1 //===- SubtargetEmitter.cpp - Generate subtarget enumerations -------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This tablegen backend emits subtarget enumerations.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "CodeGenTarget.h"
14 #include "CodeGenSchedule.h"
15 #include "PredicateExpander.h"
16 #include "llvm/ADT/SmallPtrSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/StringExtras.h"
19 #include "llvm/ADT/StringRef.h"
20 #include "llvm/MC/MCInstrItineraries.h"
21 #include "llvm/MC/MCSchedule.h"
22 #include "llvm/MC/SubtargetFeature.h"
23 #include "llvm/Support/Debug.h"
24 #include "llvm/Support/Format.h"
25 #include "llvm/Support/raw_ostream.h"
26 #include "llvm/TableGen/Error.h"
27 #include "llvm/TableGen/Record.h"
28 #include "llvm/TableGen/TableGenBackend.h"
29 #include <algorithm>
30 #include <cassert>
31 #include <cstdint>
32 #include <iterator>
33 #include <map>
34 #include <string>
35 #include <vector>
36 
37 using namespace llvm;
38 
39 #define DEBUG_TYPE "subtarget-emitter"
40 
41 namespace {
42 
43 class SubtargetEmitter {
44   // Each processor has a SchedClassDesc table with an entry for each SchedClass.
45   // The SchedClassDesc table indexes into a global write resource table, write
46   // latency table, and read advance table.
47   struct SchedClassTables {
48     std::vector<std::vector<MCSchedClassDesc>> ProcSchedClasses;
49     std::vector<MCWriteProcResEntry> WriteProcResources;
50     std::vector<MCWriteLatencyEntry> WriteLatencies;
51     std::vector<std::string> WriterNames;
52     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
53 
54     // Reserve an invalid entry at index 0
55     SchedClassTables() {
56       ProcSchedClasses.resize(1);
57       WriteProcResources.resize(1);
58       WriteLatencies.resize(1);
59       WriterNames.push_back("InvalidWrite");
60       ReadAdvanceEntries.resize(1);
61     }
62   };
63 
64   struct LessWriteProcResources {
65     bool operator()(const MCWriteProcResEntry &LHS,
66                     const MCWriteProcResEntry &RHS) {
67       return LHS.ProcResourceIdx < RHS.ProcResourceIdx;
68     }
69   };
70 
71   const CodeGenTarget &TGT;
72   RecordKeeper &Records;
73   CodeGenSchedModels &SchedModels;
74   std::string Target;
75 
76   void Enumeration(raw_ostream &OS);
77   unsigned FeatureKeyValues(raw_ostream &OS);
78   unsigned CPUKeyValues(raw_ostream &OS);
79   void FormItineraryStageString(const std::string &Names,
80                                 Record *ItinData, std::string &ItinString,
81                                 unsigned &NStages);
82   void FormItineraryOperandCycleString(Record *ItinData, std::string &ItinString,
83                                        unsigned &NOperandCycles);
84   void FormItineraryBypassString(const std::string &Names,
85                                  Record *ItinData,
86                                  std::string &ItinString, unsigned NOperandCycles);
87   void EmitStageAndOperandCycleData(raw_ostream &OS,
88                                     std::vector<std::vector<InstrItinerary>>
89                                       &ProcItinLists);
90   void EmitItineraries(raw_ostream &OS,
91                        std::vector<std::vector<InstrItinerary>>
92                          &ProcItinLists);
93   unsigned EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
94                                   raw_ostream &OS);
95   void EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
96                               raw_ostream &OS);
97   void EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
98                               raw_ostream &OS);
99   void EmitProcessorProp(raw_ostream &OS, const Record *R, StringRef Name,
100                          char Separator);
101   void EmitProcessorResourceSubUnits(const CodeGenProcModel &ProcModel,
102                                      raw_ostream &OS);
103   void EmitProcessorResources(const CodeGenProcModel &ProcModel,
104                               raw_ostream &OS);
105   Record *FindWriteResources(const CodeGenSchedRW &SchedWrite,
106                              const CodeGenProcModel &ProcModel);
107   Record *FindReadAdvance(const CodeGenSchedRW &SchedRead,
108                           const CodeGenProcModel &ProcModel);
109   void ExpandProcResources(RecVec &PRVec, std::vector<int64_t> &Cycles,
110                            const CodeGenProcModel &ProcModel);
111   void GenSchedClassTables(const CodeGenProcModel &ProcModel,
112                            SchedClassTables &SchedTables);
113   void EmitSchedClassTables(SchedClassTables &SchedTables, raw_ostream &OS);
114   void EmitProcessorModels(raw_ostream &OS);
115   void EmitProcessorLookup(raw_ostream &OS);
116   void EmitSchedModelHelpers(const std::string &ClassName, raw_ostream &OS);
117   void emitSchedModelHelpersImpl(raw_ostream &OS,
118                                  bool OnlyExpandMCInstPredicates = false);
119   void emitGenMCSubtargetInfo(raw_ostream &OS);
120   void EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS);
121 
122   void EmitSchedModel(raw_ostream &OS);
123   void EmitHwModeCheck(const std::string &ClassName, raw_ostream &OS);
124   void ParseFeaturesFunction(raw_ostream &OS, unsigned NumFeatures,
125                              unsigned NumProcs);
126 
127 public:
128   SubtargetEmitter(RecordKeeper &R, CodeGenTarget &TGT)
129     : TGT(TGT), Records(R), SchedModels(TGT.getSchedModels()),
130       Target(TGT.getName()) {}
131 
132   void run(raw_ostream &o);
133 };
134 
135 } // end anonymous namespace
136 
137 //
138 // Enumeration - Emit the specified class as an enumeration.
139 //
140 void SubtargetEmitter::Enumeration(raw_ostream &OS) {
141   // Get all records of class and sort
142   std::vector<Record*> DefList =
143     Records.getAllDerivedDefinitions("SubtargetFeature");
144   llvm::sort(DefList, LessRecord());
145 
146   unsigned N = DefList.size();
147   if (N == 0)
148     return;
149   if (N > MAX_SUBTARGET_FEATURES)
150     PrintFatalError("Too many subtarget features! Bump MAX_SUBTARGET_FEATURES.");
151 
152   OS << "namespace " << Target << " {\n";
153 
154   // Open enumeration.
155   OS << "enum {\n";
156 
157   // For each record
158   for (unsigned i = 0; i < N; ++i) {
159     // Next record
160     Record *Def = DefList[i];
161 
162     // Get and emit name
163     OS << "  " << Def->getName() << " = " << i << ",\n";
164   }
165 
166   // Close enumeration and namespace
167   OS << "};\n";
168   OS << "} // end namespace " << Target << "\n";
169 }
170 
171 //
172 // FeatureKeyValues - Emit data of all the subtarget features.  Used by the
173 // command line.
174 //
175 unsigned SubtargetEmitter::FeatureKeyValues(raw_ostream &OS) {
176   // Gather and sort all the features
177   std::vector<Record*> FeatureList =
178                            Records.getAllDerivedDefinitions("SubtargetFeature");
179 
180   if (FeatureList.empty())
181     return 0;
182 
183   llvm::sort(FeatureList, LessRecordFieldName());
184 
185   // Begin feature table
186   OS << "// Sorted (by key) array of values for CPU features.\n"
187      << "extern const llvm::SubtargetFeatureKV " << Target
188      << "FeatureKV[] = {\n";
189 
190   // For each feature
191   unsigned NumFeatures = 0;
192   for (unsigned i = 0, N = FeatureList.size(); i < N; ++i) {
193     // Next feature
194     Record *Feature = FeatureList[i];
195 
196     StringRef Name = Feature->getName();
197     StringRef CommandLineName = Feature->getValueAsString("Name");
198     StringRef Desc = Feature->getValueAsString("Desc");
199 
200     if (CommandLineName.empty()) continue;
201 
202     // Emit as { "feature", "description", { featureEnum }, { i1 , i2 , ... , in } }
203     OS << "  { "
204        << "\"" << CommandLineName << "\", "
205        << "\"" << Desc << "\", "
206        << "{ " << Target << "::" << Name << " }, ";
207 
208     RecVec ImpliesList = Feature->getValueAsListOfDefs("Implies");
209 
210     OS << "{";
211     for (unsigned j = 0, M = ImpliesList.size(); j < M;) {
212       OS << " " << Target << "::" << ImpliesList[j]->getName();
213       if (++j < M) OS << ",";
214     }
215     OS << " } },\n";
216     ++NumFeatures;
217   }
218 
219   // End feature table
220   OS << "};\n";
221 
222   return NumFeatures;
223 }
224 
225 //
226 // CPUKeyValues - Emit data of all the subtarget processors.  Used by command
227 // line.
228 //
229 unsigned SubtargetEmitter::CPUKeyValues(raw_ostream &OS) {
230   // Gather and sort processor information
231   std::vector<Record*> ProcessorList =
232                           Records.getAllDerivedDefinitions("Processor");
233   llvm::sort(ProcessorList, LessRecordFieldName());
234 
235   // Begin processor table
236   OS << "// Sorted (by key) array of values for CPU subtype.\n"
237      << "extern const llvm::SubtargetFeatureKV " << Target
238      << "SubTypeKV[] = {\n";
239 
240   // For each processor
241   for (Record *Processor : ProcessorList) {
242     StringRef Name = Processor->getValueAsString("Name");
243     RecVec FeatureList = Processor->getValueAsListOfDefs("Features");
244 
245     // Emit as { "cpu", "description", { f1 , f2 , ... fn } },
246     OS << "  { "
247        << "\"" << Name << "\", "
248        << "\"Select the " << Name << " processor\", ";
249 
250     OS << "{";
251     for (unsigned j = 0, M = FeatureList.size(); j < M;) {
252       OS << " " << Target << "::" << FeatureList[j]->getName();
253       if (++j < M) OS << ",";
254     }
255     // The { } is for the "implies" section of this data structure.
256     OS << " }, { } },\n";
257   }
258 
259   // End processor table
260   OS << "};\n";
261 
262   return ProcessorList.size();
263 }
264 
265 //
266 // FormItineraryStageString - Compose a string containing the stage
267 // data initialization for the specified itinerary.  N is the number
268 // of stages.
269 //
270 void SubtargetEmitter::FormItineraryStageString(const std::string &Name,
271                                                 Record *ItinData,
272                                                 std::string &ItinString,
273                                                 unsigned &NStages) {
274   // Get states list
275   RecVec StageList = ItinData->getValueAsListOfDefs("Stages");
276 
277   // For each stage
278   unsigned N = NStages = StageList.size();
279   for (unsigned i = 0; i < N;) {
280     // Next stage
281     const Record *Stage = StageList[i];
282 
283     // Form string as ,{ cycles, u1 | u2 | ... | un, timeinc, kind }
284     int Cycles = Stage->getValueAsInt("Cycles");
285     ItinString += "  { " + itostr(Cycles) + ", ";
286 
287     // Get unit list
288     RecVec UnitList = Stage->getValueAsListOfDefs("Units");
289 
290     // For each unit
291     for (unsigned j = 0, M = UnitList.size(); j < M;) {
292       // Add name and bitwise or
293       ItinString += Name + "FU::" + UnitList[j]->getName().str();
294       if (++j < M) ItinString += " | ";
295     }
296 
297     int TimeInc = Stage->getValueAsInt("TimeInc");
298     ItinString += ", " + itostr(TimeInc);
299 
300     int Kind = Stage->getValueAsInt("Kind");
301     ItinString += ", (llvm::InstrStage::ReservationKinds)" + itostr(Kind);
302 
303     // Close off stage
304     ItinString += " }";
305     if (++i < N) ItinString += ", ";
306   }
307 }
308 
309 //
310 // FormItineraryOperandCycleString - Compose a string containing the
311 // operand cycle initialization for the specified itinerary.  N is the
312 // number of operands that has cycles specified.
313 //
314 void SubtargetEmitter::FormItineraryOperandCycleString(Record *ItinData,
315                          std::string &ItinString, unsigned &NOperandCycles) {
316   // Get operand cycle list
317   std::vector<int64_t> OperandCycleList =
318     ItinData->getValueAsListOfInts("OperandCycles");
319 
320   // For each operand cycle
321   unsigned N = NOperandCycles = OperandCycleList.size();
322   for (unsigned i = 0; i < N;) {
323     // Next operand cycle
324     const int OCycle = OperandCycleList[i];
325 
326     ItinString += "  " + itostr(OCycle);
327     if (++i < N) ItinString += ", ";
328   }
329 }
330 
331 void SubtargetEmitter::FormItineraryBypassString(const std::string &Name,
332                                                  Record *ItinData,
333                                                  std::string &ItinString,
334                                                  unsigned NOperandCycles) {
335   RecVec BypassList = ItinData->getValueAsListOfDefs("Bypasses");
336   unsigned N = BypassList.size();
337   unsigned i = 0;
338   for (; i < N;) {
339     ItinString += Name + "Bypass::" + BypassList[i]->getName().str();
340     if (++i < NOperandCycles) ItinString += ", ";
341   }
342   for (; i < NOperandCycles;) {
343     ItinString += " 0";
344     if (++i < NOperandCycles) ItinString += ", ";
345   }
346 }
347 
348 //
349 // EmitStageAndOperandCycleData - Generate unique itinerary stages and operand
350 // cycle tables. Create a list of InstrItinerary objects (ProcItinLists) indexed
351 // by CodeGenSchedClass::Index.
352 //
353 void SubtargetEmitter::
354 EmitStageAndOperandCycleData(raw_ostream &OS,
355                              std::vector<std::vector<InstrItinerary>>
356                                &ProcItinLists) {
357   // Multiple processor models may share an itinerary record. Emit it once.
358   SmallPtrSet<Record*, 8> ItinsDefSet;
359 
360   // Emit functional units for all the itineraries.
361   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
362 
363     if (!ItinsDefSet.insert(ProcModel.ItinsDef).second)
364       continue;
365 
366     RecVec FUs = ProcModel.ItinsDef->getValueAsListOfDefs("FU");
367     if (FUs.empty())
368       continue;
369 
370     StringRef Name = ProcModel.ItinsDef->getName();
371     OS << "\n// Functional units for \"" << Name << "\"\n"
372        << "namespace " << Name << "FU {\n";
373 
374     for (unsigned j = 0, FUN = FUs.size(); j < FUN; ++j)
375       OS << "  const unsigned " << FUs[j]->getName()
376          << " = 1 << " << j << ";\n";
377 
378     OS << "} // end namespace " << Name << "FU\n";
379 
380     RecVec BPs = ProcModel.ItinsDef->getValueAsListOfDefs("BP");
381     if (!BPs.empty()) {
382       OS << "\n// Pipeline forwarding paths for itineraries \"" << Name
383          << "\"\n" << "namespace " << Name << "Bypass {\n";
384 
385       OS << "  const unsigned NoBypass = 0;\n";
386       for (unsigned j = 0, BPN = BPs.size(); j < BPN; ++j)
387         OS << "  const unsigned " << BPs[j]->getName()
388            << " = 1 << " << j << ";\n";
389 
390       OS << "} // end namespace " << Name << "Bypass\n";
391     }
392   }
393 
394   // Begin stages table
395   std::string StageTable = "\nextern const llvm::InstrStage " + Target +
396                            "Stages[] = {\n";
397   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required }, // No itinerary\n";
398 
399   // Begin operand cycle table
400   std::string OperandCycleTable = "extern const unsigned " + Target +
401     "OperandCycles[] = {\n";
402   OperandCycleTable += "  0, // No itinerary\n";
403 
404   // Begin pipeline bypass table
405   std::string BypassTable = "extern const unsigned " + Target +
406     "ForwardingPaths[] = {\n";
407   BypassTable += " 0, // No itinerary\n";
408 
409   // For each Itinerary across all processors, add a unique entry to the stages,
410   // operand cycles, and pipeline bypass tables. Then add the new Itinerary
411   // object with computed offsets to the ProcItinLists result.
412   unsigned StageCount = 1, OperandCycleCount = 1;
413   std::map<std::string, unsigned> ItinStageMap, ItinOperandMap;
414   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
415     // Add process itinerary to the list.
416     ProcItinLists.resize(ProcItinLists.size()+1);
417 
418     // If this processor defines no itineraries, then leave the itinerary list
419     // empty.
420     std::vector<InstrItinerary> &ItinList = ProcItinLists.back();
421     if (!ProcModel.hasItineraries())
422       continue;
423 
424     StringRef Name = ProcModel.ItinsDef->getName();
425 
426     ItinList.resize(SchedModels.numInstrSchedClasses());
427     assert(ProcModel.ItinDefList.size() == ItinList.size() && "bad Itins");
428 
429     for (unsigned SchedClassIdx = 0, SchedClassEnd = ItinList.size();
430          SchedClassIdx < SchedClassEnd; ++SchedClassIdx) {
431 
432       // Next itinerary data
433       Record *ItinData = ProcModel.ItinDefList[SchedClassIdx];
434 
435       // Get string and stage count
436       std::string ItinStageString;
437       unsigned NStages = 0;
438       if (ItinData)
439         FormItineraryStageString(Name, ItinData, ItinStageString, NStages);
440 
441       // Get string and operand cycle count
442       std::string ItinOperandCycleString;
443       unsigned NOperandCycles = 0;
444       std::string ItinBypassString;
445       if (ItinData) {
446         FormItineraryOperandCycleString(ItinData, ItinOperandCycleString,
447                                         NOperandCycles);
448 
449         FormItineraryBypassString(Name, ItinData, ItinBypassString,
450                                   NOperandCycles);
451       }
452 
453       // Check to see if stage already exists and create if it doesn't
454       uint16_t FindStage = 0;
455       if (NStages > 0) {
456         FindStage = ItinStageMap[ItinStageString];
457         if (FindStage == 0) {
458           // Emit as { cycles, u1 | u2 | ... | un, timeinc }, // indices
459           StageTable += ItinStageString + ", // " + itostr(StageCount);
460           if (NStages > 1)
461             StageTable += "-" + itostr(StageCount + NStages - 1);
462           StageTable += "\n";
463           // Record Itin class number.
464           ItinStageMap[ItinStageString] = FindStage = StageCount;
465           StageCount += NStages;
466         }
467       }
468 
469       // Check to see if operand cycle already exists and create if it doesn't
470       uint16_t FindOperandCycle = 0;
471       if (NOperandCycles > 0) {
472         std::string ItinOperandString = ItinOperandCycleString+ItinBypassString;
473         FindOperandCycle = ItinOperandMap[ItinOperandString];
474         if (FindOperandCycle == 0) {
475           // Emit as  cycle, // index
476           OperandCycleTable += ItinOperandCycleString + ", // ";
477           std::string OperandIdxComment = itostr(OperandCycleCount);
478           if (NOperandCycles > 1)
479             OperandIdxComment += "-"
480               + itostr(OperandCycleCount + NOperandCycles - 1);
481           OperandCycleTable += OperandIdxComment + "\n";
482           // Record Itin class number.
483           ItinOperandMap[ItinOperandCycleString] =
484             FindOperandCycle = OperandCycleCount;
485           // Emit as bypass, // index
486           BypassTable += ItinBypassString + ", // " + OperandIdxComment + "\n";
487           OperandCycleCount += NOperandCycles;
488         }
489       }
490 
491       // Set up itinerary as location and location + stage count
492       int16_t NumUOps = ItinData ? ItinData->getValueAsInt("NumMicroOps") : 0;
493       InstrItinerary Intinerary = {
494           NumUOps,
495           FindStage,
496           uint16_t(FindStage + NStages),
497           FindOperandCycle,
498           uint16_t(FindOperandCycle + NOperandCycles),
499       };
500 
501       // Inject - empty slots will be 0, 0
502       ItinList[SchedClassIdx] = Intinerary;
503     }
504   }
505 
506   // Closing stage
507   StageTable += "  { 0, 0, 0, llvm::InstrStage::Required } // End stages\n";
508   StageTable += "};\n";
509 
510   // Closing operand cycles
511   OperandCycleTable += "  0 // End operand cycles\n";
512   OperandCycleTable += "};\n";
513 
514   BypassTable += " 0 // End bypass tables\n";
515   BypassTable += "};\n";
516 
517   // Emit tables.
518   OS << StageTable;
519   OS << OperandCycleTable;
520   OS << BypassTable;
521 }
522 
523 //
524 // EmitProcessorData - Generate data for processor itineraries that were
525 // computed during EmitStageAndOperandCycleData(). ProcItinLists lists all
526 // Itineraries for each processor. The Itinerary lists are indexed on
527 // CodeGenSchedClass::Index.
528 //
529 void SubtargetEmitter::
530 EmitItineraries(raw_ostream &OS,
531                 std::vector<std::vector<InstrItinerary>> &ProcItinLists) {
532   // Multiple processor models may share an itinerary record. Emit it once.
533   SmallPtrSet<Record*, 8> ItinsDefSet;
534 
535   // For each processor's machine model
536   std::vector<std::vector<InstrItinerary>>::iterator
537       ProcItinListsIter = ProcItinLists.begin();
538   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
539          PE = SchedModels.procModelEnd(); PI != PE; ++PI, ++ProcItinListsIter) {
540 
541     Record *ItinsDef = PI->ItinsDef;
542     if (!ItinsDefSet.insert(ItinsDef).second)
543       continue;
544 
545     // Get the itinerary list for the processor.
546     assert(ProcItinListsIter != ProcItinLists.end() && "bad iterator");
547     std::vector<InstrItinerary> &ItinList = *ProcItinListsIter;
548 
549     // Empty itineraries aren't referenced anywhere in the tablegen output
550     // so don't emit them.
551     if (ItinList.empty())
552       continue;
553 
554     OS << "\n";
555     OS << "static const llvm::InstrItinerary ";
556 
557     // Begin processor itinerary table
558     OS << ItinsDef->getName() << "[] = {\n";
559 
560     // For each itinerary class in CodeGenSchedClass::Index order.
561     for (unsigned j = 0, M = ItinList.size(); j < M; ++j) {
562       InstrItinerary &Intinerary = ItinList[j];
563 
564       // Emit Itinerary in the form of
565       // { firstStage, lastStage, firstCycle, lastCycle } // index
566       OS << "  { " <<
567         Intinerary.NumMicroOps << ", " <<
568         Intinerary.FirstStage << ", " <<
569         Intinerary.LastStage << ", " <<
570         Intinerary.FirstOperandCycle << ", " <<
571         Intinerary.LastOperandCycle << " }" <<
572         ", // " << j << " " << SchedModels.getSchedClass(j).Name << "\n";
573     }
574     // End processor itinerary table
575     OS << "  { 0, uint16_t(~0U), uint16_t(~0U), uint16_t(~0U), uint16_t(~0U) }"
576           "// end marker\n";
577     OS << "};\n";
578   }
579 }
580 
581 // Emit either the value defined in the TableGen Record, or the default
582 // value defined in the C++ header. The Record is null if the processor does not
583 // define a model.
584 void SubtargetEmitter::EmitProcessorProp(raw_ostream &OS, const Record *R,
585                                          StringRef Name, char Separator) {
586   OS << "  ";
587   int V = R ? R->getValueAsInt(Name) : -1;
588   if (V >= 0)
589     OS << V << Separator << " // " << Name;
590   else
591     OS << "MCSchedModel::Default" << Name << Separator;
592   OS << '\n';
593 }
594 
595 void SubtargetEmitter::EmitProcessorResourceSubUnits(
596     const CodeGenProcModel &ProcModel, raw_ostream &OS) {
597   OS << "\nstatic const unsigned " << ProcModel.ModelName
598      << "ProcResourceSubUnits[] = {\n"
599      << "  0,  // Invalid\n";
600 
601   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
602     Record *PRDef = ProcModel.ProcResourceDefs[i];
603     if (!PRDef->isSubClassOf("ProcResGroup"))
604       continue;
605     RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
606     for (Record *RUDef : ResUnits) {
607       Record *const RU =
608           SchedModels.findProcResUnits(RUDef, ProcModel, PRDef->getLoc());
609       for (unsigned J = 0; J < RU->getValueAsInt("NumUnits"); ++J) {
610         OS << "  " << ProcModel.getProcResourceIdx(RU) << ", ";
611       }
612     }
613     OS << "  // " << PRDef->getName() << "\n";
614   }
615   OS << "};\n";
616 }
617 
618 static void EmitRetireControlUnitInfo(const CodeGenProcModel &ProcModel,
619                                       raw_ostream &OS) {
620   int64_t ReorderBufferSize = 0, MaxRetirePerCycle = 0;
621   if (Record *RCU = ProcModel.RetireControlUnit) {
622     ReorderBufferSize =
623         std::max(ReorderBufferSize, RCU->getValueAsInt("ReorderBufferSize"));
624     MaxRetirePerCycle =
625         std::max(MaxRetirePerCycle, RCU->getValueAsInt("MaxRetirePerCycle"));
626   }
627 
628   OS << ReorderBufferSize << ", // ReorderBufferSize\n  ";
629   OS << MaxRetirePerCycle << ", // MaxRetirePerCycle\n  ";
630 }
631 
632 static void EmitRegisterFileInfo(const CodeGenProcModel &ProcModel,
633                                  unsigned NumRegisterFiles,
634                                  unsigned NumCostEntries, raw_ostream &OS) {
635   if (NumRegisterFiles)
636     OS << ProcModel.ModelName << "RegisterFiles,\n  " << (1 + NumRegisterFiles);
637   else
638     OS << "nullptr,\n  0";
639 
640   OS << ", // Number of register files.\n  ";
641   if (NumCostEntries)
642     OS << ProcModel.ModelName << "RegisterCosts,\n  ";
643   else
644     OS << "nullptr,\n  ";
645   OS << NumCostEntries << ", // Number of register cost entries.\n";
646 }
647 
648 unsigned
649 SubtargetEmitter::EmitRegisterFileTables(const CodeGenProcModel &ProcModel,
650                                          raw_ostream &OS) {
651   if (llvm::all_of(ProcModel.RegisterFiles, [](const CodeGenRegisterFile &RF) {
652         return RF.hasDefaultCosts();
653       }))
654     return 0;
655 
656   // Print the RegisterCost table first.
657   OS << "\n// {RegisterClassID, Register Cost, AllowMoveElimination }\n";
658   OS << "static const llvm::MCRegisterCostEntry " << ProcModel.ModelName
659      << "RegisterCosts"
660      << "[] = {\n";
661 
662   for (const CodeGenRegisterFile &RF : ProcModel.RegisterFiles) {
663     // Skip register files with a default cost table.
664     if (RF.hasDefaultCosts())
665       continue;
666     // Add entries to the cost table.
667     for (const CodeGenRegisterCost &RC : RF.Costs) {
668       OS << "  { ";
669       Record *Rec = RC.RCDef;
670       if (Rec->getValue("Namespace"))
671         OS << Rec->getValueAsString("Namespace") << "::";
672       OS << Rec->getName() << "RegClassID, " << RC.Cost << ", "
673          << RC.AllowMoveElimination << "},\n";
674     }
675   }
676   OS << "};\n";
677 
678   // Now generate a table with register file info.
679   OS << "\n // {Name, #PhysRegs, #CostEntries, IndexToCostTbl, "
680      << "MaxMovesEliminatedPerCycle, AllowZeroMoveEliminationOnly }\n";
681   OS << "static const llvm::MCRegisterFileDesc " << ProcModel.ModelName
682      << "RegisterFiles"
683      << "[] = {\n"
684      << "  { \"InvalidRegisterFile\", 0, 0, 0, 0, 0 },\n";
685   unsigned CostTblIndex = 0;
686 
687   for (const CodeGenRegisterFile &RD : ProcModel.RegisterFiles) {
688     OS << "  { ";
689     OS << '"' << RD.Name << '"' << ", " << RD.NumPhysRegs << ", ";
690     unsigned NumCostEntries = RD.Costs.size();
691     OS << NumCostEntries << ", " << CostTblIndex << ", "
692        << RD.MaxMovesEliminatedPerCycle << ", "
693        << RD.AllowZeroMoveEliminationOnly << "},\n";
694     CostTblIndex += NumCostEntries;
695   }
696   OS << "};\n";
697 
698   return CostTblIndex;
699 }
700 
701 void SubtargetEmitter::EmitLoadStoreQueueInfo(const CodeGenProcModel &ProcModel,
702                                               raw_ostream &OS) {
703   unsigned QueueID = 0;
704   if (ProcModel.LoadQueue) {
705     const Record *Queue = ProcModel.LoadQueue->getValueAsDef("QueueDescriptor");
706     QueueID =
707         1 + std::distance(ProcModel.ProcResourceDefs.begin(),
708                           std::find(ProcModel.ProcResourceDefs.begin(),
709                                     ProcModel.ProcResourceDefs.end(), Queue));
710   }
711   OS << "  " << QueueID << ", // Resource Descriptor for the Load Queue\n";
712 
713   QueueID = 0;
714   if (ProcModel.StoreQueue) {
715     const Record *Queue =
716         ProcModel.StoreQueue->getValueAsDef("QueueDescriptor");
717     QueueID =
718         1 + std::distance(ProcModel.ProcResourceDefs.begin(),
719                           std::find(ProcModel.ProcResourceDefs.begin(),
720                                     ProcModel.ProcResourceDefs.end(), Queue));
721   }
722   OS << "  " << QueueID << ", // Resource Descriptor for the Store Queue\n";
723 }
724 
725 void SubtargetEmitter::EmitExtraProcessorInfo(const CodeGenProcModel &ProcModel,
726                                               raw_ostream &OS) {
727   // Generate a table of register file descriptors (one entry per each user
728   // defined register file), and a table of register costs.
729   unsigned NumCostEntries = EmitRegisterFileTables(ProcModel, OS);
730 
731   // Now generate a table for the extra processor info.
732   OS << "\nstatic const llvm::MCExtraProcessorInfo " << ProcModel.ModelName
733      << "ExtraInfo = {\n  ";
734 
735   // Add information related to the retire control unit.
736   EmitRetireControlUnitInfo(ProcModel, OS);
737 
738   // Add information related to the register files (i.e. where to find register
739   // file descriptors and register costs).
740   EmitRegisterFileInfo(ProcModel, ProcModel.RegisterFiles.size(),
741                        NumCostEntries, OS);
742 
743   // Add information about load/store queues.
744   EmitLoadStoreQueueInfo(ProcModel, OS);
745 
746   OS << "};\n";
747 }
748 
749 void SubtargetEmitter::EmitProcessorResources(const CodeGenProcModel &ProcModel,
750                                               raw_ostream &OS) {
751   EmitProcessorResourceSubUnits(ProcModel, OS);
752 
753   OS << "\n// {Name, NumUnits, SuperIdx, BufferSize, SubUnitsIdxBegin}\n";
754   OS << "static const llvm::MCProcResourceDesc " << ProcModel.ModelName
755      << "ProcResources"
756      << "[] = {\n"
757      << "  {\"InvalidUnit\", 0, 0, 0, 0},\n";
758 
759   unsigned SubUnitsOffset = 1;
760   for (unsigned i = 0, e = ProcModel.ProcResourceDefs.size(); i < e; ++i) {
761     Record *PRDef = ProcModel.ProcResourceDefs[i];
762 
763     Record *SuperDef = nullptr;
764     unsigned SuperIdx = 0;
765     unsigned NumUnits = 0;
766     const unsigned SubUnitsBeginOffset = SubUnitsOffset;
767     int BufferSize = PRDef->getValueAsInt("BufferSize");
768     if (PRDef->isSubClassOf("ProcResGroup")) {
769       RecVec ResUnits = PRDef->getValueAsListOfDefs("Resources");
770       for (Record *RU : ResUnits) {
771         NumUnits += RU->getValueAsInt("NumUnits");
772         SubUnitsOffset += RU->getValueAsInt("NumUnits");
773       }
774     }
775     else {
776       // Find the SuperIdx
777       if (PRDef->getValueInit("Super")->isComplete()) {
778         SuperDef =
779             SchedModels.findProcResUnits(PRDef->getValueAsDef("Super"),
780                                          ProcModel, PRDef->getLoc());
781         SuperIdx = ProcModel.getProcResourceIdx(SuperDef);
782       }
783       NumUnits = PRDef->getValueAsInt("NumUnits");
784     }
785     // Emit the ProcResourceDesc
786     OS << "  {\"" << PRDef->getName() << "\", ";
787     if (PRDef->getName().size() < 15)
788       OS.indent(15 - PRDef->getName().size());
789     OS << NumUnits << ", " << SuperIdx << ", " << BufferSize << ", ";
790     if (SubUnitsBeginOffset != SubUnitsOffset) {
791       OS << ProcModel.ModelName << "ProcResourceSubUnits + "
792          << SubUnitsBeginOffset;
793     } else {
794       OS << "nullptr";
795     }
796     OS << "}, // #" << i+1;
797     if (SuperDef)
798       OS << ", Super=" << SuperDef->getName();
799     OS << "\n";
800   }
801   OS << "};\n";
802 }
803 
804 // Find the WriteRes Record that defines processor resources for this
805 // SchedWrite.
806 Record *SubtargetEmitter::FindWriteResources(
807   const CodeGenSchedRW &SchedWrite, const CodeGenProcModel &ProcModel) {
808 
809   // Check if the SchedWrite is already subtarget-specific and directly
810   // specifies a set of processor resources.
811   if (SchedWrite.TheDef->isSubClassOf("SchedWriteRes"))
812     return SchedWrite.TheDef;
813 
814   Record *AliasDef = nullptr;
815   for (Record *A : SchedWrite.Aliases) {
816     const CodeGenSchedRW &AliasRW =
817       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
818     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
819       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
820       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
821         continue;
822     }
823     if (AliasDef)
824       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
825                     "defined for processor " + ProcModel.ModelName +
826                     " Ensure only one SchedAlias exists per RW.");
827     AliasDef = AliasRW.TheDef;
828   }
829   if (AliasDef && AliasDef->isSubClassOf("SchedWriteRes"))
830     return AliasDef;
831 
832   // Check this processor's list of write resources.
833   Record *ResDef = nullptr;
834   for (Record *WR : ProcModel.WriteResDefs) {
835     if (!WR->isSubClassOf("WriteRes"))
836       continue;
837     if (AliasDef == WR->getValueAsDef("WriteType")
838         || SchedWrite.TheDef == WR->getValueAsDef("WriteType")) {
839       if (ResDef) {
840         PrintFatalError(WR->getLoc(), "Resources are defined for both "
841                       "SchedWrite and its alias on processor " +
842                       ProcModel.ModelName);
843       }
844       ResDef = WR;
845     }
846   }
847   // TODO: If ProcModel has a base model (previous generation processor),
848   // then call FindWriteResources recursively with that model here.
849   if (!ResDef) {
850     PrintFatalError(ProcModel.ModelDef->getLoc(),
851                     Twine("Processor does not define resources for ") +
852                     SchedWrite.TheDef->getName());
853   }
854   return ResDef;
855 }
856 
857 /// Find the ReadAdvance record for the given SchedRead on this processor or
858 /// return NULL.
859 Record *SubtargetEmitter::FindReadAdvance(const CodeGenSchedRW &SchedRead,
860                                           const CodeGenProcModel &ProcModel) {
861   // Check for SchedReads that directly specify a ReadAdvance.
862   if (SchedRead.TheDef->isSubClassOf("SchedReadAdvance"))
863     return SchedRead.TheDef;
864 
865   // Check this processor's list of aliases for SchedRead.
866   Record *AliasDef = nullptr;
867   for (Record *A : SchedRead.Aliases) {
868     const CodeGenSchedRW &AliasRW =
869       SchedModels.getSchedRW(A->getValueAsDef("AliasRW"));
870     if (AliasRW.TheDef->getValueInit("SchedModel")->isComplete()) {
871       Record *ModelDef = AliasRW.TheDef->getValueAsDef("SchedModel");
872       if (&SchedModels.getProcModel(ModelDef) != &ProcModel)
873         continue;
874     }
875     if (AliasDef)
876       PrintFatalError(AliasRW.TheDef->getLoc(), "Multiple aliases "
877                     "defined for processor " + ProcModel.ModelName +
878                     " Ensure only one SchedAlias exists per RW.");
879     AliasDef = AliasRW.TheDef;
880   }
881   if (AliasDef && AliasDef->isSubClassOf("SchedReadAdvance"))
882     return AliasDef;
883 
884   // Check this processor's ReadAdvanceList.
885   Record *ResDef = nullptr;
886   for (Record *RA : ProcModel.ReadAdvanceDefs) {
887     if (!RA->isSubClassOf("ReadAdvance"))
888       continue;
889     if (AliasDef == RA->getValueAsDef("ReadType")
890         || SchedRead.TheDef == RA->getValueAsDef("ReadType")) {
891       if (ResDef) {
892         PrintFatalError(RA->getLoc(), "Resources are defined for both "
893                       "SchedRead and its alias on processor " +
894                       ProcModel.ModelName);
895       }
896       ResDef = RA;
897     }
898   }
899   // TODO: If ProcModel has a base model (previous generation processor),
900   // then call FindReadAdvance recursively with that model here.
901   if (!ResDef && SchedRead.TheDef->getName() != "ReadDefault") {
902     PrintFatalError(ProcModel.ModelDef->getLoc(),
903                     Twine("Processor does not define resources for ") +
904                     SchedRead.TheDef->getName());
905   }
906   return ResDef;
907 }
908 
909 // Expand an explicit list of processor resources into a full list of implied
910 // resource groups and super resources that cover them.
911 void SubtargetEmitter::ExpandProcResources(RecVec &PRVec,
912                                            std::vector<int64_t> &Cycles,
913                                            const CodeGenProcModel &PM) {
914   assert(PRVec.size() == Cycles.size() && "failed precondition");
915   for (unsigned i = 0, e = PRVec.size(); i != e; ++i) {
916     Record *PRDef = PRVec[i];
917     RecVec SubResources;
918     if (PRDef->isSubClassOf("ProcResGroup"))
919       SubResources = PRDef->getValueAsListOfDefs("Resources");
920     else {
921       SubResources.push_back(PRDef);
922       PRDef = SchedModels.findProcResUnits(PRDef, PM, PRDef->getLoc());
923       for (Record *SubDef = PRDef;
924            SubDef->getValueInit("Super")->isComplete();) {
925         if (SubDef->isSubClassOf("ProcResGroup")) {
926           // Disallow this for simplicitly.
927           PrintFatalError(SubDef->getLoc(), "Processor resource group "
928                           " cannot be a super resources.");
929         }
930         Record *SuperDef =
931             SchedModels.findProcResUnits(SubDef->getValueAsDef("Super"), PM,
932                                          SubDef->getLoc());
933         PRVec.push_back(SuperDef);
934         Cycles.push_back(Cycles[i]);
935         SubDef = SuperDef;
936       }
937     }
938     for (Record *PR : PM.ProcResourceDefs) {
939       if (PR == PRDef || !PR->isSubClassOf("ProcResGroup"))
940         continue;
941       RecVec SuperResources = PR->getValueAsListOfDefs("Resources");
942       RecIter SubI = SubResources.begin(), SubE = SubResources.end();
943       for( ; SubI != SubE; ++SubI) {
944         if (!is_contained(SuperResources, *SubI)) {
945           break;
946         }
947       }
948       if (SubI == SubE) {
949         PRVec.push_back(PR);
950         Cycles.push_back(Cycles[i]);
951       }
952     }
953   }
954 }
955 
956 // Generate the SchedClass table for this processor and update global
957 // tables. Must be called for each processor in order.
958 void SubtargetEmitter::GenSchedClassTables(const CodeGenProcModel &ProcModel,
959                                            SchedClassTables &SchedTables) {
960   SchedTables.ProcSchedClasses.resize(SchedTables.ProcSchedClasses.size() + 1);
961   if (!ProcModel.hasInstrSchedModel())
962     return;
963 
964   std::vector<MCSchedClassDesc> &SCTab = SchedTables.ProcSchedClasses.back();
965   LLVM_DEBUG(dbgs() << "\n+++ SCHED CLASSES (GenSchedClassTables) +++\n");
966   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
967     LLVM_DEBUG(SC.dump(&SchedModels));
968 
969     SCTab.resize(SCTab.size() + 1);
970     MCSchedClassDesc &SCDesc = SCTab.back();
971     // SCDesc.Name is guarded by NDEBUG
972     SCDesc.NumMicroOps = 0;
973     SCDesc.BeginGroup = false;
974     SCDesc.EndGroup = false;
975     SCDesc.WriteProcResIdx = 0;
976     SCDesc.WriteLatencyIdx = 0;
977     SCDesc.ReadAdvanceIdx = 0;
978 
979     // A Variant SchedClass has no resources of its own.
980     bool HasVariants = false;
981     for (const CodeGenSchedTransition &CGT :
982            make_range(SC.Transitions.begin(), SC.Transitions.end())) {
983       if (CGT.ProcIndices[0] == 0 ||
984           is_contained(CGT.ProcIndices, ProcModel.Index)) {
985         HasVariants = true;
986         break;
987       }
988     }
989     if (HasVariants) {
990       SCDesc.NumMicroOps = MCSchedClassDesc::VariantNumMicroOps;
991       continue;
992     }
993 
994     // Determine if the SchedClass is actually reachable on this processor. If
995     // not don't try to locate the processor resources, it will fail.
996     // If ProcIndices contains 0, this class applies to all processors.
997     assert(!SC.ProcIndices.empty() && "expect at least one procidx");
998     if (SC.ProcIndices[0] != 0) {
999       if (!is_contained(SC.ProcIndices, ProcModel.Index))
1000         continue;
1001     }
1002     IdxVec Writes = SC.Writes;
1003     IdxVec Reads = SC.Reads;
1004     if (!SC.InstRWs.empty()) {
1005       // This class has a default ReadWrite list which can be overridden by
1006       // InstRW definitions.
1007       Record *RWDef = nullptr;
1008       for (Record *RW : SC.InstRWs) {
1009         Record *RWModelDef = RW->getValueAsDef("SchedModel");
1010         if (&ProcModel == &SchedModels.getProcModel(RWModelDef)) {
1011           RWDef = RW;
1012           break;
1013         }
1014       }
1015       if (RWDef) {
1016         Writes.clear();
1017         Reads.clear();
1018         SchedModels.findRWs(RWDef->getValueAsListOfDefs("OperandReadWrites"),
1019                             Writes, Reads);
1020       }
1021     }
1022     if (Writes.empty()) {
1023       // Check this processor's itinerary class resources.
1024       for (Record *I : ProcModel.ItinRWDefs) {
1025         RecVec Matched = I->getValueAsListOfDefs("MatchedItinClasses");
1026         if (is_contained(Matched, SC.ItinClassDef)) {
1027           SchedModels.findRWs(I->getValueAsListOfDefs("OperandReadWrites"),
1028                               Writes, Reads);
1029           break;
1030         }
1031       }
1032       if (Writes.empty()) {
1033         LLVM_DEBUG(dbgs() << ProcModel.ModelName
1034                           << " does not have resources for class " << SC.Name
1035                           << '\n');
1036       }
1037     }
1038     // Sum resources across all operand writes.
1039     std::vector<MCWriteProcResEntry> WriteProcResources;
1040     std::vector<MCWriteLatencyEntry> WriteLatencies;
1041     std::vector<std::string> WriterNames;
1042     std::vector<MCReadAdvanceEntry> ReadAdvanceEntries;
1043     for (unsigned W : Writes) {
1044       IdxVec WriteSeq;
1045       SchedModels.expandRWSeqForProc(W, WriteSeq, /*IsRead=*/false,
1046                                      ProcModel);
1047 
1048       // For each operand, create a latency entry.
1049       MCWriteLatencyEntry WLEntry;
1050       WLEntry.Cycles = 0;
1051       unsigned WriteID = WriteSeq.back();
1052       WriterNames.push_back(SchedModels.getSchedWrite(WriteID).Name);
1053       // If this Write is not referenced by a ReadAdvance, don't distinguish it
1054       // from other WriteLatency entries.
1055       if (!SchedModels.hasReadOfWrite(
1056             SchedModels.getSchedWrite(WriteID).TheDef)) {
1057         WriteID = 0;
1058       }
1059       WLEntry.WriteResourceID = WriteID;
1060 
1061       for (unsigned WS : WriteSeq) {
1062 
1063         Record *WriteRes =
1064           FindWriteResources(SchedModels.getSchedWrite(WS), ProcModel);
1065 
1066         // Mark the parent class as invalid for unsupported write types.
1067         if (WriteRes->getValueAsBit("Unsupported")) {
1068           SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1069           break;
1070         }
1071         WLEntry.Cycles += WriteRes->getValueAsInt("Latency");
1072         SCDesc.NumMicroOps += WriteRes->getValueAsInt("NumMicroOps");
1073         SCDesc.BeginGroup |= WriteRes->getValueAsBit("BeginGroup");
1074         SCDesc.EndGroup |= WriteRes->getValueAsBit("EndGroup");
1075         SCDesc.BeginGroup |= WriteRes->getValueAsBit("SingleIssue");
1076         SCDesc.EndGroup |= WriteRes->getValueAsBit("SingleIssue");
1077 
1078         // Create an entry for each ProcResource listed in WriteRes.
1079         RecVec PRVec = WriteRes->getValueAsListOfDefs("ProcResources");
1080         std::vector<int64_t> Cycles =
1081           WriteRes->getValueAsListOfInts("ResourceCycles");
1082 
1083         if (Cycles.empty()) {
1084           // If ResourceCycles is not provided, default to one cycle per
1085           // resource.
1086           Cycles.resize(PRVec.size(), 1);
1087         } else if (Cycles.size() != PRVec.size()) {
1088           // If ResourceCycles is provided, check consistency.
1089           PrintFatalError(
1090               WriteRes->getLoc(),
1091               Twine("Inconsistent resource cycles: !size(ResourceCycles) != "
1092                     "!size(ProcResources): ")
1093                   .concat(Twine(PRVec.size()))
1094                   .concat(" vs ")
1095                   .concat(Twine(Cycles.size())));
1096         }
1097 
1098         ExpandProcResources(PRVec, Cycles, ProcModel);
1099 
1100         for (unsigned PRIdx = 0, PREnd = PRVec.size();
1101              PRIdx != PREnd; ++PRIdx) {
1102           MCWriteProcResEntry WPREntry;
1103           WPREntry.ProcResourceIdx = ProcModel.getProcResourceIdx(PRVec[PRIdx]);
1104           assert(WPREntry.ProcResourceIdx && "Bad ProcResourceIdx");
1105           WPREntry.Cycles = Cycles[PRIdx];
1106           // If this resource is already used in this sequence, add the current
1107           // entry's cycles so that the same resource appears to be used
1108           // serially, rather than multiple parallel uses. This is important for
1109           // in-order machine where the resource consumption is a hazard.
1110           unsigned WPRIdx = 0, WPREnd = WriteProcResources.size();
1111           for( ; WPRIdx != WPREnd; ++WPRIdx) {
1112             if (WriteProcResources[WPRIdx].ProcResourceIdx
1113                 == WPREntry.ProcResourceIdx) {
1114               WriteProcResources[WPRIdx].Cycles += WPREntry.Cycles;
1115               break;
1116             }
1117           }
1118           if (WPRIdx == WPREnd)
1119             WriteProcResources.push_back(WPREntry);
1120         }
1121       }
1122       WriteLatencies.push_back(WLEntry);
1123     }
1124     // Create an entry for each operand Read in this SchedClass.
1125     // Entries must be sorted first by UseIdx then by WriteResourceID.
1126     for (unsigned UseIdx = 0, EndIdx = Reads.size();
1127          UseIdx != EndIdx; ++UseIdx) {
1128       Record *ReadAdvance =
1129         FindReadAdvance(SchedModels.getSchedRead(Reads[UseIdx]), ProcModel);
1130       if (!ReadAdvance)
1131         continue;
1132 
1133       // Mark the parent class as invalid for unsupported write types.
1134       if (ReadAdvance->getValueAsBit("Unsupported")) {
1135         SCDesc.NumMicroOps = MCSchedClassDesc::InvalidNumMicroOps;
1136         break;
1137       }
1138       RecVec ValidWrites = ReadAdvance->getValueAsListOfDefs("ValidWrites");
1139       IdxVec WriteIDs;
1140       if (ValidWrites.empty())
1141         WriteIDs.push_back(0);
1142       else {
1143         for (Record *VW : ValidWrites) {
1144           WriteIDs.push_back(SchedModels.getSchedRWIdx(VW, /*IsRead=*/false));
1145         }
1146       }
1147       llvm::sort(WriteIDs);
1148       for(unsigned W : WriteIDs) {
1149         MCReadAdvanceEntry RAEntry;
1150         RAEntry.UseIdx = UseIdx;
1151         RAEntry.WriteResourceID = W;
1152         RAEntry.Cycles = ReadAdvance->getValueAsInt("Cycles");
1153         ReadAdvanceEntries.push_back(RAEntry);
1154       }
1155     }
1156     if (SCDesc.NumMicroOps == MCSchedClassDesc::InvalidNumMicroOps) {
1157       WriteProcResources.clear();
1158       WriteLatencies.clear();
1159       ReadAdvanceEntries.clear();
1160     }
1161     // Add the information for this SchedClass to the global tables using basic
1162     // compression.
1163     //
1164     // WritePrecRes entries are sorted by ProcResIdx.
1165     llvm::sort(WriteProcResources, LessWriteProcResources());
1166 
1167     SCDesc.NumWriteProcResEntries = WriteProcResources.size();
1168     std::vector<MCWriteProcResEntry>::iterator WPRPos =
1169       std::search(SchedTables.WriteProcResources.begin(),
1170                   SchedTables.WriteProcResources.end(),
1171                   WriteProcResources.begin(), WriteProcResources.end());
1172     if (WPRPos != SchedTables.WriteProcResources.end())
1173       SCDesc.WriteProcResIdx = WPRPos - SchedTables.WriteProcResources.begin();
1174     else {
1175       SCDesc.WriteProcResIdx = SchedTables.WriteProcResources.size();
1176       SchedTables.WriteProcResources.insert(WPRPos, WriteProcResources.begin(),
1177                                             WriteProcResources.end());
1178     }
1179     // Latency entries must remain in operand order.
1180     SCDesc.NumWriteLatencyEntries = WriteLatencies.size();
1181     std::vector<MCWriteLatencyEntry>::iterator WLPos =
1182       std::search(SchedTables.WriteLatencies.begin(),
1183                   SchedTables.WriteLatencies.end(),
1184                   WriteLatencies.begin(), WriteLatencies.end());
1185     if (WLPos != SchedTables.WriteLatencies.end()) {
1186       unsigned idx = WLPos - SchedTables.WriteLatencies.begin();
1187       SCDesc.WriteLatencyIdx = idx;
1188       for (unsigned i = 0, e = WriteLatencies.size(); i < e; ++i)
1189         if (SchedTables.WriterNames[idx + i].find(WriterNames[i]) ==
1190             std::string::npos) {
1191           SchedTables.WriterNames[idx + i] += std::string("_") + WriterNames[i];
1192         }
1193     }
1194     else {
1195       SCDesc.WriteLatencyIdx = SchedTables.WriteLatencies.size();
1196       SchedTables.WriteLatencies.insert(SchedTables.WriteLatencies.end(),
1197                                         WriteLatencies.begin(),
1198                                         WriteLatencies.end());
1199       SchedTables.WriterNames.insert(SchedTables.WriterNames.end(),
1200                                      WriterNames.begin(), WriterNames.end());
1201     }
1202     // ReadAdvanceEntries must remain in operand order.
1203     SCDesc.NumReadAdvanceEntries = ReadAdvanceEntries.size();
1204     std::vector<MCReadAdvanceEntry>::iterator RAPos =
1205       std::search(SchedTables.ReadAdvanceEntries.begin(),
1206                   SchedTables.ReadAdvanceEntries.end(),
1207                   ReadAdvanceEntries.begin(), ReadAdvanceEntries.end());
1208     if (RAPos != SchedTables.ReadAdvanceEntries.end())
1209       SCDesc.ReadAdvanceIdx = RAPos - SchedTables.ReadAdvanceEntries.begin();
1210     else {
1211       SCDesc.ReadAdvanceIdx = SchedTables.ReadAdvanceEntries.size();
1212       SchedTables.ReadAdvanceEntries.insert(RAPos, ReadAdvanceEntries.begin(),
1213                                             ReadAdvanceEntries.end());
1214     }
1215   }
1216 }
1217 
1218 // Emit SchedClass tables for all processors and associated global tables.
1219 void SubtargetEmitter::EmitSchedClassTables(SchedClassTables &SchedTables,
1220                                             raw_ostream &OS) {
1221   // Emit global WriteProcResTable.
1222   OS << "\n// {ProcResourceIdx, Cycles}\n"
1223      << "extern const llvm::MCWriteProcResEntry "
1224      << Target << "WriteProcResTable[] = {\n"
1225      << "  { 0,  0}, // Invalid\n";
1226   for (unsigned WPRIdx = 1, WPREnd = SchedTables.WriteProcResources.size();
1227        WPRIdx != WPREnd; ++WPRIdx) {
1228     MCWriteProcResEntry &WPREntry = SchedTables.WriteProcResources[WPRIdx];
1229     OS << "  {" << format("%2d", WPREntry.ProcResourceIdx) << ", "
1230        << format("%2d", WPREntry.Cycles) << "}";
1231     if (WPRIdx + 1 < WPREnd)
1232       OS << ',';
1233     OS << " // #" << WPRIdx << '\n';
1234   }
1235   OS << "}; // " << Target << "WriteProcResTable\n";
1236 
1237   // Emit global WriteLatencyTable.
1238   OS << "\n// {Cycles, WriteResourceID}\n"
1239      << "extern const llvm::MCWriteLatencyEntry "
1240      << Target << "WriteLatencyTable[] = {\n"
1241      << "  { 0,  0}, // Invalid\n";
1242   for (unsigned WLIdx = 1, WLEnd = SchedTables.WriteLatencies.size();
1243        WLIdx != WLEnd; ++WLIdx) {
1244     MCWriteLatencyEntry &WLEntry = SchedTables.WriteLatencies[WLIdx];
1245     OS << "  {" << format("%2d", WLEntry.Cycles) << ", "
1246        << format("%2d", WLEntry.WriteResourceID) << "}";
1247     if (WLIdx + 1 < WLEnd)
1248       OS << ',';
1249     OS << " // #" << WLIdx << " " << SchedTables.WriterNames[WLIdx] << '\n';
1250   }
1251   OS << "}; // " << Target << "WriteLatencyTable\n";
1252 
1253   // Emit global ReadAdvanceTable.
1254   OS << "\n// {UseIdx, WriteResourceID, Cycles}\n"
1255      << "extern const llvm::MCReadAdvanceEntry "
1256      << Target << "ReadAdvanceTable[] = {\n"
1257      << "  {0,  0,  0}, // Invalid\n";
1258   for (unsigned RAIdx = 1, RAEnd = SchedTables.ReadAdvanceEntries.size();
1259        RAIdx != RAEnd; ++RAIdx) {
1260     MCReadAdvanceEntry &RAEntry = SchedTables.ReadAdvanceEntries[RAIdx];
1261     OS << "  {" << RAEntry.UseIdx << ", "
1262        << format("%2d", RAEntry.WriteResourceID) << ", "
1263        << format("%2d", RAEntry.Cycles) << "}";
1264     if (RAIdx + 1 < RAEnd)
1265       OS << ',';
1266     OS << " // #" << RAIdx << '\n';
1267   }
1268   OS << "}; // " << Target << "ReadAdvanceTable\n";
1269 
1270   // Emit a SchedClass table for each processor.
1271   for (CodeGenSchedModels::ProcIter PI = SchedModels.procModelBegin(),
1272          PE = SchedModels.procModelEnd(); PI != PE; ++PI) {
1273     if (!PI->hasInstrSchedModel())
1274       continue;
1275 
1276     std::vector<MCSchedClassDesc> &SCTab =
1277       SchedTables.ProcSchedClasses[1 + (PI - SchedModels.procModelBegin())];
1278 
1279     OS << "\n// {Name, NumMicroOps, BeginGroup, EndGroup,"
1280        << " WriteProcResIdx,#, WriteLatencyIdx,#, ReadAdvanceIdx,#}\n";
1281     OS << "static const llvm::MCSchedClassDesc "
1282        << PI->ModelName << "SchedClasses[] = {\n";
1283 
1284     // The first class is always invalid. We no way to distinguish it except by
1285     // name and position.
1286     assert(SchedModels.getSchedClass(0).Name == "NoInstrModel"
1287            && "invalid class not first");
1288     OS << "  {DBGFIELD(\"InvalidSchedClass\")  "
1289        << MCSchedClassDesc::InvalidNumMicroOps
1290        << ", false, false,  0, 0,  0, 0,  0, 0},\n";
1291 
1292     for (unsigned SCIdx = 1, SCEnd = SCTab.size(); SCIdx != SCEnd; ++SCIdx) {
1293       MCSchedClassDesc &MCDesc = SCTab[SCIdx];
1294       const CodeGenSchedClass &SchedClass = SchedModels.getSchedClass(SCIdx);
1295       OS << "  {DBGFIELD(\"" << SchedClass.Name << "\") ";
1296       if (SchedClass.Name.size() < 18)
1297         OS.indent(18 - SchedClass.Name.size());
1298       OS << MCDesc.NumMicroOps
1299          << ", " << ( MCDesc.BeginGroup ? "true" : "false" )
1300          << ", " << ( MCDesc.EndGroup ? "true" : "false" )
1301          << ", " << format("%2d", MCDesc.WriteProcResIdx)
1302          << ", " << MCDesc.NumWriteProcResEntries
1303          << ", " << format("%2d", MCDesc.WriteLatencyIdx)
1304          << ", " << MCDesc.NumWriteLatencyEntries
1305          << ", " << format("%2d", MCDesc.ReadAdvanceIdx)
1306          << ", " << MCDesc.NumReadAdvanceEntries
1307          << "}, // #" << SCIdx << '\n';
1308     }
1309     OS << "}; // " << PI->ModelName << "SchedClasses\n";
1310   }
1311 }
1312 
1313 void SubtargetEmitter::EmitProcessorModels(raw_ostream &OS) {
1314   // For each processor model.
1315   for (const CodeGenProcModel &PM : SchedModels.procModels()) {
1316     // Emit extra processor info if available.
1317     if (PM.hasExtraProcessorInfo())
1318       EmitExtraProcessorInfo(PM, OS);
1319     // Emit processor resource table.
1320     if (PM.hasInstrSchedModel())
1321       EmitProcessorResources(PM, OS);
1322     else if(!PM.ProcResourceDefs.empty())
1323       PrintFatalError(PM.ModelDef->getLoc(), "SchedMachineModel defines "
1324                     "ProcResources without defining WriteRes SchedWriteRes");
1325 
1326     // Begin processor itinerary properties
1327     OS << "\n";
1328     OS << "static const llvm::MCSchedModel " << PM.ModelName << " = {\n";
1329     EmitProcessorProp(OS, PM.ModelDef, "IssueWidth", ',');
1330     EmitProcessorProp(OS, PM.ModelDef, "MicroOpBufferSize", ',');
1331     EmitProcessorProp(OS, PM.ModelDef, "LoopMicroOpBufferSize", ',');
1332     EmitProcessorProp(OS, PM.ModelDef, "LoadLatency", ',');
1333     EmitProcessorProp(OS, PM.ModelDef, "HighLatency", ',');
1334     EmitProcessorProp(OS, PM.ModelDef, "MispredictPenalty", ',');
1335 
1336     bool PostRAScheduler =
1337       (PM.ModelDef ? PM.ModelDef->getValueAsBit("PostRAScheduler") : false);
1338 
1339     OS << "  " << (PostRAScheduler ? "true" : "false")  << ", // "
1340        << "PostRAScheduler\n";
1341 
1342     bool CompleteModel =
1343       (PM.ModelDef ? PM.ModelDef->getValueAsBit("CompleteModel") : false);
1344 
1345     OS << "  " << (CompleteModel ? "true" : "false") << ", // "
1346        << "CompleteModel\n";
1347 
1348     OS << "  " << PM.Index << ", // Processor ID\n";
1349     if (PM.hasInstrSchedModel())
1350       OS << "  " << PM.ModelName << "ProcResources" << ",\n"
1351          << "  " << PM.ModelName << "SchedClasses" << ",\n"
1352          << "  " << PM.ProcResourceDefs.size()+1 << ",\n"
1353          << "  " << (SchedModels.schedClassEnd()
1354                      - SchedModels.schedClassBegin()) << ",\n";
1355     else
1356       OS << "  nullptr, nullptr, 0, 0,"
1357          << " // No instruction-level machine model.\n";
1358     if (PM.hasItineraries())
1359       OS << "  " << PM.ItinsDef->getName() << ",\n";
1360     else
1361       OS << "  nullptr, // No Itinerary\n";
1362     if (PM.hasExtraProcessorInfo())
1363       OS << "  &" << PM.ModelName << "ExtraInfo,\n";
1364     else
1365       OS << "  nullptr // No extra processor descriptor\n";
1366     OS << "};\n";
1367   }
1368 }
1369 
1370 //
1371 // EmitProcessorLookup - generate cpu name to sched model lookup tables.
1372 //
1373 void SubtargetEmitter::EmitProcessorLookup(raw_ostream &OS) {
1374   // Gather and sort processor information
1375   std::vector<Record*> ProcessorList =
1376                           Records.getAllDerivedDefinitions("Processor");
1377   llvm::sort(ProcessorList, LessRecordFieldName());
1378 
1379   // Begin processor->sched model table
1380   OS << "\n";
1381   OS << "// Sorted (by key) array of sched model for CPU subtype.\n"
1382      << "extern const llvm::SubtargetInfoKV " << Target
1383      << "ProcSchedKV[] = {\n";
1384   // For each processor
1385   for (Record *Processor : ProcessorList) {
1386     StringRef Name = Processor->getValueAsString("Name");
1387     const std::string &ProcModelName =
1388       SchedModels.getModelForProc(Processor).ModelName;
1389 
1390     // Emit as { "cpu", procinit },
1391     OS << "  { \"" << Name << "\", (const void *)&" << ProcModelName << " },\n";
1392   }
1393   // End processor->sched model table
1394   OS << "};\n";
1395 }
1396 
1397 //
1398 // EmitSchedModel - Emits all scheduling model tables, folding common patterns.
1399 //
1400 void SubtargetEmitter::EmitSchedModel(raw_ostream &OS) {
1401   OS << "#ifdef DBGFIELD\n"
1402      << "#error \"<target>GenSubtargetInfo.inc requires a DBGFIELD macro\"\n"
1403      << "#endif\n"
1404      << "#if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)\n"
1405      << "#define DBGFIELD(x) x,\n"
1406      << "#else\n"
1407      << "#define DBGFIELD(x)\n"
1408      << "#endif\n";
1409 
1410   if (SchedModels.hasItineraries()) {
1411     std::vector<std::vector<InstrItinerary>> ProcItinLists;
1412     // Emit the stage data
1413     EmitStageAndOperandCycleData(OS, ProcItinLists);
1414     EmitItineraries(OS, ProcItinLists);
1415   }
1416   OS << "\n// ===============================================================\n"
1417      << "// Data tables for the new per-operand machine model.\n";
1418 
1419   SchedClassTables SchedTables;
1420   for (const CodeGenProcModel &ProcModel : SchedModels.procModels()) {
1421     GenSchedClassTables(ProcModel, SchedTables);
1422   }
1423   EmitSchedClassTables(SchedTables, OS);
1424 
1425   // Emit the processor machine model
1426   EmitProcessorModels(OS);
1427   // Emit the processor lookup data
1428   EmitProcessorLookup(OS);
1429 
1430   OS << "\n#undef DBGFIELD";
1431 }
1432 
1433 static void emitPredicateProlog(const RecordKeeper &Records, raw_ostream &OS) {
1434   std::string Buffer;
1435   raw_string_ostream Stream(Buffer);
1436 
1437   // Collect all the PredicateProlog records and print them to the output
1438   // stream.
1439   std::vector<Record *> Prologs =
1440       Records.getAllDerivedDefinitions("PredicateProlog");
1441   llvm::sort(Prologs, LessRecord());
1442   for (Record *P : Prologs)
1443     Stream << P->getValueAsString("Code") << '\n';
1444 
1445   Stream.flush();
1446   OS << Buffer;
1447 }
1448 
1449 static void emitPredicates(const CodeGenSchedTransition &T,
1450                            const CodeGenSchedClass &SC, PredicateExpander &PE,
1451                            raw_ostream &OS) {
1452   std::string Buffer;
1453   raw_string_ostream SS(Buffer);
1454 
1455   auto IsTruePredicate = [](const Record *Rec) {
1456     return Rec->isSubClassOf("MCSchedPredicate") &&
1457            Rec->getValueAsDef("Pred")->isSubClassOf("MCTrue");
1458   };
1459 
1460   // If not all predicates are MCTrue, then we need an if-stmt.
1461   unsigned NumNonTruePreds =
1462       T.PredTerm.size() - count_if(T.PredTerm, IsTruePredicate);
1463 
1464   SS.indent(PE.getIndentLevel() * 2);
1465 
1466   if (NumNonTruePreds) {
1467     bool FirstNonTruePredicate = true;
1468     SS << "if (";
1469 
1470     PE.setIndentLevel(PE.getIndentLevel() + 2);
1471 
1472     for (const Record *Rec : T.PredTerm) {
1473       // Skip predicates that evaluate to "true".
1474       if (IsTruePredicate(Rec))
1475         continue;
1476 
1477       if (FirstNonTruePredicate) {
1478         FirstNonTruePredicate = false;
1479       } else {
1480         SS << "\n";
1481         SS.indent(PE.getIndentLevel() * 2);
1482         SS << "&& ";
1483       }
1484 
1485       if (Rec->isSubClassOf("MCSchedPredicate")) {
1486         PE.expandPredicate(SS, Rec->getValueAsDef("Pred"));
1487         continue;
1488       }
1489 
1490       // Expand this legacy predicate and wrap it around braces if there is more
1491       // than one predicate to expand.
1492       SS << ((NumNonTruePreds > 1) ? "(" : "")
1493          << Rec->getValueAsString("Predicate")
1494          << ((NumNonTruePreds > 1) ? ")" : "");
1495     }
1496 
1497     SS << ")\n"; // end of if-stmt
1498     PE.decreaseIndentLevel();
1499     SS.indent(PE.getIndentLevel() * 2);
1500     PE.decreaseIndentLevel();
1501   }
1502 
1503   SS << "return " << T.ToClassIdx << "; // " << SC.Name << '\n';
1504   SS.flush();
1505   OS << Buffer;
1506 }
1507 
1508 // Used by method `SubtargetEmitter::emitSchedModelHelpersImpl()` to generate
1509 // epilogue code for the auto-generated helper.
1510 void emitSchedModelHelperEpilogue(raw_ostream &OS, bool ShouldReturnZero) {
1511   if (ShouldReturnZero) {
1512     OS << "  // Don't know how to resolve this scheduling class.\n"
1513        << "  return 0;\n";
1514     return;
1515   }
1516 
1517   OS << "  report_fatal_error(\"Expected a variant SchedClass\");\n";
1518 }
1519 
1520 bool hasMCSchedPredicates(const CodeGenSchedTransition &T) {
1521   return all_of(T.PredTerm, [](const Record *Rec) {
1522     return Rec->isSubClassOf("MCSchedPredicate");
1523   });
1524 }
1525 
1526 void collectVariantClasses(const CodeGenSchedModels &SchedModels,
1527                            IdxVec &VariantClasses,
1528                            bool OnlyExpandMCInstPredicates) {
1529   for (const CodeGenSchedClass &SC : SchedModels.schedClasses()) {
1530     // Ignore non-variant scheduling classes.
1531     if (SC.Transitions.empty())
1532       continue;
1533 
1534     if (OnlyExpandMCInstPredicates) {
1535       // Ignore this variant scheduling class no transitions use any meaningful
1536       // MCSchedPredicate definitions.
1537       if (!any_of(SC.Transitions, [](const CodeGenSchedTransition &T) {
1538             return hasMCSchedPredicates(T);
1539           }))
1540         continue;
1541     }
1542 
1543     VariantClasses.push_back(SC.Index);
1544   }
1545 }
1546 
1547 void collectProcessorIndices(const CodeGenSchedClass &SC, IdxVec &ProcIndices) {
1548   // A variant scheduling class may define transitions for multiple
1549   // processors.  This function identifies wich processors are associated with
1550   // transition rules specified by variant class `SC`.
1551   for (const CodeGenSchedTransition &T : SC.Transitions) {
1552     IdxVec PI;
1553     std::set_union(T.ProcIndices.begin(), T.ProcIndices.end(),
1554                    ProcIndices.begin(), ProcIndices.end(),
1555                    std::back_inserter(PI));
1556     ProcIndices.swap(PI);
1557   }
1558 }
1559 
1560 void SubtargetEmitter::emitSchedModelHelpersImpl(
1561     raw_ostream &OS, bool OnlyExpandMCInstPredicates) {
1562   IdxVec VariantClasses;
1563   collectVariantClasses(SchedModels, VariantClasses,
1564                         OnlyExpandMCInstPredicates);
1565 
1566   if (VariantClasses.empty()) {
1567     emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1568     return;
1569   }
1570 
1571   // Construct a switch statement where the condition is a check on the
1572   // scheduling class identifier. There is a `case` for every variant class
1573   // defined by the processor models of this target.
1574   // Each `case` implements a number of rules to resolve (i.e. to transition from)
1575   // a variant scheduling class to another scheduling class.  Rules are
1576   // described by instances of CodeGenSchedTransition. Note that transitions may
1577   // not be valid for all processors.
1578   OS << "  switch (SchedClass) {\n";
1579   for (unsigned VC : VariantClasses) {
1580     IdxVec ProcIndices;
1581     const CodeGenSchedClass &SC = SchedModels.getSchedClass(VC);
1582     collectProcessorIndices(SC, ProcIndices);
1583 
1584     OS << "  case " << VC << ": // " << SC.Name << '\n';
1585 
1586     PredicateExpander PE(Target);
1587     PE.setByRef(false);
1588     PE.setExpandForMC(OnlyExpandMCInstPredicates);
1589     for (unsigned PI : ProcIndices) {
1590       OS << "    ";
1591 
1592       // Emit a guard on the processor ID.
1593       if (PI != 0) {
1594         OS << (OnlyExpandMCInstPredicates
1595                    ? "if (CPUID == "
1596                    : "if (SchedModel->getProcessorID() == ");
1597         OS << PI << ") ";
1598         OS << "{ // " << (SchedModels.procModelBegin() + PI)->ModelName << '\n';
1599       }
1600 
1601       // Now emit transitions associated with processor PI.
1602       for (const CodeGenSchedTransition &T : SC.Transitions) {
1603         if (PI != 0 && !count(T.ProcIndices, PI))
1604           continue;
1605 
1606         // Emit only transitions based on MCSchedPredicate, if it's the case.
1607         // At least the transition specified by NoSchedPred is emitted,
1608         // which becomes the default transition for those variants otherwise
1609         // not based on MCSchedPredicate.
1610         // FIXME: preferably, llvm-mca should instead assume a reasonable
1611         // default when a variant transition is not based on MCSchedPredicate
1612         // for a given processor.
1613         if (OnlyExpandMCInstPredicates && !hasMCSchedPredicates(T))
1614           continue;
1615 
1616         PE.setIndentLevel(3);
1617         emitPredicates(T, SchedModels.getSchedClass(T.ToClassIdx), PE, OS);
1618       }
1619 
1620       OS << "    }\n";
1621 
1622       if (PI == 0)
1623         break;
1624     }
1625 
1626     if (SC.isInferred())
1627       OS << "    return " << SC.Index << ";\n";
1628     OS << "    break;\n";
1629   }
1630 
1631   OS << "  };\n";
1632 
1633   emitSchedModelHelperEpilogue(OS, OnlyExpandMCInstPredicates);
1634 }
1635 
1636 void SubtargetEmitter::EmitSchedModelHelpers(const std::string &ClassName,
1637                                              raw_ostream &OS) {
1638   OS << "unsigned " << ClassName
1639      << "\n::resolveSchedClass(unsigned SchedClass, const MachineInstr *MI,"
1640      << " const TargetSchedModel *SchedModel) const {\n";
1641 
1642   // Emit the predicate prolog code.
1643   emitPredicateProlog(Records, OS);
1644 
1645   // Emit target predicates.
1646   emitSchedModelHelpersImpl(OS);
1647 
1648   OS << "} // " << ClassName << "::resolveSchedClass\n\n";
1649 
1650   OS << "unsigned " << ClassName
1651      << "\n::resolveVariantSchedClass(unsigned SchedClass, const MCInst *MI,"
1652      << " unsigned CPUID) const {\n"
1653      << "  return " << Target << "_MC"
1654      << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID);\n"
1655      << "} // " << ClassName << "::resolveVariantSchedClass\n\n";
1656 
1657   STIPredicateExpander PE(Target);
1658   PE.setClassPrefix(ClassName);
1659   PE.setExpandDefinition(true);
1660   PE.setByRef(false);
1661   PE.setIndentLevel(0);
1662 
1663   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1664     PE.expandSTIPredicate(OS, Fn);
1665 }
1666 
1667 void SubtargetEmitter::EmitHwModeCheck(const std::string &ClassName,
1668                                        raw_ostream &OS) {
1669   const CodeGenHwModes &CGH = TGT.getHwModes();
1670   assert(CGH.getNumModeIds() > 0);
1671   if (CGH.getNumModeIds() == 1)
1672     return;
1673 
1674   OS << "unsigned " << ClassName << "::getHwMode() const {\n";
1675   for (unsigned M = 1, NumModes = CGH.getNumModeIds(); M != NumModes; ++M) {
1676     const HwMode &HM = CGH.getMode(M);
1677     OS << "  if (checkFeatures(\"" << HM.Features
1678        << "\")) return " << M << ";\n";
1679   }
1680   OS << "  return 0;\n}\n";
1681 }
1682 
1683 //
1684 // ParseFeaturesFunction - Produces a subtarget specific function for parsing
1685 // the subtarget features string.
1686 //
1687 void SubtargetEmitter::ParseFeaturesFunction(raw_ostream &OS,
1688                                              unsigned NumFeatures,
1689                                              unsigned NumProcs) {
1690   std::vector<Record*> Features =
1691                        Records.getAllDerivedDefinitions("SubtargetFeature");
1692   llvm::sort(Features, LessRecord());
1693 
1694   OS << "// ParseSubtargetFeatures - Parses features string setting specified\n"
1695      << "// subtarget options.\n"
1696      << "void llvm::";
1697   OS << Target;
1698   OS << "Subtarget::ParseSubtargetFeatures(StringRef CPU, StringRef FS) {\n"
1699      << "  LLVM_DEBUG(dbgs() << \"\\nFeatures:\" << FS);\n"
1700      << "  LLVM_DEBUG(dbgs() << \"\\nCPU:\" << CPU << \"\\n\\n\");\n";
1701 
1702   if (Features.empty()) {
1703     OS << "}\n";
1704     return;
1705   }
1706 
1707   OS << "  InitMCProcessorInfo(CPU, FS);\n"
1708      << "  const FeatureBitset& Bits = getFeatureBits();\n";
1709 
1710   for (Record *R : Features) {
1711     // Next record
1712     StringRef Instance = R->getName();
1713     StringRef Value = R->getValueAsString("Value");
1714     StringRef Attribute = R->getValueAsString("Attribute");
1715 
1716     if (Value=="true" || Value=="false")
1717       OS << "  if (Bits[" << Target << "::"
1718          << Instance << "]) "
1719          << Attribute << " = " << Value << ";\n";
1720     else
1721       OS << "  if (Bits[" << Target << "::"
1722          << Instance << "] && "
1723          << Attribute << " < " << Value << ") "
1724          << Attribute << " = " << Value << ";\n";
1725   }
1726 
1727   OS << "}\n";
1728 }
1729 
1730 void SubtargetEmitter::emitGenMCSubtargetInfo(raw_ostream &OS) {
1731   OS << "namespace " << Target << "_MC {\n"
1732      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,\n"
1733      << "    const MCInst *MI, unsigned CPUID) {\n";
1734   emitSchedModelHelpersImpl(OS, /* OnlyExpandMCPredicates */ true);
1735   OS << "}\n";
1736   OS << "} // end of namespace " << Target << "_MC\n\n";
1737 
1738   OS << "struct " << Target
1739      << "GenMCSubtargetInfo : public MCSubtargetInfo {\n";
1740   OS << "  " << Target << "GenMCSubtargetInfo(const Triple &TT, \n"
1741      << "    StringRef CPU, StringRef FS, ArrayRef<SubtargetFeatureKV> PF,\n"
1742      << "    ArrayRef<SubtargetFeatureKV> PD,\n"
1743      << "    const SubtargetInfoKV *ProcSched,\n"
1744      << "    const MCWriteProcResEntry *WPR,\n"
1745      << "    const MCWriteLatencyEntry *WL,\n"
1746      << "    const MCReadAdvanceEntry *RA, const InstrStage *IS,\n"
1747      << "    const unsigned *OC, const unsigned *FP) :\n"
1748      << "      MCSubtargetInfo(TT, CPU, FS, PF, PD, ProcSched,\n"
1749      << "                      WPR, WL, RA, IS, OC, FP) { }\n\n"
1750      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,\n"
1751      << "      const MCInst *MI, unsigned CPUID) const override {\n"
1752      << "    return " << Target << "_MC"
1753      << "::resolveVariantSchedClassImpl(SchedClass, MI, CPUID); \n";
1754   OS << "  }\n";
1755   OS << "};\n";
1756 }
1757 
1758 void SubtargetEmitter::EmitMCInstrAnalysisPredicateFunctions(raw_ostream &OS) {
1759   OS << "\n#ifdef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n";
1760   OS << "#undef GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1761 
1762   STIPredicateExpander PE(Target);
1763   PE.setExpandForMC(true);
1764   PE.setByRef(true);
1765   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1766     PE.expandSTIPredicate(OS, Fn);
1767 
1768   OS << "#endif // GET_STIPREDICATE_DECLS_FOR_MC_ANALYSIS\n\n";
1769 
1770   OS << "\n#ifdef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n";
1771   OS << "#undef GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1772 
1773   std::string ClassPrefix = Target + "MCInstrAnalysis";
1774   PE.setExpandDefinition(true);
1775   PE.setClassPrefix(ClassPrefix);
1776   PE.setIndentLevel(0);
1777   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1778     PE.expandSTIPredicate(OS, Fn);
1779 
1780   OS << "#endif // GET_STIPREDICATE_DEFS_FOR_MC_ANALYSIS\n\n";
1781 }
1782 
1783 //
1784 // SubtargetEmitter::run - Main subtarget enumeration emitter.
1785 //
1786 void SubtargetEmitter::run(raw_ostream &OS) {
1787   emitSourceFileHeader("Subtarget Enumeration Source Fragment", OS);
1788 
1789   OS << "\n#ifdef GET_SUBTARGETINFO_ENUM\n";
1790   OS << "#undef GET_SUBTARGETINFO_ENUM\n\n";
1791 
1792   OS << "namespace llvm {\n";
1793   Enumeration(OS);
1794   OS << "} // end namespace llvm\n\n";
1795   OS << "#endif // GET_SUBTARGETINFO_ENUM\n\n";
1796 
1797   OS << "\n#ifdef GET_SUBTARGETINFO_MC_DESC\n";
1798   OS << "#undef GET_SUBTARGETINFO_MC_DESC\n\n";
1799 
1800   OS << "namespace llvm {\n";
1801 #if 0
1802   OS << "namespace {\n";
1803 #endif
1804   unsigned NumFeatures = FeatureKeyValues(OS);
1805   OS << "\n";
1806   unsigned NumProcs = CPUKeyValues(OS);
1807   OS << "\n";
1808   EmitSchedModel(OS);
1809   OS << "\n";
1810 #if 0
1811   OS << "} // end anonymous namespace\n\n";
1812 #endif
1813 
1814   // MCInstrInfo initialization routine.
1815   emitGenMCSubtargetInfo(OS);
1816 
1817   OS << "\nstatic inline MCSubtargetInfo *create" << Target
1818      << "MCSubtargetInfoImpl("
1819      << "const Triple &TT, StringRef CPU, StringRef FS) {\n";
1820   OS << "  return new " << Target << "GenMCSubtargetInfo(TT, CPU, FS, ";
1821   if (NumFeatures)
1822     OS << Target << "FeatureKV, ";
1823   else
1824     OS << "None, ";
1825   if (NumProcs)
1826     OS << Target << "SubTypeKV, ";
1827   else
1828     OS << "None, ";
1829   OS << '\n'; OS.indent(22);
1830   OS << Target << "ProcSchedKV, "
1831      << Target << "WriteProcResTable, "
1832      << Target << "WriteLatencyTable, "
1833      << Target << "ReadAdvanceTable, ";
1834   OS << '\n'; OS.indent(22);
1835   if (SchedModels.hasItineraries()) {
1836     OS << Target << "Stages, "
1837        << Target << "OperandCycles, "
1838        << Target << "ForwardingPaths";
1839   } else
1840     OS << "nullptr, nullptr, nullptr";
1841   OS << ");\n}\n\n";
1842 
1843   OS << "} // end namespace llvm\n\n";
1844 
1845   OS << "#endif // GET_SUBTARGETINFO_MC_DESC\n\n";
1846 
1847   OS << "\n#ifdef GET_SUBTARGETINFO_TARGET_DESC\n";
1848   OS << "#undef GET_SUBTARGETINFO_TARGET_DESC\n\n";
1849 
1850   OS << "#include \"llvm/Support/Debug.h\"\n";
1851   OS << "#include \"llvm/Support/raw_ostream.h\"\n\n";
1852   ParseFeaturesFunction(OS, NumFeatures, NumProcs);
1853 
1854   OS << "#endif // GET_SUBTARGETINFO_TARGET_DESC\n\n";
1855 
1856   // Create a TargetSubtargetInfo subclass to hide the MC layer initialization.
1857   OS << "\n#ifdef GET_SUBTARGETINFO_HEADER\n";
1858   OS << "#undef GET_SUBTARGETINFO_HEADER\n\n";
1859 
1860   std::string ClassName = Target + "GenSubtargetInfo";
1861   OS << "namespace llvm {\n";
1862   OS << "class DFAPacketizer;\n";
1863   OS << "namespace " << Target << "_MC {\n"
1864      << "unsigned resolveVariantSchedClassImpl(unsigned SchedClass,"
1865      << " const MCInst *MI, unsigned CPUID);\n"
1866      << "}\n\n";
1867   OS << "struct " << ClassName << " : public TargetSubtargetInfo {\n"
1868      << "  explicit " << ClassName << "(const Triple &TT, StringRef CPU, "
1869      << "StringRef FS);\n"
1870      << "public:\n"
1871      << "  unsigned resolveSchedClass(unsigned SchedClass, "
1872      << " const MachineInstr *DefMI,"
1873      << " const TargetSchedModel *SchedModel) const override;\n"
1874      << "  unsigned resolveVariantSchedClass(unsigned SchedClass,"
1875      << " const MCInst *MI, unsigned CPUID) const override;\n"
1876      << "  DFAPacketizer *createDFAPacketizer(const InstrItineraryData *IID)"
1877      << " const;\n";
1878   if (TGT.getHwModes().getNumModeIds() > 1)
1879     OS << "  unsigned getHwMode() const override;\n";
1880 
1881   STIPredicateExpander PE(Target);
1882   PE.setByRef(false);
1883   for (const STIPredicateFunction &Fn : SchedModels.getSTIPredicates())
1884     PE.expandSTIPredicate(OS, Fn);
1885 
1886   OS << "};\n"
1887      << "} // end namespace llvm\n\n";
1888 
1889   OS << "#endif // GET_SUBTARGETINFO_HEADER\n\n";
1890 
1891   OS << "\n#ifdef GET_SUBTARGETINFO_CTOR\n";
1892   OS << "#undef GET_SUBTARGETINFO_CTOR\n\n";
1893 
1894   OS << "#include \"llvm/CodeGen/TargetSchedule.h\"\n\n";
1895   OS << "namespace llvm {\n";
1896   OS << "extern const llvm::SubtargetFeatureKV " << Target << "FeatureKV[];\n";
1897   OS << "extern const llvm::SubtargetFeatureKV " << Target << "SubTypeKV[];\n";
1898   OS << "extern const llvm::SubtargetInfoKV " << Target << "ProcSchedKV[];\n";
1899   OS << "extern const llvm::MCWriteProcResEntry "
1900      << Target << "WriteProcResTable[];\n";
1901   OS << "extern const llvm::MCWriteLatencyEntry "
1902      << Target << "WriteLatencyTable[];\n";
1903   OS << "extern const llvm::MCReadAdvanceEntry "
1904      << Target << "ReadAdvanceTable[];\n";
1905 
1906   if (SchedModels.hasItineraries()) {
1907     OS << "extern const llvm::InstrStage " << Target << "Stages[];\n";
1908     OS << "extern const unsigned " << Target << "OperandCycles[];\n";
1909     OS << "extern const unsigned " << Target << "ForwardingPaths[];\n";
1910   }
1911 
1912   OS << ClassName << "::" << ClassName << "(const Triple &TT, StringRef CPU, "
1913      << "StringRef FS)\n"
1914      << "  : TargetSubtargetInfo(TT, CPU, FS, ";
1915   if (NumFeatures)
1916     OS << "makeArrayRef(" << Target << "FeatureKV, " << NumFeatures << "), ";
1917   else
1918     OS << "None, ";
1919   if (NumProcs)
1920     OS << "makeArrayRef(" << Target << "SubTypeKV, " << NumProcs << "), ";
1921   else
1922     OS << "None, ";
1923   OS << '\n'; OS.indent(24);
1924   OS << Target << "ProcSchedKV, "
1925      << Target << "WriteProcResTable, "
1926      << Target << "WriteLatencyTable, "
1927      << Target << "ReadAdvanceTable, ";
1928   OS << '\n'; OS.indent(24);
1929   if (SchedModels.hasItineraries()) {
1930     OS << Target << "Stages, "
1931        << Target << "OperandCycles, "
1932        << Target << "ForwardingPaths";
1933   } else
1934     OS << "nullptr, nullptr, nullptr";
1935   OS << ") {}\n\n";
1936 
1937   EmitSchedModelHelpers(ClassName, OS);
1938   EmitHwModeCheck(ClassName, OS);
1939 
1940   OS << "} // end namespace llvm\n\n";
1941 
1942   OS << "#endif // GET_SUBTARGETINFO_CTOR\n\n";
1943 
1944   EmitMCInstrAnalysisPredicateFunctions(OS);
1945 }
1946 
1947 namespace llvm {
1948 
1949 void EmitSubtarget(RecordKeeper &RK, raw_ostream &OS) {
1950   CodeGenTarget CGTarget(RK);
1951   SubtargetEmitter(RK, CGTarget).run(OS);
1952 }
1953 
1954 } // end namespace llvm
1955