Target << "OperandCycles, " 1647 << Target << "ForwardingPaths"; 1648 } else 1649 OS << "nullptr, nullptr, nullptr"; 1650 OS << ") {}\n\n"; 1651 1652 EmitSchedModelHelpers(ClassName, OS); 1653 EmitHwModeCheck(ClassName, OS); 1654 1655 OS << "} // end namespace llvm\n\n"; 1656 1657 OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n"; 1658 } 1659 1660 namespace llvm { 1661 1662 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) { 1663 CodeGenTarget CGTarget(RK); 1664 SubtargetEmitter(RK, CGTarget).run(OS); 1665 } 1666 1667 } // end namespace llvm 1668